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Abstract Means and covariance/dispersion matrix are the building blocks for many
statistical analyses. By naturally extending the score functions based on a multivariate
t-distribution to estimating equations, this article defines a class of M-estimators of
means and dispersion matrix for samples with missing data. An expectation-robust
(ER) algorithm solving the estimating equations is obtained. The obtained relation-
ship between the ER algorithm and the corresponding estimating equations allows
us to obtain consistent standard errors when robust means and dispersion matrix are
further analyzed. Estimating equations corresponding to existing ER algorithms for
computing M- and S-estimators are also identified. Monte Carlo results show that
robust methods outperform the normal-distribution-based maximum likelihood when
the population distribution has heavy tails or when data are contaminated. Applica-
tions of the results to robust analysis of linear regression and growth curve models are
discussed.
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1 Introduction

Means and covariance/dispersionmatrix are among themost important concepts in sta-
tistics. They are essential in describing the distribution of a population or sample. They
are also the building blocks in most widely used statistical methods (e.g., ANOVA,
regression, correlations, factor analysis, principal component analysis, structural equa-
tion modeling, growth curves, etc.). Most topics in applied multivariate statistics can
be regarded as the analyses of sample means and/or covatiance matrix (e.g., Johnson
and Wichern 2002). However, real data tend to have heavy tails (Micceri 1989) and
the sample means and covariance matrix can be very inefficient. In particular, with
missing data that are even all missing at random (MAR) (Rubin 1976), biases in the
normal-distribution-based maximum likelihood (NML) estimates (NMLEs) can be
greater than the values of the population parameters, due to the interaction between
heavy-tailed distribution and missing data (Yuan et al. 2012). In such a situation,
robust estimates are desired. Robust procedures have been systematically introduced
in textbooks (Hampel et al. 1986; Heritier et al. 2009; Huber 1981; Maronna et al.
2006; Wilcox 2012). Robust estimates of means and dispersion matrix with missing
values have been developed using maximum likelihood (ML) based on multivari-
ate t- or contaminated-normal distributions (Little 1988). However, either of the ML
procedures might not be the best method when the underlying population distribu-
tion is unknown. Other M-estimators, S-estimator, and/or those obtained from certain
hybrid-methods might be preferred (see e.g., Mehrotra 1995).

When robust estimates of means and dispersion matrix are subject to further analy-
sis, we need to have a consistent estimator of their covariance matrix to obtain consis-
tent standard errors (SEs) for the derived parameter estimates or proper test statistics
for overall model evaluation. If the robust means and dispersion matrix satisfy a set of
estimating equations, then a consistent sandwich-type covariance matrix of the robust
estimates directly follows from the estimating equations (Godambe 1960;Huber 1967;
Yuan and Jennrich 1998). Thus, it is important to relate robust estimates to estimating
equations. With complete data, robust M-estimators of means and dispersion matrix
are typically defined by estimating equations (Maronna 1976).Withmissing data, they
have been presented as the output of expectation-robust (ER) algorithms in which cer-
tain weights are attached to cases with imputed data (Little and Smith 1987; Cheng and
Victoria-Feser 2002). It is also necessary to identify their corresponding estimating
equations if inference is needed in their applications.

The paper has four goals: (1) generalizing the maximum likelihood estimates with
missing data based on a multivariate t-distribution to M-estimators using estimat-
ing equations; (2) providing an ER algorithm to solve the estimating equations; (3)
identifying the estimating equations corresponding to existing algorithms for comput-
ing robust means and dispersion matrix with missing data; (4) comparing bias and
efficiency of different robust estimators defined through estimating equations with
missing values. We will review relevant literature for robust estimation with missing
data in the development. But comparing all the existing robust methods theoreti-
cally or numerically is not our goal. Statistical theory suggests that it is impossi-
ble to identify the best method for a real data set whose population distribution is
unknown.
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In Sect. 2we extend the estimating equations based on themultivariate t-distribution
to those defining general M-estimators for samples with missing values. Special cases
of the equations are also satisfied by S-estimators for samples with missing values. We
then give the ER algorithm for solving the estimating equations. Estimating equations
corresponding to algorithms for calculating robust means and dispersion matrix in
the literature are also identified and discussed. Monte Carlo results concerning the
efficiency of several robust estimators are presented in Sect. 3. Applications of the
results to robust analysis of linear regression and growth curve models are considered
in Sect. 4. We end the paper by discussing issues related to applications of robust
estimation in practice.

2 Expectation-robust algorithm and estimating equations

Let x represent a population of p random variables. A sample xi , i = 1, 2, . . ., n,
from x is obtained. Due to missing values, xi only contains pi marginal realizations
of x. We are interested in estimating the means and dispersion matrix of x by a robust
method. Let xim be the vector containing the p − pi missing values. For notational
convenience, we will use xic = (x′

i , x
′
im)′ to denote the complete data. Of course, the

positions of missing values are not always at the end in practice. We can perform a
permutation on each missing pattern so that all the algebraic operations in this article
still hold. With the sample xi , i = 1, 2, . . ., n, in mind, we will first present the EM
algorithm based on a multivariate t-distribution and then extend it to an ER algorithm
solving general estimating equations.

Let Mtp(μ, �,m) denote the p-variate t-distribution with m degrees of freedom,
whereμ is themean vector and� is the dispersionmatrix.Whenm > 2, themaximum
likelihood estimate (MLE) of Cov(x) = m�/(m−2) can be obtained asm�̂/(m−2)
with �̂ being the MLE of �. Because the purpose of modeling with a multivariate t-
distribution ismostly for robustness rather than regarding the data as truly coming from
a t-distribution, many applications just directly work with �̂ rather than m�̂/(m − 2)
in further analysis (e.g., Devlin et al. 1981). Actually, most statistical analyses based
on �̂ or a rescaling of it yield the same results.

To introduce the EM algorithm based on x ∼ Mtp(μ, �,m) with a given m, let

μ( j) and�( j) be the values ofμ and� at the j th iteration,μ( j)
i and�

( j)
i be the means

and dispersion matrix corresponding to the observed xi . When pi < p, we have

μ( j) =
(

μ
( j)
i

μ
( j)
im

)
and �( j) =

(
�

( j)
i �

( j)
iom

�
( j)
imo �

( j)
imm

)
, (1)

where μ
( j)
im corresponds to the means of xim ; �

( j)
imm and �

( j)
imo correspond to the dis-

persion matrices of xim with itself and with xi , respectively. Notice that the elements
of μ( j) and �( j) in (1) are the same for all the observations, and the subscript i is used
to indicate that cases may have different number of missing values. Let

d2i = d2(xi ,μi , �i ) = (xi − μi )
′�−1

i (xi − μi )
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be the Mahalanobis distance for the observed xi , and (d( j)
i )2 = d2(xi ,μ

( j)
i , �

( j)
i ).

The E-step of the EM algorithm based on x ∼ Mtp(μ, �,m) in Little (1988) obtains

the weight w( j)
i = (m + pi )/

[
m +

(
d( j)
i

)2]
, the conditional means

x̂( j)
ic = E j (xic|xi ) =

(
xi
x̂( j)
im

)
, (2)

and the conditional covariance matrix1

C( j)
i = Cov j (xic|xi ) =

(
0 0
0 C( j)

imm

)
, (3)

where

x̂( j)
im = μ

( j)
im + �

( j)
imo(�

( j)
i )−1(xi − μ

( j)
i ) and C( j)

imm = �
( j)
imm − �

( j)
imo(�

( j)
i )−1�

( j)
iom .

The M-step gives

μ( j+1) =
∑n

i=1 w
( j)
i x̂( j)

ic∑n
i=1 w

( j)
i

, (4)

�( j+1) =
∑n

i=1

[
w

( j)
i (x̂( j)

ic − μ( j+1))(x̂( j)
ic − μ( j+1))′ + C( j)

i

]
n

. (5)

The robustness of an M-estimator may depend on the starting values for the EM
algorithm. We will discuss choices of starting values at the end of this section. At the
convergence of the EM algorithm, we obtain the MLEs μ̂ and �̂ based on the multi-
variate t-distribution with m degrees of freedom. Notice that the n in the denominator
of (5) can be replaced by

∑n
i=1 w

( j)
i , which makes the EM algorithm converge faster

(Kent et al. 1994; Meng and Dyk 1997).
Clearly, the t-distribution-based MLEs satisfy the estimating equations obtained

by setting the score functions corresponding to xi ∼ Mtpi (μi , �i ,m) at zero. Let
wi = (m + pi )/(m + d2i ),

Vi = 2−1(�−1
i ⊗ �−1

i ),

and σ = vech(�) be the vector containing the elements in the low-triangular part of
�. The estimating equations corresponding to xi ∼ Mtpi (μi , �i ,m), i = 1, 2, . . ., n,
are given by

1 The EM algorithm presented here is slightly different from that in Little (1988), where a conditional
normal distribution is used.
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n∑
i=1

wi
∂μ′

i

∂μ
�−1
i (xi − μi ) = 0 (6)

and

n∑
i=1

∂vec′(�i )

∂σ
Vivec[wi (xi − μi )(xi − μi )

′ − �i ] = 0. (7)

Notice that Eqs. (6), (7) and others that we call estimating equations in this article only
involve the observed values xi , not the estimated component x̂im = E(xim |xi ,μ, �),
which are consistent with the estimating equation literature (e.g., Godambe 1991;
Liang and Zeger 1986; Prentice and Zhao 1991).

As noted in the introduction, the MLEs corresponding to x ∼ Mtp(μ, �,m) may
not be even asymptotically efficient unless the true underlying population follows
the multivariate t-distribution. Many approaches have been proposed to obtain robust
estimates of means and dispersion matrix with complete data (e.g., Maronna 1976;
Maronna and Zamar 2002; Mehrotra 1995). In particular, both M-estimators and S-
estimators2 satisfy a set of estimating equations (Lopuhaä 1989; Rocke 1996). A
natural generalization of (6) and (7) to accommodating different weights in estimating
means and dispersion matrix of the observed data is given by

n∑
i=1

wi1
∂μ′

i

∂μ
�−1
i (xi − μi ) = 0 (8)

and

n∑
i=1

∂vec′(�i )

∂σ
Vivec[wi2(xi − μi )(xi − μi )

′ − wi3�i ] = 0, (9)

where wi1 = wi1(di ), wi2 = wi2(di ) and wi3 = wi3(di ) are typically nonincreasing
functions of di .

Obviously, (6) and (7) are a special case of (8) and (9) when wi1 = wi2 =
(m + pi )/(m + d2i ) and wi3 = 1. Let 0 < ϕ < 1 and ri be the (1 − ϕ)th quan-
tile corresponding to χpi , the chi-distribution with pi degrees of freedom. Equations
(8) and (9) extendHuber-typeM-estimators to samples withmissing data when letting

wi1 = wi1(di ) =
{
1, if di ≤ ri ,
ri/di , if di > ri ,

(10)

wi2 = w2
i1/τi and wi3 = 1, where τi is a constant such that E[χ2

pi w
2
i1(χpi )/τi ] = pi .

They also extend the elliptical-distribution-basedMLEsdiscussed inKano et al. (1993)
to samples with missing values when wi3 = 1, and wi1 = wi2 = wi (di ) corresponds
to the density function of the elliptical distribution.

2 An S-estimator is not defined by estimating equations but by minimizing |�| under a proper constraint.
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Among studies of S-estimators, Tukey’s biweight function

ρc(t) =
{
t2/2 − t4/(2c2) + t6/(6c4), |t | ≤ c,
c2/6, |t | > c

(11)

is most widely used (e.g., Lopuhaä 1989; Rocke 1996), where c is a tuning constant.
With pi variables being observed in xi , let wi1 = ρ̇ci (di )/di , wi2 = piwi1 and
wi3 = ρci (di )di − ρci (di ) + bi , where ρ̇c(d) = ∂ρc(d)/∂d and bi = E[ρci (χpi )].
Then, Eqs. (8) and (9) are natural extension of equation (2.6) of Lopuhaä (1989) that
S-estimators of μ and � need to satisfy with complete data. In particular, for each
observed pattern of the sample, the left sides of Eqs. (8 and (9) are mathematically
equivalent to the left sides of the two equations in (2.6) of Lopuhaä if we let ci be the
same for all the observations within an observed pattern. Notice that the large sample
breakdown point of the S-estimator for complete data is given by 6b/c2. We may
choose ci so that 6bi/c2i is the same across all the observed patterns. Also notice that
there might be multiple solutions to Eqs. (8) and (9), all of them are M-estimators but
only one is an S-estimator (Tyler 1991). Multiple starting values might be needed to
find the S-estimator (Ruppert 1992) that corresponds to theminimumvalue of |�| > 0.

The generality of (8) and (9) is that they are simply estimating equations. Unlike (6)
and (7), the estimating equations may not correspond to the score functions of a par-
ticular log likelihood. Thus, the EM algorithm based on the multivariate t-distribution
in (2) to (5) does not apply to (8) and (9). However, a slight modification of (4) and
(5) yields solutions to (8) and (9). Specifically, the E-step is the same as in (2) and (3).
Let w( j)

i1 , w( j)
i2 and w

( j)
i3 be evaluated at d( j)

i . The M-step is replaced by

μ( j+1) =
∑n

i=1 w
( j)
i1 x̂( j)

ic∑n
i=1 w

( j)
i1

, (12)

�( j+1) =
∑n

i=1[w( j)
i2 (x̂( j)

ic − μ( j+1))(x̂( j)
ic − μ( j+1))′ + w

( j)
i3 C( j)

i ]∑n
i=1 w

( j)
i3

. (13)

Following Little and Smith (1987), we will call (12) and (13) the robust (R) step.
Notice that the ER algorithm in (2), (3), (12) and (13) is a special case of the itera-
tively reweighted least squares algorithm, whose convergence properties are studied
by Green (1984). Denote μ̂ and �̂ as the converged values of the ER algorithm. The
proof for μ̂ and �̂ to solve Eqs. (8) and (9) is given in Appendix A.

Equations (8) and (9) can also be solved using the Newton-Raphson algorithm
(Kelley 2003), which involves the derivatives of each term in (8) and (9) with respect
toμ andσ .Notice thatwi1 = wi1(di ),wi2 = wi2(di ), andwi3 = wi3(di ) are functions
of μ and σ , and their derivatives have to be computed at every iteration in addition to
themselves. Also notice that μi and�i corresponding to different subsets of x contain
distinct elements, and the derivatives need to be coded separately for each observed
pattern in addition to accounting for different observed values of xi . Thus, although
the Newton-Raphson algorithm can be used to solve (8) and (9), its coding is more
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involved than that of the ER algorithm. It is also possible for the Newton-Raphson
algorithm to take longer time than the ER algorithm to reach a convergence.

We now discuss the convergence properties of μ̂ and �̂ as n → ∞, which are
different from the convergence properties of the ERorNewton-Raphson algorithm that
yielded μ̂ and �̂. When x follows an elliptical distribution and without missing values,
μ̂ is consistent and �̂ converges to κ� for certain κ > 0, where � is the dispersion
matrix of the elliptical distribution (Maronna1976).Withmissingvalues that areMAR,
the estimates μ̂ and �̂ are consistent and asymptotically most efficient when the left
sides of Eqs. (8) and (9) are the score functions corresponding to the true population
distribution of xi by ignoring the missing values (Rubin 1976). For other scenarios,
let g(ν) = (g′

1(ν), g′
2(ν))′ with g1(ν) and g2(ν) being defined as the summation of

functions on the left sides of (8) and (9), respectively, where ν = (μ′, σ ′)′. Then, under
a set of regularity conditions (e.g., Yuan and Jennrich 1998), the estimate ν̂ = (μ̂

′
, σ̂

′
)′

obtained by the ER algorithm converges to a vector ν∗ that satisfies E[g(ν∗)] = 0,
where the expectation is with respect to the true distribution3 of each observed xi .
Since the true population distribution of the observed sample is typically unknown in
practice, nor is the missing data mechanism behind each missing value, it might be
hard to know the exact properties of μ̂ and �̂ in a specific application. We will use
Monte Carlo simulation to evaluate the efficiency of different estimators in the next
section.

Little and Smith (1987) give an ER algorithm for computing robust means and
dispersion matrix but they do not provide the corresponding estimating equations.
Their E-step is the same as in (2) and (3), and their R-step is

μ( j+1) =
∑n

i=1 w
( j)
i x̂( j)

ic∑n
i=1 w

( j)
i

, (14)

�( j+1) =
∑n

i=1

[(
w

( j)
i

)2 (
x̂( j)
ic − μ( j+1)

) (
x̂( j)
ic − μ( j+1)

)′ + C( j)
i

]
∑n

i=1

(
w

( j)
i

)2 − 1
, (15)

where the weight function w
( j)
i = wi (d

( j)
i ) or wi = wi (di ) is given in Little and

Smith (1987). Using Eqs. (31) and (32) in the appendix of this article, it can be shown
that (14) and (15) solve the Eq. (6) and

n∑
i=1

∂vec′(�i )

∂σ
Vivec[w2

i (xi − μi )(xi − μi )
′ − �i ]

+
n∑

i=1

(1 − w2
i )

∂vec′(�)

∂σ
vec(�−1) + ∂vec′(�)

∂σ
vec(�−1) = 0.

(16)

3 The true distribution of the observed xi will be different from the corresponding marginal distributions
of x when the missing values are either missing at random or not at random.
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Cheng and Victoria-Feser (2002) proposed an ER algorithm to compute
S-estimators with missing data in their Eqs. (22) and (23), which can be written as

n∑
i=1

wi1�
−1
i (x̂ic − μ) = 0 (17)

and

n∑
i=1

{
wi2[(x̂ic − μ)(x̂ic − μ)′ + Ci ] − wi3�

} = 0. (18)

Using the results in Appendix A, one can show that the solution to (17) satisfies (8),
and the solution to (18) satisfies

n∑
i=1

{
∂vec′(�i )

∂σ
Vivec{wi2[(xi − μi )(xi − μi )

′ − �i ]}

+(wi2 − wi3)
∂vec′(�)

∂σ
vec(�)

}
= 0. (19)

Cheng and Victoria-Feser (2002) also proposed a modification to (15) of Little and
Smith’s R-step, which is given by

�( j+1) =
∑n

i=1(w
( j)
i )2

[(
x̂( j)
ic − μ( j+1)

) (
x̂( j)
ic − μ( j+1)

)′ + C( j)
i

]
∑n

i=1(w
( j)
i )2 − 1

. (20)

It can be shown that (20) corresponds to the estimating equation

n∑
i=1

∂vec′(�i )

∂σ
Vivec{w2

i [(xi − μi )(xi − μi )
′ − �i ]} + ∂vec′(�)

∂σ
vec(�−1) = 0.

(21)

Because a weight is attached to (xi −μi )(xi −μi )
′ in (16), (19) and (21), solutions

to each of the three equations might be robust. However, these three equations are not
as natural as (9) when considered as generalizations of (7) or equations satisfied byM-
and S-estimators aswell as any elliptical-distribution-basedMLEs for sampleswithout
missing values (Kano et al. 1993; Lopuhaä 1989; Maronna 1976; Rocke 1996). Cheng
and Victoria-Feser (2002) called (17) and (18) estimating equations. Clearly, (17) and
(18) involve the imputed/estimated data x̂im = E(xim |xi ,μ, �) whereas (8) and (9)
do not. Equations (8) and (9) are not only consistent with the literature but also easily
generalizable. When structural models μ(θ1) and �(θ2) are of interest and there is no
overlapping parameters between θ1 and θ2, the corresponding estimating equations
are obtained after replacing the μ in the denominator of (8) and the σ in (9) by θ1 and
θ2, respectively. When θ1 and θ2 share common parameters and let θ be the vector of
all parameters, the corresponding estimating equation is obtained after replacing both
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the μ in the denominator of (8) and the σ in (9) by θ , and adding the two equations.
It is not clear how to generalize (17) and (18) to structural models.

The identification of the estimating equations for each ER algorithm allows us to
obtain a consistent estimate of the covariance matrix of the resulting robust means and
dispersion matrix. Let gi (ν) = (g′

i1(ν), g′
i2(ν))′ with

gi1(ν) = wi1(di )
∂μ′

i

∂μ
�−1
i (xi − μi )

and

gi2(ν) = ∂vec′(�i )

∂σ
Vivec[wi2(di )(xi − μi )(xi − μi )

′ − wi3(di )�i ].

According to the theory of estimating equations (Godambe 1960; Huber 1967), under
standard regularity conditions (Yuan and Jennrich 1998), the asymptotic covariance
matrix of ν̂ = (μ̂

′
, σ̂

′
)′ obtained at the convergence of (2), (3), (12) and (13) is

consistently estimated by

	̂ =
[

n∑
i=1

∂gi (ν̂)

∂ ν̂
′

]−1 [
n∑

i=1

gi (ν̂)g′
i (ν̂)

] [
n∑

i=1

∂g′
i (ν̂)

∂ ν̂

]−1

, (22)

where wi1, wi2 and wi3 are also functions of ν when evaluating the derivatives. Con-
sistent covariance matrices can also be obtained for the estimators satisfying (16),
(19) or (21) by properly defining gi (ν) such that these equations can be writen as∑n

i=1 gi (ν) = 0.
Now we turn to starting values for the EM or ER algorithm. Since Eqs. (6) and

(7) or (8) and (9) may have multiple solutions, robust starting values might be needed
for the EM algorithm in (2) to (5) or the ER algorithm in (2), (3), (12) and (13) to
yield estimates that are least affected by data contamination or outliers. The minimum
covariance determinant (MCD) estimator has been suggested to use as the starting
value for � because its breakdown point is close to 50 % (e.g., Cheng and Victoria-
Feser 2002). Instead, we prefer the estimates proposed byMehrotra (1995), because no
iteration is needed in their calculation. InMehrotra’s proposal, each mean is estimated
by the marginal median, each dispersion σ j j is obtained by rescaling the median
absolute deviation (MAD) from the median, and σ jk is obtained by combining MAD
and themedian of all pairwise slopes in the form of (xi2 j −xi1 j )/(xi2k−xi1k), 1 ≤ i1 <

i2 ≤ n, excluding cases with xi2k = xi1k . As an estimator of the slope of the regression
of x j on xk , the median of the pairwise slopes was originally proposed by Theil (1950)
and Sen (1968), and has been shown by Wilcox (1998) to enjoy not only good robust
properties but also good small sample efficiency. Thus,wewill useMehrotra’s proposal
to get starting values for the EM and ER algorithms in the simulation study in the next
section,wheremarginalmedian and pairwise slopes are applied to the observed data. In
particular, when the starting�(0) is not positive definite, an eigenvalue decomposition
on �(0) is performed, and a new �(0) is obtained by replacing all the eigenvalues
smaller than .01 with .01 in the decomposition. Such a process was referred to as
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“filtering” by Mehrotra (1995), which may not be needed unless n is small or missing
data proportion is high, and together with a near singular population �.

3 Monte Carlo results

Although the main purpose of the paper is to establish the relationship between esti-
mating equations and ER algorithm for estimating means and dispersion matrix with
missing data, it is informative to see how different estimators performwhen the under-
lying population varies. A Monte Carlo study is conducted for such a purpose. Seven
estimators are compared in the study:NMLEs; t-distribution-basedMLEswith degrees
of freedom 3 and 1, respectively;M-estimators satisfying Eq. (8) and (9) withwi3 = 1,
wi1 and wi2 being determined by the Huber-type weights in (10) with ϕ = 0.2 and
0.1, respectively; and M/S-estimators satisfying Eqs. (8) and (9) with wi1, wi2 and
wi3 determined by the biweight function in (11) with large sample breakdown points
6bi/c2i = 0.1 and 0.2, respectively. They are denoted respectively by Nm, t (3), t (1),
H(0.1), H(0.2), B(0.1), and B(0.2) in our presentation.

Let 1p be a vector of p 1s, and Ip be the identity matrix of size p. We chose p = 5
with population mean vector μ0 = 15 and covariance matrix �0 = 0.5(I5 + 151′

5),
which is also a correlation matrix with all the correlations equal to 0.5.

Five distribution conditions are used to generate sampleswithmissing data. LetA be
the lower triangular matrix satisfying AA′ = �0. The five conditions are respectively
(C1) the normal distribution according to x = Az+μ0, where z ∼ N5(0, I5); (C2) an
elliptical distribution according to x = rAz + μ0, where r follows the standardized
exponential distribution and is independent with z; (C3) a skew distribution according
to x = rAu+μ0, where r follows the same distribution as in C2,u = (u1, u2, . . . , u5)′
and the u j s are independent with each other and with r , and each u j follows the stan-
dardized gamma distribution with shape parameter 3; (C4) a contaminated normal
distribution with 10 % of the sample from C1 being multiplied by 3; (C5) a conta-
minated normal distribution with 20 % of the sample from C1 being multiplied by
3. It is easy to see that E(x) = μ0 and Cov(x) = �0 for the population in C1. It is
also straightforward to show that the population mean vector and covariance matrix
in C2 and C3 are also given by μ0 and �0, respectively. In C4 and C5, the majority
of the cases correspond to N5(μ0, �0); and the observed samples are skewed in dis-
tribution. Notice that, with p = 5, the breakdown point of an M-estimator is limited
by (p + 1)−1 = 0.167. C4 and C5 are chosen to examine how the robust estimators
perform when the percent of contamination is below and above the breakdown point.
Clearly, only NML is asymptotically optimal for the normal distribution in C1, no
other method is known to work best for any of the five conditions. Such a design is
motivated by the fact that we typically do not know which method works best for a
given data set whose population distribution is unknown.

Three sample sizes are used: n = 100, 300, 500. For each sample, x1 and x2 are
fully observed; x3, x4 and x5 are missing when x1+x2 is greater than certain threshold
values. Thus, there are two observed patterns for each sample and the missing values
are MAR. The threshold values are chosen for (x3, x4, x5) to miss at about 10, 20
and 30 %, respectively. Data contaminations in C4 and C5 are done after each sample
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with missing values is obtained, and the percent of contamination is proportional
to the number of cases in each observed pattern. For each combination of population
distribution, sample size andmissing data proportion, Nr = 1000 replications are used.

Notice that, under the assumption of an elliptical population distribution and with-
out missing value, an M- or S-estimator �̂ is known to converge to a matrix that
is proportional to �0 (Lopuhaä 1989; Maronna 1976), and the proportional factor
depends on the underlying population and the weights used in the estimation process.
It is not proper to compare the bias in different estimates of the dispersion matrix. In
our evaluation of different estimators, we put all the estimators on the same scale by
obtaining the corresponding correlation matrix following each estimate of the disper-
sion matrix. Let μ̂ be the vector of the estimates of 5 means and ρ̂ be the vector of
estimates of the 10 correlations at each sample by one of the 7 estimation methods.
With γ̂ i = (μ̂

′
i , ρ̂

′
i )

′ for the i th replication, the bias, variance and mean square error
(MSE) for the j th element of γ̂ are calculated as

Bias j = γ̄ j − γ j0,

Var j = 1

Nr − 1

Nr∑
i=1

(γ̂i j − γ̄ j )
2,

and

MSE j = 1

Nr

Nr∑
i=1

(γ̂i j − γ j0)
2,

respectively, where γ̄ j = ∑Nr
i=1 γ̂i j/Nr . Notice that our study includes 3 missing-

data conditions, 3 sample-size conditions, 5 distribution conditions, and 7 estimation
methods. With a total of 3× 3× 5× 7 = 315 conditions and 15 parameter estimates,
many tables are needed if we report the biases, variances and MSEs of the estimates
for individual parameters. To save space, we choose to report the average of absolute
bias, variance and MSE across the 15 parameters according to

Bias = 1

15

15∑
j=1

|Bias j |, Var = 1

15

15∑
j=1

Var j , MSE = 1

15

15∑
j=1

MSE j .

These are contained in 5 tables corresponding to the 5 distribution conditions. Because
most of the quantities are in the 3rd decimal place, they are multiplied by 10 in the
tables for us to see more details and to save space.

Table 1 contains the results of bias, variance and MSE of γ̂ when x is normally dis-
tributed (C1). For easy comparison, the smallest entry among the 7 estimationmethods
is underlined and the largest entry is put in bold. For each method, the average across
the 9 conditions (3-sample-size by 3-missing-proportion) is also included on the right
of the table. It is clear that NMLEs (those following Nm) enjoy the smallest bias,
variance and MSE across all the conditions. The estimates following B(0.2) have the
largest bias; whereas those following t (1) have the largest variance and also the largest
MSE on average. But estimates following B(0.2) have the largest MSE at n = 300 and
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Table 1 Averages of empirical absolute bias × 10, variance × 10 and MSE × 10 of μ̂ and ρ̂i j by seven
methods, (C1) normally distributed population

n = 100 n = 300 n = 500

Mis prop 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % Ave

Bias

Nm 0.054 0.062 0.080 0.019 0.025 0.036 0.011 0.015 0.026 0.036

t (3) 0.182 0.228 0.238 0.159 0.197 0.196 0.153 0.190 0.191 0.192

t (1) 0.287 0.378 0.367 0.266 0.353 0.329 0.260 0.348 0.328 0.324

H(0.1) 0.078 0.079 0.094 0.050 0.048 0.056 0.043 0.039 0.048 0.059

H(0.2) 0.124 0.115 0.124 0.098 0.082 0.085 0.092 0.074 0.078 0.097

B(0.1) 0.344 0.408 0.372 0.325 0.386 0.345 0.320 0.381 0.341 0.358

B(0.2) 0.416 0.512 0.480 0.396 0.489 0.450 0.391 0.484 0.446 0.452

Var

Nm 0.085 0.100 0.128 0.028 0.033 0.041 0.017 0.019 0.024 0.053

t (3) 0.098 0.116 0.147 0.031 0.037 0.047 0.019 0.022 0.027 0.060

t (1) 0.110 0.132 0.171 0.035 0.041 0.054 0.021 0.025 0.031 0.069

H(0.1) 0.087 0.102 0.130 0.028 0.033 0.042 0.017 0.020 0.025 0.054

H(0.2) 0.089 0.104 0.133 0.029 0.034 0.043 0.017 0.020 0.025 0.055

B(0.1) 0.086 0.102 0.130 0.028 0.033 0.042 0.017 0.020 0.025 0.054

B(0.2) 0.087 0.104 0.133 0.028 0.034 0.043 0.017 0.020 0.025 0.055

MSE

Nm 0.086 0.101 0.129 0.028 0.033 0.041 0.017 0.019 0.024 0.053

t (3) 0.101 0.121 0.153 0.034 0.041 0.051 0.021 0.026 0.031 0.064

t (1) 0.118 0.146 0.185 0.042 0.054 0.065 0.028 0.037 0.042 .080

H(0.1) 0.088 0.103 0.131 0.029 0.033 0.042 0.017 0.020 0.025 0.054

H(0.2) 0.091 0.106 0.134 0.030 0.034 0.043 0.018 0.021 0.026 0.056

B(0.1) 0.102 0.124 0.148 0.042 0.053 0.057 0.030 0.039 0.039 0.071

B(0.2) 0.108 0.135 0.159 0.047 0.061 0.066 0.035 0.047 0.047 0.078

Each underlined number is the smallest entry (bias, variance or MSE) among the 7 estimation methods,
whereas the largest is in bold

500. Missing data proportion has little effect on the performance of the 7 estimation
methods.

Table 2 contains the results of bias, variance and MSE of γ̂ when x is elliptically
distributed (C2). While estimates following B(0.2) continue to have the largest bias in
8 out of the 9 conditions, the method yielding estimates with the smallest bias varies
across conditions of sample size andmissing data proportion. Estimates following Nm
have the largest variance and MSE on average, whereas estimates with the smallest
variance and MSE are given by ML based on x ∼ Mt5(μ, �, 1).

The results under a skew population distribution (C3) are in Table 3. Like in Table 2,
estimates following Nm have the largest variance and MSE across the 9 conditions.
But estimates following Nm have the smallest bias at n = 100; and B(0.2) enjoys
the smallest bias at n = 300 and 500. Estimates following t (1) have the smallest
variances and also smallest MSE in 8 out of the 9 conditions. Missing data proportion

123



ER-algorithm and estimating equations with missing data 341

Table 2 Averages of empirical absolute bias × 10, variance ×10 and MSE ×10 of μ̂ and ρ̂i j by seven
methods, (C2) elliptically distributed population

n = 100 n = 300 n = 500

Mis prop 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % Ave

Bias

Nm 0.064 0.054 0.060 0.155 0.153 0.116 0.192 0.195 0.159 0.128

t (3) 0.021 0.108 0.170 0.047 0.153 0.217 0.053 0.161 0.232 0.129

t (1) 0.098 0.057 0.055 0.074 0.027 0.083 0.068 0.017 0.096 0.064

H(0.1) 0.025 0.093 0.121 0.059 0.160 0.192 0.067 0.169 0.206 0.121

H(0.2) 0.073 0.061 0.103 0.037 0.111 0.169 0.032 0.123 0.185 0.099

B(0.1) 0.374 0.357 0.280 0.308 0.271 0.175 0.297 0.257 0.155 0.275

B(0.2) 0.402 0.413 0.308 0.353 0.352 0.234 0.350 0.347 0.226 0.331

Var

Nm 0.292 0.346 0.398 0.121 0.143 0.165 0.078 0.094 0.109 0.194

t (3) 0.074 0.086 0.098 0.023 0.026 0.030 0.014 0.016 0.018 0.043

t (1) 0.068 0.079 0.089 0.021 0.025 0.028 0.013 0.015 0.017 0.040

H(0.1) 0.094 0.110 0.131 0.030 0.034 0.039 0.018 0.021 0.024 0.056

H(0.2) 0.089 0.105 0.125 0.028 0.032 0.037 0.018 0.020 0.023 0.053

B(0.1) 0.129 0.158 0.192 0.041 0.049 0.058 0.024 0.029 0.033 0.079

B(0.2) 0.102 0.123 0.148 0.033 0.039 0.045 0.020 0.024 0.027 0.062

MSE

Nm 0.292 0.346 0.398 0.124 0.147 0.167 0.084 0.100 0.113 0.197

t (3) 0.074 0.087 0.102 0.023 0.029 0.035 0.015 0.019 0.025 0.045

t (1) 0.070 0.080 0.090 0.022 0.025 0.029 0.014 0.015 0.018 0.040

H(0.1) 0.094 0.111 0.133 0.030 0.037 0.044 0.019 0.025 0.030 0.058

H(0.2) 0.090 0.106 0.126 0.028 0.034 0.041 0.018 0.022 0.028 0.055

B(0.1) 0.147 0.174 0.201 0.054 0.059 0.062 0.036 0.038 0.037 0.090

B(0.2) 0.123 0.145 0.159 0.049 0.055 0.052 0.036 0.039 0.033 0.077

Each underlined number is the smallest entry (bias, variance or MSE) among the 7 estimation methods,
whereas the largest is in bold

has little effect on the performance of different estimation methods. Notice that the
robust estimators may not be consistent when the population distribution is skewed.
However, the average MSEs in Table 3 following all the robust methods are smaller
than those following Nm. Biases following B(0.2) at n = 300 and 500 are also smaller
than those following Nm.

Table 4 contains the results when 10 % of the sample from a normally distributed
population is contaminated (C4). The estimates following Nm are most biased, least
efficient and consequently have the largest MSEs. Least biased estimates are given by
t (1) or t (3), whereas most efficient estimates are given by t (3) or H(0.2), depending
onmissing data proportion. Estimates with least MSEs are given by t (3) in 8 out of the
9 conditions, and t (1) enjoys the smallest MSE at n = 500 and 10 % of missing data.

Table 5 contains the results when 20 % of the sample from a normally distributed
population is contaminated (C5). Again, the NMLEs (those following Nm) are most
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Table 3 Averages of empirical absolute bias × 10, variance ×10 and MSE ×10 of μ̂ and ρ̂i j by seven
methods, (C3) skew distributed population

n = 100 n = 300 n = 500

Mis prop 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % Ave

Bias

Nm 0.063 0.050 0.045 0.135 0.125 0.085 0.168 0.160 0.121 0.106

t (3) 0.282 0.383 0.429 0.299 0.400 0.461 0.309 0.414 0.474 0.383

t (1) 0.192 0.254 0.339 0.204 0.264 0.363 0.213 0.277 0.375 0.276

H(0.1) 0.165 0.254 0.270 0.193 0.279 0.312 0.204 0.294 0.327 0.255

H(0.2) 0.156 0.282 0.310 0.181 0.308 0.355 0.191 0.324 0.372 0.275

B(0.1) 0.190 0.142 0.091 0.167 0.123 0.119 0.150 0.114 0.134 0.137

B(0.2) 0.144 0.121 0.079 0.135 0.116 0.084 0.125 0.109 0.095 0.112

Var

Nm 0.367 0.424 0.476 0.160 0.188 0.214 0.106 0.124 0.143 0.245

t (3) 0.068 0.077 0.087 0.023 0.026 0.029 0.014 0.015 0.017 0.039

t (1) 0.063 0.072 0.081 0.022 0.024 0.027 0.012 0.014 0.016 0.037

H(0.1) 0.087 0.098 0.115 0.029 0.033 0.037 0.017 0.019 0.022 0.051

H(0.2) 0.083 0.093 0.110 0.028 0.032 0.036 0.017 0.018 0.021 0.049

B(0.1) 0.132 0.155 0.185 0.040 0.047 0.053 0.024 0.028 0.032 0.077

B(0.2) 0.098 0.114 0.135 0.033 0.039 0.043 0.019 0.022 0.025 0.059

MSE

Nm 0.367 0.424 0.476 0.163 0.190 0.215 0.110 0.128 0.145 0.246

t (3) 0.076 0.092 0.106 0.033 0.042 0.051 0.023 0.033 0.040 0.055

t (1) 0.067 0.079 0.093 0.026 0.032 0.041 0.017 0.022 0.031 0.045

H(0.1) 0.091 0.106 0.124 0.034 0.043 0.050 0.023 0.030 0.035 0.060

H(0.2) 0.086 0.102 0.121 0.032 0.043 0.051 0.021 0.031 0.037 0.058

B(0.1) 0.137 0.158 0.186 0.044 0.049 0.055 0.027 0.031 0.035 0.080

B(0.2) 0.101 0.117 0.137 0.036 0.042 0.045 0.022 0.026 0.027 0.062

Each underlined number is the smallest entry (bias, variance or MSE) among the 7 estimation methods,
whereas the largest is in bold

biased, least efficient and consequently have the largestMSEs. The estimates following
t (1) are least biased and have the smallest MSEs, whereas estimates following t (3)
have the least variances. Missing data proportion or sample size has little effect on the
performance of the different methods.

Comparing the averaged numbers (the last column) in each table and across the 5
tables,wemaynotice thatNMLEsdiffer fromeach of the robust estimates substantially
in both bias and variance. The robust estimates differ more in bias than in variance.
Except those following t (1), all the other estimates attain the largest averaged bias and
MSE at C5, implying that the contaminated distribution is their least favorite among
the 5 distribution conditions. Although the population distribution in C3 is skewed, the
sizes of the average MSEs in Table 3 following all the robust methods are comparable
to those in Tables 1 and 2. The average biases corresponding to B(0.1) and B(0.2) in
Table 3 are even smaller than those in Tables 1 and 2.
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Table 4 Averages of empirical absolute bias × 10, variance ×10 and MSE ×10 of μ̂ and ρ̂i j by seven
methods, (C4) 10 % of normally distributed samples are contaminated

n = 100 n = 300 n = 500

Mis prop 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % Ave

Bias

Nm 1.252 1.281 1.245 1.272 1.303 1.312 1.273 1.308 1.319 1.285

t (3) 0.134 0.103 0.104 0.156 0.126 0.134 0.154 0.123 0.130 0.129

t (1) 0.076 0.138 0.161 0.049 0.109 0.120 0.047 0.105 0.115 0.102

H(0.1) 0.501 0.521 0.538 0.520 0.540 0.569 0.513 0.533 0.563 0.533

H(0.2) 0.401 0.422 0.438 0.423 0.445 0.472 0.418 0.440 0.467 0.436

B(0.1) 0.497 0.442 0.485 0.506 0.414 0.442 0.496 0.411 0.436 .459

B(0.2) 0.226 0.303 0.340 0.197 0.265 0.284 0.192 0.263 0.273 0.260

Var

Nm 0.175 0.224 0.301 0.056 0.068 0.093 0.033 0.043 0.059 0.117

t (3) 0.101 0.119 0.152 0.032 0.037 0.048 0.019 0.022 0.028 0.062

t (1) 0.112 0.132 0.169 0.035 0.041 0.053 0.021 0.025 0.032 0.069

H(0.1) 0.103 0.125 0.167 0.032 0.039 0.051 0.019 0.023 0.031 0.066

H(0.2) 0.100 0.120 0.157 0.031 0.038 0.049 0.019 0.023 0.030 0.063

B(0.1) 0.141 0.175 0.229 0.043 0.052 0.068 0.026 0.032 0.043 0.090

B(0.2) 0.117 0.141 0.183 0.036 0.043 0.055 0.021 0.026 0.033 0.073

MSE

Nm 0.371 0.435 0.514 0.253 0.278 0.312 0.230 0.254 0.279 0.325

t (3) 0.104 0.121 0.154 0.034 0.039 0.050 0.022 0.024 0.031 0.064

t (1) 0.112 0.135 0.172 0.035 0.043 0.055 0.021 0.026 0.033 0.070

H(0.1) 0.140 0.166 0.213 0.069 0.079 0.096 0.055 0.063 0.075 0.106

H(0.2) 0.126 0.148 0.189 0.057 0.066 0.080 0.044 0.050 0.060 0.091

B(0.1) 0.188 0.218 0.277 0.087 0.091 0.109 0.068 0.070 0.083 0.132

B(0.2) 0.125 0.152 0.197 0.042 0.052 0.066 0.028 0.035 0.043 0.082

Each underlined number is the smallest entry (bias, variance or MSE) among the 7 estimation methods,
whereas the largest is in bold

In summary, NML is most preferable when x ∼ Np(μ, �), but it can perform
badly when data are nonnormally distributed or contaminated. Each robust method
also has its pros and cons, depending on the underlying population distribution of
the sample. With 20 % of the sample from a normally distributed population being
contaminated, we may expect B(0.2) to perform better than the results presented in
Table 5. The under-expectation of B(0.2) might be understood from the definition of
the breakdown point, which is the proportion of extreme observations an estimator
can take before becoming arbitrarily large or small, not related to optimizing bias,
variance or MSE. The reason for not observing the advantage of B(0.2) in Table 5
might not be because the contaminated observations are not extreme enough, since we
also studied the condition of multiplying 20 % of normally distributed samples from
C1 by 5 and found results similar to those in Table 5.
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Table 5 Averages of empirical absolute bias × 10, variance ×10 and MSE ×10 of μ̂ and ρ̂i j by seven
methods, (C5) 20 % of normally distributed samples are contaminated

n = 100 n = 300 n = 500

Mis prop 10 % 20 % 30 % 10 % 20 % 30 % 10 % 20 % 30 % Ave

Bias

Nm 2.057 2.108 2.112 2.069 2.114 2.129 2.061 2.123 2.154 2.103

t (3) 0.478 0.455 0.462 0.493 0.472 0.487 0.489 0.467 0.484 0.476

t (1) 0.230 0.148 0.149 0.251 0.170 0.175 0.252 0.169 0.171 0.191

H(0.1) 1.173 1.194 1.235 1.171 1.201 1.253 1.157 1.190 1.251 1.203

H(0.2) 1.001 1.015 1.046 1.005 1.026 1.065 .995 1.018 1.064 1.026

B(0.1) 1.262 1.114 1.059 1.275 1.121 1.071 1.251 1.108 1.068 1.148

B(0.2) 0.802 0.620 0.597 0.797 0.624 0.567 0.779 0.607 0.556 0.661

Var

Nm 0.186 0.231 0.316 0.059 0.072 0.098 0.036 0.044 0.060 0.122

t (3) 0.103 0.122 0.155 0.033 0.038 0.049 0.020 0.023 0.029 0.064

t (1) 0.113 0.133 0.168 0.036 0.042 0.053 0.022 0.025 0.032 0.069

H(0.1) 0.120 0.150 0.200 0.038 0.046 0.060 0.023 0.028 0.037 0.078

H(0.2) 0.111 0.137 0.180 0.035 0.042 0.055 0.022 0.026 0.034 0.071

B(0.1) 0.160 0.196 0.255 0.050 0.061 0.079 0.031 0.037 0.049 0.102

B(0.2) 0.139 0.170 0.218 0.043 0.051 0.066 0.026 0.031 0.041 0.087

MSE

Nm 0.836 0.922 1.037 0.705 0.754 0.804 0.675 0.726 0.773 0.804

t (3) 0.129 0.147 0.182 0.059 0.063 0.077 0.046 0.048 0.057 0.090

t (1) 0.120 0.137 0.173 0.043 0.046 0.059 0.029 0.029 0.037 0.075

H(0.1) 0.325 0.370 0.444 0.236 0.258 0.296 0.217 0.235 0.269 0.294

H(0.2) 0.260 0.295 0.354 0.181 0.196 0.225 0.165 0.177 0.201 0.228

B(0.1) 0.452 0.466 0.529 0.336 0.323 0.341 0.308 0.293 0.307 0.373

B(0.2) 0.247 0.254 0.297 0.144 0.129 0.139 0.124 0.105 0.111 .172

Each underlined number is the smallest entry (bias, variance or MSE) among the 7 estimation methods,
whereas the largest is in bold

For contaminated data in C5, it is very likely that B(α) with a greater α than 0.2
may work better than B(0.2). Similarly, other degrees of freedom corresponding to
the multivariate t-distribution and other tuning parameters in the Huber-type weights
may yield more efficient and less biased estimates. Our results are consistent with
what Richardson and Welsh (1995) have found in the context of mixed linear models,
where no method performs the best across all the conditions.

4 Applications

As mentioned in the introduction, means and covariance/dispersion matrix are behind
many commonly used statistical methods. In this section, we discuss applications of
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robust means and dispersionmatrix in linear regression and growth curvemodels, both
are widely used in various disciplines.

4.1 Regression models

Consider the regression model

yi = α + u′
iβ + ei , i = 1, 2, . . . , n. (23)

When all the n observations are completely observed, let syy , suy , Suu be the sample
variance of yi , vector of covariances of ui with yi , and covariance matrix of ui ,
respectively. Then

β̂ = S−1
uu suy (24)

is theMLEofβ under the assumption ei ∼ N (0, σ 2) and thatui and ei are independent.
Withoutmissing values andwhen theui s are not subject to data contamination, a robust
estimate of β can be defined using estimating equations by assigning smaller weights
to caseswith larger residuals ei = yi−α−u′

iβ (e.g., Hampel et al. 1986, pp. 311–312).
However, with real data, both yi and ui may contain missing values. If yi is missing
in (23), then ei is not available even when α and β are known. If certain elements
of ui are missing and yi is observed, then the meaning of ei based on observed ui is
different from that in (23). Thus, it is not clear how to generalize robust regression
from complete data to missing data by downweighting large residuals.

Notice that a robust estimate of β parallel to (24) can still be obtained as long
as robust estimates of �uu = Cov(ui ) and σ uy = Cov(ui , yi ) or the corresponding
dispersion matrices are available. With missing values, Little (1988) parameterizes
σ uy = �uuβ in formulating the EM algorithms for robust regression based on multi-
variate t-distributions. Such a parameterization is mathematically equivalent to letting
σ uy and �uu be free parameters. Similarly, with xi = (yi ,u′

i )
′, the μi and �i in (8)

and (9) can also be reparameterized using α, μu = E(ui ), β, �uu , and σ 2 = Var(ei ).
Since the ER algorithm corresponding to (8) and (9) is easier to program, there is no
foreseeable advantage of using the regression parameterization. In particular, at the
convergence of the ER algorithm, we obtain robust estimates of α and β as

α̂ = μ̂y − μ̂
′
u β̂, and β̂ = �̂−1

uu σ̂ uy .

Since α̂ and β̂ are functions of μ̂ and �̂, they will be consistent as long as μ̂ is
consistent and �̂ converges to κ� for certain κ > 0, as n → ∞. With missing values
that are MAR, although it is not clear under what conditions robust estimators are
consistent beyond those noted in Sect. 2, the Monte Carlo results in Sect. 3 imply that
robust estimators can perform a lot better than NMLEs for many conditions. With the
	̂ in (22), consistent SEs of β̂ can be obtained from the so-called delta-method. Notice
that σ = vech(�) = (σyy, σ

′
uy, vech

′(�uu))
′, there exist
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β̇1(�) = ∂β(�)/∂μ′ = 0, β̇2(�) = ∂β(�)/∂σ ′

= (0, �−1
uu ,−(β ′ ⊗ �−1

uu )Dp−1), (25)

where Dp−1 = ∂vec(�uu)/∂vech′(�uu) is the (p − 1)2 × [p(p − 1)/2] duplica-
tion matrix (see e.g., Schott 2005, p. 313). It follows from the delta-method that the
covariance matrix of β̂ is consistently estimated by

Cov(β̂) = β̇(�̂)	̂ β̇
′
(�̂) or Cov(β̂) = n

n − p
β̇(�̂)	̂β̇

′
(�̂), (26)

where β̇(�̂) = (β̇1(�̂), β̇2(�̂)).
When dummy coded categorical variables such as experimental condition, gender

or race are present and are completely observed, robust means and dispersion matrix
can be estimated for each group. After μ̂s and �̂s are obtained for all the groups,
regression analysis can be done for each group separately when there is no constraint
on parameters across the groups. With constraints on parameters across the groups,
regression analysis can be done by fitting the regression models simultaneously to the
μ̂s and �̂s under the constraints. When the ui s in (23) contain categorical variables
that are missing, the robust methods described here may not be appropriate. Maximum
likelihood estimates of the regression coefficients can be obtained if one can correctly
specify the distribution of the categorical variables and the conditional distribution of
the continuous variables given the categorical variables (see e.g., Little and Schluchter
1985). The resulting estimators will enjoy certain robust properties if the specified
distribution accounts for heavy tails in the observed data.More studies in this direction
are needed.

4.2 Growth curve models

Let yit be the observed outcome of person i at time t , t = 1, 2, . . ., T ; i = 1, 2, . . .,
n; ui be a vector that contains background variables (e.g., treatment conditions) for
person i . For complete data, let the linear growth curve model be

yit = βi0 + βi1t + εi t , βi0 = γ ′
0ui + δi0, βi1 = γ ′

1ui + δi1, (27)

where E(εi t ) = 0, Var(εi t ) = ψt t , Cov(εis, εi t ) = ψst = 0 when s 	= t ; E(δi0) =
E(δi1) = 0, Var(δi0) = φ00, Var(δi1) = φ11, Cov(δi0, δi1) = φ01; and ui , εi t and
(δi0, δi1) are independent. Then the structuredmeans and covariances of xi = (y′

i ,u
′
i )

′,
with yi = (yi1, yi2, . . . , yiT )′, are

E(yit ) = γ ′
0μu + γ ′

1μut, E(ui ) = μu,

Cov(yis, yit ) = (γ 0 + sγ 1)
′�uu(γ 0 + tγ 1) + φ00 + (s + t)φ01 + stφ11 + ψst ,

Cov(ui ) = �uu, Cov(yit ,ui ) = (γ 0 + tγ 1)
′�uu;

and the vector of model parameters is
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θ = (γ ′
0, γ

′
1, φ00, φ01, φ11, ψ11, ψ22, . . . , ψT T ,μ′

u, vech
′(�uu))

′.

With missing values, let μ(θ) and �(θ) represent the mean and covariance structural
models given above, and μ̂ and �̂ be proper robust estimates that satisfy (8) and
(9). Robust estimates of θ can be obtained by minimizing a discrepancy function
between (μ̂, �̂) and (μ(θ),�(θ)). A commonly used discrepancy function is derived
from the likelihood ratio statistic of testing (μ(θ),�(θ)) nested within (μ, �) by
assuming μ̂ and �̂ as the sample means and covariance matrix based on x ∼ N (μ, �).
Consistent SEs of the resulting θ̂ can be obtained using a sandwich-type covariance
matrix involving the 	̂ in (22). Details of fittingmean and covariance structural models
in general are given in Yuan and Zhang (2012), which contains multiple test statistics
for overall model evaluation.

With complete data, we can define a robust M-estimator of θ for (27) by estimating
equations in which cases with large εi t and/or δi j are downweighted. Estimating equa-
tions for the structural model can also be formulated when yit s are partially observed
and the ui s contain no missing values. When the ui s contain missing values, how-
ever, it is not clear how to define estimating equations by downweighting cases with
large εi t or δi j . The two-stage approach by obtaining μ̂ and �̂ first and then fitting
(μ(θ),�(θ)) to (μ̂, �̂) provides a robust procedure for growth curve modeling with
missing data. In mean and covariance structure analysis with missing values, it has
been shown that a two-stage approach by estimating the saturated means and covari-
ances using NML first and then fitting them by the structural models works better than
direct NML (Savalei and Falk 2014).We expect that fitting (μ(θ),�(θ)) to (μ̂, �̂)will
work equally well, if not better, than robust estimators of θ for (27) directly defined
through estimating equations.

Similar to regression, when dummy coded variables such as group membership or
treatment conditions exist, means and dispersion matrix can be robustly estimated for
each group. Growth curve modeling can be done separately for each group or simul-
taneously when across-group constraints exist. When the ui s contain categorical vari-
ables that are missing, method based onmixed distribution of continuous and categori-
cal variables is needed to properlymodel the joint distribution of the observedui andyi .
Robustness of the method depends on the extent the mixed distribution can account for
heavy tails in the observedxi = (y′

i ,u
′
i )

′.More development in this direction is needed.

5 Discussions

Most classical estimation methods generate consistent parameter estimates when data
are complete. With missing data that are MAR, only MLEs are known to be consistent
in general. However, with real data, it is hard to specify a correct likelihood function to
generate true MLEs. When data have heavy tails, by adjusting the degrees of freedom
(Liu 1997), a t-distribution might better describe the underlying population than the
normal distribution.Estimating equations provide evenmoreflexibility inmodeling the
distribution of the data, and theyhave become important tools inmany areaswhenmod-
eling practical datawhose population distributions are unknownor cannot be described
by a familiar parametric family (e.g., Godambe 1991; Liang and Zeger 1986; Prentice
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and Zhao 1991). The flexibility with estimating Eqs. (8) and (9) lies in that wi1, wi2,
and wi3 can have different forms. By properly choosing these weights, the estimating
equationsmay closely approximate those yielded by setting the true but unknown score
functions at zero. Then, the resulting estimates will be close to being consistent and
asymptotically most efficient. Since it is unlikely to know the size of the bias in para-
meter estimates with real data, we may select the weights according to the size of the
variances corresponding to a set of invariant model parameters (see Yuan et al. 2004),
with the hope that the estimates also haveminimal biaseswhen their variances are close
to smallest. The variances can be estimated using the asymptotic covariance matrix in
(22) or the bootstrap (Efron and Tibshirani 1993). Of course, to identify nearly optimal
weights for a given data set, one needs to include a variety of procedures. In particular,
when a high percentage of data contamination is suspected, S-estimator or other high-
breakdown-point estimators need to be included in the comparison. For most of the
conditions in Tables 1, 2, 3, 4 and 5, the methods achieve the smallest variances also
generate either the smallest biases or the smallest MSEs. For the few exceptions that
the smallest variances and MSEs or biases do not go with the same method, the biases
or MSEs corresponding to the smallest variances are close to being the smallest.

When data contamination or outliers are suspected, an alternative procedure is to
use NML following outlier removal with influential analysis (Poon and Poon 2002).
Such a procedure may generate more efficient estimates if the population is normally
distributed without contamination. If the heavy tails in a sample are not just due to
outliers, a robust method might perform better.

Statistical theory for robust estimation with complete data is primarily developed
under the assumption of symmetric or elliptical distributions, mainly because the
resulting parameter estimates are consistent. However, with missing data that are
MAR, it is not clear whether the consistency property still holds when the population
distribution is elliptical but the left sides of (8) and (9) are not the score functions
derived from the elliptical-distribution-based log likelihood function. Even if the con-
sistency property can be established within the class of elliptical distributions, it is not
clear how to use such a result in practice. This is because, even when the population
is elliptically distributed, the observed data can be skewed under MAR mechanism,
and there does not exist an effective procedure to tell the difference between skewness
caused by the MAR mechanism and that caused by a skew underlying population
distribution. When it is not clear which method to choose for a given data set, many
applied researchers just go with NML, and robust methods offer viable alternatives to
NML. Monte Carlo results in Sect. 3 of this article showed that robust estimates are
more accurate than the NMLEs when the population distribution is either of heavy
tails or data are contaminated. References cited in this article and elsewhere have
repeatedly shown the advantage of robust methods over NML with real data.

Appendix A

This appendix shows that the converged values of the ER algorithm in (2), (3), (12) and
(13) satisfy (8) and (9). For simple notation we use μ and � to denote the converged
values and rewrite (12) and (13) as
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n∑
i=1

wi1(x̂ic − μ) = 0 (28)

and

n∑
i=1

[
wi2(x̂ci − μ)(x̂ic − μ)′ + wi3(Ci − �)

] = 0, (29)

where

Ci =
(
0 0
0 Cimm

)

with Cimm = �imm − �imo�
−1
i �iom being the converged C( j)

imm in (3). Notice that

x̂ic − μ =
(

xi − μi

�imo�
−1
i (xi − μi )

)

and

�−1 =
(
Ipi −�−1

i �iom

0 Iqi

) (
�−1
i 0

0 �−1
i(m|o)

)(
Ipi 0
−�imo�

−1
i Iqi

)
,

where qi = p − pi and �i(m|o) = Cimm . Direct matrix multiplication yields

�−1(x̂ic − μ) =
(

�−1
i (xi − μi )

0

)
. (30)

The equivalence of (8) and (28) follows from (30) and ∂μi/∂μ′ = (Ipi , 0).
For showing equivalence of (9) and (29), let Hi = (x̂ic − μ)(x̂ic − μ)′. When

pi < p,

Hi =
(
Hioo Hioo�

−1
i �iom

�imo�
−1
i Hioo �imo�

−1
i Hioo�

−1
i �iom

)
,

where Hioo = (xi − μi )(xi − μi )
′. Matrix multiplications yield

�−1Hi�
−1 =

(
�−1
i Hioo�

−1
i 0

0 0

)
(31)

and

�−1Ci�
−1 =

(
�−1
i �iom�−1

i(m|o)�imo�
−1
i −�−1

i �iom�−1
i(m|o)

−�−1
i(m|o)�imo�

−1
i �−1

i(m|o)

)
.
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Notice that

�−1 =
(

�−1
i + �−1

i �iom�−1
i(m|o)�imo�

−1
i −�−1

i �iom�−1
i(m|o)

−�−1
i(m|o)�imo�

−1
i �−1

i(m|o)

)
.

There exists

�−1 = �−1Ci�
−1 +

(
�−1
i 0

0 0

)
. (32)

The equivalence of (9) and (29) follows from (31), (32), and by noticing that (9) can
be rewritten as

n∑
i=1

tr
{[

wi2�
−1
i (xi − μi )(xi − μi )

′�−1
i − wi3�

−1
i

]
(d�i )

}
= 0,

where d�i is the differential of �i .
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