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Abstract High-dimensional data arises inmany important scientific fields. The analy-
sis of high-dimensional data poses great challenges to statisticians. In
high-dimensional data, the relationship among the variables is complex. It involves
main effects as well as interaction effects of the covariates. The effect of some covari-
ates is only realized through their interactionwith the others. Thismakes the considera-
tion of interactivemodels imperative in the analysis of high-dimensional data. Because
of the existence of high spurious correlation among the covariates in high-dimensional
data, conventional tools for dealing with interactive models become inappropriate. In
this paper, we develop specific tools for feature selection in high-dimensional data
with interactive models, including a version of the extended BIC (EBIC) for interac-
tive models and a sequential feature selection procedure. Main-effect and interaction
features are treated differently in the EBIC for interactive models and the sequential
procedure due to their different natures. The selection consistency of the EBIC for
interactive models and the sequential procedure is established. Simulation studies are
carried out to vindicate the asymptotic property in finite samples as well as to compare
with non-sequential procedures. The approach developed in this paper is also applied
to a real data set.
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1 Introduction

High-dimensional data arises from many conventional research fields such as genetic
research, financial studies, web information analysis, etc. A common nature of high-
dimensional data is the so-called small-n-large-p structure, that is, the number of
observations is much smaller than the number of variables. In the studies mentioned
above, one usually needs to establish a relationship between a particular variable called
response variable and some other variables called covariates. For this purpose, one
needs to select the covariates among the huge number of variables under consideration.
However, most traditional methods for variable selection are no longer applicable due
to the small-n-large-p structure of the high-dimensional data. The small-n-large-p
structure poses both computational and theoretical problems,whichmakes the variable
selection a challenging task, especially, when both the main and interaction effects
of the variables are considered. We refer to both main effects and interaction effects
as features. In this article, we deal with feature selection in interactive linear models
with high-dimensional data. We consider both feature selection criteria and selection
procedures.

Various classical criteria have been used in variable selection problems with a small
and fixed p. These criteria include the Akaike’s information criterion (AIC) (Akaike
1973), the Bayes information criterion (BIC) (Schwarz 1978), the cross-validation
(CV) (Stone 1974) and generalized cross-validation (GCV) (Craven andWahba 1978).
However, in the case of high-dimensional data, these classical criteria are no longer
appropriate. They are generally too liberal in the sense that they choose too many
variables which are not the true covariates. This phenomenon was first observed in
genetic studies by a few researchers, see Broman and Speed (2002), Siegmund (2004)
and Bogdan et al. (2004), and has now become a common knowledge.

Many attempts have been made to modify the classical criteria so that they become
appropriate for model selection with high-dimensional data. A few examples follow.
In the context of density estimation and non-parametric regression, Yang and Barron
(1998), Barron et al. (1999) and Yang (1999) considered a modification of AIC by
adding an additional penalty term for model complexity. Baraud (2000) considered
another modification which replaces the factor 2 in AIC by a theoretically determined
constant c(> 1). These authors concentrated on the prediction error and derived the
risk bounds of the model selected by the modified AIC. These modified AICs could
be used for feature selection. It is worthy to mention that Yang (1999) dealt with
multivariate non-parametric regression and interactions of unknown orders were also
considered. However, the selection consistency of the criteria was not established.
The BIC has been modified in different aspects. In essence, the BIC for a model s is
negative 2 times the log posterior probability of s given below:

p(s|Y) = m(Y |s)p(s)
∑

s̃∈S m(Y |s̃)p(s̃) ,

where p(s) is the prior probability of s and m(Y |s) is the probability density func-
tion of data Y given model s. In the derivation of the original BIC, the prior p(s) is
taken as a constant and m(Y |s) is approximated by a Laplace approximation. Clyde
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et al. (2007) and an unpublished work of Berger have focused on m(Y |s) and rec-
tified the problems caused by the Laplace approximation. However, the rectification
on the Laplace approximation does not target the problems caused by the small-n-
large-p structure. Bogdan et al. (2004) and Chen and Chen (2008) have focused on
the modification of the prior p(s). The modification obtained by Bogdan et al. (2004)
is called the modified BIC (mBIC). The modification resulting from Chen and Chen
(2008) is referred to as the extended BIC (EBIC). ThemBIC is a single criterion, while
the EBIC is indeed a family of criteria which includes the original BIC and mBIC as
special cases. The properties of EBIC for feature selection in a variety of models have
been comprehensively investigated, see Chen and Chen (2008), Foygel and Drton
(2010), Chen and Chen (2012), Luo and Chen (2013) and Luo et al. (2014). In these
papers, the selection consistency of EBIC has been established for linear, generalized
linear, graphical and survival models. However, all these models are confined to main
effects. The property of EBIC for feature selection in interactive models has not been
touched yet.

The interaction between covariates cannot be ignored in practical problems, espe-
cially when the number of covariates is large. For example, in genetic studies, it has
been found that many diseases are affected by the interaction effects of genes, see, e.g.,
Storey et al. (2005) and Zou and Zeng (2009). More crucially, in certain situations, the
effect of covariates is realized only through their interaction. Without the considera-
tion of interaction, the covariates are not detectable. Thus, one is obliged to consider
the interactive models. An interactive model involves both main-effect and interaction
features. The number of interaction features is in the square order of the number of
main-effect features. The small-n-large-p structure of high-dimensional data results
in high spurious correlations among the variables in the data. Due to the high spuri-
ous correlations, the effect of main-effect features might be masked by the false (or
spurious) effects of certain interaction features. To explain, consider the interactive
model

yi = β0 +
p∑

j=1

β j xi j +
∑

j<k

θ jk xi j xik + εi , i = 1, . . . , n. (1)

Suppose that covariates j and l have an interaction effect but themain-effect coefficient
β j is much smaller than the interaction coefficient θ jl . If there are a lot of xk’s that are
correlated spuriouslywith xl in the data, then, by fitting the above interactivemodel, all
the coefficients θ jk’s corresponding to those xk’s will appear more significant than β j .
It has been reported in Zhao and Chen (2011) that, in an application to the analysis of a
prostate cancer data, the approach using SCAD penalized logistic model together with
the original EBIC, which treats the main-effect and interaction features equally, only
selects the interaction features. Though those selected interaction features involve the
SNPs selected by using main-effect models, the main-effect features corresponding to
those SNPs are not selected. This motivated us to explore a specific version of EBIC
suitable for interactive models. We call this specific version the EBIC for interactive
models. The EBIC for interactive models imposes different penalties on the number of
main-effect features and the number of interaction features. Its selection consistency
for feature selection in interactive models is established in this article.
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A selection criterion is usually applied together with a model selection procedure.
The latter produces a sequence of candidate models and the criterion is used to select
the optimal one. The most popular model selection method in high-dimensional data
analysis is the penalized likelihood approach. In the context of main-effect linear
models, the penalized likelihood approach amounts to:

Minimizingβ j ,0≤ j≤p

⎧
⎪⎨

⎪⎩

∥
∥
∥
∥
∥
∥
y − β01 −

p∑

j=1

β jx j

∥
∥
∥
∥
∥
∥

2

2

+
∑

j>0

pλ(|β j |)

⎫
⎪⎬

⎪⎭
, (2)

where y is the vector of response values, x j the vector of the values of the j th covari-
ate, λ a regulating parameter, pλ a penalty function, and ‖ · ‖2 is the L2-norm. For a
fixed value of λ, the minimization of (2) yields only a certain number of non-zero β j ’s
which correspond to a particular model. Thus, by setting λ to a sequence of values,
the minimization of (2) produces a sequence of candidate models. Various penalty
functions have been used in the penalized likelihood approach. They include Lasso
(Tibshirani 1996), SCAD (Fan andLi 2001), Adaptive Lasso (Zou 2006),MCP (Zhang
2010) and so on. A so-called oracle property is of major concern for penalized likeli-
hood approaches. The property consists of two aspects: (1) selection consistency—the
true features can be exactly selected with probability converging to 1, and (2) esti-
mation consistency—the parameters can be consistently estimated the same as they
would be were the true features known in advance. Lasso does not have the oracle
property in general. For Lasso to possess the oracle property, a condition called irrepre-
sentability must be satisfied. The irrepresentability condition was discovered, though
by different names, in Zou (2006), Meinshausen and Bühlmann (2006) and Zhao and
Yu (2006). However, the irrepresentability condition is too strong to be satisfied in
practical problems. The Adaptive Lasso, which puts a weight for each term |β j | in
the Lasso penalty, has the oracle property for fixed p when the inverse of the absolute
ordinary least squares estimate of β j is used as the weight of |β j |. This result was
established in Zou (2006). For diverging p, Huang et al. (2008) showed that Adaptive
Lasso using marginal least squares estimates as the weights has the oracle property
under a partial orthogonality condition. The properties of SCAD were studied in Fan
and Li (2001, 2004), Fan and Peng (2004) and Xie and Huang (2009). In these papers,
the oracle property of SCAD was established for various models when p is fixed or
diverging to infinity. The MCP penalty has similar properties to the SCAD penalty.
The asymptotic properties of the MCP penalty were studied in Zhang (2010).

The penalized likelihood approach has also been extended to the interactivemodels.
In all the extensions, a certain hierarchical structure is imposed on the interactive
model. The hierarchical structure requires that if an interaction feature is included in the
model, then either at least one of or both constituentmain-effect features should be also
included in the model. When only at least one of the main-effect features is required,
it is referred to as weak hierarchy; otherwise, it is referred to as strong hierarchy.
Commonly, a hierarchical structure is imposed through certain group-Lasso penalties
[Yuan and Lin (2006)], see, e.g., Zhao (2009), Yuan et al. (2009), Choi et al. (2010)
and Radchenko and James (2010), etc. A different approach called hierarchical Lasso
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was considered in Bien et al. (2013). The hierarchical lasso imposes the hierarchical
structures by adding a set of convex constraints to a slightly different version of Lasso,
instead of using a group-lasso penalty. We refer to the above extensions as lasso-type
methods. A common nature of the lasso-typemethods is that, by imposing hierarchical
structures through either the group-lassopenalties or the convex constraints, interaction
features are made harder to be selected than main-effect features, see e.g., section 3
of Bien et al. (2013). However, hierarchical structures are not necessarily conditions
which must be imposed so that a selection procedure has the above nature.

In this article, we develop a sequential procedure which does not impose the hierar-
chical structures. However, it has the same nature that an interaction feature is harder
to be selected than a main-effect feature. At each step, the procedure first selects the
main-effect feature most correlated with the current residual among all the main-effect
features as well as the interaction feature most correlated with the current residual
among all the interaction features. Then the two selected features are evaluated by the
EBIC for interactive models, the one that reduces the EBIC more is finally selected at
the step. As will be seen, it is the EBIC for interactive models that imposes implicitly
different thresholds for main-effect and interaction features such that the procedure
has the nature mentioned above. The sequential procedure is selection consistent. In
addition, the procedure is computationally much simpler than the lasso-type methods.

The remainder of the article is arranged as follows. In Sect. 2, we present the
EBIC for interactive models and its asymptotic properties. In Sect. 3, we describe
the sequential procedure and establish its selection consistency. In Sect. 4, we report
the simulation studies which demonstrate the validity of the sequential procedure and
provide the analysis of a real data using the sequential procedure. Technical details
and proofs are given in an appendix.

2 EBIC for interactive models and its selection consistency

Let {(yi , xi j ) : i = 1, 2, . . . , n; j = 1, 2, . . . , p} be the observations where yi and xi j
are, respectively, the value of the response variable and the value of the j th covariate
observed on the i th individual. Consider the model

yi = β0 +
p∑

j=1

β j xi j +
∑

0< j<k≤p

θ jk xi j xik + εi , i = 1, . . . , n. (3)

Assume that p is of the order O(exp{nκ}) for some κ in between 0 and 1, and that the
εi ’s are i.i.d. random errors distributed as the normal distribution N (0, σ 2). First, we
introduce some notation. Let

s0m = { j : β j �= 0, j = 1, . . . , p},
s0i = {( jk) : θ jk �= 0, j = 1, . . . , p − 1, k = j + 1, . . . , p},
s0 = s0m ∪ s0i.

Denote by ν(s) the cardinality of a set s, i.e., the number of elements in s. Let
p0 = ν(s0) and assume that p0 = O(nc) for some constant c such that 0 < c < 1−κ .
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Implicitly, the sets s0m, s0i and hence s0 as well as p0 depend on n. But, for the sake
of clarity, we suppress the dependence on n in the notation. Let y = (y1, . . . , yn)τ

and Z be the matrix whose columns are indexed by j, j = 1, . . . , p, and ( jk),
j = 1, . . . , p − 1, k = j + 1, . . . , p. The column indexed by j is (x1 j , . . . , xnj )τ

and the column indexed by ( jk) is (x1 j x1k, . . . , xnj xnk)τ . Let s be any subset of
S = { j : j = 1, . . . , p} ∪ {( jk) : j = 1, . . . , p − 1; k = j + 1, . . . , p}. When
it is necessary, we decompose s into s = sm ∪ si where sm consists of the elements
with single indices and si consists of the elements with double indices. By an abuse
of terminology, we also refer to s as the model consisting of the features indexed by
s. Denote by Z(s) the sub matrix of Z consisting of the columns with indices in s.
Thus, we refer to s0 as the true model. Let ξ denote the vector of coefficients β j ’s and
θ jk’s and ξ(s) the sub vector consists of components with indices in s. In matrix form,
model (3) is expressed as

y = Zξ + ε, (4)

where ε = (ε1, . . . , εn)
τ . Let H(s) denote the projection matrix of Z(s), i.e.,

H(s) = Z(s)[Z(s)τ Z(s)]−1Z(s)τ .

Now, we turn to the development of the EBIC for interactive models. As mentioned
in Sect. 1, the EBIC is obtained by modifying the prior probability p(s) of model
s in the Bayesian framework which leads to BIC. In the derivation of BIC, p(s) is
taken as a constant. In the development of EBIC, Chen and Chen (2008) classified the
models according to the number of features they involve. Let S j be the class of models
consistingof j features. In the derivationofEBIC, the prior probability p(s) is specified
as follows. Let τ(S j ) = (p

j

)
, the size of S j . For s ∈ S j , p(s) = Pr(s|S j )Pr(S j )where

Pr(s|S j ) = 1/τ(S j ) and Pr(S j ) is proportional to τ ξ (S j ) for some ξ between 0 and
1. Thus, for s ∈ S j , p(s) = cτ−γ (S j ) where γ = 1 − ξ and c is the normalizing
constant. This prior leads to the EBIC for linear models given by

ebicγ (s) = n ln

(
‖[I − Hn(s)]y‖22

n

)

+ ν(s) ln n + 2γ ln

(
p

ν(s)

)

0 ≤ γ ≤ 1.

Taking into account different natures of main-effect and interaction features, we clas-
sify the interactive models according to the number of main-effect features and the
number of interaction features they contain. LetS jk be the class ofmodels that consists
of j main-effect features and k interaction features. Note that τ(S jk) = (p

j

)(p(p−1)/2
k

)
.

For s ∈ S jk , we modify the prior to p(s) = c
(p
j

)−γm
(p(p−1)/2

k

)−γi
. Thus, for an

interactive model s = sm ∪ si, we arrive at the EBIC

ebicγm,γi(s) = n ln

(
‖[I − Hn(s)]y‖22

n

)

+ ν(s) ln n

+2γm ln

(
p

ν(sm)

)

+ 2γi ln

(
p(p − 1)/2

ν(si)

)

. (5)
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Let �n(s) = ‖[I − Hn(s)]μ‖22, where μ = Z(s0)ξ(s0). The following theorem
establishes the selection consistency of the EBIC for interactive model.

Theorem 1 Assume model (3). Suppose that

min
s

{ �n(s)

p0 ln p
: s0 � s, ν(s) ≤ rp0

}

→ ∞, for some r > 1. (6)

In addition, assume that p0 ln p = o(n), ln p0/ ln p → 0. Then, when n → ∞,

P

(

min
s:s �=s0,ν(s)≤rp0

ebicγm,γi(s) > ebicγm,γi(s0)

)

→ 1, (7)

if γm > 1 − ln n
2 ln p , γi > 1 − ln n

4 ln p .

The proof of the theorem is given in the appendix. We provide some remarks on
the theorem to end this section.

Theorem 1 confines the range of models to those whose size has a bound of order
O(nc), the same as that of the true model. This is reasonable since, by the sparsity
assumption of high-dimensional models, these are the only models of one’s concern.

The following caution should be mentioned. In the case of high-dimensional data,
we can always find a model s with ν(s) > n such that ‖[I − Hn(s)]y‖22 = 0 and hence
ebicγm,γi(s) = −∞. This implies that the EBIC always attains its minimum at a false
model, if models with size larger than n are considered. This suggests that the EBIC
cannot be used to assess models with size close to or larger than n. It is usually the
case that, when a sequence of models is formed according to the sequence of features
yielded by the selection procedures mentioned above, the EBIC values of the models
will first decrease then increase and decrease again when the size of the model gets
close to n. Therefore, as a rule of thumb, in consistence with the sparsity assumption,
the models with size close to or larger than n should not be selected even if they have
smaller EBIC values.

Compared with the original BIC, in the EBIC for interactive models, there are two
additional penalty terms, 2γm ln

( p
ν(sm)

)
and 2γi ln

(p(p−1)/2
ν(si)

)
. The penalty increases

approximately by 2γm ln p when the number of main-effect features increases by 1
while the penalty increases approximately by 4γi ln p when the number of interaction
features increases by 1. If γm = γi, an additional interaction feature incurs a penalty
as twice as that incurred by an additional main-effect feature. As given in Theorem 1,
in the range of consistency values of γm and γi, the lower bound of γi is larger than
that of γm. This suggests that we should take γi larger than γm. Theorem 1 indicates
that to achieve selection consistency, a higher penalty should be imposed for selecting
an interaction feature than a main-effect feature, which makes an interaction feature
harder to be selected than a main-effect feature. This is spiritually in line with the
lasso-type methods discussed in Sect. 1.

The selection consistency is an asymptotic property. Though the selection con-
sistency holds for any values of γm and γi in their consistency range, in the case of
finite samples, different choices of γm and γi result in a not inconsiderable difference
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in the selection. In a practical feature selection problem, one is usually concerned
with the positive discovery rate (PDR) and the false discovery rate (FDR) defined in
Sect. 4. One wishes to have a high PDR and a low FDR. However, larger values of
γm and γi give rise to a lower FDR but also a lower PDR, and smaller values of γm
and γi give rise to a higher PDR but also a higher FDR. A reasonable strategy for
the choice of γm and γi is to maximize the PDR, while the FDR is controlled. Fol-
lowing this strategy, one should choose γm and γi as close to their respective lower
bounds as possible. Essentially, we can take γm and γi as their lower bounds. When
p is smaller than n, the lower bounds could be negative. Hence, we suggest to take

(γm, γi) as
(
max{0, 1 − ln n

2 ln p },max
{
0, 1 − ln n

4 ln p

})
. When both γm and γi are 0, the

EBIC reduces to the original BIC.

3 A sequential procedure for feature selection with interactive models

In this section, we describe the sequential procedure for feature selection with inter-
active models. The procedure is essentially the approach of orthogonal matching pur-
suit (OMP) (or correlation pursuit by another terminology). Suppose that we have
a current estimate μ̂ of μ = Ey and the current residual ỹ = y − μ̂. The OMP
selects the next feature which has the largest absolute correlation with the current
residual. The OMP is slightly modified in our procedure. Let x j , j = 1, . . . , p,
denote the vectors of main-effect features and z jk, j = 1, . . . , p − 1, k = j
+ 1, . . . , p, denote the vectors of interaction features. First, we select the main-
effect feature that attainsmax1≤ j≤p |corr(x j , ỹ)| and the interaction feature that attains
max1≤ j≤p−1, j+1≤k≤p |corr(z jk, ỹ)|, then select between the main-effect feature and
the interaction feature by theEBIC for interactivemodels. In the following,wedescribe
the algorithm of this sequential procedure.

Let all the x j ’s and z jk’s be standardized such that each of the vectors has an
L2-norm n and is orthogonal to the vector with all elements 1. Let Sm and Si be the
index set of all the main-effect features and all the interaction features, respectively,
i.e., Sm = {1, . . . , p} and Si = {( j, k) : j = 1, . . . , p − 1, k = j + 1, . . . , p}. The
algorithm goes as follows:

Initialization: Set s∗ = ∅ and ỹ = y.
Iteration:

– Compute |xτ
j ỹ| for j ∈ Sm\s∗ and identify j∗ such that

|xτ
j∗ ỹ| = max

j∈Sm\s∗
|xτ

j ỹ|,

and let s∗+m = s∗ ∪ { j∗}.
– Compute |zτjk ỹ| for ( jk) ∈ Si\s∗ and identify ( j∗k∗) such that

|zτj∗k∗ ỹ| = max
( j∗k∗)∈Si\s∗

|zτjk ỹ|,

and let s∗+i = s∗ ∪ {( j∗k∗)}.

123



Sequential procedure with EBIC for interactive models 163

– If ebicγm,γi(s
∗+m) < ebicγm,γi(s

∗+i), let s
∗
new = s∗+m, otherwise, let s

∗
new = s∗+i.

– If ebicγm,γi(s
∗
new) < ebicγm,γi(s

∗), let

s∗ = s∗
new, ỹ = [I − H(s∗)]y,

and continue; otherwise, stop.
– In the EBIC, (γm, γi) is taken as (1 − ln n

2 ln p , 1 − ln n
4 ln p ).

Output: The s∗ obtained when the iteration stops is the index set of the selected
features. The estimate of β(s∗) is given by the ordinary least squares estimate,
i.e., ξ̂(s∗) = [Z τ (s∗)Z(s∗)]−1Z τ (s∗)y.
The above procedure differs from the traditional forward stepwise selection. To
explain, consider the selection of the main-effect features. After the set s∗ is selected,
the above procedure selects the next main-effect feature by maximizing the corre-
lation |xτ

j [I − H(s∗)]y|. The traditional forward stepwise selection selects the next
main-effect feature by minimizing the residual sum of squares yτ [I − H(s∗ ∪ { j})]y,
which is equivalent to maximizing |xτ

j [I − H(s∗)]y|/
√
xτ
j [I − H(s∗)]x j , an inflated

version of the correlation. This inflated correlation favors the features that have higher
correlation with the features already selected. This is a disadvantage for the identifi-
cation of true features when high spurious correlations are present. For more detailed
interpretation, see section 6 of Luo and Chen (2014).

To get more insight into the sequential procedure, let us take a closer look at the
EBIC for interactive models given in (5). When p is large and j is relatively small,
we have

(p
j

) ≈ p j . Thus, the last two terms of the EBIC in (5) are approximately

2γmν(sm) ln p and 4γiν(si) ln p. When the number of main-effect features increase
from ν(sm) to ν(sm) + 1, for a new main-effect feature to reduce the EBIC, its contri-
bution to the reduction of residual sum of squares must be larger than ln n + 2γm ln p.
When the number of interaction features increases from ν(si) to ν(si) + 1, for a new
interaction feature to reduce the EBIC, its contribution to the reduction of residual sum
of squares must be larger than ln n + 4γi ln p. Since 4γi > 2γm, an interaction feature
needs to have larger effect than a main-effect feature to be selected by the sequential
procedure.

The sequential procedure mimics the sequential Lasso (SLasso) cum EBIC pro-
cedure developed in Luo and Chen (2014). The SLasso cum EBIC procedure selects
features by sequentially solving partially penalized likelihood problems where the
coefficients of the features already selected are not penalized. Consider the following
partially penalized likelihood function:


p(ξ(s∗ ∪ Sm)) = ‖y − Z(s∗ ∪ Sm)ξ(s∗ ∪ Sm)‖22 + λ
∑

j∈Sm\s∗
|ξ j |,

where, among the components of ξ(s∗∪Sm), thosewith indices in s∗ are not penalized.
The minimization of 
p(ξ(s∗ ∪ Sm)) is equivalent to the minimization of


p(ξ(Sm\s∗)) = ‖ỹ − Z̃(Sm\s∗)ξ(Sm\s∗)‖22 + λ
∑

j∈Sm\s∗
|ξ j |,

123



164 Y. He, Z. Chen

where ỹ = [I − H(s∗)]y and Z̃(Sm\s∗) = [I − H(s∗)]Z(Sm\s∗). If we set λ at the
largest value that allows at least one component of ξ(Sm\s∗) to be estimated non-zero,
then, in theminimization of 
p(ξ(Sm\s∗)), the non-zero component corresponds to the
x j∗ which achieves the maximum absolute correlation max j∈Sm\s∗ |xτ

j ỹ|. Replacing
Sm by Si in the above argument, we have the same result for z j∗k∗ . Therefore,
the sequential procedure described above can be considered as a modification of
the SLasso cum EBIC procedure. It has been shown in Luo and Chen (2014)
that the SLasso cum EBIC procedure is selection consistent; that is, as n → ∞,
P(s∗ = s0) → 1, where s∗ is the index set selected by the SLasso cum EBIC pro-
cedure and s0 is the index set of the true model. The selection consistency of the
sequential procedure described in this section can also be established. We state the
result as follows.

For s = sm ∪ si ⊂ S, let scm and sci be the complements of sm and si in Sm and Si,
respectively. Let s−

m = scm ∩ s0m and s−
i = sci ∩ s0i. For s ⊂ s0, define

�mn( j, s, ξ) = 1

n
xτ
j [I − H(s)]Zξ , j ∈ Sm,

�in(( jk), s, ξ) = 1

n
zτjk[I − H(s)]Zξ , ( jk) ∈ Si.

We have the following theorem:

Theorem 2 Assume that

(i) ln p = O(nκ), κ < 1/3, p0 = O(nc), c < 1/6.
(ii) There is a constant q, 0 < q < 1, such that

max
j∈sc0m

|�mn( j, s, ξ) < q max
j∈s−m

|�mn( j, s, ξ)|,
max

( jk)∈sc0i
|�in(( jk), s, ξ) < q max

( jk)∈s−i
|�in(( jk), s, ξ)|.

(iii) There is a constant C such that λmin(
1
n Z(s0)τ Z(s0))min j∈s0 |β j | ≥ Cn−1/6+δ ,

where δ is an arbitrarily small positive number.

Let s∗ be the index set selected by the sequential procedure described in this section.
Then,

P(s∗ = s0) → 1, as n → ∞.

Some remarks on the conditions ofTheorem2are in order.Condition (i) specifies the
diverging pattern of (n, p0, p) with which the selection consistency of the sequential
procedure holds. Condition (ii) essentially requires that the spurious correlations of
irrelevant features are less than the true correlations of the true features. Condition
(iii) essentially imposes a lower bound for the magnitude of effects to be detectable.
If λmin(

1
n Z(s0)τ Z(s0)) is bounded away from zero, which is a common assumption for

high-dimensional data, condition (iii) simply requires that for an effect to be detectable
it must have a magnitude larger than Cn−1/6.
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Denote the sets of features selected by the procedure from the first step onwards
as s∗

1 , s
∗
2 , . . . , s

∗
k∗ , where s∗

k∗ = s∗. Theorem 2 implies that (a) for k ≤ k∗,
P(s∗

k ⊂ s0) → 1 uniformly in k, (b) for k < k∗, P(ebic(s∗
k ) > ebic(s∗

k+1)) → 1
uniformly in k, and (c) P(s∗ = s0,mins:s0⊂s ebic(s) > ebic(s∗)) → 1. In words,
it implies that, asymptotically with probability 1, at each step of the procedure, only
true features can be selected, and the procedure stops only when all the true features
have been selected.

The proof of Theorem 2 is similar to that of Theorem 3.3 in Luo and Chen (2014)
and is omitted here.

4 Numerical studies

In this section, we report the results of numerical studies including two sets of sim-
ulations and a real data analysis. The purpose of the first set of simulations is to
demonstrate the selection consistency of the EBIC for interactive models through the
trend of positive discovery rate (PDR) and false discovery rate (FDR) in finite samples
and to compare the sequential procedure with non-sequential procedures. The purpose
of the second set of simulations is to demonstrate the advantage of interactive models
over main-effect models for the identification of causal variables.

The PDR and FDR are defined below.

PDR = ν(s∗ ∩ s0)

ν(s0)
, FDR = ν(s∗\s0)

ν(s∗)
, (8)

where s∗ is the selected model and s0 is the true model. The PDR and FDR are closely
related to selection consistency. The selection consistency implies that the PDR and
FDR converge to 1 and 0, respectively, in probability. The PDR and FDR are used as
the criteria for the comparison between different procedures in the simulation studies.

4.1 Simulation study I

In this simulation study, we take the settings of (n, p0, p) given in Table 1. For each
setting, the p covariates are generated by three different correlation structures given
below:

S1: The covariates are generated in independent blocks of size 50. The covariates
within each block are generated from a multivariate normal distribution with zero
mean vector and covariance matrix

Table 1 The settings of
(n, p0, p) in simulation study I

n p0 p

100 11 107

200 14 365

400 17 1706
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S2: The covariates are generated by the time series:

X j = ρX j−1 +
√
1 − ρ2Z j , j = 1, 2, . . . , p,

where X0 and Z j , j = 1, . . . , p, are i.i.d. standard normal variables.
S3: First, Z j , j = 0, 1, . . . , p, are generated as standard normal variables. The X j ’s

are then generated as

X j = 1√
5
Z0 +

√
2

5
Z j , 1 ≤ j ≤ p0,

X j = ρX j−k +
√
1 − ρ2Z j , p0 + 1 ≤ j ≤ p.

Three values of ρ, i.e., ρ = 0.3, 0.5 and 0.7 are considered in the simulation. The
response variable y is generated according to the following models:

Model A: y =
k∑

j=1

β j X j +
p0−k∑

j=1

βk+ j X2 j−1X2 j + ε, k = [p0/2] + 1,

Model B: y =
5∑

j=1

β j X j + β6X1X2 + β7X1X3 + β8X1X6 + β9X5X6

+
p0∑

j=10

β j X j−1X j + ε,

where ε is generated as a normal variable with mean zero and variance σ 2. Two values
of σ , i.e., σ = 1 and 1.5 are considered. The β j ’s are generated independently as
2n−0.175 + |z|/10, where z ∼ N (0, 1).

By the combination of model, correlation structure and the sample size, we have all
together 72 simulation settings. For each setting, 200 replicates of data are generated.
For the demonstration of selection consistency, besides EBIC, the original BIC is also
used as a criterion in order to see the difference between EBIC and BIC. In EBIC,
(γm, γi) is taken as (1− ln n

2 ln p , 1− ln n
4 ln p ). In the comparison of the sequential procedure

with non-sequential procedures, we choose the penalized likelihood approach with
SCAD penalty (we simply refer to this approach as SCAD) as the representative of
the non-sequential procedures, because, in simulation studies carried out elsewhere,
e.g., Luo et al. (2014), the SCAD routinely performs well in comparison of penalized
likelihood methods in terms of feature selection. The same selection criterion is used
in both methods. The R package ncvreg [Breheny and Huang (2011)] is used for the
computation of SCAD.
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Table 2 The trend of PDR and FDR of the sequential procedure under the simulation settings with corre-
lation structure S1 and model A (the PDR and FDR are averaged over 200 replicates for each setting, the
numbers in parentheses are standard deviations)

σ n ρ PDR FDR

BIC EBIC BIC EBIC

1 100 0.3 0.776 (0.191) 0.751 (0.229) 0.929 (0.017) 0.283 (0.187)

0.5 0.649 (0.201) 0.542 (0.237) 0.906 (0.090) 0.418 (0.180)

0.7 0.441 (0.164) 0.313 (0.161) 0.828 (0.132) 0.565 (0.182)

200 0.3 0.916 (0.081) 0.920 (0.071) 0.945 (0.005) 0.128 (0.097)

0.5 0.848 (0.118) 0.833 (0.142) 0.940 (0.049) 0.214 (0.128)

0.7 0.620 (0.177) 0.519 (0.200) 0.715 (0.143) 0.415 (0.172)

400 0.3 0.953 (0.047) 0.953 (0.047) 0.938 (0.007) 0.074 (0.080)

0.5 0.942 (0.056) 0.942 (0.056) 0.934 (0.028) 0.091 (0.083)

0.7 0.879 (0.098) 0.840 (0.126) 0.676 (0.112) 0.195 (0.109)

1.5 100 0.3 0.618 (0.196) 0.577 (0.228) 0.944 (0.018) 0.353 (0.205)

0.5 0.541 (0.163) 0.376 (0.189) 0.933 (0.060) 0.489 (0.204)

0.7 0.360 (0.169) 0.231 (0.131) 0.841 (0.128) 0.617 (0.198)

200 0.3 0.801 (0.196) 0.852 (0.155) 0.952 (0.012) 0.156 (0.108)

0.5 0.715 (0.167) 0.685 (0.197) 0.947 (0.046) 0.271 (0.148)

0.7 0.464 (0.162) 0.378 (0.178) 0.753 (0.126) 0.508 (0.184)

400 0.3 0.939 (0.075) 0.938 (0.059) 0.951 (0.021) 0.092 (0.073)

0.5 0.930 (0.052) 0.924 (0.067) 0.948 (0.033) 0.102 (0.081)

0.7 0.783 (0.086) 0.700 (0.164) 0.692 (0.104) 0.289 (0.141)

Apart of the results for demonstrating the selection consistencyofEBIC is presented
in Tables 2 and 3. These tables provide the PDR and FDR averaged over 200 replicates
for each of the settings when correlation structure S1 is combined with model A and
correlation structure S2 is combined with model B. Since the results under other
settings are similar, for the sake of clarity, the results under other settings are omitted.
The comparison between the sequential procedure and the SCAD is also made by
comparing their PDR and FDR averaged over 200 replicates under all the simulation
settings. The results under model A and model B are quite similar. Therefore, only the
results under model B given in Table 4 are reported.

The results presented in Tables 2 and 3 are summarized as follows. Under all the
settings, the PDR for EBIC has an strong upward trend towards 1 and the FDR for
EBIC has a strong downward trend towards 0. For example, for σ = 1 and ρ = 0.3,
as n varies from 100 to 200 and 400, in Table 2, the PDR for EBIC varies from 0.751
to 0.909 and 0.953, the FDR for EBIC varies from 0.283 to 0.128 and 0.074, and,
in Table 3, the PDR for EBIC varies from 0.881 to 0.929 and 0.949, the FDR for
EBIC varies from 0.212 to 0.117 and 0.068. For other values of σ and ρ, the trends
of PDR and FDR for EBIC are similar. On the other hand, though the PDR for BIC
has a upward trend, the FDR for BIC stays at high levels and does not show any trend
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Table 3 The trend of PDR and FDR of the sequential procedure under the simulation settings with corre-
lation structure S2 and model B (the PDR and FDR are averaged over 200 replicates for each setting, the
numbers in parentheses are standard deviations)

σ n ρ PDR FDR

BIC EBIC BIC EBIC

1 100 0.3 0.798 (0.244) 0.881 (0.185) 0.927 (0.022) 0.212 (0.158)

0.5 0.783 (0.257) 0.859 (0.193) 0.929 (0.023) 0.234 (0.171)

0.7 0.727 (0.237) 0.742 (0.234) 0.934 (0.022) 0.305 (0.190)

200 0.3 0.918 (0.119) 0.929 (0.092) 0.945 (0.007) 0.117 (0.106)

0.5 0.904 (0.150) 0.925 (0.091) 0.946 (0.009) 0.127 (0.096)

0.7 0.848 (0.163) 0.867 (0.130) 0.949 (0.010) 0.186 (0.125)

400 0.3 0.950 (0.049) 0.949 (0.049) 0.946 (0.005) 0.068 (0.069)

0.5 0.947 (0.055) 0.947 (0.055) 0.948 (0.007) 0.075 (0.070)

0.7 0.945 (0.057) 0.943 (0.059) 0.952 (0.008) 0.087 (0.073)

1.5 100 0.3 0.579 (0.258) 0.684 (0.251) 0.947 (0.023) 0.275 (0.181)

0.5 0.553 (0.241) 0.634 (0.235) 0.950 (0.022) 0.286 (0.196)

0.7 0.518 (0.208) 0.527 (0.227) 0.953 (0.019) 0.361 (0.210)

200 0.3 0.745 (0.241) 0.823 (0.177) 0.955 (0.015) 0.160 (0.125)

0.5 0.748 (0.242) 0.801 (0.204) 0.955 (0.015) 0.173 (0.146)

0.7 0.675 (0.233) 0.718 (0.217) 0.959 (0.014) 0.237 (0.158)

400 0.3 0.930 (0.064) 0.929 (0.065) 0.965 (0.002) 0.075 (0.071)

0.5 0.925 (0.061) 0.923 (0.063) 0.967 (0.004) 0.088 (0.076)

0.7 0.918 (0.074) 0.908 (0.081) 0.968 (0.004) 0.106 (0.086)

towards 0. Even when n = 400, the smallest FDR for BIC is 0.676 in Table 2 and
0.946 in Table 3. The findings demonstrate that, for EBIC, PDR → 1 and FDR → 0,
which is the evidence for the selection consistency of EBIC, and that, for BIC, FDR
does not converge to 0, which is an indication that BIC is not selection consistent.

For the comparison between the sequential procedure and the SCAD, we report the
results under model B in Table 4. The results under model A are similar and, hence, are
omitted. We can see from Table 4 that, except a few settings, the sequential procedure
has higher PDRs and lower FDRs than the SCAD. Table 5 provides the average PDR
and FDR of the two procedures over all the settings for each of the sample sizes. It is
clear from Table 5 that, overall, the sequential procedure has a much higher PDR and
lower FDR than the SCAD. This justifies the edge of the sequential procedure over
non-sequential procedures for feature selection in interactive models.

4.2 Simulation study II

In certain practical problems, the major concern is to identify the covariates which
affect the response variable no matter whether the effects of the covariates are in the
form of main effect or interaction. For example, the goal of a QTL mapping study
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Table 4 Results of simulation study I: comparison of PDR and FDR between the sequential interactive
procedure (SIP) and the non-sequential procedure SCAD (the numbers without parentheses are PDR’s and
those within parentheses are FDR’s

ρ PDR (FDR)

n = 100 n = 200 n = 400

σ = 1

S1

SIP 0.3 0.788 (0.268) 0.891 (0.139) 0.945 (0.062)

0.5 0.577 (0.393) 0.698 (0.253) 0.914 (0.093)

0.7 0.356 (0.543) 0.336 (0.482) 0.704 (0.272)

SCAD 0.3 0.799 (0.240) 0.813 (0.207) 0.939 (0.097)

0.5 0.629 (0.336) 0.635 (0.313) 0.898 (0.171)

0.7 0.432 (0.490) 0.385 (0.502) 0.725 (0.348)

S2

SIP 0.3 0.881 (0.212) 0.929 (0.117) 0.949 (0.068)

0.5 0.859 (0.234) 0.925 (0.127) 0.947 (0.075)

0.7 0.742 (0.305) 0.867 (0.186) 0.943 (0.087)

SCAD 0.3 0.787 (0.270) 0.863 (0.196) 0.945 (0.103)

0.5 0.804 (0.289) 0.835 (0.208) 0.941 (0.110)

0.7 0.714 (0.278) 0.785 (0.239) 0.934 (0.111)

S3

SIP 0.3 0.860 (0.206) 0.917 (0.120) 0.947 (0.067)

0.5 0.848 (0.222) 0.920 (0.122) 0.950 (0.068)

0.7 0.757 (0.294) 0.884 (0.165) 0.940 (0.082)

SCAD 0.3 0.775 (0.289) 0.808 (0.198) 0.933 (0.103)

0.5 0.771 (0.283) 0.829 (0.199) 0.939 (0.102)

0.7 0.726 (0.323) 0.836 (0.229) 0.933 (0.110)

σ = 1.5

S1

SIP 0.3 0.584 (0.333) 0.769 (0.203) 0.918 (0.096)

0.5 0.420 (0.460) 0.547 (0.312) 0.865 (0.125)

0.7 0.285 (0.538) 0.289 (0.499) 0.534 (0.361)

SCAD 0.3 0.509 (0.356) 0.500 (0.239) 0.762 (0.153)

0.5 0.432 (0.450) 0.399 (0.351) 0.589 (0.259)

0.7 0.353 (0.517) 0.302 (0.534) 0.371 (0.415)

S2

SIP 0.3 0.684 (0.275) 0.823 (0.160) 0.929 (0.075)

0.5 0.634 (0.286) 0.801 (0.173) 0.923 (0.088)

0.7 0.527 (0.361) 0.718 (0.237) 0.908 (0.106)

SCAD 0.3 0.404 (0.387) 0.402 (0.167) 0.672 (0.203)

0.5 0.393 (0.332) 0.379 (0.188) 0.676 (0.202)

0.7 0.361 (0.344) 0.386 (0.286) 0.626 (0.231)

123



170 Y. He, Z. Chen

Table 4 continued

ρ PDR (FDR)

n = 100 n = 200 n = 400

S3

SIP 0.3 0.674 (0.264) 0.794 (0.180) 0.922 (0.078)

0.5 0.632 (0.277) 0.823 (0.162) 0.921 (0.083)

0.7 0.532 (0.360) 0.744 (0.216) 0.898 (0.102)

SCAD 0.3 0.392 (0.311) 0.394 (0.142) 0.652 (0.179)

0.5 0.394 (0.327) 0.418 (0.205) 0.655 (0.191)

0.7 0.362 (0.339) 0.413 (0.278) 0.633 (0.246)

Table 5 The average PDR and
FDR of the sequential
interactive procedure (SIP) and
the non-sequential procedure
SCAD

n

100 200 400

PDR

SIP 0.647 0.760 0.892

SCAD 0.558 0.577 0.768

FDR

SIP 0.324 0.214 0.110

SCAD 0.342 0.260 0.185

is to discover the QTLs. In general, a quantitative trait is affected by many QTLs.
Some QTLs have an effect only through their interaction with other QTLs. For those
QTLs, theirmain effect usually appears non-significant. SuchQTLs cannot be detected
by using only main-effect models. However, it is possible for them to be detected by
using interactivemodels. In this sub section, we demonstrate this through a specifically
designed simulation study. We consider the following true model:

y = β1X1 + β2X2 + · · · + β5X5 + β6X1X2 + β7X3X4 + ε.

The covariates are generated in the same way as in simulation study I except that,
under all correlation structures, the mean of the X j ’s is 1 instead of 0. The regres-
sion coefficients are specified as β j = −β6 = −β7 = 0.8, j = 1, . . . , 4 and
β5 = 0.8 + |z|/10, where z ∼ N (0, 1). With this specification, the effect of the
first four covariates on the response variable is only through their interaction terms. If
a main-effect model was used to fit the data, the coefficients of the first four covariates
would be almost zero. We consider the same settings as those in simulation study I. At
each setting, we apply two sequential procedures to the generated data: the one with
main-effect models and the other with interactive models. For convenience, we refer
the first one as the additive procedure and the second one as the interactive procedure.

In this simulation study,we consider PDRandFDR in terms of covariates rather than
features. In other words, we are concerned with whether or not a covariate is correctly
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Table 6 Results of simulation study II: Comparison of the sequential interactive procedure and the sequen-
tial additive procedure (the numbers without parentheses are PDR’s and those within parentheses are FDR’s,
PDR 1234 is the positive discovery rate for the detection of the first four covariates)

ρ PDR (FDR) PDR1234

n = 200 n = 400 n = 200 n = 400

σ = 0.5

S1

Additive 0.3 0.156 (0.161) 0.147 (0.144) 0.023 0.008

0.5 0.146 (0.159) 0.144 (0.148) 0.006 0.003

0.7 0.146 (0.118) 0.144 (0.088) 0.006 0.001

Interactive 0.3 0.788 (0.164) 0.887 (0.113) 0.739 0.861

0.5 0.565 (0.199) 0.610 (0.140) 0.463 0.513

0.7 0.422 (0.249) 0.426 (0.109) 0.281 0.302

S2

Additive 0.3 0.150 (0.177) 0.146 (0.139) 0.013 0.005

0.5 0.152 (0.123) 0.146 (0.125) 0.016 0.005

0.7 0.151 (0.178) 0.145 (0.113) 0.015 0.004

Interactive 0.3 0.904 (0.152) 0.970 (0.109) 0.885 0.964

0.5 0.889 (0.146) 0.891 (0.128) 0.864 0.865

0.7 0.725 (0.175) 0.795 (0.124) 0.656 0.748

S3

Additive 0.3 0.149 (0.189) 0.146 (0.145) 0.010 0.005

0.5 0.149 (0.171) 0.149 (0.168) 0.010 0.011

0.7 0.147 (0.148) 0.145 (0.133) 0.008 0.004

Interactive 0.3 0.842 (0.176) 0.965 (0.121) 0.809 0.958

0.5 0.879 (0.163) 0.909 (0.120) 0.854 0.889

0.7 0.752 (0.181) 0.779 (0.124) 0.711 0.759

σ = 1

S1

Additive 0.3 0.151 (0.144) 0.146 (0.116) 0.014 0.005

0.5 0.145 (0.133) 0.144 (0.150) 0.004 0.003

0.7 0.142 (0.136) 0.144 (0.087) 0.006 0.003

Interactive 0.3 0.495 (0.184) 0.782 (0.128) 0.371 0.730

0.5 0.449 (0.245) 0.580 (0.163) 0.323 0.475

0.7 0.326 (0.301) 0.393 (0.165) 0.203 0.245

S2

Additive 0.3 0.146 (0.148) 0.144 (0.151) 0.006 0.003

0.5 0.147 (0.126) 0.145 (0.130) 0.008 0.004

0.7 0.149 (0.182) 0.144 (0.135) 0.010 0.001

Interactive 0.3 0.654 (0.192) 0.874 (0.153) 0.461 0.844

0.5 0.549 (0.209) 0.840 (0.144) 0.441 0.803

0.7 0.515 (0.229) 0.686 (0.146) 0.406 0.608
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Table 6 continued

ρ PDR (FDR) PDR1234

n = 200 n = 400 n = 200 n = 400

S3

Additive 0.3 0.146 (0.174) 0.144 (0.127) 0.006 .003

0.5 0.146 (0.159) 0.144 (0.177) 0.005 0.003

0.7 0.145 (0.135) 0.145 (0.125) 0.004 0.004

Interactive 0.3 0.568 (0.230) 0.900 (0.129) 0.466 0.875

0.5 0.562 (0.190) 0.850 (0.130) 0.463 0.815

0.7 0.527 (0.199) 0.664 (0.133) 0.415 0.580

selected regardless of the nature of its effect. Let s0 be the set of true covariates and s∗
the set of selected covariates. In particular, for the model above, s0 consists of the five
covariates X j , j = 1, . . . , 5, rather than the seven features. If we have selected the
features {X1X2, X5} then s∗ consists of the three covariates X1, X2 and X5 rather than
the two features. The PDR and FDR are still defined by (8). The simulation results are
reported in Table 6. Again, for each setting, the PDR and FDR are averaged over the
200 replicates. In addition to the overall PDR and FDR, we also include in Table 6
the PDR concerning only the first four covariates, i.e., the proportion of the first four
covariates which have been detected. It is denoted by PDR1234 in Table 6.

The findings from Table 6 are listed as follows. (1) The additive and interactive
procedures have about the same capacity to control the level of FDR. It can be seen
from the table that, across all the settings, there does not exist too much difference
in FDR between the two procedures. (2) The significant difference between the two
procedures is in the PDR. Across all the settings, the PDRs of the additive procedure
are extremely low but the PDRs of the interactive procedure are uniformly quite high.
(3) The lowPDRof the additive procedure is because of its inability to discover the first
four covariates. The PDR1234s of the additive procedure are less than or equal to 1%
except only a few settings. This indicates that the additive procedure has no power at all
for the discovery of the first four covariates. (4) The interactive procedure has about the
same efficiency to discover all the covariates regardless of the nature of their effects.
This can be seen by comparing the PDR and PDR1234 of the interactive procedure.
These two values are quite close across all the settings. In summary, simulation study
II provides us with strong evidence to prefer the interactive procedure to the additive
procedure in the detection of true covariates when interactions exist.

4.3 A real data example

The sequential interactive procedure is applied to a mouse data set for mapping QTL
of locomotor activation and anxiety considered in Bailey et al. (2008). The data set
was obtained from an open-field assay test for 196 female and 166 male mice which
are F2 progeny of two phenotypically similar inbred mouse strains: C57BL/6J and
C58/J. Six measures were considered in the open-field assay test: (1) total distance
traveled (in cm), (2) ambulatory episodes (number of times animal breaks user defined
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Table 7 Results of the real data analysis: the locations of the detected SNPs and the nature of their effects
on the behavioral measures

Chr Location (Mb) Effect Interactive SNPs

Percent time in center 13 89.444 Main

2 178.315 Interaction Chr13:22.251

13 22.251 Interaction Chr2:178.315

Total distance 8 57.724 Main

17 56.801 Main

6 102.455 Interaction Chr12:20.058

12 20.058 Interaction Chr6:102.445

Total rearing 2 153.094 Main

Ambulatory episodes 8 68.129 Main

17 56.801 Main

6 102.455 Interaction Chr12:20.058

12 20.058 Interaction Chr6:102.455

Average velocity 8 89.447 Main

Percent resting 2 97.379 Main

7 63.356 Main

8 89.447 Main

number of beams before coming to rest), (3) percent time resting, (4) average velocity
(in centimeters per second), (5) number of rearings and (6) percent time spent in center
of arena. The data consist of the measurements on the six measures for each of the
362 mice together with their genotypes at 211 SNP markers. There are some missing
values in the original data. We dropped the individuals that have more than 30 missing
values and imputed the remaining missing values by the R package Imputation
Wong (2013).

In our analysis, we take each of the six behavioral traits as a response variable.
For each trait, the features (either main-effect features or interactive features formed
by the 211 SNP markers) affecting the trait are identified by applying the sequential
interactive procedure. The identified features are given in Table 7. The SNPs on the
same chromosome which are located not far away from each other are usually consid-
ered as a single locus. Thus, in Table 7, the identified SNPs on the same chromosome
can be considered as a single locus. For convenience, we simply refer to each of the
chromosomes as a locus. All together, we have identified seven loci, i.e, 2, 6, 7, 8, 12,
13, 17. Five of the loci, i.e., 2, 6, 8, 12 and 17, affect multiple traits, the other two, i.e.,
7 and 13, affect only one trait. In particular, locus 8 affects four traits.

It is interesting to compare our findings with those obtained in Bailey et al. (2008).
Bailey et al. (2008) used the multiple-test approach for testing the significance of the
main-effect features of the SNPs and used the threshold value 3.2, which is determined
by the method of permutation test, for the significance of the LOD scores of the tests.
They discovered the following 11 loci: 1, 2, 3, 5, 6, 7, 8, 11, 13, 16, 17. Strikingly, all the
loci but one which we discovered are contained in these eleven loci. The exceptional
one, locus 12, is discovered through its interaction effect with locus 6 in our analysis.
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Further, in Bailey et al. (2008), locus 8 was also found to affect significantly the same
four traits as in our analysis. Therefore, we can comfortably claim that the loci we
discovered are statistically true QTLs which might be further confirmed by biological
experiments.

Appendix: Proof of Theorem 1

The following results are to be used in the proof:

P(χ2
j ≥ m) = 1

�( j/2)
(m/2) j/2−1e−m/2(1 + o(1)), if m → ∞,

j

m
→ 0, (9)

ln

(
p!

j !(p − j)!
)

= j ln p(1 + o(1)), if p → ∞,
ln j

ln p
→ 0, (10)

where χ2
j is a χ2 random variable with degrees of freedom j . The proof of these results

can be found in Luo and Chen (2013).

Proof Let s be any sub-model. We can express EBICγm,γi(s) − EBICγm,γi(s0) as
T1(s) + T2(s), where

T1(s) = n ln
yτ [I − H(s)]y
yτ [I − H(s0)]y = n ln

yτ [I − H(s)]y
ετ [I − H(s0)]ε

= n ln

{

1 + yτ [I − H(s)]y − ετ [I − H(s0)]ε
ετ [I − H(s0)]ε

}

and

T2(s) = [ν(s) − ν(s0)] ln n + 2γm

[

ln

(
p

ν(sm)

)

− ln

(
p

ν(s0m)

)]

+2γi

[

ln

(
p(p − 1)/2

ν(si)

)

− ln

(
p(p − 1)/2

ν(s0i)

)]

.

Under the assumption of Theorem 1, it follows from (9) that

T2(s) = [ν(s) − ν(s0)] ln n + 2γm[ν(sm) − ν(s0m)] ln p(1 + op(1))

+ 4γi[ν(si) − ν(s0i)] ln p(1 + op(1)). (11)

We are going to show that

P

(

min
s:ν(s)≤rp0

{T1(s) + T2(s)} > 0

)

→ 1. (12)

Without loss of generality, we assume that σ 2 = 1 in what follows. Let A1 = {s :
s0 �⊂ s} and A2 = {s : s0 ⊂ s}. (12) will be established separately for s ∈ A1 and
s ∈ A2.
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Case 1: s ∈ A1: Let k0 = rp0. First, we establish that

T1 = n ln

(

1 + �n(s)

n
(1 + op(1))

)

, (13)

uniformly for all s with ν(s) ≤ k0. Recall that �n(s) = μτ [I − H(s)]μ. Let Zi be
i.i.d. standard normal random variables. Since I − H(s0) is a projection matrix, we
can express

εT {I − H(s0)}ε =
n−p0∑

i=1

Z2
i = (n − p0)(1 + op(1)) = n(1 + op(1)), (14)

by the law of large numbers. Thus, (13) follows if

yτ [I − H(s)]y − ετ [I − H(s0)]ε = �n(s)(1 + op(1)). (15)

We have

yτ [I − H(s)]y − ετ [I − H(s0)]ε = �n(s) + 2μτ [I − H(s)]ε
+ ετ H(s0)ε − ετ H(s)ε.

Then, (15) holds under the assumption of Theorem 1, if

ετ H(s0)ε = p0(1 + op(1)); (16)

max
s:ν(s)≤k

ετ H(s)ε = Op(k ln p); (17)

|μτ [I − H(s)]ε| =
√

�n(s)Op(k ln p). (18)

(16) is a similar result to (14). In the following, we verify (17) and (18).
Verification of (17): Let a = p(p + 1)/2 and m = 2k[ln a + ln(k ln a)]. Obviously,
k
m → 0. Note that ετ H(s)ε = χ2

j (s) for j = ν(s). By the Bonferroni inequality, we
get

P(max{ετ H(s)ε : ν(s) ≤ k} ≥ m)

= P(max{ετ H(s)ε : s ∈ S j , j ≤ k} ≥ m) ≤
k∑

j=1

τ(S j )P(χ2
j ≥ m),

where S j is the set of models consisting of j features (including both main-effect and
interaction features). Note that τ(S j ) = (p(p+1)/2

j

)
. Since j/m ≤ k/m → 0, by (9),
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there is some c close to 1 and independent of j such that

τ(S j )P(χ2
j ≥ m) ≈ c

1

2 j/2−1�( j/2)

τ (S j )

ak
(k ln a)−km j/2−1

≤ c

m
(k ln a)− jm j/2 = c

m

[√
m

(k ln a)2

] j

= c

m
q j
n .

When n is sufficiently large,

qn =
√

m

(k ln a)2
=
√
2k[ln a + ln(k ln a)]

(k ln a)2
≤ q

for some 0 < q < 1 since qn → 0. Thus,

P(max{ετ H(s)ε : s ∈ S j , j ≤ k} ≥ m) ≤ c

m

k∑

j=1

q j
n ≤ c

m

q

1 − q
→ 0.

Therefore

max
s:ν(s)≤k

ετ H(s)ε = m(1 + op(1)) = Op(k ln p),

which verifies (17).

Verification of (18): Note that μτ [I − H(s)]ε follows a normal distribution with mean
0 and variance �n(s). Hence, we can express

μτ [I − H(s)]ε = √
�n(s)Z(s),

where Z(s) ∼ N (0, 1). Thus, we have

|μτ [I − H(s)]ε| ≤ √
�n(s)max{|Z(s)| : ν(s) ≤ k}.

It is implied by (9) that P(χ2
1 ≥ m) ≤ P(χ2

j ≥ m). Thus,

P(max{|Z(s)| : ν(s) ≤ k} ≥ √
m) = P(max{|Z(s)| : s ∈ S j , j ≤ k} ≥ √

m)

≤
k∑

j=1

τ(S j )P(|Z(s)| ≥ √
m)

=
k∑

j=1

τ(S j )P(χ2
1 ≥ m)

≤
k∑

j=1

τ(S j )P(χ2
j ≥ m).
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It has been shown in the verification of (17) that the last sum above converges to zero.
Therefore, max{|Z(s)| : ν(s) ≤ k} = √

Op(k ln p). This verifies (18).

Now consider two scenarios: �n(s)
n → 0 and �n(s)

n ≥ C > 0. If �n(s)
n → 0, then

T1 = n ln(1 + �n(s)
n (1 + op(1))) ≈ �n(s)(1 + op(1)) when n is sufficiently large.

Let γ = max(γm, γi). Then, it follows from (11) and (13) that

T1(s) + T2(s) ≥ �n(s)(1 + op(1)) − p0 ln n − 4γ p0 ln p

≥ �n(s)

p0 ln p

(

p0 ln p − ln n

ln p
− 4γ

)

→ ∞

uniformly for all s with ν(s) ≤ k and any γ under the condition of Theorem 1. If
�n(s)
n = C > 0, we have

T1(s) + T2(s) ≥ n ln(1 + C) − p0 ln n − 4γ p0 ln p → ∞

uniformly for all s with ν(s) ≤ k and any γ . Thus, (12) is established in the case
s ∈ A1.
Case 2: s ∈ A2 . When s0 ⊂ s, {I − H(s)}X (s0) = 0 and hence,

yτ [I − H(s)]y = ετ [I − H(s)]ε,
ετ [I − H(s0)]ε − ετ [I − H(s)]ε = ετ [H(s) − H(s0)]ε = χ2

j (s),

where j (s) = ν(s) − ν(s0). Hence, we have

−T1(s) = n ln
ετ [I − H(s0)]ε
ετ [I − H(s)]ε

= n ln

[

1 + χ2
j (s)

ετ [I − H(s0)]ε − χ2
j (s)

]

≤ nχ2
j (s)

ετ [I − H(s0)]ε − χ2
j (s)

.

Let b = p(p − 1)/2, j = jm + ji and m̃ j = 2 jm(ln p + ln( j ln p)) + 2 ji(ln b
+ ln( j ln b)). Let S̃ jm ji denote the collection of sets having jm main-effect indices and
ji interaction indices and containing s0. We have

P

(
max jm, ji: jm+ ji= j maxs∈S̃ jm ji

χ2
j (s)

m̃ j
≥ 1

)

≤
∑

jm+ ji= j

τ(S̃ jm ji)P(χ2
j ≥ m̃ j ).

Note that τ(S̃ jm ji) = (p−ν(s0m)
jm

)(b−ν(s0i)
ji

) ≤ p jmb ji . Following the same argument in
the verification of (17), we have

τ(S̃ jm ji)P(χ2
j ≥ m̃ j ) ≤ c

m̃ j
q jm
m q ji

i ≤ c

j ln p
q jm
m q ji

i ,

123



178 Y. He, Z. Chen

where

qm =
√

m̃ j

( j ln p)2
, qi =

√
m̃ j

( j ln b)2
.

When n is sufficiently large,

max{qm, qi} ≤
√

4

ln p
(1 + o(1)) ≤ q,

for some 0 < q < 1/2. Thus,

∑

jm+ ji= j

τ(S̃ jm ji)P(χ2
j ≥ m̃ j ) ≤

∑

jm+ ji= j

c

j ln p
q j ≤ c(2q) j ,

and hence,

P

(

max
1≤ j≤k−p0

max jm, ji: jm+ ji= j maxs∈S̃ jm ji
χ2
j (s)

m̃ j
≥1

)

≤
k−p0∑

j=1

c(2q) j <c
2q

1 − 2q
→0.

Thus, uniformly,

max
s∈S̃ jm ji

χ2
j (s) = m̃ j (1 + op(1)).

Since ln b = 2 ln p(1 + o(1)), we have

m̃ j ≤ 2 jm(ln p + ln((k − p0) ln p)) + 2 ji(ln b + ln((k − p0) ln b))

≤ (2 jm + 4 ji) ln p(1 + op(1)),

because ln((k−p0) ln p)
ln p → 0.

In addition, when n → ∞, n−1ετ [I − H(s0)]ε → σ 2 = 1, that is, ετ [I − H(s0)]
ε = n(1 + o(1)), we have

nχ2
j (s)

ετ [I − H(s0)]ε − χ2
j (s)

≤ nm̃ j

n − m̃ j (1 + op(1))
= m̃ j (1 + op(1))

≤ [2 jm ln p + 4 ji ln p](1 + op(1)).

Therefore,

T1 ≥ −[2 jm ln p + 4 ji ln p](1 + op(1))
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It follows from (11) that

T2 = j ln n + [2γm jm ln p + 4γi ji ln p](1 + o(1)).

Finally, we have,

T1(s) + T2(s) ≥ ( jm + ji) ln n + [2γm jm ln p + 4γi ji ln p](1 + o(1))

−[2 jm ln p + 4 ji ln p](1 + op(1))

= jm ln n + 2γm jm ln p(1 + o(1)) − 2 jm ln p(1 + op(1))

+ ji ln n + 4γi ji ln p(1 + o(1)) − 4 ji ln p(1 + op(1))

> 0,

if γm > 1 − ln n
2 ln p , γi > 1 − ln n

4 ln p , uniformly for all s such that ν(s) ≤ k, and s0 ⊂ s,
when n is sufficiently large. This verifies (12) in the case s ∈ A2, and hence Theorem 1
is proved. ��
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