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Abstract The generalization of the ARMA time series model to themultidimensional
index set Zd , d ≥ 2, is called spatial ARMA model. The purpose of the following is
to specify necessary conditions and sufficient conditions for the existence of strictly
stationary solutions of the ARMA equations when the driving noise is i.i.d. Two
different classes of strictly stationary solutions are studied, solutions of causal and
noncausal models. For the special case of a first-order model on Z

2 conditions are
obtained, which are simultaneously necessary and sufficient.
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1 Introduction

Let d ∈ N, usually d > 1, and (Yt)t=(t1,...,td )∈Zd a d-dimensional complex-valued
randomfield living on a probability space (Ω,F ,P). If (Yt)t∈Zd satisfies the equations

Yt −
∑

n∈R

φnYt−n = Zt +
∑

n∈S
θnZt−n, t ∈ Z

d , (1)

where (φn)n∈R, (θn)n∈S ⊂ C, R and S are finite subsets ofNd
0\{0} or more generally

of Zd\{0}, and (Zt)t∈Zd is an i.i.d. complex-valued random field on (Ω,F ,P), we
call (Yt)t∈Zd an ARMA random field, where ARMA is short for autoregressive moving
average. The spatial ARMA model defined by (1) is a natural generalization of the
well-knownARMAtime seriesmodel (see, e.g., Brockwell andDavis 2009,Chapter 3)
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386 M. Drapatz

to higher dimensional index setsZd , d > 1. The spatial ARMAmodel was considered
long ago by Whittle (1954) and many others (e.g., Tjøstheim 1978, Besag 1972, Basu
and Reinsel 1993) have worked on this topic. However, most work has been spent on
weakly stationary solutions of the spatial ARMA model and their statistics.

For the time series model (d = 1), Brockwell and Lindner (2010) obtained neces-
sary and sufficient conditions for the existence of strictly stationary solutions of (1). In
this article, we generalize those results and obtain some necessary and some sufficient
conditions for the existence of strictly stationary solutions of (1), in terms of some
moment conditions on the white noise (Zt)t∈Zd and zero sets of the characteristic
polynomials

�(z) = 1 −
∑

n∈R

φnzn, and

�(z) = 1 +
∑

n∈S
θnzn, z = (z1, . . . , zd) ∈ C

d ,

corresponding to the recurrence Eq. (1). The polynomial� is called the autoregressive
polynomial and � the moving average polynomial (we speak of polynomials even if
R, S ⊂ Z

d ). It is known that a sufficient condition for the existence of a weakly
stationary solution, when usually (Zt)t∈Zd is considered to be only uncorrelated white
noise with mean zero, is given by (see Rosenblatt 2000, p. 60)

∫

Td

∣∣∣∣
�(e−it)

�(e−it)

∣∣∣∣
2

dλd(t) < ∞, (2)

where T
d is the d-fold cartesian product of the factor space T = R/2πZ, which

we identify by (−π, π ], and λd is the Lebesgue measure on Rd limited to T
d . By

spectral density arguments it can easily be shown that this condition is also necessary
in complete analogy to the discussion around Eq. (2) in Brockwell and Lindner (2010).
Condition (2) will also play a decisive role, when strictly stationary solutions are
considered.

There are several differences between d = 1 and higher dimensional models with
d > 1, which bring some difficulties: first of all, polynomials cannot be factored com-
pletely as in one dimension, which implies that a quotient of polynomials in several
variables may have common zeros that cannot be canceled out. Another difference
is that even though �(e−i ·) may have zeros on T

d , it is possible that (2) holds, even
if �(z) ≡ 1. Furthermore, we have to deal with multiple sums

∑
k∈Nd

0
Xk for some

random field (Xk)k∈Zd , which do not necessarily converge absolutely. Therefore, a
type of convergence defined by Klesov (1995), namely almost sure convergence in
the rectangular sense, will be used. Finally, there is no natural order in space as in
time. Therefore, proposing ARMA models which use a specific order might not be
appropriate in many practical situations. However, nevertheless we will consider in
Sect. 3 causal ARMAmodels which exhibit some specific spatial order. These models
are useful for spatial data under a directional influence, see Tinline (1970) for an exam-
ple. Furthermore unilateral or causal models are used extensively in image analysis
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Solutions of spatial ARMA equations 387

(e.g., Bustos et al. 2009) and lately also in econometrics (see Ahlgren and Gerkman
2007). Other applications in geology and geography are pointed out in Tjøstheim
(1978). Tjøstheim also shows that every weakly stationary, purely nondeterministic
random field admits a unilateral representation. Therefore, unilateral representations
are often used as an approximation since the statistics are easier to handle. Finally,
heavy-tailed causal models are also from a statistical point of view interesting, as
pointed out by Roknossadati and Zarepour (2010) who considered M-estimators for
causal random fields and showed that the convergence rate in the heavy-tailed case is
faster than for the usual estimators in the finite variance case.

The article is structured as follows: in Sect. 2 we study linear strictly stationary
solutions. After that in Sect. 3 we go on to consider strictly stationary causal solutions,
without assuming them a priori to be linear. Then in Sect. 4 a full characterization
of necessary and sufficient conditions for the existence of strictly stationary causal
solutions of a first-order autoregressive model in dimension two will be given. The
following notation will be used: vector-valued variables will be printed bold and the
multi-index notation

zn = zn11 . . . zndd , z = (z1, . . . , zd) ∈ C
d ,

n = (n1, . . . , nd) ∈ Z
d , eit = (eit1 , . . . , eitd ), t ∈ T

d ,

will be applied. To indicate that two random variables X and Y are independent,
the symbol X ⊥⊥ Y will be used. Furthermore the Backward Shift Operator B =
(B1, . . . , Bd), where Bi shifts the i th coordinate back by one, i.e., for the i th unit
vector ei in Rd we have

Bi Zt = Zt−ei , i = 1, . . . , d, t ∈ Z
d ,

will be used to write the ARMA Eq. (1) in a compact form as

�(B)Yt = �(B)Zt, t ∈ Z
d .

The Hilbert space of functions f : Td → C, which are square integrable with respect
toλd , will be denoted by L2(Td). If condition (2) is satisfied, the existence of a Fourier
expansion

�(e−it)

�(e−it)
=
∑

k∈Zd

ψke
−ikt, (ψk)k∈Zd ⊂ C, t ∈ T

d , (3)

wherekt = k·t =∑d
i=1 ki ti denotes theEuclidean inner product onR

d , is assured, see
Shapiro (2011), Theorem 2.2. Plugging (3) into (2), it is easy to see that the coefficients
(ψk)k∈Zd are square summable, i.e.,

∑
k∈Zd |ψk|2 < ∞. By H2 we denote the Banach

space containing all functions f : Dd → C holomorphic on the open unit polydisc
D
d = {z = (z1, . . . , zd) ∈ C

d : |zi | < 1, i = 1, . . . , d} and satisfying

‖ f ‖2H2 := sup
0≤r<1

1

(2π)d

∫

Td

∣∣∣ f (re−it)

∣∣∣
2
dλd(t) < ∞.

123



388 M. Drapatz

If a function f : Dd → C is holomorphic, it admits a power series expansion
f (z) = ∑

k∈Nd
0
akzk, see Range (1986), Theorem 1.6. Thus, a function f : Dd →

C ∈ H2 admits a representation f (z) = ∑
k∈Nd

0
akzk and f ∈ H2, if and only if

∑
k∈Nd

0
|ak|2 < ∞. To see that, notice that

‖ f ‖2H2 = sup
0≤r<1

∑

k∈Nd
0

|ak|2r2|k|.

Hence, each function f ∈H2 can be identifiedwith its ”boundary function” g:Td →C,
whose Fourier expansion is given by g(e−it) =∑k∈Nd

0
ake−ikt. Further

‖ f ‖2H2 = sup
0≤r<1

∑

k∈Nd
0

|ak|2r2|k| =
∑

k∈Nd
0

|ak|2

= 1

(2π)d

∫

Td
|g(e−it)|2dλd(t) =: ‖g‖2L2(Td )

,

so that H2 can be identified with a closed subspace of L2(Td), more precisely, the
space of all functions g ∈ L2(Td), whose Fourier coefficients (ak)k∈Zd vanish for
k ∈ Z

d\Nd
0 . The space H2 is called Hardy space. For more details about Fourier

analysis and Hardy spaces in several variables see Shapiro (2011) or Rudin (1969).
Beside Fourier expansions, Laurent expansions in several variables will be utilized.
All results from function theory in several variables used in this work can be found in
Range (1986).

2 Linear strictly stationary solutions

In this section, we introduce the notion of linear strictly stationary ARMA random
fields and establish necessary and sufficient conditions for the existence of solutions of
the ARMA equations for this class of random fields. In the whole section we assume
that R and S are subsets of Zd\ {0}.
Definition 1 A random field (Yt)t∈Zd , which solves the ARMA equation (1) where
(Zt)t∈Zd is an i.i.d. noise, is called a linear strictly stationary solution, if there are
coefficients (ψk)k∈Zd ⊂ C, such that

Yt =
∑

k∈Zd

ψkZt−k, t ∈ Z
d ,

where the right-hand side converges almost surely absolutely.

Obviously, a linear strictly stationary solution is indeed strictly stationary.A random
field (Zt)t∈Zd is called deterministic, if there is a constant K such that P(Zt = K ) = 1
for all t ∈ Z

d .

123



Solutions of spatial ARMA equations 389

Theorem 1 Let R and S be subsets of Zd\{0} and (Zt)t∈Zd an i.i.d. nondeterministic
random field. The ARMA equation (1) admits a linear strictly stationary solution if
and only if

�(e−i ·)
�(e−i ·)

∈ L2
(
T
d
)

and
Yt =

∑

k∈Zd

ψkZt−k, t ∈ Z
d , (4)

converges almost surely absolutely, where

�(e−it)

�(e−it)
=
∑

k∈Zd

ψke
−ikt, t ∈ T

d , (5)

denotes the Fourier expansion of �(e−i ·)/�(e−i ·). If these two conditions are satis-
fied, then a linear strictly stationary solution is given by (4).

Proof Suppose both conditions are satisfied. Applying the operator �(B) on (Yt)t∈Zd

as defined in (4) yields

�(B)Yt =Yt −
∑

n∈R

φnYt−n =
∑

k∈Zd

(
ψk −

∑

n∈R

φnψk−n

︸ ︷︷ ︸
=:ξk

)
Zt−k.

The random field (Yt)t∈Zd solves the ARMA equations, if the coefficients (ξk)k∈Zd

satisfy

ξk := ψk −
∑

n∈R

φnψk−n =
⎧
⎨

⎩

θk, k ∈ S\{0},
1, k = 0,
0, otherwise.

(6)

To prove the validity of these equalities we compare the coefficients (ξk)k∈Zd with
those of the corresponding Fourier series. Multiplying both sides of Eq. (5) by�(e−it)

yields

�(e−it) = 1 +
∑

n∈S
θne

−int = �(e−it)

⎛

⎝
∑

k∈Zd

ψke
−ikt

⎞

⎠

=
∑

k∈Zd

(
ψk −

∑

n∈R

φnψk−n

)
e−ikt. (7)

Comparing the coefficients in Eq. (7), the validity of (6) is obtained, which com-
pletes the proof of sufficiency.

Suppose the random field (Wt)t∈Zd is a linear strictly stationary solution of the
ARMA equations. Thus, it has a representation Wt = ∑

k∈Zd ηkZt−k for t ∈ Z
d
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390 M. Drapatz

for some sequence (ηk)k∈Zd ⊂ C, where the right-hand side converges almost surely
absolutely.By an application ofTheorem5.1.4 ofChowandTeicher (1997) this implies
the square summability of the coefficients (ηk)k∈Zd . The Theorem of Riesz–Fischer
(see Stein and Weiss 1971, Theorem 1.7) now implies that there exists a function
�(e−i ·) in L2(Td), whose Fourier coefficients are precisely (ηk)k∈Zd . Hence the
Fourier expansion of �(e−i ·) is given by �(e−it) = ∑

k∈Zd ηke−ikt for t ∈ T
d . Yet

again, we can compare the coefficients of the ARMA equation �(B)Wt = �(B)Zt
and those of the product �(e−i ·)�(e−i ·) and conclude that

�(e−it)�(e−it) = �(e−it), t ∈ T
d . (8)

We define the measurable set N := {t ∈ T
d : �(e−it) = 0} and obtain by Eq. (8)

∫

Td\N

∣∣∣∣
�(e−it)

�(e−it)

∣∣∣∣
2

dλd(t) =
∫

Td\N

∣∣∣�(e−it)

∣∣∣
2
dλd(t) < ∞.

Furthermore, by Theorem 3.7 of Range (1986), the set N is a λd −nullset. Thus,
�(e−i ·)/�(e−i ·) ∈ L2(Td) and because of the uniqueness of the Fourier expansion,
the Fourier coefficients of �(e−i ·)/�(e−i ·) are given by (ψk)k∈Zd , i.e., ηk = ψk for
all k ∈ Z

d . ��
An immediate question is under which conditions the right-hand side of Eq. (4) con-

verges almost surely absolutely. Before giving a sufficient condition in Proposition 1,
we need the following lemma.

Lemma 1 For n, d ∈ N denote the cardinality of the set {k ∈ Z
d : |k1|+· · ·+|kd | =

n} by hd(n). Then hd(n) can be bounded from above by Cdnd−1 for some constant
Cd > 0.

Proof For d = 1 we have h1(n) = |{k ∈ Z : |k| = n}| = 2. Suppose the assumption
is valid for d ∈ N. Then the following identity holds for d + 1

{
k ∈ Z

d+1 : |k1|+· · ·+|kd+1|=n
}
=

n⋃

k=0

{
k ∈ Z

d+1 :
d∑

i=1

|ki |=n−k, |kd+1|=k

}
.

Each set of this union with k = n has cardinality less than or equal to 2Cd(n − k)d−1

by assumption and for k = n, i.e., |kd+1| = n and the other components are zero, the
cardinality is two. Thus, we can conclude hd+1(n) ≤ 2Cdnd + 2 ≤ Cd+1nd for some
constant Cd+1 > 0. ��

We define for z ≥ 0 the positive part of the natural logarithm as log+(z) :=
max(log(z), 0). In the following proposition sufficient conditions for the existence of
a linear strictly stationary solution are given.

Proposition 1 Let R and S be subsets of Zd\{0}. If the autoregressive polynomial
�(e−i ·) has no zero on Td , then for appropriate r = (r1, . . . , rd), ρ = (ρ1, . . . , ρd),
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Solutions of spatial ARMA equations 391

0 ≤ ri < 1 < ρi , i = 1 . . . , d, a Laurent expansion of �(e−i ·)/�(e−i ·) exists given
by

�(z)
�(z)

=
∑

k∈Zd

ψkzk, z ∈ K (r, ρ) := {z = (z1, . . . , zd) ∈ C
d : ri < |zi |

< ρi , i = 1, . . . , d}.

If further
E logd+ |Z1| < ∞,

then
Yt :=

∑

k∈Zd

ψkZt−k, t ∈ Z
d ,

converges almost surely absolutely. In particular, the random field (Yt)t∈Zd solves the
ARMA equation (1).

Proof If the autoregressive polynomial �(e−i ·) does not possess any zeros on T
d ,

then the quotient �(z)/�(z) is holomorphic in K (r, ρ), where 0 ≤ ri < 1 < ρi for
suitable r = (r1, . . . , rd), ρ = (ρ1, . . . , ρd). Furthermore Proposition 1.4 in Range
(1986) assures the existence of a Laurent expansion

�(z)/�(z) =
∑

k∈Zd

ψkzk, z ∈ K (r, ρ), 0 ≤ r < 1 < ρ,

and the validity of the Cauchy estimates in d variables, i.e., there are constants M, c >

0 such that
|ψk| ≤ Me−c(|k1|+···+|kd |), ∀k ∈ Z

d .

For n ∈ N the number of possibilities of k ∈ Z
d satisfying |k1| + · · · + |kd | = n can

be bounded from above by Cdnd−1, Cd > 0, see Lemma 1. Thus, for c′ ∈ (0, c) it
follows that

∑

k∈Zd

P

(
|ψkZt−k| > e−c′(|k1|+···+|kd |) )

≤
∑

k∈Zd

P

(
M |Zt−k| > e(c−c′)(|k1|+···+|kd |))

=
∑

k∈Zd

P

(
log+(M |Z0|) > (c − c′)(|k1| + · · · + |kd |)

)

≤ 1 + Cd

∞∑

n=1

nd−1
P

(
log+(M |Z0|) > n(c − c′)

)
. (9)

Wedefine the randomvariable X = log+(M |Z0|)/
(
c − c′). Using the two inequalities
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392 M. Drapatz

P(X > n) ≤ P(X > x) for x ∈ (n − 1, n], n ∈ N,

n ≤ 2x for x ∈ (n − 1, n], n ∈ N\{1},

the last series in Eq. (9) can be bounded from above as follows

∞∑

n=2

nd−1
P(X > n) ≤

∞∑

n=2

∫ n

n−1
P(X > x) (2x)d−1 dx

= 2d−1
∫ ∞

1
P(X > x) xd−1 dx

≤ 2d−1

d
E(Xd) = 2d−1

d
E

(
log+(M |Z0|)

(c − c′)

)d

< ∞, (10)

where the last inequality is valid, because the expected value in (10) is finite, if and
only if E logd+ |Z0| < ∞. Applying the Borel–Cantelli Lemma implies that the event

{
|ψkZt−k| > e−c′(|k1|+···+|kd |) for infinitely many k ∈ Z

d
}

has probability zero. The almost sure majorant
∑

k∈Zd e−c′(|k1|+···+|kd |) is absolutely
convergent, and hence the series Yt = ∑

k∈Zd ψkZt−k converges almost surely
absolutely for all t ∈ Z

d . ��
Ford = 1 the condition�(z) = 0 for all z ∈ C, |z| = 1, is a necessary and sufficient

condition for the uniqueness of a strictly stationary solution, provided one exists, see
Brockwell and Lindner (2010) who use Brockwell and Lindner (2009), Lemma 3.1.
For d > 1 we do not know whether the analog condition �(e−it) = 0 for all t ∈ T

d

is sufficient for the uniqueness of linear strictly stationary solutions. However, the
necessity of this condition will be established (Lemma 3) and in the following lemma
it is proved that if a strictly stationary solution exists which additionally satisfies some
log-moment condition, then it is the unique strictly stationary solution of the ARMA
equation (1) that satisfies this log-moment condition.

Lemma 2 Suppose �(e−it) = 0 for all t ∈ T
d and let δ > 0. Then the ARMA

equation (1) admits at most one strictly stationary solution (Yt)t∈Zd satisfying
E logd−1+δ+ |Y0| < ∞.

Proof Suppose (Yt)t∈Zd is a strictly stationary solution with E logd−1+δ+ |Y0| < ∞.
Since �(e−it) = 0 for all t ∈ T

d is assumed, the inverse of �(z) admits a Laurent
expansion

�−1(z) =
∑

k∈Zd

ψkzk, z ∈ K (r, ρ),

where r = (r1, . . . , rd), ρ = (ρ1, . . . , ρd), 0 ≤ ri < 1 < ρi , i = 1 . . . , d
and (ψk)k∈Zd ⊂ C. Defining for N ∈ N the truncated inverse filter fN (z) =
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Solutions of spatial ARMA equations 393

∑
k:max(|k1|,...,|kd |)≤N ψkzk of �(z) and applying it to the ARMA equation gives

fN (B)�(B)Yt = Yt +
∑

n∈BN
γn,NYt−n = fN (B)�(B)Zt, t ∈ Z

d ,

for N = (N , . . . , N ) ∈ Nd with N large enough where

IN = {k ∈ Z
d : 0 ≤ |ki | ≤ Ni , i = 1, . . . , d},

JN = {k ∈ IN : ∀n ∈ R ∃m ∈ IN : k = m + n},
BN = {k ∈ Z

d : k = m + n,m ∈ IN , n ∈ R}\JN ,

for γn,N =∑n=m+k,m∈IN,k∈R ψmφk. The coefficients (ψk)k∈Zd decay exponentially
and, therefore, |γn,N| ≤ K exp(−cN ) for some K , c > 0 and for all n ∈ BN. Further

notice that |BN| < LNd−1 for some L > 0. Hence,
∑

n∈BN γn,NYt−n
P→ 0 (N → ∞)

since for every ε > 0 and some C > 0, c′ ∈ (0, c) and for N → ∞

P

⎛

⎝

∣∣∣∣∣∣

∑

n∈BN
γn,NYt−n

∣∣∣∣∣∣
> ε

⎞

⎠ ≤ P

⎛

⎝
∑

n∈BN
|Yt−n| > K−1ε exp(cN )

⎞

⎠

≤
∑

n∈BN
P

(
|Yt−n| > (LK )−1N 1−dε exp(cN )

)

≤ LNd−1
P
(
log+ |Y0| > c′N

)

≤ L(c′)1−δ−d N−δ
E logd−1+δ+ |Y0| → 0.

Thus, fN (B)�(B)Zt
P→ Yt (N → ∞) and Yt is uniquely determined by (Zt)t∈Zd . ��

Lemma 3 Suppose (Yt)t∈Zd is a strictly stationary solution of (1). Suppose further
that �(e−i ·) has a zero λ ∈ T

d . Finally, suppose the underlying probability space
is rich enough to support a random variable U, which is independent of (Yt)t∈Zd

and uniformly distributed on [0, 1]. Then (Yt + ei2πUeitλ
)
t∈Zd is another strictly

stationary solution of (1). In particular, the strictly stationary solution of (1) is not
unique.

Proof It is easy to see that the random field

Wt = ei2πUeitλ, t ∈ Z
d ,

is strictly stationary. Because of the independence ofU and (Yt)t∈Zd , the random field
(Xt)t∈Zd defined by Xt = Yt + Wt, is also strictly stationary. Furthermore we have

�(B)Wt = Wt −
∑

n∈R

φnWt−n = eitλei2πU�(e−iλ) = 0,

which shows that (Xt)t∈Zd is another solution of the ARMA equation (1). ��
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394 M. Drapatz

Notice that, if the conditions of the preceding lemma are satisfied and (Yt)t∈Zd is a
linear strictly stationary solution, then the random field

(
Yt + ei2πUeitλ

)
t∈Zd is an

example of a strictly stationary solution which is not linear.

3 Causal solutions

In this section,we studynecessary conditions and sufficient conditions for the existence
of causal solutions. We define for t = (t1, . . . , td), s = (s1, . . . , sd) ∈ Z

d the index
sets {s ≤ t} induced by the relation „≤“ on Z

d :

{s ≤ t} := {s ∈ Z
d : si ≤ ti , i = 1, . . . , d}.

Definition 2 A strictly stationary random field (Yt)t∈Zd , which fulfills the ARMA
equation (1), is called causal solution of the spatial ARMAmodel, if Yt is measurable
with respect to σ(Zs : s ≤ t) for each t ∈ Z

d .

When considering causal solutions, it makes sense to restrict the index sets R, S in Eq.
(1) to subsets ofNd

0\{0}. We assume this throughout the whole section. If (Y ′
t )t∈Zd is

an independent copy of (Yt)t∈Zd , then we call (Ỹt)t∈Zd , defined by Ỹt = Yt −Y ′
t for all

t ∈ Z
d , a symmetrization of (Yt)t∈Zd .Wewill see that the symmetrization (Ỹt)t∈Zd of a

causal solution (Yt)t∈Zd admits a linear representation Ỹt =∑k∈Nd
0
ψk Z̃t−k for some

coefficients (ψk)k∈Nd
0

⊂ C and a symmetrization (Z̃t)t∈Zd of (Zt)t∈Zd . But in contrast
to the definition of linear strictly stationary solutions, a specific type of convergence is
not required by Definition 2. However, implicitly this sum has to convergence almost
surely in the rectangular sense, as we will see later on in Theorem 4.

Definition 3 (Klesov (1995), Definitions 1 and 3) Let (Zk)k∈Nd
0
be a real-valued ran-

dom field. The multiple series
∑

k∈Nd
0
Zk converges almost surely in the rectangular

sense, if the limits

lim
k→∞

N1k∑

k1=0

· · ·
Ndk∑

kd=0

Zk,

for all sequences (N1k, . . . , Ndk)k∈N ⊂ Nd
0 withmin(N1k, . . . , Ndk) → ∞ (k → ∞)

almost surely exist and coincide.

For this mode of convergence a generalization to multiple series of the three series
theorem of Kolmogorov is valid. Precisely, the following theorem holds.

Theorem 2 (Klesov 1980 and Klesov 1995, Theorem C) Let (Xn)n∈Nd
0
be a real-

valued random field of independent random variables and define Xc
n := Xn1{|Xn|<c}.

Then almost sure convergence of ∑

n∈Nd
0

Xn, (11)
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in the rectangular sense and the condition

P
(|Xnk | > ε

)→ 0 (k → ∞), ∀ ε > 0, (12)

for all sequences (nk)k∈N with max(n1k, . . . , ndk) → ∞, are equivalent to the con-
vergence of the following three series for some c > 0, and hence for any c > 0:

∑

n∈Nd
0

P(|Xn| ≥ c) < ∞, (A)

∑

n∈Nd
0

E(Xc
n), (B)

∑

n∈Nd
0

Var(Xc
n). (C)

Here, convergence of (B) is to be understood as (almost surely) rectangular.

If d = 1 and
∑∞

n=1 Xn converges almost surely, condition (12) is satisfied automat-
ically. For d > 1 the following example from Klesov (1995) shows that this condition
is not fulfilled in general.

Example 1 Define X (i, j) = (−1) j i for i ≥ 1 and j ≤ 2 and for the rest X (i, j) = 0.
Then the convergence in the rectangular sense of

∑
(i, j)∈N2

0
X (i, j) is clear, since

n∑

i, j=1

X (i, j) = 0 for all n ≥ 2.

But the series (A)
∑∞

i, j=0 P(|X (i, j)| > c) diverges for all c > 0. Notice further that
(12) does not hold in this example.

In additionKlesov (1995) shows that the condition (12) can be dropped, if (Xn)n∈Nd
0

is symmetric or the randomvariables are positive.We state it in the following corollary.
For our purposes, mainly the symmetric case is relevant.

Corollary 1 (Klesov 1995, Corollaries 3 and 4) Let (Xn)n∈Nd
0
be a real-valued ran-

dom field of independent random variables. Then almost sure convergence of (11)
in the rectangular sense is equivalent to the convergence of (A) and (C) for some
c > 0, and hence for any c > 0, if the random variables (Xn)n∈Nd

0
are symmetric,

and equivalent to the convergence of (A) and (B) for some c > 0, and hence for any
c > 0, if the random variables (Xn)n∈Nd

0
are positive.

Consider a nondeterministic real-valued i.i.d. stochastic process (Xn)n∈N and coef-
ficients (ψn)n∈N ⊂ R. If the series

∑
n∈N ψn Xn converges almost surely absolutely,

then by application of Theorem 5.1.4 of Chow and Teicher (1997) it can be concluded
that

∑
n∈N ψ2

n < ∞. The same is true for multiple series, which converge almost
surely in the rectangular sense.
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Theorem 3 Suppose (Xn)n∈Nd
0
is a nondeterministic real-valued i.i.d. random field

and (ψn)n∈Nd
0
are real coefficients. Furthermore suppose the random variables

(Xn)n∈Nd
0
are symmetric or positive. If the multiple series

∑
n∈Nd

0
ψnXn converges

almost surely in the rectangular sense, then
∑

n∈Nd
0
ψ2
n < ∞.

Proof Suppose
∑

n∈Nd
0
ψnXn converges almost surely in the rectangular sense. Then

Corollary 1 and the remark preceding it imply that

P
(|ψnk Xnk | > ε

)→ 0 ∀ ε > 0, (k → ∞),

for all sequences (nk)k∈N with max(n1k, . . . , ndk) → ∞. By assumption (Xn)n∈Nd
0

is an i.i.d. and nondeterministic random field. This implies that some ε > 0 exists
such that

P(|Xn| > ε) = P(|X0| > ε) > 0,

and in particular Xnk does not converge in probability to zero, if max(n1k, . . . , ndk) →
∞ for k → ∞. Hence, we can conclude ψnk → 0 for all sequences (nk)k∈N
with max(n1k, . . . , ndk) → ∞. Defining Yn := Xn1{|ψnXn|<1} we can conclude by
Theorem 2 ∑

n∈Nd
0

ψ2
nVar(Yn) < ∞ (13)

(if ψn = 0, then EYn or Var(Yn) need not to be defined, in which case we interpret
Var(Yn) as being infinity and ψnVar(Yn) to be equal to zero). Next, we claim that

lim inf
N→∞ min|n|≥N

Var(Yn) > 0. (14)

If this were not true, there must be a subsequence (nk)k∈N ⊂ Nd
0 such that

max(n1k, . . . , ndk) → ∞ and Var(Ynk ) → 0 as k → ∞. Thus, Ynk − E(Ynk ) →
0 (k → ∞) in L2(P), and hence X01{|ψnk X0|<1} − EX01{|ψnk X0|<1}, which is equal
in distribution to Ynk − E(Ynk ), converges in probability to zero as k → ∞. But this
implies that X0 is deterministic and we have a contradiction. Hence, (14) is satisfied
and together with (13) we obtain

∑
k∈Nd

0
ψ2
k < ∞. ��

With the aid of the preceding theorem, we are able to prove necessary conditions
for the existence of causal solutions.

Theorem 4 Assume that (Zt)t∈Zd is i.i.d. nondeterministic noise and R, S ⊂ Nd
0\{0}

and that the ARMA equation (1) admits a causal solution (Yt)t∈Zd . Then the following
two conditions are satisfied:

(i)
�(z)
�(z)

∈ H2, z ∈ D
d .
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(ii) Let (Y ′
t , Z

′
t)t∈Zd be an independent copy of (Yt, Zt)t∈Zd and define the

symmetrizations

(Ỹt, Z̃t) :=
{

(Yt, Zt) , PY0 and PZ0 symmetric,(
Yt − Y ′

t , Zt − Z ′
t

)
, otherwise.

(15)

Let further
�(z)
�(z)

=
∑

k∈Nd
0

αkzk, z ∈ D
d , (16)

denote the power series expansion of �(z)/�(z), then (Ỹt)t∈Zd is a solution of
the symmetrized ARMA equation

�(B)Ỹt = �(B)Z̃t, t ∈ Z
d ,

and given by

Ỹt =
∑

k∈Nd
0

αk Z̃t−k, t ∈ Z
d ,

where the convergence of the right-hand side is almost surely rectangular. In
particular, ifPZ0 is symmetric, then there is atmost one symmetric causal solution.

Proof Assume (Yt)t∈Zd is a causal solution of the ARMA equation (1). Then the
symmetrizations (Ỹt)t∈Zd and (Z̃t)t∈Zd satisfy the equation

�(B)Ỹt = �(B)Z̃t, t ∈ Z
d ,

and obviously (Ỹt)t∈Zd is a causal solution of this equation. Reorganizing this ARMA
equation, we get

Ỹt =
∑

n∈R

φnỸt−n + Z̃t +
∑

n∈S
θk Z̃t−k, t ∈ Z

d .

Now we replace each Ỹt−n on the right side by the ARMA equation. We do so as
long as none of the random variables Ỹt−s, s ≤ (N1, . . . , Nd) ∈ Nd remains on the
right-hand side of this equation. Defining for N = (N1, . . . , Nd) ∈ Nd

0 the index sets

IN = {k ∈ Nd
0 : 0 ≤ ki ≤ Ni , i = 1, . . . , d},

BN = {k ∈ Nd
0 : k = m + n, m ∈ IN , n ∈ R ∪ S}\IN ,

we get for N = (N1, . . . , Nd) ∈ Nd
0 an equation like the following

Ỹt =
∑

n∈IN
αn,N Z̃t−n +

∑

n∈BN
βn,N Z̃t−n +

∑

n∈BN
γn,NỸt−n
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=: At,N + Bt,N + Ct,N, N ∈ Nd
0 , (17)

where (αn,N)n∈IN , (βn,N)n∈BN ,(γn,N)n∈BN are some complex coefficients and At,N,
Bt,N and Ct,N denote the first, second and third sum, respectively. Using the causality
of (Ỹt)t∈Zd , notice that

At,N ⊥⊥ Bt,N,Ct,N ∀N ∈ Nd
0 , t ∈ Z

d ,

and furthermore we observe that

αn,N = αn,N′ ∀N′ > N, n ∈ IN. (18)

Because of equation (18) we write from now on rather αn than αn,N. In the fol-
lowing we want to show that |At,N| is not converging in probability to infinity as
min(N1, . . . , Nd) → ∞ using a technique adapted from Vollenbröker (2012). The
sum |At,N| is not converging in probability to infinity, if we can find some constants
K , ε > 0 such that for every sequence (Nk)k∈N,Nk = (N1k, . . . , Ndk) ∈ Nd , with
min(N1k, . . . , Ndk) → ∞ as k → ∞ the following holds

P(|At,Nk | < K ) ≥ ε, ∀ k ∈ N. (19)

By stationarity of (Ỹt)t∈Zd there are some constants K > 0 and ε ∈ (0, 1
4

)
such that

P

(
|Ỹt| < K

)
≥ 1 − ε ∀ t ∈ Z

d .

Using equation (17) this implies for ε ∈ (0, 1
4

)

P
(|At,Nk + Bt,Nk + Ct,Nk | < K

) ≥ 1 − ε, ∀ k ∈ N.

Using the inequalities |�(z)|, |�(z)| ≤ |z|, z ∈ C, it follows

P(|�(At,Nk + Bt,Nk + Ct,Nk )| < K ) ≥ 1 − ε, and

P(|�(At,Nk + Bt,Nk + Ct,Nk )| < K ) ≥ 1 − ε, ∀ k ∈ N. (20)

We will now show that the following holds for c ∈ ( 12 , 1 − 2ε)

P(|�(At,Nk )| < K ) ≥ c, P(|�(At,Nk )| < K ) ≥ c, ∀ k ∈ N. (21)

Suppose (5) is not true. Then we can find k1, k2 ∈ N such that one of the following
inequalities is true

P(|�(At,Nk1
)| ≥ K ) ≥ 1 − c, P(|�(At,Nk2

)| ≥ K ) ≥ 1 − c.

So by the symmetry of At,N we have

P

(
�
(
At,Nk1

)
≥ K

)
≥ 1−c

2 , P

(
�
(
At,Nk1

)
≤ −K

)
≥ 1 − c

2
, or (22a)
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P

(
�
(
At,Nk2

)
≥ K

)
≥ 1−c

2 , P

(
�
(
At,Nk2

)
≤ −K

)
≥ 1 − c

2
, (22b)

and obviously

P

(
�
(
Bt,Nk1

+ Ct,Nk1

)
≤ 0
)

≥ 1

2
or P

(
�
(
Bt,Nk1

+ Ct,Nk1

)
≥ 0
)

≥ 1

2
.

Suppose without losing the generality P(�(Bt,Nk1
+Ct,Nk1

) ≤ 0) ≥ 1
2 . By symmetry

of�(Ỹt) = �(At,Nk1
+Bt,Nk1

+Ct,Nk1
) and independence of At,Nk1

and Bt,Nk1
+Ct,Nk1

it follows in case (22a)

P

(
|�
(
At,Nk1

)
+ �

(
Bt,Nk1

+ Ct,Nk1

)
| ≥ K

)

= 2P
(
�
(
At,Nk1

)
+ �

(
Bt,Nk1

+ Ct,Nk1

)
≤ −K

)

≥ 2P
(
�
(
At,Nk1

)
≤ −K ,�

(
Bt,Nk1

+ Ct,Nk1

)
≤ 0
)

= 2P
(
�
(
At,Nk1

)
≤ −K

)
P

(
�
(
Bt,Nk1

+ Ct,Nk1

)
≤ 0
)

≥ 1 − c

2
> ε. (23)

Similarly, in case (22b) we obtain

P

(
|�
(
At,Nk2

)
+ �

(
Bt,Nk2

+ Ct,Nk2

)
| ≥ K

)
≥ 1 − c

2
> ε. (24)

The Eqs. (23) and (24) provide a contradiction to Eq. (20). Hence, Eq. (21) is satisfied
and Eq. (19) follows easily (with possibly different constants ε, K ). In particular we
showed that |∑n∈INk αn Z̃t−n| does not converge in probability to infinity as k → ∞.

Thus, by Theorem 3.17 of Kallenberg (2002) we can conclude that
∑

n∈INk αn Z̃t−n

converges almost surely since (Z̃t)t∈Zd is symmetric. Furthermore we notice by Eq.
(17) that Bt,Nk + Ct,Nk converges also almost surely as k → ∞, and it is measurable

with respect to σ
(
Z̃s, s ≤ t − Nl

)
, ∀l ∈ N. Hence, we can deduce that the limit of

Bt,Nk + Ct,Nk is measurable with respect to the tail σ -field

⋂

k∈N
σ(Z̃s, s ≤ t − Nk).

ByKolmogorov’s zero-one law thisσ -field isP-trivial.Hence, the limit of Bt,Nk+Ct,Nk

is almost surely constant, which we denote by u for the moment. Altogether we have

Ỹt = u + lim
k→∞

∑

n∈INk
αn Z̃t−n a.s,
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for every sequence (Nk)k∈N,Nk = (N1k, . . . , Ndk) ∈ Nd , withmin(N1k,. . . ,Ndk)→
∞ as k → ∞. By symmetry of (Ỹt)t∈Zd and (Z̃t)t∈Zd , we must have u = 0 almost
surely. Further,

∑
n∈Nd

0
αn Z̃t−n converges almost surely in the rectangular sense.

Applying Theorem 3 it follows that

∑

n∈Nd
0

|αn|2 < ∞.

The proof is finished if we can show that �(z)/�(z) ∈ H2 and the power series
expansion of this function is given by

�(z)
�(z)

=
∑

k∈Nd
0

αkzk, z ∈ D
d . (25)

To do so, we apply the operator �(B) to both sides of Eq. (17) and get by (1)

�(B)Ỹt =
∑

n∈IN
αn�(B)Z̃t−n +

∑

n∈BN
βn,N�(B)Z̃t−n +

∑

n∈BN
γn,N�(B)Z̃t−n

= �(B)Z̃t, N = (N1, . . . , Nd) ∈ Nd
0 .

Because of the independence of (Z̃t)t∈Zd and the assumption that it is nondeterministic
we can conclude that the coefficients of both sides of this equation are equal. Thus for
each N = (N1, . . . , Nd) with IN ⊃ S we have α0 = 1 and

αk −
∑

n∈R,n≤k

φnαk−n =
{

θk, k ∈ S,

0, k ∈ IN\(S ∪ {0}).

Hence, we observe for all t ∈ T
d

(
1 −

∑

n∈R

φne
−int

)⎛

⎜⎝
∑

k∈Nd
0

αke
−ikt

⎞

⎟⎠ =
∑

k∈Nd
0

⎛

⎝αk −
∑

n∈R,n≤k

φnαk−n

⎞

⎠ e−ikt

=1 +
∑

n∈S
θne

−int = �(e−it). (26)

The zero set of �(e−i ·) is a null set of the d-dimensional Lebesgue measure. Because
of this and equation (26), we conclude �(e−i ·)/�(e−i ·) ∈ H2 ⊂ L2(Td) and that is
equation (25). ��

In the case that PZ0 is symmetric, we can now give the following necessary and
sufficient condition for the existence of symmetric causal solutions:
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Corollary 2 Assume (Zt)t∈Zd is i.i.d. nondeterministic symmetric noise and R, S ⊂
Nd

0\{0}. Then the ARMA equation (1) admits a causal solution (Yt)t∈Zd if and only if

�(z)
�(z)

∈ H2, z ∈ D
d ,

and
∑

k∈Nd
0
αkZt−k converges almost surely in the rectangular sense, where (αk)k∈Nd

0

is given by (16). In that case, Yt := ∑
k∈Nd

0
αkZt−k defines the unique symmetric

causal solution.

Proof Necessity has been shown in Theorem 4, and sufficiency follows as in the proof
of Theorem 1. ��

In the following theorem we give sufficient conditions for the existence of a
causal solution. Notice that under condition (i) the convergence is even almost surely
absolutely.

Theorem 5 Suppose (Zt)t∈Zd is an i.i.d. random field. Then a causal solution of the
ARMA equation (1) exists, if one of the following conditions is satisfied:

(i) E logd+|Z0| < ∞ and �(z) = 0 ∀ z ∈ D
d
.

(ii) E|Z0|2 < ∞, EZ0 = 0 and �(z)
�(z) ∈ H2.

In both cases the quotient �(z)/�(z) admits a power series expansion, given by

�(z)
�(z)

=
∑

k∈Nd
0

ψkzk, z = (z1, . . . , zd) ∈ D
d ,

and a causal solution is given by

Yt =
∑

k∈Nd
0

ψkZt−k, t ∈ Z
d , (27)

where the right-hand side converges in case (i) almost surely absolutely and in case
(ii) almost surely in the rectangular sense.

Proof In case (i) by the condition that �(z) has no zero on D
d
the existence of a

multidimensional power series expansion is assured. The remaining proof is almost
the same as the proof of Proposition 1. The assumptions in case (ii) assure L2(P)-
convergence of (27). Furthermore it is easy to see that (27) solves theARMAequations
in both cases. ��

Having derived necessary conditions and sufficient conditions, we want to discuss
the crucial condition that the quotient of the ARMA polynomials lies in H2. In the
time series model (d = 1), if �(z) and �(z) have no common zeros, a necessary and
sufficient condition for the existence of strictly stationary solution is �(z) = 0 for
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|z| = 1 andE log+ |Z0| < ∞ (if� is not constant), see Brockwell and Lindner (2010).
We will see that in contrast to the time series model for d > 1 it is not necessary that
the analog condition �(e−it) = 0 for t ∈ T

d holds, cf. the upcoming Example 2.
A polynomial in two or more variables can in general not be factored as in one vari-

able. If a polynomial p(x1, . . . , xn) admits a factorization p = qr , where q and r are
nonconstant polynomials of n or less variables, then it is called reducible, otherwise
irreducible. Every polynomial of several variables admits a factorization into irre-
ducible factors, which is essentially, except for multiplication with constants, unique,
cf. Bôcher (1964), Chapter 16. If this factorization consists of only one nonconstant
irreducible factor, then the polynomial is irreducible. The following result will be use-
ful to exclude zeros of � on the closed unit disc if d = 2 and � ≡ 1, cf. Corollary 3.

Theorem 6 Suppose � : Cd → C is an irreducible polynomial in d ≥ 2 variables
and further, if arbitrary d − 1 variables are fixed, the polynomial in the remaining
variable is not identically zero. If � has a root t (0) = (t (0)1 , . . . , t (0)d ) ∈ (∂Dd

) \Td ,
i.e., �(t (0)) = 0, then � has also roots inside the open unit polydisc Dd .

Proof Suppose t (0) = (t (0)1 , . . . , t (0)d ) ∈ (∂Dd)\Td is a root of�. Then for at least one

i ∈ {1, . . . , d} we have t (0)i ∈ D, and for at least one i ∈ {1, . . . , d} we have t (0)i ∈ T.
Define

I :=
{
i ∈ {1, . . . , d} : t (0)i ∈ T

}
,

N :=
{
i ∈ {1, . . . , d} : t (0)i ∈ D

}
, I ∪ N = {1, . . . , d}.

Without loss of generalization, we assume I = {1, . . . , j} and N = { j + 1, . . . , d}.
We fix all variables except t j ∈ I and td ∈ N and consider the two variable polynomial

p(t j , td) := �(t (0)1 , . . . , t (0)j−1, t j , t
(0)
j+1, . . . , t

(0)
d−1, td)

=
n∑

k=0

ak(t j )t
k
d , n ∈ N,

where the coefficients ak(t j ) are themselves polynomials in one variable t j . We have

p(t (0)j , t (0)d ) = 0. Suppose an(t
(0)
j ) = 0. Then, by Theorem 3.9.1 of Tyrtyshnikov

(1997), the polynomial roots xi (t), i = 1, . . . , n of the equation p(t, xi (t)) = 0
can be chosen to be continuous in t in a neighborhood of t (0)j . Thus, there exists

t (1)j , t (1)d ∈ D such that p(t (1)j , t (1)d ) = 0. Now suppose an(t
(0)
j ) = 0. Then there exists

1 ≤ k < n such that ak(t
(0)
j ) = 0 or otherwise the polynomial p(t (0)j , ·) is identically

zero, which is excluded by the assumptions of the theorem. In the first case we can use
the same argument as before. Applying this argument inductively for all i ∈ I yields
the statement of the theorem. ��

If we consider a polynomial � : C2 → C in two variables, the assumption that �
is irreducible implies the second condition in the preceding theorem: if �(z1, z2) =
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∑n
k=0 ak(z1)z

k
2 is identically zero, the first variable being fixed, then the coefficients

ak , which are polynomials themselves, have a common zero and hence the polynomial
can be factorized. Thus, by Theorem 6 for d = 2 a root in

(
∂D2

) \T2 of an irreducible
polynomial implies a root inside D

2. However, in three variables this is not true,
consider, e.g.,

�(z1, z2, z3) = (1 − z1)z3 + (1 − z2)z
2
3.

Fixing (z1, z2) = (1, 1) the polynomial �(1, 1, z3) is identical to zero, but � can not
be factorized. Notice that for �−1 ∈ H2 it is necessary and sufficient that �(z) = 0
on Dd and

∫

Td

∣∣∣∣
1

�(e−it)

∣∣∣∣
2

dλd(t) < ∞. (28)

where the integral does not depend on the values on
(
∂Dd

) \Td .With the help of Theo-
rem 6, we now establish the following necessary condition in the spatial autoregressive
model for d = 2:

Corollary 3 Suppose (Zt)t∈Z2 is i.i.d. nondeterministic and R ⊂ N2
0\{0}. A neces-

sary condition for the existence of a causal solution in the autoregressive model (1),
where �(z1, z2) ≡ 1, is given by

�(z1, z2) = 0 ∀ (z1, z2) ∈ D
2
.

Proof By Theorem 4 we know that �−1(z1, z2) ∈ H2 is a necessary and sufficient
condition for the existence of a causal solution. This implies directly that �(z1, z2)
cannot possess any root on D2. Now assume �(z1, z2) =∏n

i=1 �i (z1, z2) is a factor-
ization of �, where each �i (z1, z2) is irreducible. If one factor �i (z1, z2) = �i (z1)
only depends on one variable, then it follows

�i (z1) = 0 ∀ z1 ∈ C : |z1| ≤ 1,

since, if |z1| < 1 is a zero, then �(z1, z2) will have a zero on D
2. If z1 ∈ C with

|z1| = 1 is a root, then�−1(z1, z2) cannot be square integrable. If a factor�i depends
on two variables, then we can apply Theorem 6 and it follows �i (z1, z2) = 0 on(
∂D2

) \T2. It remains to show that �(e−i ·, e−i ·) = 0 on T
2. Suppose w ∈ T

2 is a
zero of �(e−i ·, e−i ·). Then by the mean value theorem, for an arbitrary norm || · || on
R2 and some C > 0

|�(e−i(w+h))| = |�(e−i(w+h)) − �(e−iw)| ≤ C ||h||, h ∈ T
2.

But this implies

∫

T2

dh
|�(e−i(w+h))|2 ≥ C−2

∫

T2

dh
||h||2 = ∞, (29)
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where the latter integral is infinite by simple calculus. This contradicts �−1 ∈ H2.

Altogether we showed that no zero on D
2
can exist. ��

We go on discussing the relation between zeros on Td and the finiteness of (28). The
following example from Rosenblatt (2000) shows that for d ≥ 3 it is possible to have
roots on T

d and still �−1(z) ∈ H2 holds.

Example 2 Consider for d = 5 the function

�(z) = 1 − 1

5

5∑

i=1

zi , z = (z1, . . . , z5) ∈ C
5.

We will show �−1(e−it) ∈ L2(T5), and this implies �−1(z) ∈ H2 by noticing that
the only root in D5 is 1 = (1, . . . , 1). Utilizing the Taylor expansion

e−ih j = 1 − ih j − h2j + O(h3j ), h j → 0, j = 1, . . . , 5,

we estimate

|�
(
e−ih

)
|2 =

∣∣∣∣∣∣
1

5

5∑

j=1

(
e−ih j − 1

)
∣∣∣∣∣∣

2

=
∣∣∣∣∣∣
1

5

5∑

j=1

(
ih j + h2j + O

(
h3j

))
∣∣∣∣∣∣

2

=
∣∣∣∣∣∣
1

5

5∑

j=1

(
ih j + h2j

)
∣∣∣∣∣∣

2 ∣∣∣∣∣∣
1 +

∑5
j=1O

(
h3j

)

1
5
∑5

j=1

(
ih j + h2j

)

∣∣∣∣∣∣

2

.

Observe that
∑5

j=1O
(
h3j

)

1
5

∑5
j=1

(
ih j + h2j

) → 0 as max (|h1|, . . . , |h5|) → 0.

Hence, there are ε > 0 and C1,C2 > 0 such that
∫

T5

dh
|�(e−ih)|2 ≤ C1 +

∫

||h||<ε

dh
|�(e−ih)|2

≤ C1 + C2

∫

||h||<ε

dh
∣∣∣ 15
∑5

j=1(ih j + h2j )
∣∣∣
2

≤ C1 + 25C2

∫

||h||<ε

dh
||h||4 < ∞,

where ‖·‖ denotes the Euclidean norm.

Rosenblatt (1985), p. 228, states that the reciprocal of the similar polynomial
�(z1, z2, z3) = 1 − 1

3 (z1 + z2 + z3) for d = 3 is also in H2.
While for d = 2 for autoregressive models�(e−it) = 0 for all t ∈ T

2 is necessary,
this is no longer the case for ARMA models, as the following example shows.
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Solutions of spatial ARMA equations 405

Example 3 Consider the two-dimensional ARMA model

Yt − 1

2
B1Yt − 1

2
B2Yt = Zt − B1Zt − B2Zt + B1B2Zt, t = (t1, t2) ∈ Z

2.

The corresponding moving average and autoregressive polynomials are given by

�(z1, z2) = (1 − z1)(1 − z2),

�(z1, z2) = 1 − 1

2
z1 − 1

2
z2, z1, z2 ∈ C.

Notice that both polynomials have a common zero (z1, z2) = (1, 1) on T2. We define
H∞ as usual as the vector space of all holomorphic functions f : Dd → C, which are
bounded onDd . Then �(z1, z2)/�(z1, z2) ∈ H∞ ⊂ H2, as can be seen by following
estimation:

∣∣∣∣
�(z1, z2)

�(z1, z2)

∣∣∣∣
2

=
∣∣∣∣
2(1 − z1)(1 − z2)

1 − z1 + 1 − z2

∣∣∣∣
2

= 4
1

| 1
1−z2

+ 1
1−z1

|2

≤ 4
1

[�( 1
1−z2

+ 1
1−z1

)]2 ≤ 4, ∀ z1, z2 ∈ D.

As distinct from the one-dimensional case the common root of the nominator and
denominator can not be canceled out, because the polynomials do not factorize. In
some sense, the zero of the nominator covers for the zero of the denominator, resulting
in the square integrability.

4 The spatial autoregressive model of first order

In the foregoing section we were able to specify necessary conditions and sufficient
conditions for the existence of causal solutions, in terms of the zero set of the ARMA
polynomials. However, we could not give necessary moment conditions on the noise
(Zt)t∈Zd . It turns out that in difference to the one-dimensional case, where the asymp-
totics of the coefficients of the Laurent expansion

�(z)

�(z)
=
∑

k∈Z
ψk z

k,

can be easily completely determined in dependence of the zeros of �(z), for d > 1 it
is difficult to determine the asymptotics of the corresponding Laurent or power series
expansion. To specify necessary moment conditions, lower bounds on the decay of
the coefficients are needed. However, even though in general it seems difficult to
determine lower bounds or the exact asymptotics, for a specific model we are able
to determine necessary moment conditions. In this section we want to establish a
full characterization of necessary and sufficient conditions for the existence of causal
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solutions of the autoregressive model of first order with real coefficients in dimension
two: consider the spatial autoregressive model defined by the equations

Yt1,t2 − φ1Yt1−1,t2 − φ2Yt1,t2−1 − φ3Yt1−1,t2−1 = Zt1,t2 , (t1, t2) ∈ Z
2, (30)

whereφ1, φ2, φ3 ∈ R, (φ1, φ2, φ3) = (0, 0, 0) and (Zt)t∈Z2 is a nondeterministic i.i.d.
complex-valued randomfield.Wewant to establish necessary and sufficient conditions
for the existence of a causal solution. To do so, several auxiliary results are needed.
First, we want to determine the coefficients, which solve themodel (30) corresponding
to partial difference equation

ψn,k = φ1ψn−1,k + φ2ψn,k−1 + φ3ψn−1,k−1, n, k ∈ N0, (n, k) = (0, 0), (31)

ψn,0 = φn
1 , ψ0,k = φk

2 for n, k ∈ N0, (32)

where (32) are the boundary conditions and convention ψn,k = 0 for (n, k) ∈ Z
2\N2

0
is used. It is associated with (30) by the equation

⎛

⎝
∞∑

n,k=0

ψn,k z
n
1z

k
2

⎞

⎠ (1 − φ1z1 − φ2z2 − φ3z1z2) = 1.

The solution of this partial difference equation is determined in Fray and Roselle
(1971):

Lemma 4 The unique solution of (31) with boundary conditions (32) is given by

ψ
φ1,φ2,φ3
n,k := ψn,k =

n∑

j=0

(
k

j

)(
n + k − j

k

)
φ
n− j
1 φ

k− j
2 φ

j
3 (33)

=
n∑

j=0

(
n

j

)(
k

j

)
φ
n− j
1 φ

k− j
2 (φ1φ2 + φ3)

j , n, k ∈ N0. (34)

The formulas (33) and (34) are also valid if some of the coefficientsφ1, φ2, φ3 are equal
to zero. The numbers ψ

φ1,φ2,φ3
n,k are called weighted Delannoy numbers. They can be

interpreted as thenumber ofweightedpaths from (0, 0) to (n, k) in the two-dimensional
latticeN2

0, when only moving with steps (1, 0), (0, 1) and (1, 1) is allowed and related
weights φ1, φ2 and φ3, respectively. To establish later on necessarymoment conditions
on the noise (Zt)t∈Z2 , the asymptotics of ψ

φ1,φ2,φ3
n,k for n, k → ∞ have to be known.

Hetyei (2009) discovered that the weighted Delannoy numbers are related to Jacobi
polynomials. For n ∈ N the nth Jacobi polynomial P(α,β)

n (x) of type (α, β), α, β >

−1, is defined for x ∈ (−1, 1) as

P(α,β)
n (x) = (−2)−n(n!)−1(1 − x)−α(1 + x)−β dn

dxn
(
(1 − x)n+α(1 + x)n+β

)
.

The Jacobi polynomial P(α,β)
n (x) is indeed a polynomial of degree n on (−1, 1) and

can, therefore, be extended to x ∈ R. The following relationship is valid, see Theorem
2.8 of Hetyei (2009):
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Theorem 7 For β ∈ N0 and φ3 = 0 we have

ψ
φ1,φ2,φ3
k+β,k = φ

β
1 (−φ3)

k P(0,β)
k

(
−2

φ1φ2

φ3
− 1

)
, k ∈ N0.

Therefore, the asymptotic behavior of the coefficients depends on the asymptotics
of the Jacobi polynomials, which have been studied extensively. Wong and Zhao
(2003), Theorem 5.1, established an asymptotic expansion for Jacobi polynomials
with explicit error term. Accordingly, the asymptotic expansion of order p ∈ N can
for N := n + β+1

2 with β ∈ N0 be written as

(
cos

θ

2

)β

P(0,β)
n (cos θ) = −J0(Nθ)

p−1∑

k=0

ck(θ)

Nk

−J1(Nθ)

p−1∑

k=0

dk(θ)

Nk
+ δp(N , θ), (35)

where Jμ is the Bessel function of order μ, ck(θ) and dk(θ) are some coefficients
and δp(N , θ) is the error term. The asymptotic expansion (35) holds uniformly in
θ ∈ (0, π) and the coefficients can be calculated explicitly. The first coefficients are

given by c0(θ) = −θ
1
2 (sin θ)− 1

2 and d0(θ) = 0. Thus, for p = 1 the asymptotic
expansion equals

P(0,β)
n (cos θ) =

(
cos

θ

2

)−β
(√

θ

sin θ
J0(Nθ) + δ1(N , θ)

)
, (36)

where the error term can be estimated by

|δ1(N , θ)| ≤ �

N
(|J0(Nθ)| + |J1(Nθ)|) , � > 0. (37)

Here, the constant � is independent of θ , n and β. Now we are prepared to estab-
lish the estimation from below of the asymptotics of the coefficients (ψn,k)(n,k)∈N2

0
to determine moment conditions. Notice that φ1, φ2, φ3 ∈ (−1, 1) is necessary for
�−1(z1, z2) = (1 − φ1z1 − φ2z2 − φ3z1z2)−1 ∈ H2, see Corollary 3 and Basu and
Reinsel (1993), Proposition 1.

Lemma 5 Let φ1, φ2, φ3 ∈ (−1, 1) and at least two coefficients not equal to zero.
Then there is a constant C > 0 and x0 > 1 such that

f (x) :=
∣∣∣
{
(n, k) ∈ N2

0 : |ψφ1,φ2,φ3
n,k |−1 ≤ x

}∣∣∣ ≥ C log2(x), x > x0 > 1.

Proof We consider the three different cases (i) φ1 = 0 or φ2 = 0, (ii) φ1φ2 = 0
and φ3φ

−1
1 φ−1

2 ≥ −1 and (iii) φ1φ2 = 0 and φ3φ
−1
1 φ−1

2 < −1. First, observe for
φ1φ2 = 0 by (34)
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ψ
φ1,φ2,φ3
n,k = φn

1φk
2

n∑

j=0

(
n

j

)(
k

j

)(
1 + φ3

φ1φ2

) j

.

Thus, in the case (ii) φ1φ2 = 0 and φ3φ
−1
1 φ−1

2 ∈ [−1,∞) we have |ψφ1,φ2,φ3
n,k | ≥

|φ1|n|φ2|k for all (n, k) ∈ N2
0 and, therefore, for some x0 > 1 and C > 0

f (x) ≥
∣∣∣
{
(n, k) ∈ N2

0 : |φ1|−n|φ2|−k ≤ x
}∣∣∣ ≥ C log2(x), x ≥ x0,

where the inequality follows easily. Second, assume in the case (i) φ1 = 0 or φ2 = 0
without restricting the generality φ1 = 0 (the case φ2 = 0 follows then by symmetry).
By equation (33), the coefficients (ψn,k)(n,k)∈N2

0
are given by

ψn,k =
{(k

n

)
φk−n
2 φn

3 , k ≥ n,

0, k < n.

Therefore, we estimate

f (x) = |{(n, k) ∈ N2
0, k ≥ n :

(
k

n

)−1

|φ2|−(k−n)|φ3|−n ≤ x}|

≥ |{(n, k) ∈ N2
0, k ≥ n : min(|φ2|, |φ3

φ2
|)−(k+n) ≤ x}|

≥ 1

2
|{(n, k) ∈ N2

0 : min(|φ2|, |φ3

φ2
|)−(k+n) ≤ x}| ≥ C log2(x),

for all x > x0 > 1 and some C > 0.
At last, consider the case (iii) φ1φ2 = 0 and φ3φ

−1
1 φ−1

2 < −1 and define z :=
−2φ1φ

−1
2 φ−1

3 −1 ∈ (−1, 1) and θ ∈ (0, π) by the equation cos θ = z. Define further

Aβ
x :=

{
k ∈ N0 : |ψφ1,φ2,φ3

k+β,k |−1 ≤ x
}

.

Then the function f satisfies f (x) ≥∑∞
β=0 |Aβ

x |.
Notice that the equality ψ

φ1,φ2,φ3
n,k = φn

1φk
2ψ

1,1, φ3
φ1φ2

n,k holds. Hence, by Theorem 7

we can express the set Aβ
x as

Aβ
x =

{
n ∈ N0 : |φ1|−(n+β)|φ2|−n|ψ1,1, φ3

φ1φ2
n+β,n |−1 ≤ x

}

=
{
n ∈ N0 : |φ1|−(n+β)|φ2|−n| φ3

φ1φ2
|−n
∣∣∣∣P

(0,β)
n

(
−2φ1φ2

φ3
− 1

)∣∣∣∣
−1

≤ x

}
.
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In the following we shall estimate

| φ3

φ1φ2
|n
∣∣∣∣P

(0,β)
n

(
−2φ1φ2

φ3
− 1

)∣∣∣∣

from below using the asymptotic expansion (36) with error term (37). Hence, we have

|P(0,β)
n (cos θ)| = |cos θ

2
|−β

∣∣∣∣∣

√
θ

sin θ
J0(Nθ) + δ1(N , θ)

∣∣∣∣∣ , β ∈ N0. (38)

Denote 3δ = min(θ, π−θ). Then if
(
n + β+1

2

)
θ−π

4 ∈ ∪k∈Z
(

π
2 +kπ−δ, π

2 +kπ+δ
)
,

then
(
n + 1 + β+1

2

)
θ − π

4 /∈ ∪k∈Z
(

π
2 + kπ − δ, π

2 + kπ + δ
)
. Hence, the cosine

term |cos
((

n + (β+1)
2

)
θ − π

4

)
| can be bounded from below by |cos(π

2 + δ)| for at
least every second n ∈ N0 for fixed β ∈ N0. Now by the error estimate (37) and the
asymptotic formula for the Bessel function (see Szegő (1967), equation (1.7))

Jμ(z) =
√

2

π z
cos
(
z − μπ

2
− π

4

)
+ O

(
z−

3
2

)
, z → ∞,

we can conclude that there are M ∈ N and C1 > 0, such that for every fixed β ∈ N0
we have for at least every second n ∈ N such that N = n + (β + 1)/2 ≥ M , the
estimate

∣∣∣∣∣

√
θ

sin θ
J0(Nθ) + δ1(N , θ)

∣∣∣∣∣ ≥
√

2θ

sin(θ)πNθ
|cos

(
Nθ − π

4

)
| − �

N

( |J0(Nθ)|

+ |J1(Nθ)| )− C1(Nθ)−
3
2

≥ (1 − ε′)
√

2θ

sin(θ)πNθ

∣∣∣cos
(π

2
+ δ
)∣∣∣ , ε′ ∈ (0, 1).

(39)

Therefore, equations (38) and (39) yield for some ε > 0

| φ3

φ1φ2
|n
∣∣∣∣P

(0,β)
n

(
−2φ1φ2

φ3
− 1

)∣∣∣∣ ≥ ε,

for at least every second n ≥ M and for every β ∈ N0. Using these estimations it
follows that for some ε > 0

2|Aβ
x | ≥

∣∣∣∣

{
n ∈ N0, n + β + 1

2
> M : |φ1|−(n+β)|φ2|−n ≤ xε

}∣∣∣∣− 1. (40)
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Altogether we conclude (the estimation in (40) is only done for at most all β ∈ N0
fulfilling β < − log(xε)/ log|φ1|, x > ε−1, thus finitely many times)

f (x) ≥ 1

2

∣∣∣
{
(k1, k2) ∈ N2

0, k1 ≥ k2 : |φ1|−k1 |φ2|−k2 ≤ xε
}∣∣∣− CM2 − C ′ log(xε),

x > ε−1,

for some C,C ′ > 0 and the statement of the lemma follows easily. ��
Theorem 8 Let (φ1, φ2, φ3) ∈ R3\(0, 0, 0) and (Zt1,t2)(t1,t2)∈Z2 . Then the spatial
autoregressive model (30) admits a causal solution (Yt1,t2)(t1,t2)∈Z2 if and only if

(i) the polynomial �(z1, z1) = 1− φ1z1 − φ2z2 − φ3z1z2 has no zero on D
2
, and

(ii) if at least two coefficients ofφ1, φ2 andφ3 are not equal to zero, thenE log2+|Z0| <

∞, otherwise E log+|Z0| < ∞.

If those conditions hold and PZ0 is symmetric, then the unique symmetric causal
solution is given by Yt =∑k∈N2

0
ψkZt−k, t ∈ Z

2, where

ψk =
k1∑

j=0

(
k2
j

)(
k1 + k2 − j

k2

)
φ
k1− j
1 φ

k2− j
2 φ

j
3 , k = (k1, k2) ∈ N2

0, (41)

and convergence is almost surely in the rectangular sense.

Proof Suppose first that at least two coefficients of φ1, φ2, φ3 are not equal to zero.
Then sufficiency of conditions (i) and (ii) as well as the representation (41) follow
from Theorem 5, since

�−1(z1, z2) =
∑

k∈N2
0

ψkzk, z ∈ D
2
.

Conversely, suppose that (Yt)t∈Z2 is a causal solution of (30). The necessity of con-
dition (i) follows by Corollary 3. It remains to show the necessity of condition (ii).
As in the proof of Theorem 4 we define the symmetrizations (Ỹt)t∈Z2 and (Z̃t)t∈Z2 .
Then (Ỹt)t∈Z2 admits the representation Ỹt =∑k∈N2

0
ψk Z̃t−k, where

ψk =
k1∑

j=0

(
k2
j

)(
k1 + k2 − j

k2

)
φ
k1− j
1 φ

k2− j
2 φ

j
3 , k = (k1, k2) ∈ N2

0,

and the convergence is almost surely in the rectangular sense. By Theorem 2 and
Corollary 1 we can conclude

∑

k∈N2
0

P

(∣∣∣ψk Z̃t−k

∣∣∣ > ε
)

< ∞, ∀ ε > 0. (42)
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But equation (42) implies finite second log-moment, because of the following estimates

E log2+|Z̃0| ≤
∞∑

k=1

log2(k + 1)P
(
k ≤ |Z̃0| < k + 1

)

≤
∞∑

k=1

(log(k) + 1)2 P
(
k ≤ |Z̃0| < k + 1

)
.

The last series is finite, if and only if
∑∞

k=1 log
2(k)P

(
k ≤ |Z̃0| < k + 1

)
converges.

By Lemma 5 the latter series can be bounded from above by

∞∑

k=1

log2(k)P
(
k ≤ |Z̃0| < k + 1

)
≤C

∞∑

k=1

∣∣∣{k ∈ Z
2 : |ψk|−1 ≤ k}

∣∣∣P
(
k ≤ |Z̃0| < k + 1

)

=C
∞∑

k=1

∣∣∣{k ∈ Z
2 : |ψk|−1 ∈ (k − 1, k]}

∣∣∣P(|Z̃0| ≥ k)

≤
∑

k∈N2
0

P

(
|ψk Z̃t−k| ≥ 1

)
< ∞,

where the last inequality follows by equation (42). Notice that the finite second log-
moment of the symmetrization Z̃0 implies finiteness of the second log-moment of
Z0.

It remains to consider the case, when two coefficients are equal to zero. In this case
the model reduces to a one-dimensional model. That is also the case, if φ1 = φ2 = 0
by defining the operator B̃ = B1B2. The model lives only on the diagonal t = (t, t) ∈
Z
2, t ∈ Z. Thus, the resultsBrockwell andLindner (2010) for the time seriesmodel can

be applied, which yields necessity and sufficiency of E log+|Z0| < ∞ and condition
(i) in that case. ��

An equivalent condition for (i) describing the parameter regions is given in Propo-
sition 1 of Basu and Reinsel (1993).
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