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Abstract The ordinaryBayes estimator based on the posterior density can have poten-
tial problems with outliers. Using the density power divergence measure, we develop
an estimation method in this paper based on the so-called “R(α)-posterior density”;
this construction uses the concept of priors in Bayesian context and generates highly
robust estimators with good efficiency under the true model. We develop the asymp-
totic properties of the proposed estimator and illustrate its performance numerically.

Keywords Pseudo-posterior · Robustness · Bayes estimation ·
Density power divergence

1 Introduction

Among different statistical paradigms, the Bayesian approach is logical in many ways
and it is often easy to communicate with others in this language while solving real-life
statistical problems. However, the ordinary Bayes estimator, which is based on the
usual posterior density, can have potential problems with outliers. Recently Hooker
and Vidyashankar (2014), hereafter HV, proposed a methodology for robust inference
in the Bayesian context using disparities (Lindsay 1994) yielding efficient and robust
estimators. It is a remarkable proposal andhasmanynice properties.However, there are
also some practical difficulties whichmay limit its applicability. The proposal involves
the use of a nonparametric kernel density estimator, and hence the associated issues and
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difficulties such as bandwidth selection, run-time requirement, boundary problem for
densities with bounded support and convergence problems for high dimensional data
have to be dealt with. In addition, disparities are not additive in the data and hence
the posteriors in this case cannot be simply augmented when new observations are
available, but the whole posterior has to be computed afresh (unlike likelihood-based
posteriors). Clearly other robust estimators can still be useful in this context.

In this paper we will develop an alternative robust Bayes estimator based on the
density power divergence (DPD) measure proposed by Basu et al. (1998), hereafter
BHHJ. The benefits of the proposal will be discussed and defined in the subsequent
sections.We expect that the proposed estimator will be free from the issues considered
in the previous paragraph.

The rest of the paper is organized as follows. In Sect. 2 we describe the “R(α)-
Posterior density” and related estimators. Section 3 provides the asymptotic properties
of the estimator.We describe the robustness properties of the proposed estimator under
contamination of data and the prior in Sects. 4 and 5, respectively. In Sect. 6 we present
some numerical illustration to demonstrate the performance of the estimators and to
substantiate the theory developed. Concluding remarks are given in Sect. 7.

2 The robustified posterior density

Suppose X1, . . . , Xn are independently and identically distributed (i.i.d.) observa-
tions from the true density g, which is modeled by the parametric class of densities
{ fθ : θ ∈ Θ}. BHHJ defined the density power divergence (DPD) measure as

dα(g, fθ ) =
∫

f 1+α
θ − 1 + α

α

∫
f α
θ g + 1

α

∫
g1+α, if α > 0,

and

d0(g, fθ ) = lim
α→0

dα(g, fθ ) =
∫

g log(g/ fθ ).

The measure is a function of a single tuning parameter α. Since the last term of
the divergence is independent of θ , the minimum DPD estimator with α > 0 is
obtained as the minimizer of

∫
f 1+α
θ − 1+α

α

∫
f α
θ g or, equivalently, as the maximizer

of 1+α
α

∫
f α
θ g − ∫ f 1+α

θ . Then the minimum DPD estimator with α > 0 is obtained
as the maximizer of

Q(α)
n (θ) = n

1 + α

[
1 + α

α

∫
f α
θ dGn −

∫
f 1+α
θ

]

=
(
1

α

) n∑
i=1

f α
θ (Xi ) − n

1 + α

∫
f 1+α
θ =

n∑
i=1

qθ (Xi ), say, (1)

where qθ (y) = ( 1
α
) f α

θ (y) − 1
1+α

∫
f 1+α
θ and Gn is the empirical distribution based

on the data. However, for α = 0, the corresponding objective function to be maxi-
mized will be Q(0)

n (θ) = n
∫
log( fθ )dGn = ∑n

i=1 log( fθ (Xi )) which is the usual
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log-likelihood function that is maximized by the efficient but non-robust maximum
likelihood estimator (MLE). We will refer to Q(α)

n (θ) as the α-likelihood. There is
a trade-off between robustness and efficiency with a larger α being associated with
greater robustness but reduced efficiency. We propose to replace the log-likelihood
with Q(α)

n and study the robustness properties of the associated posterior and the
corresponding estimators in the Bayesian context.

In case of Bayesian estimation, the inference is based on the posterior density
which is defined by the Bayes formula as π(θ |X) = π(X |θ)π(θ)∫

π(X |θ)π(θ)dθ
where π(θ) is the

prior density of θ and π(X |θ) =∏n
i=1 fθ (Xi ) = exp(Log Likelihood). Our exercise

produces the quantity

π
(α)
R (θ |X) = exp(Q(α)

n (θ))π(θ)∫
exp(Q(α)

n (θ))π(θ)dθ
, (2)

which we will refer to as the α-robustified posterior density or simply as the R(α)-
posterior. Note that the R(α)-posterior is a proper probability density for any α ≥ 0
and R(0)-posterior is just the ordinary posterior. As in the usual Bayesian estimation,
all the inference about θ can be done based on this R(α)-posterior. Thus, for the loss
function L(·, ·), the corresponding α-robustified Bayes estimator, or the R(α)-Bayes
estimator, is obtained as

θ̂ (α)L
n = argmin

t

∫
L(θ, t)π(α)

R (θ |X)dθ. (3)

Clearly R(0)-Bayes estimators are again the usual Bayes estimators. For the squared
error loss, the corresponding R(α)-Bayes estimator is the Expected R(α)-Posterior
Estimator (ERPE) given by

θ̂ (α)e
n =

∫
θπ

(α)
R (θ |X)dθ. (4)

For notational simplicity we will, generally, omit the superscript α.
Clearly, inference about θ based on the R(α)-posterior density does not require any

nonparametric kernel density estimation. Further, since the quantity Q(α)
n (θ) can be

expressed as a sum of n i.i.d. terms, we can express the R(α)-posterior density alterna-
tively as πR(θ |X) ∝ [∏n

i=1 exp(qθ (Xi ))]π(θ). Thus, if some new data Xn+1, . . . , Xm

are obtained, the corresponding R(α)-posterior for the combined data X1, . . . , Xm can
be obtained using the R(α)-posterior for the first n observations πR(θ |X1, . . . , Xn) as
the prior for θ (like the usual likelihood-based posterior) which gives

πR(θ |X1, . . . , Xm) ∝
[

m∏
i=n+1

exp(qθ (Xi ))

]
πR(θ |X1, . . . , Xn).

The R(α)-posterior is not the true posterior in the usual probabilistic sense.However,
the main spirit of the Bayesian paradigm is to update prior information on the basis
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of observed data. This objective is fulfilled in this case, and our use of the name R(α)-
posterior and R(α)-Bayes estimator is consistent with this spirit. In the following,
wherever the context makes it clear, we will drop the superscript α from the notation
Q(α)

n .
Also note that the R(α)-posterior defined above is in fact a pseudo-posterior. There

has been substantial interest in recent times in developing several pseudo-posteriors
for solving different problems. For example, the Gibbs posterior (Zhang 1999) �̂ is
defined as

�̂(θ) = exp(−λRn(θ))π(θ)∫
exp(−λRn(θ))π(θ)dθ

,

where π(θ) is the prior for θ , λ is a scalar parameter and Rn(θ) is an empirical risk
function that may or may not be additive. The Gibbs posterior is seen to perform better
with respect to the risk incurred under model misspecification, since it uses the non-
parametric estimate of the risk function directly; see Jiang and Tanner (2008, 2010).
There has been a lot of research on the properties and applications of the Gibbs poste-
rior; see Li et al. (2014); Jiang and Tanner (2013), among others, for details. Another
important approach for constructing pseudo-posteriors is the PAC-Bayesian approach
(Catoni 2007) that was highly successful in the supervised classification scenario. The
recent developments in this area include Alquier and Lounici (2011), Rigollet and
Tsybakov (2011), etc. Many of these approaches have found application in fields such
as data mining, econometrics and many others. The robust R(α)-posterior approach
presented in this paper is closely related to these approaches in terms of its basic struc-
ture; however, the effect and the purpose of the R(α)-posterior is quite different from
that of the others. Our approach has a strong connection with the Bayesian philosophy,
but the PAC approach only has a weak connection with the latter. The Gibbs posterior
and R(α)-posterior have an interesting relationship similar to the relation between the
nonparametric and robust statistics; the first one minimizes parametric model assump-
tions while the second one provides protection against model misspecifications, often
manifested by large outliers. In this paper we describe the R(α)-posterior and its advan-
tages mainly with respect to the robustness point of view under the spirit of Bayesian
paradigm; it will be seen to successfully ignore the potential outliers with respect to
the assumed model family and give much more importance to any subjective prior
belief compared to the usual Bayes approach.

3 Asymptotic efficiency

Consider the set up of Sect. 2. Let θ̂ be the minimum density power divergence
estimator (MDPDE) of θ based on X1, . . . , Xn corresponding to the tuning parameter
α, which we will generally suppress in the following; also let θ g be the best fitting
parameter which minimizes the DPDmeasure between g and the model densities over
θ ∈ Θ . Let ∇ and ∇2 denote the first and second derivative with respect to θ , and let
∇ jkl represent the indicated partial derivative. Consider the matrix Jα(θ) defined by
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Jα(θ) = −Eg[∇2q(α)
θ (X)]

= 1

1 + α
Eg

[
∇2
{∫

f 1+α
θ −

(
1 + α

α

)
f α
θ (X)

}]
, (5)

which can be (strongly) consistently estimated by Ĵα(θ̂n) = − 1
n∇2Qn(θ̂n). We make

the following assumptions for proving the asymptotic normality of the posterior.

(E1) Suppose Assumptions (D1)–(D5) of Basu et al. (2011) hold. These imply that
the MDPDE θ̂n of θ g is consistent.

(E2) For any δ > 0, with probability one,

sup
||θ−θg ||>δ

1

n
(Qn(θ) − Qn(θ

g)) < −ε,

for some ε > 0 and for all sufficiently large n.
(E3) There exists a function Mjkl(x) such that

|∇ jklqθ (x)| ≤ Mjkl(x) ∀θ ∈ ω,

where Eg[Mjkl(X)] = m jkl < ∞ for all j, k and l.

Note that the above assumptions are not very hard to examine for most standard
parametric models. The conditions (E1) and (E3) are in fact common in the context
of minimum density power divergence estimation and are shown to hold for several
parametric models in Basu et al. (2011). The condition (E2) is specific to the case of
the DPD-based posterior; however, it is in fact a routine generalization of the similar
condition needed for the asymptotic normality of the usual posterior (see Ghosh and
Ramamoorthi 2003). Using similar arguments as in the case of the usual likelihood-
based posterior one can easily show that the DPD-based condition (E2) holds for most
common parametric families. We will present a brief argument to show that it holds
for the normal model fθ ≡ N (θ, σ 2) with known σ and α > 0. Let θ g be the true

parameter value. In this particular case, Qn(θ) = 1
α(

√
2πσ)α

∑n
i=1 e

− α(θ−Xi )
2

2σ2 − nζα,

where ζα = (
√
2πσ)−α(1 + α)− 3

2 . Thus,

1

n
(Qn(θ) − Qn(θ

g)) = 1

α(
√
2πσ)α

1

n

n∑
i=1

[
e− α(θ−Xi )

2

2σ2 − e− α(θg−Xi )
2

2σ2

]

≤ − 1

α
(√

2πσ
)α

1

n

n∑
i=1

[
α(θ − Xi )

2

2σ 2 − α(θ g − Xi )
2

2σ 2

]
e−K ,

for a small positive constant K . Here we have used the mean value theorem on the
function e−z . However,
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− 1

α(
√
2πσ)α

1

n

n∑
i=1

[
α(θ − Xi )

2

2σ 2 − α(θ g − Xi )
2

2σ 2

]
e−K

= − e−K

2σ 2(
√
2πσ)α

(
2X̄ − θ − θ g

)
(θ g − θ)

→ − e−K

2σ 2(
√
2πσ)α

(θ g − θ)2 < 0,

almost surely as n → ∞, under the model distribution N (θ g, σ 2), by strong law of
large numbers. So, for all sufficiently large n, we have, with probability one under
N (θ g, σ 2),

1

n
(Qn(θ) − Qn(θ

g)) < − e−K

4σ 2(
√
2πσ)α

(θ g − θ)2.

Then it follows that, given any δ > 0, the condition (E2) holds with ε = e−K δ2

8σ 2(
√
2πσ)α

.

Now, we will present the main theorem of this section providing the asymptotic nor-
mality of the robust R(α)-posterior under above conditions.

Theorem 1 Suppose Assumptions (E1)–(E3) hold and let π(θ) be any prior which is
positive and continuous at θ g. Then, with probability tending to one,

lim
n→∞

∫ ∣∣∣∣∣π∗R
n (t) −

( |Jα(θ g)|
2π

)p/2

e− 1
2 t

′ Jα(θg)t

∣∣∣∣∣ = 0, (6)

where π∗R
n (t) is the R(α)-posterior density of t = √

n(θ − θ̂n) given the data
X1, . . . , Xn. Also, the above holds with Jα(θ g) replaced by Ĵα(θ̂n).

Note that the above theorem about asymptotic normality of R(α)-posterior is quite
similar to the Bernstein–von Mises (BVM) theorem on the usual posterior (see Ghosh
et al. 2006; Ghosh and Ramamoorthi 2003) except that here we are considering con-
vergence with probability tending to one (convergence in probability). Thus the proof
of the above theorem is in line with that of BVM results with some required modifi-
cations. In order that the flow of the paper is not arrested, we will present the proof of
this theorem in the appendix. Our next theorem gives the asymptotic properties of the
ERPE.

Theorem 2 In addition to the conditions of the previous theorem assume that the prior
π(θ) has finite expectation. Then the Expected R(α)-Posterior Estimator (ERPE) θ̂en
satisfies

(a)
√
n(θ̂en − θ̂n)

P→ 0 as n → ∞.

(b) If, further,
√
n(θ̂n − θ g)

D→ N (0, (θ g)) for some positive definite (θ g), then√
n(θ̂en − θ g)

D→ N (0, (θ g)).
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It was proved in Basu et al. (2011) that under the conditions (D1)–(D5), we have√
n(θ̂n − θ g)

D→ N (0, J−1K J−1), where J and K are as defined in Equations (9.14)
and (9.15) of Basu et al. (2011), respectively. Thus, by the above theorem, the ERPE
θ̂en also has the same asymptotic distribution.

Remark 1 Instead of assuming the simple consistency of the MDPDE θ̂n of θ g in
Assumption (E1), if we assume the condition(s) under which this MDPDE is strongly
consistent, then we can prove, along similar lines, all the convergence results of this
section as almost sure convergence.

4 Robustness properties: contamination in data

The major advantage of inference based on the density power divergence is that the
generated robustness properties entail very little loss in statistical efficiency for small
values of α. In the Bayesian context we use the data as well as the prior as our input.
So, the robustness of the estimators obtained can be with respect to the data input or
with respect to the choice of prior or both. In the present section, we will consider
the contamination in the first input, namely the data input, and explore the robustness
properties of the corresponding estimators using the InfluenceFunction (Hampel 1974)
of the estimators.

Let the sample data X1, . . . , Xn be generated from the true distributionG which we
will model by the family {Fθ : θ ∈ Θ}. Let g and fθ be the corresponding densities
and π(θ) be the prior on the unknown parameter θ . In the spirit of Q(α)

n (θ) let us
define

nQ(α)(θ;G, Fθ ) = n

[
1

α

∫
f α
θ (x)dG(x) − 1

1 + α

∫
f 1+α
θ (x)dx

]
.

We will consider the R(α)-posterior density as a functional of the true data generating
distribution G, besides considering it as a function of only the unknown parameter θ

as

πα(θ;G) = enQ
(α)(θ;G,Fθ )π(θ)∫

enQ(α)(θ;G,Fθ )π(θ)dθ
. (7)

For a fixed sample size n, the R(α)-Bayes functional with respect to the loss function
L(·, ·) is given by

T (α)L
n (G) = argmin

t

∫
L(θ, t)enQ

(α)(θ;G,Fθ )π(θ)dθ∫
enQ(α)(θ;G,Fθ )π(θ)dθ

. (8)

In particular, under the squared error loss function, the Expected R(α)-Posterior (ERP)
functional is defined as

T (α)e
n (G) =

∫
θenQ

(α)(θ;G,Fθ )π(θ)dθ∫
enQ(α)(θ;G,Fθ )π(θ)dθ

. (9)
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Note that unlike most classical statistical functionals under the i.i.d. setup, here the
functional explicitly depends on the sample size n. Thus, in this context our influence
function will also depend on the sample size explicitly giving the effect of the conta-
mination under a fixed sample size. This is akin to influence function for the robust
Bayes estimators using disparities proposed by HV. However, in some special cases,
we can derive the asymptotic result independently of n by considering the influence
function at the fixed sample size and taking its asymptotic expansion as n tends to
infinity.

Now we consider the contaminated model Hε = (1 − ε)G + ε�y where ε is the
contamination proportion and �y is the contaminating distribution degenerate at y.

Then the influence function of the R(α)-Bayes functional T (α)L
n (·) for the fixed sample

size n at the distribution G is defined as

I Fn(y, T
(α)L
n ,G) = ∂

∂ε
T (α)L
n (Hε)|ε=0.

4.1 Influence function of expected R(α)-posterior estimator

Let us first consider the simplest R(α)-Bayes estimator under the squared error loss
function, namely the Expected R(α)-Posterior Estimator (ERPE). Routine differenti-
ation shows that the influence function of the ERPE at the fixed sample size is given
by

I Fn(y, T
(α)e
n ,G) = n CovPR (θ, kα(θ; y, g)), (10)

where CovPR is the covariance under the R(α)-posterior distribution (the subscript
“PR” is used to denote the R(α)-posterior) and

kα(θ; y, g) = ∂

∂ε
Q(α)(θ; Hε, Fθ )|ε=0 = 1

α

[
f α
θ (y) −

∫
f α
θ g

]
, (11)

whenever α > 0. However, for α = 0, we have k0(θ; y, g) = log fθ (y) − ∫ g log fθ
and hence the influence function of the Expected R(0)-Posterior (ERP) estimator i.e.
the usual posterior mean at the fixed sample size n can also be derived from above
Eq. (10) substituting α = 0.

However, in this case we can also derive an asymptotic version of the influence
functions that gives us clearer picture about the differences in the robustness of the
proposed ERPEwith respect to the choice of α with the usual posterior mean at α = 0.
Let us denote θ̄ = EPR [θ ], where the expectation is with respect to the R(α)-posterior
distribution; using the Taylor series expansion of kα(θ; y, g) around θ̄ , we get the
following theorem about the asymptotic expansion of the influence function of the
ERPE.

Theorem 3 Assume that Assumptions (E1)–(E3) hold and the matrix Jα(θ) defined
in Eq. (5) is positive definite. Further assume that the true data generating density g is
such that there exists a best fitting parameter θ g minimizing the expected squared error
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loss under the R(α)-posterior distribution. Then the influence function of the Expected
R(α)-Posterior (ERP) estimator T (α)e

n at the fixed sample size n has the following
asymptotic expansion as n → ∞:

I Fn(y, T
(α)e
n ,G) = J−1

α (θ g)

[
f α
θg (y)uθg (y) −

∫
f α
θg guθg

]
+ oP (n−1/2). (12)

It is interesting to note that the first expression in the RHS of the Eq. (12) is
independent of the choice of the priorπ(θ) and is exactly equal to the influence function
of the minimum density power divergence estimator. This fact is quite expected as we
have seen that the ERPE and the MDPDE are asymptotically equivalent and hence
the influence of contamination in data should also be similar for both the estimators
for large sample sizes. Further the influence function for large sample sizes is seen to
be independent of the prior, which is again expected as the large volume of the data
makes the effect of the prior insignificant.

It also turns out that for most of the common models the large sample influence
function of the ERPE given by the RHS of the Eq. (12) is bounded for all α > 0 and
unbounded for α = 0. This leads us to infer that for large samples the ERPE is robust
for all α > 0 whereas the usual posterior mean corresponding to α = 0 is not so.

4.2 Influence function of the general R(α)-Bayes estimator

Now we will derive the influence function of the general R(α)-Bayes estimator with
respect to the general loss functions L(·, ·). We will first assume the differentiability
of the loss function with respect to its second argument. Note that the R(α)-Bayes
functional T (α)L

n (G) with respect to the loss function L(·, ·) defined in Eq. (8) is
nothing but the minimizer of some function of t . Upon differentiating with respect to t ,
the R(α)-Bayes estimator can also beobtained as the solutionof the estimation equation

∂

∂t

[∫
L(θ, t)enQ

(α)(θ;G,Fθ )π(θ)dθ∫
enQ(α)(θ;G,Fθ )π(θ)dθ

]
= 0.

Thus, we must have

∂

∂t

[∫
L(θ, t)enQ

(α)(θ;G,Fθ )π(θ)dθ∫
enQ(α)(θ;G,Fθ )π(θ)dθ

] ∣∣∣∣
t=T (α)L

n (G)

= 0,

or, ∫
L ′(θ, T (α)L

n (G))enQ
(α)(θ;G,Fθ )π(θ)dθ = 0, (13)

where we denote

L ′(θ, T (α)L
n (G)) = ∂L(θ, t)

∂t

∣∣∣∣
t=T (α)L

n (G)

.
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Now to derive the influence function of the R(α)-Bayes estimator we replace G by the
contaminated density Hε in the estimating Eq. (13), differentiate with respect to ε, and
evaluate at ε = 0. Thus, we get the influence function of the R(α)-Bayes estimator at
the fixed sample size n given by

I Fn(y, T
(α)L
n ,G) = −n

∫
L ′(θ, T (α)L

n (G))kα(θ; y, g)enQ(α)(θ;G,Fθ )π(θ)dθ∫
L ′′(θ, T (α)L

n (G))enQ(α)(θ;G,Fθ )π(θ)dθ

= −n
EPR

[
L ′(θ, T (α)L

n (G))kα(θ; y, g)
]

EPR

[
L ′′(θ, T (α)L

n (G))
] , (14)

where the expectation in the last line is under the R(α)-posterior distribution. In par-
ticular at α = 0, we will get the fixed sample influence function of the usual Bayes
estimator under the general loss function.

Note that the above expression of the influence function of the general R(α)-Bayes
estimator is valid only for the loss functions which are twice differentiable with respect
to their second argument. In particular, for squared error loss, we will recover the
influence function of the ERPE derived in Eq. (10) from Eq. (14). But this does not
include two other famous non-differentiable loss functions, namely the absolute error
loss function and the zero-one loss function. However, we can separately derive the
influence function for the corresponding R(α)-Bayes estimators.

The R(α)-Bayes estimator corresponding to the absolute error loss function
L(θ, t) = |θ − t |, denoted by T (α)a

n (G), say, is nothing but the median of the R(α)-
posterior distribution. Hence, it is defined by the estimating equation

∫ T (α)a
n (G)

−∞
enQ

(α)(θ;G,Fθ )π(θ)dθ =
∫ +∞

T (α)a
n (G)

enQ
(α)(θ;G,Fθ )π(θ)dθ. (15)

Thus, substituting the contaminated distribution Hε in place of the true distribution G
in the above estimating equation and differentiating it with respect to ε at ε = 0, we
get the influence function of the R(α)-Bayes estimator corresponding to the absolute
error loss function which turns out to be

IFn(y, T
(α)a
n ,G)=−n

∫
sgn(θ − T (α)a

n (G))kα(θ; y, g)enQ(α)(θ;G,Fθ )π(θ)dθ

2enQ(α)(T (α)a
n (G);G,Fθ )π(T (α)a

n (G))
, (16)

where sgn(.) is the signum function.
Further, the R(α)-Bayes estimators corresponding to the zero-one loss function

denoted, say, by T (α)m
n (G), is the mode of the R(α)-posterior distribution. We can also

derive its fixed sample influence function similarly.

4.3 Influence on the overall R(α)-posterior distribution

In theBayesian literature it is common to report thewhole posterior distribution instead
of only the summary measures. Thus, it will be of interest to investigate the influence
of the contaminated data on the overall posterior distribution as a whole. However,
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since there is no standard literature about the influence function of a overall density
function, we will here try to quantify these influences by a couple of new (albeit
similar) approaches.

Consider the change πα(θ; Hε) − πα(θ;G) in the R(α)-posterior density at the
contaminated distribution Hε at the true distribution G and consider the measure of
local change as the limit limε↓0 πα(θ;Hε )−πα(θ;G)

ε
, which exists under very weaker

assumption on the models. Routine calculation shows that the above limit equals

lim
ε↓0

πα(θ; Hε) − πα(θ;G)

ε
= ∂

∂ε
πα(θ; Hε)

∣∣
ε=0

= πα(θ;G)n[kα(θ; y, g) − EPR {kα(θ; y, g)}], (17)

where the last expectation is taken under the true R(α)-posterior distribution πα(θ;G).
Note that this limit gives us a similar kind of interpretation as the influence function of a
general statistical functional at the fixed sample size. Specially, whenever the function

Iα(θ; y;G) = n [kα(θ; y, g) − EPR {kα(θ; y, g)}] (18)

in the RHS of Eq. (17) remains bounded, the limiting change in the R(α)-posterior
density due to contamination in the data remains in the bounded neighborhood of the
true posterior density and hence gives robust inference about the true posterior. On the
other hand,whenever the functionIα(θ; y;G)becomes unbounded, the corresponding
change in the R(α)-posterior density also becomes infinite indicating that the inference
based on the posterior density at the contaminated model will then be highly unstable.
Also the expectation of the function Iα(θ; y;G) under the true R(α)-posterior density
is zero. Under the true model, therefore, there should not be any expected change in
the posterior density due to limiting contamination. We will thus denote this function
Iα(θ; y;G) as the pseudo-influence function of the R(α)-posterior density at the finite
sample size n.

Based on themeasureIα(θ; y;G)we can nowalso define local and globalmeasures
of sensitivity of the R(α)-posterior density with respect to the contamination in data,
respectively, by γα(y) = supθ Iα(θ; y;G), for all contamination point y and γ ∗

α =
supy γα(y) = supy supθ Iα(θ; y;G). They have standard robustness implications for
the R(α)-posterior.

To further justify the use of the pseudo-influence function, we consider some
statistical divergences between the R(α) posterior densities at the contaminated and
true distribution as in the case of Bayesian robustness with perturbation priors (eg.
Gustafson and Wasserman 1995; Gelfand and Dey 1991). In particular we consider
the φ-divergences which have been used in the context of Bayesian robustness by Dey
and Birmiwal (1994). The φ divergence between densities ν1 and ν2 is defined by

ρ(ν1, ν2) = ∫ φ(
ν1

ν2
)ν2, where φ is a smooth convex function with bounded first and

second derivatives near 1 with φ(1) = 0. Accordingly, wewill consider the divergence
ρ(πα(θ; Hε), πα(θ,G)). Since limε↓0 ρ(πα(θ; Hε), πα(θ,G)) = 0, we will magnify
the divergence by ε. The form of the φ-divergence and standard differentiation then
yields the following result.
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lim
ε↓0

ρ(πα(θ; Hε), πα(θ;G))

ε
= ∂

∂ε
ρ(πα(θ; Hε), πα(θ;G))|ε=0

= φ′(1)EPR [Iα(θ; y;G)] = 0. (19)

However, if we magnify the divergence by ε2, then we get a non-zero limit as follows:

lim
ε↓0

ρ(πα(θ; Hε), πα(θ;G))

ε2
= ∂2

∂2ε
ρ(πα(θ; Hε), πα(θ;G))|ε=0

= φ′′(1)EPR [Iα(θ; y;G)]2
= φ′′(1)VarPR [Iα(θ; y;G)]
= φ′′(1)n2 VarPR [kα(θ; y, g)]. (20)

This non-zero limit also gives us a possible measure of the local sensitivity of the
R(α)-posterior density under the contamination at the data and we will denote this by
sα(y), i.e.,

sα(y) = lim
ε↓0

ρ(πα(θ; Hε), πα(θ;G))

ε2
= φ′′(1)VarPR [Iα(θ; y;G)]. (21)

Based on this, a global measure of sensitivity can be defined as s∗
α = supy sα(y). This

measure again gives us the indication about the extend of robustness for the proposed
R(α)-posterior with lower values implying greater robustness.

All the results proved in this section are particularly useful in real practice to check
the robustness of the proposed method with respect to the potential outliers in the data.
The boundedness of the influence function ensures that the proposed estimators will
be able to ignore the outlying observations from the sample and generate more mean-
ingful insights. The maximum values of the influence function or the global sensitivity
measure can provide guidance for choosing the appropriate tuning parameter α for the
assumed model and prior density. We will present a detailed illustration of these prac-
tical advantages of the proposed estimators in Sect. 6 in respect of the normal model.

5 Bayesian robustness: perturbation in the prior

Another important and desirable property for any estimation procedure in the Bayesian
context is the Bayesian robustness with respect to contamination in prior distributions.
In this section we will consider this aspect of the proposed R(α)-posterior. However,
here we will only consider the local measures of sensitivities with small perturbations
in the prior, an approach which has become very popular in recent days in the usual
Bayesian context (see Ghosh et al. 2006). We will first introduce some additional
notation.

Following Gustafson and Wasserman (1995), let π be a prior density and π x be
corresponding posterior density given the data x defined as

π x (θ) = fθ (x)π(θ)∫
fθ (x)π(θ)dθ

.
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Consider the set P of all probability densities over the parameter space Θ and a
distance d : P × P → R to quantify the changes between original and contaminated
densities. Further let νε denote a perturbation of the prior π in the direction of another
density ν. Then Gustafson and Wasserman (1995) defined the local sensitivity of P in
the direction of ν as

s(π, ν; x) = lim
ε↓0

d(π x , νxε )

d(π, νε)
.

In the present context of R(α)-posterior, we similarly define the R(α)-posterior density
corresponding to prior π given data x by

π x
α (θ) = exp(q(α)

θ (x))π(θ)∫
exp(q(α)

θ (x))π(θ)dθ
, (22)

where q(α)
θ (x) is as defined in Sect. 2. Then we define the local sensitivity of P for

the R(α)-posterior in the direction of ν by

sα(π, ν; x) = lim
ε↓0

d(π x
α , (νε)

x
α)

d(π, νε)
.

Here for simplicity, we will consider the φ-divergence defined earlier as the distance
d(·, ·) in the above definition.Also, as in usual practice,we consider two different types
of perturbations νε—one is the linear perturbation defined by νε = (1−ε)π +εν; and
the second is the geometric perturbation defined by νε = c(ε)π1−ενε (see Gelfand
and Dey (1991)).

Note that for any divergence, we know that d(π x
α , (νε)

x
α) and d(π, νε) both converge

to zero as ε ↓ 0. Also, as in the previous section, we can show that for the φ-divergence
ρ(·, ·), limε↓0 ∂

∂ε
ρ(π x

α , (νε)
x
α) = 0 and limε↓0 ∂

∂ε
ρ(π, νε) = 0, i.e. themeasure is zero

in either case. Thus, for the φ-divergences we indeed have

sα(π, ν; x) = lim
ε↓0

ρ(π x
α , (νε)

x
α)

ρ(π, νε)
= lim

ε↓0

∂2

∂2ε
ρ(π x

α , (νε)
x
α)

∂2

∂2ε
ρ(π, νε)

.

Hence, calculating above limit, we can get the form of the local sensitivity sα(π, ν; x)
for different types of perturbations which are presented in the following theorems.
The proof of these theorems follow along the lines of Theorems 3.1 and 3.2 of Dey
and Birmiwal (1994).

Theorem 4 Consider linear perturbations of the prior and suppose
∫

ν2(θ)
π(θ)

dθ < ∞.
Then

sα(π, ν; x) = Vπ x
α

(
ν(θ)

π(θ)

)/
Vπ

(
ν(θ)

π(θ)

)
, (23)

where Vπ denotes variance with respect to the density π .

123



426 A. Ghosh, A. Basu

Theorem 5 Consider geometric perturbations of the prior and suppose that∫
(log ν(θ)

π(θ)
)2π(θ)dθ < ∞ and

∫
(log ν(θ)

π(θ)
)2(

ν(θ)
π(θ)

)επ(θ)dθ < ∞ for some ε > 0.
Then

sα(π, ν; x) = Vπ x
α

(
log

ν(θ)

π(θ)

)/
Vπ

(
log

ν(θ)

π(θ)

)
. (24)

It is interesting to note that the results obtained in this section regarding theBayesian
robustness of the proposed R(α)-posterior and related inferences are similar to the
corresponding results on the usual posterior in the Bayes paradigm (see Ghosh et al.
2006 and references therein for the corresponding details). These results basically
describe the stability of the posterior-based inference under prior misspecification and
are widely used in prior elicitation by the Bayesian statisticians. The theorem proved
here will help one to use the proposed R(α)-posterior-based estimators with the above
philosophy and to check its robustness with respect to the departures from true prior
belief. As we have noted, the proposed methodology, besides providing robustness
with respect to potential outliers in the observed data, also gives more emphasis on the
prior belief over the usual posterior. The results derived in this section are helpful for
the proper elicitation of the prior in case of the new pseudo-posterior-based approach.
In the recent future, we hope to explore the different methods of prior elicitation and
their criticisms with respect to the newly proposed R(α)-posterior based on all these
results. Some numerical illustration regarding the effect of priors on the R(α)-Bayes
estimators are presented in the next Section.

6 Simulation study: normal mean with known variance

We now illustrate the performance of the proposed R(α)-posterior densities and
the Expected R(α)-Posterior (ERP) estimator. We consider the most common nor-
mal model with unknown mean and known variance. Let us assume that the data
X1, . . . , Xn come from the true normal density g ≡ N (θ0, σ

2) where the mean para-
meter θ0 is unknown but σ 2 is known. We model this by the family F = { fθ ≡
N (θ, σ 2) : θ ∈ Θ = R}. Further, we consider the uniform prior for θ over the whole
real line; π(θ) = 1 for all θ ∈ R.

From the form of the normal density, it is easy to see that

Qn(θ) = 1

α(
√
2πσ)α

n∑
i=1

e− α(θ−Xi )
2

2σ2 − nζα,

where ζα = (
√
2πσ)−α(1+ α)− 3

2 . Thus, for any α > 0, the R(α)-posterior density is
given by

πα
R(θ |X) ∝ exp

⎡
⎢⎣ 1

α(
√
2πσ)α

n∑
i=1

e
−α(θ − Xi )

2

2σ 2

⎤
⎥⎦ . (25)
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However, for α = 0, the R(α)-posterior is the ordinary posterior, which has the
N (X̄ , σ 2

n ) distribution. Under a symmetric loss function the ordinary Bayes estimator
is X̄ , which is highly sensitive to outliers. Indeed, one large outlier can make ordi-
nary Bayes estimator arbitrarily large, and hence this estimator has zero asymptotic
breakdown point. Yet we will see that for α > 0, the R(α)-Bayes estimator θ̂

(α)
n corre-

sponding to the squared error loss function, which is the mean of the R(α)-posterior,
is highly robust against outliers.

For any α ≥ 0, it follows fromTheorem 1 that the R(α)-posterior density of
√
n(θ −

θ̂
(α)
n ) converges in the L1-norm to a normal withmean 0 and variance J−1

α , where Jα =
(
√
2π)−ασ−(α+2)(1 + α)− 3

2 . Further, it follows from Theorem 2 that the asymptotic
distribution of

√
n(θ̂

(α)
n − θ0) is the same as that of the MDPDE of the normal mean.

FromBHHJ it follows that this latter asymptotic distribution is N (0, (1+ α2

1+2α )3/2σ 2)

for all α ≥ 0. Thus,

√
n(θ̂ (α)

n − θ0) → N

(
0,

(
1 + α2

1 + 2α

)3/2

σ 2

)
.

Hence, the asymptotic relative efficiency of the Expected R(α)-Posterior estimator
(ERPE) θ̂

(α)
n relative to the ordinary Bayes estimator θ̂

(0)
n = X̄ is given by (1 +

α2

1+2α )− 3
2 . For small positive α, this ARE is very high, being 98.76 and 94.06% at

α = 0.1 and 0.25, respectively. Thus, the loss in efficiency due to the use of the
R(α)-posterior is asymptotically negligible for small values of α > 0.

For small sample sizes we can compare the efficiency of the ERPE θ̂
(α)
n with the

usual Bayes estimator θ̂
(0)
n through simulation. For any α > 0 the ERPE has no

simplified expression and needs to be calculated numerically. For any given sample,
we can estimate the ERPE by an importance sampling Monte Carlo algorithm using a
N (X̄ , s2n ) proposal distribution where X̄ and s2n denotes the samplemean and variance,
respectively.We have simulated samples of various sizes from the N (5, 1) distribution,
and using importance sampling with 20,000 steps, we estimate the empirical bias and
mean squared error (MSE) of the ERPE based on 1,000 replications. Table 1 presents
the empirical bias and MSE for several cases. Clearly the MSE of the ERPE for fixed
α decreases with the sample size n, and for any fixed n the MSE increases with α.
This is expected as the ERPE corresponding to the ordinary posterior at α = 0 is
most efficient among all ERPEs under the true model (without contamination). The
estimators for small positive α are highly efficient; the shift in the value of the MSE
is minimal for small values of α. We have also computed a popular summary measure
used in the Bayesian paradigm, namely the credible interval for the normalmean based
on equal tail probabilities (Table 1). Note that for theMDPDEwith any fixed α ≥ 0, its
length decreases with the sample size as expected. However, for any fixed sample size,
the credible interval under pure data becomes slightly wider as α increases although
this difference is not very significant for smaller positive values of α.

Now we examine the robustness properties of the ERPE. The ordinary Bayes esti-
mator (which is the sample mean) is highly non-robust in the presence of outliers. We
will study the nature of the influence functions of the ERPEs at the model as developed
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Table 1 The empirical bias, MSE and credible interval (CI) of the ERPE for different sample sizes n and
tuning parameter α (without contamination)

n α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.7 α = 0.8

20

Bias 0.0060 0.0079 0.0093 0.0118 0.0125 0.0061

MSE 0.0497 0.0505 0.0520 0.0582 0.0618 0.0969

CI (4.56, 5.44) (4.56, 5.44) (4.55, 5.44) (4.55, 5.48) (4.54, 5.48) (4.53, 5.49)

30

Bias 0.0104 0.0111 0.0119 0.0136 0.0144 0.0145

MSE 0.0323 0.0326 0.0336 0.0382 0.0416 0.0430

CI (4.63, 5.37) (4.64, 5.37) (4.64, 5.37) (4.63, 5.38) (4.62, 5.4) (4.61, 5.4)

50

Bias −0.0045 −0.0045 −0.0042 −0.0033 −0.0027 −0.0024

MSE 0.0209 0.0213 0.0219 0.0252 0.0277 0.0289

CI (4.71, 5.29) (4.71, 5.3) (4.7, 5.3) (4.69, 5.3) (4.67, 5.32) (4.67, 5.33)

in Sect. 4. Following the notation of Sect. 4, we can compute Q(α)(θ, Fθ0 , Fθ ) and
kα(θ, y, fθ0) for all α ≥ 0. Then the R(α)-posterior functional with α > 0 at Fθ0 is
given by

πα(θ; Fθ0) ∝ exp

⎡
⎢⎣ n

α(
√
2πσ)α

√
1 + α

e
− α(θ − θ0)

2

2(1 + α)σ 2

⎤
⎥⎦ . (26)

However, the R(0)-posterior functional (or the usual posterior functional) at the model
is a normal density with mean θ0 and variance σ 2/n. Thus, the fixed sample influence
function of the ordinary Bayes estimator (the usual posterior mean) corresponding to
α = 0 simplifies to IFn(y, T

(0)
n , Fθ0) = y−θ0. This influence function, independent of

the sample size, is clearly unbounded implying the non-robust nature of the usualBayes
estimator. However, the fixed sample influence function of the ERPE corresponding
to α > 0 is given by

IFn(y, T
(α)
n , Fθ0)=

n

α(
√
2πσ)α

Covπα

⎛
⎜⎝θ, e

−α(y − θ)2

2σ 2 − 1√
1 + α

e
− α(θ − θ0)

2

2(1 + α)σ 2

⎞
⎟⎠,

where the covariance is taken under the R(α)-posterior functional density.
Figure 1 shows the plots of this fixed sample influence functions of the ERPE for

different α > 0 and sample sizes n = 20 and n = 50. Clearly, for any fixed sample
size this influence function is bounded.

Next, we study the influence on the whole R(α)-posterior density as given in
Sect. 4.3. We empirically compute the pseudo-influence surface for various sample
size n and α > 0 (Fig. 2). Here we assume, without loss of generality, that φ′′(1) = 1.
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Fig. 1 Plots of the fixed sample influence function of the ERPE for several α for different sample sizes n

Fig. 2 Plots of the fixed sample pseudo-influence function of the R(α)-posterior density for several α and
sample sizes n

Clearly, all the fixed sample pseudo-influence functions for α > 0 are bounded imply-
ing the robustness of the R(α)-posterior density with α > 0. However, the pseudo-
influence function of the usual posterior at α = 0 is I(θ; y, Fθ0) = n

σ 2 (y−θ0)(θ −θ0),
that is unbounded. Thus, γ ∗

0 = ∞ and the usual posterior is non-robust in the presence
of outliers. The values of the maximum γ ∗

α of pseudo-influence function, shown in
Fig. 3, are bounded for all sample sizes n and α > 0 and decreases with α. Hence, the
robustness of the R(α)-posterior density increases with α.

We have also computed the second measure of robustness, namely sα(y) for differ-
ent α > 0 numerically and its maximum s∗

α that are shown in Fig. 3. Interestingly, the
s∗
α values seem to be independent of the sample size n in this example although they
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Fig. 3 Plots of γ ∗
α and s∗α over α for different sample sizes n (solid line n = 50, dotted line n = 30, dashed

line n = 20)

Table 2 The empirical bias, MSE and credible interval (CI) of the ERPE for sample sizes n = 20 with
contamination at the point x = 8 (ε denotes the contamination proportion)

ε α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.7 α = 0.8

0.05

Bias 0.1487 0.1126 0.0831 0.0318 0.0196 0.0206

MSE 0.0703 0.0656 0.0639 0.0657 0.0677 0.0714

CI (4.72, 5.59) (4.67, 5.58) (4.63, 5.55) (4.55, 5.53) (4.52, 5.52) (4.52, 5.53)

0.10

Bias 0.2959 0.2372 0.1837 0.0845 0.0620 0.0584

MSE 0.1350 0.1127 0.0988 0.0860 0.0850 0.0924

CI (4.89, 5.75) (4.8, 5.72) (4.7, 5.71) (4.57, 5.65) (4.54, 5.64) (4.52, 5.64)

0.20

Bias 0.6126 0.5391 0.4525 0.2399 0.1987 0.2146

MSE 0.4149 0.3439 0.2765 0.1666 0.1490 0.1641

CI (5.22, 5.99) (5.07, 5.98) (4.91, 5.95) (4.6, 5.88) (4.56, 5.86) (4.57, 5.87)

again give the similar inference about the robustness of the R(α)-posterior density for
α > 0. For the usual posterior corresponding to α = 0, we have sα(y) = n

σ 2 (y − θ0)
2

which is unbounded; thus, s∗
0 = ∞, indicating the lack of robustness of the usual

posterior density.
Now we consider the bias, MSE and the credible interval of the ERPE under conta-

mination. The true data generating density is now N (5, 1) and we contaminate 100ε%
of the data by the value x = 8 (i.e.,we replace 100 ε%of the sample observations by the
constant value 8), which may be considered an extreme point. The empirical summary
estimates are given in Tables 2 and 3. The MSE and the bias are computed against the
target value of 5. Clearly larger values of α lead to more accurate inference compared
to α = 0. In terms of the credible interval, note that as the contamination proportion
increases its length decreases but the true value of the parameter (which is 5) is pushed
to the border and eventually lies outside the credible interval for small values of α

including 0; thus, the Bayes inference based on the credible interval produced by the
usual posterior (α = 0) cannot give us the true result under contamination. However,
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Table 3 The empirical bias, MSE and credible interval (CI) of the ERPE for sample sizes n = 50 with
contamination at the point x = 8 (ε denotes the contamination proportion)

ε α = 0 α = 0.1 α = 0.2 α = 0.5 α = 0.7 α = 0.8

0.05

Bias 0.1167 0.0892 0.0666 0.0273 0.0163 0.0134

MSE 0.0336 0.0297 0.0279 0.0283 0.0302 0.0311

CI (4.83, 5.41) (4.79, 5.39) (4.75, 5.37) (4.7, 5.35) (4.67, 5.35) (4.67, 5.36)

0.10

Bias 0.2983 0.2402 0.1858 0.0778 0.0462 0.0376

MSE 0.1076 0.0797 0.0600 0.0371 0.0348 0.0346

CI (5.04, 5.55) (4.96, 5.52) (4.88, 5.49) (4.75, 5.43) (4.7, 5.4) (4.69, 5.4)

0.20

Bias 0.6126 0.5391 0.4525 0.2399 0.1987 0.2146

MSE 0.4149 0.3439 0.2765 0.1666 0.1490 0.1641

CI (5.36, 5.85) (5.25, 5.81) (5.12, 5.78) (4.81, 5.63) (4.73, 5.55) (4.71, 5.52)

Fig. 4 Plots of n × MSE of the ERPE over sample sizes n for several values of α with prior parameters
(μ; τ = 1) a μ = 5 b μ = 6

once again the credible intervals produced by the robust posteriors with larger α ≥ 0.5
give much more accurate and stable inference in the presence of contamination.

Finally we provide an exploration of the behavior of the ERPE under variations in
the nature of contamination, prior parameters, and sample size. In Fig. 4a we provide
a plot of n times the mean square error (MSE) of the ERPE. In this experiment the
model is the N (θ, 1) family, and the data are generated from the N (5, 1) distribution;
the mean parameter θ is the parameter of interest, and the assumed prior for θ is the
N (μ = 5, τ = 1) distribution. The processes which correspond to larger values of α

place greater confidence on the prior mean, and for small values of the sample size n
the MSE of the ERPE of θ is a decreasing function of α. For very small sample sizes
the MSE corresponding to the ERPEα=0.8 is significantly smaller than the MSE of
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Fig. 5 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 20, prior
mean μ = 6 and no contamination in data

Fig. 6 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 20, prior
mean μ = 6 and 10% contamination at y = 0

ERPEα=0. However, as the sample size increases the data component becomes more
dominant and eventually there is a reversal in the order of the MSEs over α as may be
expected. These reversals take place between sample sizes of 25 and 35. This loyalty
towards the prior mean leads to a poorer MSE for the ERPEs corresponding to large
values of α when the prior mean is actually misstated. This is observed in Fig. 4b,
where the prior mean is chosen to be 6, while the other conditions are identical to
those in the current experiment.

Next we study the effect of simultaneously misstating the prior mean and having a
contamination component on the ERPE of θ . All the remaining figures in this section
refer to a prior mean of μ = 6. In Figs. 5 and 8 we present the MSEs for sample
sizes 20 and 50, respectively, where the effect of letting the prior standard deviation τ

increase indefinitely may be observed. These two figures represent the no contamina-
tion case. The observations here are consistent with the findings of Table 1. In Figs. 6
and 7 we present, respectively, the bias and the MSEs of the ERPEs for sample size
20 and different values of α when the prior standard deviation is allowed to increase
indefinitely, making the prior a very weak one in the limit. In Fig. 6 there is a conta-
mination at y = 0, while in Fig. 7 the contamination is at y = 10. In either case the
bias and the MSE become insignificant for large values of α. In Figs. 9 and 10 similar
observations are made when the above experiment is repeated with a sample size of
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Fig. 7 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 20, prior
mean μ = 6 and 10% contamination at y = 10

Fig. 8 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 50, prior
mean μ = 6 and no contamination in data

Fig. 9 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 20, prior
mean μ = 6 and 10% contamination at y = 0

50. In these cases the contamination component dominates the departure from the
true conditions, and reduces the misspecified prior to an issue of minor importance.
In each of these cases the estimators corresponding to large values of α lead to better
stability.
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Fig. 10 Plots of Bias and MSE of the ERPE over prior SD τ for several α with sample size n = 50, prior
mean μ = 6 and 10% contamination at y = 10

From the above simulation study, it appears that the robustness of the proposed
estimator (ERPE) with respect to the presence of outliers increases as α increases;
also the degree of stability of the estimators for any types of departure from true
conditions increases with α. All these suggest the choice of large values of α for
application in practical scenarios. However, a large value of α would increase the
MSE of the estimator under the true model conditions and so we need to trade-
off between these two considerations. It is interesting to note that (Fig. 3) the
degree of stability of the estimators increases drastically as α increases from zero
to around 0.5 but the change becomes very slow beyond α = 0.5. On the other
hand, Table 1 shows that the loss in efficiency under pure data is also not very
significant at α = 0.5. Thus, our empirical suggestion is to use α = 0.5 for
analyzing any practical scenario. However, further work on the choice of α based
on theoretical arguments or an extensive simulation study might still be worth-
while.

7 Concluding remarks

In this paper we have constructed a new “robust” estimator in the spirit of the Bayesian
philosophy. The ordinary Bayes estimator based on the posterior density can have
potential problemswith “outliers”.Wehavedemonstrated that the estimatorswith large
values of α provide better stability in the estimators compared to those based on small
values of θ . All the properties of the estimators have been rigorously described, and
several angles of this estimation procedure are described in detail, which substantiates
the theory developed.

In this paper we have focused on the Bayesian philosophy, but in general compar-
isons of our estimators with frequentist ones could be of some interest. We hope to
carry out such comparisons in future.
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Appendix: Proof of Theorem 1

Note that, using the form of πR(θ |X1, . . . , Xn) as in (2), we have

π∗R
n (t) =

exp
(
Qn

(
θ̂n + t√

n

))
π
(
θ̂n + t√

n

)
∫
exp
(
Qn

(
θ̂n + t√

n

))
π
(
θ̂n + t√

n

)
dt

= c−1
n exp

[
Qn

(
θ̂n + t√

n

)
− Qn(θ̂n)

]
π

(
θ̂n + t√

n

)
(say). (27)

Define gn(t) = π(θ̂n + t√
n
) exp[Qn(θ̂n + t√

n
) − Qn(θ̂n)] − π(θ g)e− 1

2 t
′ Jα(θg)t . Then,

to prove the first part of the theorem it is enough to show that, with probability tending
to one,

∫
|gn(t)|dt → 0 as n → ∞. (28)

For this purpose we consider S1 = {t : ||t || > δ0
√
n} and S2 = {t : ||t || ≤ δ0

√
n}.

We will separately show that, with probability tending to one,
∫
Si

|gn(t)|dt → 0, as

n → ∞ for i = 1, 2. Note that, by definition of θ̂n ,

∇Qn(θ̂n) = 0,

and by the weak law of large numbers (WLLN)

−1

n
∇2Qn(θ

g) = −1

n

n∑
i=1

∇2qθg (Xi )
P→ Jα(θ g).

Now, Qn

(
θ̂n + t√

n

)
− Qn(θ̂n) = 1

2n
t ′[∇2Qn(θ̂n)]t + 1

6n
√
n

∑
i, j,k

ti t j tk∇i jk Qn(θ
′
n)

= −1

2
t ′[ Ĵα(θ̂n)]t + Rn(t) (say).

However, using the condition (E3), it is routinely observed that (see proof of the BVM
theorem in Ghosh and Ramamoorthi 2003) Ĵα(θ̂n)→P Jα(θ g), and for any fixed t
|Rn(t)| → 0 as n → ∞. Thus, for any fixed t , we have

π

(
θ̂n + t√

n

)
exp

[
Qn

(
θ̂n + t√

n

)
− Qn(θ̂n)

]
→ π(θ g)e− 1

2 t
′ Jα(θg)t ,

which implies that gn(t) → 0, because π(θ) is continuous at θ g .
For t ∈ S2, using assumption (E3), we can choose δ0 sufficiently small such that

|Rn(t)| < 1
4 t

′[ Ĵα(θ̂n)]t, for all sufficiently large n. So, for t ∈ S2,
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Qn

(
θ̂n + t√

n

)
− Qn(θ̂n) < −1

2
t ′[ Ĵα(θ̂n)]t + 1

4
t ′[ Ĵα(θ̂n)]t = −1

4
t ′[ Ĵα(θ̂n)]t,

→ exp

[
Qn

(
θ̂n + t√

n

)
− Qn(θ̂n)

]
< e− 1

4 t
′[ Ĵα(θ̂n)]t < e− 1

8 t
′[Jα(θg)]t .

Hence, for t ∈ S2,

|gn(t)| ≤ 2π(θ g)e− 1
8 t

′[Jα(θg)]t + π(θ g)e− 1
2 t

′[Jα(θg)]t ,

which is integrable. Thus, by the dominated convergence theorem

∫
S2

|gn(t)|dt → 0 as n → ∞.

Next we consider the integral over S1. Note that for t ∈ S1,

1

n

[
Qn

(
θ̂n + t√

n

)
− Qn(θ̂n)

]

= 1

n

[
Qn

(
θ̂n + t√

n

)
− Qn(θ

g)

]
+ 1

n
[Qn(θ

g) − Qn(θ̂n)]

≤ sup
||θ−θg ||> δ0

2

1

n
[Qn(θ) − Qn(θ

g)]

+ 1

2n
(θ̂n − θ g)′[∇2Qn(θ̂n)](θ̂n − θ g)

+ 1

6n

∑
i, j,k

(θ̂ni − θ
g
i )(θ̂nj − θ

g
j )(θ̂nk − θ

g
k )∇i jk Qn(θ

∗
n ), (29)

where θ∗
n lies between θ̂n and θ g . The first term in the last inequality comes from the

fact that θ̂n is consistent for θ g and ||t ||√
n

> δ0 as t ∈ S1. Now using Assumption (E3),
it is easy to see that the second and the third term in (29) above goes to zero almost
surely as n → ∞. Further, using Assumption (E2), the first term in (29) above is less
than −ε with probability one for all sufficiently large n and for some ε > 0. Hence
we have, with probability one, 1

n [Qn(θ̂n + t√
n
) − Qn(θ̂n)] < − ε

2 , for all sufficiently
large n. Therefore, we get

∫
S1

|gn(t)|dt ≤
∫
S1

π(θ̂n)e
− nε

2 dt +
∫
S1

π(θ g)e− 1
8 t

′[Jα(θg)]tdt

≤ e− nε
2
√
n
∫

π(θ)dθ +
∫
S1

π(θ g)e− 1
8 t

′[Jα(θg)]tdt.

But the second term in the above equation, being the normal tail probability, goes to
zero asn → ∞.Also clearly thefirst term in abovegoes to zero asn → ∞provided the
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prior is proper. Hence, with probability tending to one,
∫
S1

|gn(t)|dt → 0, as n → ∞.

This completes the proof of the first part of the theorem.
The second part of the theorem follows from the first part and the in probability

convergence of Ĵ ∗
α (θ̂n) to Jα(θ). ��
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