
Ann Inst Stat Math (2016) 68:353–384
DOI 10.1007/s10463-014-0496-3

A semiparametric generalized proportional hazards
model for right-censored data

M. L. Avendaño · M. C. Pardo

Received: 28 March 2013 / Revised: 30 September 2014 / Published online: 21 November 2014
© The Institute of Statistical Mathematics, Tokyo 2014

Abstract We introduce a flexible family of semiparametric generalized logit-based
regression models for survival analysis. Its hazard rates are proportional as the Cox
model, but its relative risk related to a covariate is different for the values of the
other covariates. The method of partial likelihood approach is applied to estimate its
parameters in presence of right censoring and its asymptotic normality is established.
We perform a simulation study to evaluate the finite-sample performance of these
estimators. This new family ofmodels is illustratedwith lung cancer data and compared
with Cox model. The importance of the conclusions obtained from the relative risk is
pointed out.

Keywords Survival analysis · Proportional hazards · Type-I generalized logistic
distribution · Semiparametric models · Profile likelihood · Partial likelihood

1 Introduction

Analysis of event times (also referred as survival analysis) deals with data representing
the time to a well-defined event. These data arise in engineering, economy, reliability,
public health, biomedicine and other areas. Data arising from survival analysis often
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consist of a response variable that measures the duration of time until the occurrence
of a specific event and a set of variables (covariates) thought to be associated with
the event-time variable, they have some features that present difficulties to traditional
statistical methods. The first is that the data are generally asymmetrically distributed,
while the second feature is that lifetimes are frequently censored (the end point of
interest has not been observed for that individual). Regression models for survival
data have traditionally been based on the Cox regression model (Cox 1972). One of
the reasons for the popularity of this model is because the unknown parameter can
be estimated by partial likelihood without putting a structure on baseline hazard. This
model requires that the hazards between any two individuals are proportional across
time. There are many works whose aim has been to extend the Cox model in different
ways. Some of them appealing the necessity to allow non-proportional hazards such
as Aranda-Ordaz (1983), Tibshirani and Ciampi (1983), Etezadi-Amoli and Ciampi
(1987), Thomas (1986), Sasieni (1995), Clayton (1978), Hougaard (1984), Younes
and Lachin (1997), MacKenzie (1996, 1997) and Devarajan and Ebrahimi (2011).
However, when the assumption of proportional hazards is tenable, a Cox regression
model is usually the preferred model. Therefore, proportional hazards models that
maintain the good properties of the Cox model, but give flexibility to the model are
welcome.

As mentioned above, regression models for survival data have traditionally been
based on the proportional hazards model of Cox (1972) which is defined through the
hazard function λ(t | z) of the form

λ(t | β, z) = λ0(t) exp(β
′z), (1)

where λ0(·) is an arbitrary function of time called baseline hazard function, z′ =
(z1, . . . , zd) is a vector of covariates for the individual at time t , andβ ′ = (β1, . . . , βd)

is a vector of unknown parameters to be estimated. In case that the baseline hazard
function is treated non-parametrically, then this model becomes a semiparametric
model.

In this paper, we introduce a flexible semiparametric family of proportional hazards
models based on replacing the exponential link function in (1) by a generalization of
the logistic distribution (see Balakrishnan 1992) called Type-I generalized logistic
distribution in Sect. 2. The partial likelihood approach is proposed to estimate the
covariate effects of the model considering right-censored data and an application is
shown in Sects. 3 and 4, respectively. To prove the asymptotic normality of the partial
likelihood estimator in our model, first we establish the equivalence of the partial
likelihood estimator and the profile likelihood estimator for our model. Second, the
efficiency of the profile likelihood estimator for our semiparametric model is proven.
This proof is based on the method of an approximate least favorable submodel used
byMurphy and van der Vaart (2000) with the Cox regression model and it is described
in Sect. 5, but developed in an “Appendix”. Finally, the small sample performance
of the maximum partial likelihood estimators of the regression parameters in three-
and four-covariate hazard function models is evaluated through a simulation study in
Sect. 6.
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2 The generalized proportional hazards model

The Cox model given in (1) can be generalized by replacing the exponential function
in (1) by a generalization of the logistic distribution called Type-I generalized logistic
distribution which is given by

F(y) =
(

1

1 + e−y

)α

, −∞ < y < ∞, α > 0,

where the parameter α is a proportionality constant for the distribution. See Balakr-
ishnan (1992).

Therefore, we propose a proportional hazards model defined through the hazard
function

λ(t | θ , z) = λ0(t)K (θ, z), (2)

with

K (θ, z) =
(

1

1 + exp(−β ′z)

)α

, α > 0,

where θ = (β ′, α)′, which we call generalized logit-link proportional hazards model.
In fact, if α = 0 or β = 0, the model reduces to a non-parametric form.

The cumulative hazard function for the model (2) is given by

�(t |θ, z) = �0(t)K (θ, z),

where �0(t) = ∫ t
0 λ0(u)du is the baseline cumulative hazard function. Thus, the

survival function corresponding to the hazard model is

S(t | θ , z) = exp(−�(t |θ, z)),

and Eq. (2) characterizes the model with density given by

f (t | θ , z) = exp(−�(t | θ , z))λ(t | θ , z).

Note that, in the particular case α = 1, we obtain the proportional hazards model
with a logit-link function

λ(t | β, z) = λ0(t)
exp(β ′z)

1 + exp(β ′z)
.

For two-covariate profiles zi and z j , the hazard ratio is proportional and the relative
risk does not depend on t as
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ρ(t | θ , zi , z j ) = λ(t | θ , zi )

λ(t | θ, z j )

=
(
1 + exp(−β ′z j )

1 + exp(−β ′zi )

)α

= ρ(t | β, α, zi , z j ).

The interpretation of the hazard ratio of model (2) is similar to the Cox model
hazard ratio since if ρ(t | θ, zi , z j ) = 1, then the individuals with covariates zi and z j

have the same relative risk of death and if ρ(t | θ , zi , z j ) < 1(>1), the individual with
covariate zi has lower (higher) relative risk of death than the individual with covariate
z j .

As particular case, when the covariate zm increases zm +1 and the rest of covariates
remain equal the relative risk is equal (lower or higher) if and only if βm = 0 (<0 or
>0), respectively, and the parameter α is a proportionality parameter for the model
since the relative risk increases or decreases when α increases depending if the relative
risk is less or greater than 1. Moreover, this parameter gives flexibility to the model to
adapt better to the data.

For illustrative purposes, we consider a two-covariate model, the first one a con-
tinuous covariate and the second one a 4-level factor covariate. The 4-level covariate
is transformed in an indicator 3-dimensional vector. So, we obtain a full model given
by

λ(t | θ , z) = λ0(t)

(
1

1 + exp(−(β1z1 + β2z2 + β3z3 + β4z4))

)α

, α > 0.

In this case, if we take the relative risk of individualswith values z1 = z1i and z1 = z1 j ,
respectively, at the first covariate and the same level at the second covariate, we have
that the relative risk depend on the level of the second covariate, that is:

Level I:

(
1 + exp(−z1 jβ1)

1 + exp(−z1iβ1)

)α

Level II:

(
1 + exp(−z1 jβ1 − β2)

1 + exp(−z1i β̂1 − β2)

)α

Level III:

(
1 + exp(−z1 jβ1 − β3)

1 + exp(−z1iβ1 − β3)

)α

Level IV:

(
1 + exp(−z1 jβ1 − β4)

1 + exp(−z1iβ1 − β4)

)α

.

Note that, in this case, the relative risk under Cox model (1) is given by

ρCox(t |β, zi , z j ) = exp(β1(z1i − z1 j ))

which does not depend on the second covariate level. Therefore, the proposed model
gives more flexibility to the relative risk.
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A semiparametric generalized PH model for right-censoring 357

Up to now, we have not made any assumption about the baseline hazard function
λ0(·), but in the following we assume an unknown functional form for the baseline
hazard function of the model, so we have a semiparametric model.

3 Estimation procedure

Consider a right-censored data sample of size n where the observed data are the iid
triplets (Xi , δi , Zi ) where Xi = min(Ti , Ci ) is the observed time with Ti and Ci the
survival and censoring time, respectively, δi = 1{Ti ≤Ci } is the indicator variable of
censoring and Zi is the vector of covariates for i = 1, . . . , n.

In this case, analogously to Cox (1972), we can construct the partial likelihood
function for the sample, and it can be written as

Ln(θ) =
n∏

i=1

⎡
⎢⎣ K (θ, zi )∑

j∈R(xi )

K (θ, z j )

⎤
⎥⎦

δi

,

where R(xi ) is the risk set at time xi , and the partial log-likelihood function is given
by

ln(θ) = ln(Ln(θ))

=
n∑

i=1

δi

⎡
⎣ln(K (θ, zi )) − ln

⎛
⎝ ∑

j∈R(xi )

K (θ, z j )

⎞
⎠

⎤
⎦ . (3)

Then, the maximum partial log-likelihood estimator of the unknown vector of para-
meters of model (2) is given by

θ̂n = (β̂n, α̂n) = arg max
θ=(β,α>0)

ln(θ), (4)

and the variance of the parameter estimator θ̂n is

var(θ̂n) = diag(Î−1
n (θ̂n)),

where În is the observed information matrix.
To obtain (4), wewould need to use numerical methods for carrying out the required

constrained (α > 0) optimization. However, the numerical algorithms are high sensi-
tive to initial values of the parameters and they fall at local optimums. To avoid it, we
consider {α1, . . . , αl} a grid for the value of the parameter α then we maximize the
partial log-likelihood function so we obtain l estimations of β, {β1, . . . ,βl}with par-
tial log-likelihood function values {ln(α1,β1), . . . , ln(αl ,βl)}. Finally, we consider
argmax{ln(α1,β1), . . . , ln(αl ,βl)} as estimations of the parameters (α,β).
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Fig. 1 Surface for partial log-likelihood function

To check how the method employed works and also if there exists an identifiable
problem for β and α, we show in Fig. 1 a surface with the values of the partial log-
likelihood function for different values of α and β1 for a data set of size 500 generated
from our model with the covariate z1 a Bernoulli of parameter 0.45 and z2 = 0 for
α = 2.5 and β1 = β2 = 1. It shows clearly that the method employed works very
well. Furthermore, we graph the level curves for the partial log-likelihood function in
Fig. 2. The true value of the parameters is the red square and the blue circle is that
which achieves the maximum value for the partial log-likelihood function. It shows
there is non-identifiability issue even if we have only one covariate.

4 Veteran’s administration lung cancer data

We present results from fitting the generalized proportional hazards model to a dataset
from the Veteran’s Administration Lung Cancer Study Clinical Trial (Kalbfleisch and
Prentice 2002). In this clinical trial, males with advanced inoperable lung cancer were
randomized to either a standard or test chemotherapy. The primary end point for
therapy comparison was time to death. Only nine out of the 137 survival times were
censored, so the censoring rate is 6.6 %. The dataset includes six covariates: treatment
(1 = standard and 2 = test), age at diagnosis (in years), Karnofsky score (from 0
to 100), diagnosis time, cell type (1 = Squamous, 2 = Small, 3 = Adenocarcinoma
and 4 = Large) and prior therapy. The primary purpose of this clinical trial was to
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Fig. 2 Level curves for partial log-likelihood function

Table 1 Fit of models for
veteran’s administration lung
cancer data

Covariate PH GLPH

Est SE Est SE

Karnofsky −0.0309 0.00518 −0.0083 0.00160

Cell type 2 0.7121 0.25274 0.1869 0.07310

Cell type 3 1.1508 0.29286 0.3100 0.09806

Cell type 4 0.3251 0.27669 0.0837 0.08006

α − – 6.5 0.98507

AIC 960.9972 962.8318

investigate whether the new chemotherapy works better or worse than the standard
chemotherapy after adjusting for other covariates. The Veteran data were used by
Kalbfleisch and Prentice (2002) to illustrate the Cox proportional hazards model and
the treatment effect was found to be non-significant. The veteran cancer data can be
obtained from the randomSurvivalForest Package of the R statistical software,
these data are called veteran.

In this example, we consider only two covariates: Karnofsky score and cell type
(factor with four levels). We fit the Cox proportional hazards model (PH) and the
generalized logit-link proportional hazards model (GLPH). In Table 1, we can see the
parameter estimates (Est) and their standard errors (SE) for the two fitted models, for
GLPH model we use parametric bootstrap with 500 replicas to obtain the SE of the
parameters. We compare the fit of the two models with the the Akaike’s entropy-based
Information Criterion (AIC). From these results, we conclude that the fit of the two
models is similar.

On the other hand, the interpretation of regression coefficients is similar in both
models. However, the interpretation of their relative risks differs. We consider two
individuals with a difference of 10 in the Karnofsky score value with the same cell
type. Under PH model the relative risk is
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exp(10β̂1) ≈ 0.73.

However, under the GLPHmodel the relative risk depends on the Cell type of the indi-
viduals. By way of illustration, we consider individuals with a difference of Karnofsky
score of 10, for example, individuals with Karnofsky score of 20 and 10, respectively:

Cell type 1 :
(
1 + exp(−10β̂1)

1 + exp(−20β̂1)

)α̂

≈ 0.75

Cell type 2 :
(
1 + exp(−10β̂1 − β̂2)

1 + exp(−20β̂1 − β̂2)

)α̂

≈ 0.77

Cell type 3 :
(
1 + exp(−10β̂1 − β̂3)

1 + exp(−20β̂1 − β̂3)

)α̂

≈ 0.78

Cell type 4 :
(
1 + exp(−10β̂1 − β̂4)

1 + exp(−20β̂1 − β̂4)

)α̂

≈ 0.76.

Note that, an individual with a Karnofsky score of 20 compared with an individual
with a Karnofsky score of 10 has lower relative risk, but now it is different depending
on the cell type. The individuals with cell type 1 have the lowest risk. The individuals
with cell type 3 have the highest risk.

On other hand, considering individuals with Karnofsky score of 100 and 90, respec-
tively (also a difference of 10 ), the relative risks are:

Cell type 1 :
(

1 + exp(−90β̂1)

1 + exp(−100β̂1)

)α̂

≈ 0.69

Cell type 2 :
(

1 + exp(−90β̂1 − β̂2)

1 + exp(−100β̂1 − β̂2)

)α̂

≈ 0.71

Cell type 3 :
(

1 + exp(−90β̂1 − β̂3)

1 + exp(−100β̂1 − β̂3)

)α̂

≈ 0.72

Cell type 4 :
(

1 + exp(−90β̂1 − β̂4)

1 + exp(−100β̂1 − β̂4)

)α̂

≈ 0.70,

thus, an individual with a Karnofsky score of 100 compared with an individual with
a Karnofsky score of 90 has lower relative risk to die than when we compare to
individuals with Karnofsky scores of 10 and 20, respectively, and this risk is different
depending on the cell type. The individuals with cell type 1 have the lowest risk. The
individuals with cell type 3 have the highest risk.

To sum up, the relative risk under the Cox model is independent from the Cell type
and also the concrete Karnofsky score since only it takes into account the difference
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between the score of the individuals. Therefore, the proposed model provides useful
information from its relative risk.

5 Asymptotic normal distribution of the parameter estimators

To make inference, we establish the asymptotic normal distribution of the parameter
estimator of the generalized proportional hazards model. To do it, we use the main
Theorem ofMurphy and van der Vaart (2000) and its Corollary 1, (see Kosorok 2008).
Note that, this theorem considers a maximum profile log-likelihood estimator and we
propose a maximum partial log-likelihood estimator, then it is necessary to verify that
both estimators are equivalent.

Consider the semiparametric model

(θ ,�0) �→ Pθ ,�0 ,

where θ is the regression parameter and �0 the cumulative hazard function in the
model (2) and Pθ ,�0 is the data distribution function. Recall that an observation with
right censoring is given by Y = (X, δ, Z) where X = min(T, C), δ = 1{T ≤C} and
Z ∈ R

d is the covariate vector. We assume that T is the survival time with cumulative
hazard function given Z

�(t |z) = �0(t)K (θ, z)

and C is a censoring time independent of T given Z and uninformative of (θ,�0).
In this case, the density function of y = (x, δ, z) is given by

pθ ,�0(y) = [λ0(x)K (θ , z)ST |Z(x |z)SC|Z(x |z)]δ[ST |Z(x |z)pC|Z(x |z)]1−δ pZ(z).

Thus, the log-likelihood for the observation y is given by

�(θ ,�0)(y) = log pθ ,�0(y) = δ[log λ0(x) + log K (θ, z)] − �0(x)K (θ , z) + c (5)

where c is a constant. Note that, the log-likelihood function depends on the parameters
θ and �0. Furthermore, in “Appendix A” it is shown that its efficient score function
for θ is

�̃θ ,�0(y) = δ(K̃ (θ , z) − h0(x)) − K (θ, z)
∫ x

0
(K̃ (θ, z) − h0(s))d�0(s), (6)

where
K̃ (θ , z) = ([K1(θ, z)]′, K2(θ , z))′ (7)

with

K1(θ, z) = αz
1 + exp(β ′z)

,

K2(θ, z) = log[K (θ, z)]

and h0 : R → R
d+1 is the least favorable direction (see “Appendix A”).
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Weconsider the log-likelihood function based on a randomsample of n observations
y1, . . . , yn which is given by

�n(θ ,�0) =
n∑

i=1

�(θ ,�0)(yi ),

then the profile log-likelihood for θ is defined as

p�n(θ) = sup
�0

�n(θ ,�0). (8)

Note that, the maximum likelihood estimator for θ , the first component of the
pair (θ̂n, �̂0) that maximizes �n(θ ,�0), is the maximizer of the profile log-
likelihood function θ �→ p�n(θ). Then, θ̃n denote themaximum profile log-likelihood
estimator.

To establish the asymptotic properties of the parameter estimates θ̃n we assume the
following:

(i) Exist τ < ∞ such that P0(C ≥ τ) = P0(C = τ) > 0, where P0 is the true
probability measure.

(ii) The observed time X ∈ [0, τ ].
(iii) Let H be all monotone increasing continuous functions �0 on [0, τ ] with

�0(0) = 0. We define Ĥ to be the set of all monotone increasing Cadlag func-
tions �0 on [0, τ ] with �0(0) = 0 and �0

0 ∈ Ĥ , where �0
0 is the true value of

the parameter.
(iv) The vector Z ∈ R

d is bounded.
(v) Let � ⊂ R

d × R
+ be a compact set such as θ0 ∈ 
, where θ0 is the true value

of the parameter.
(vi) The efficient Fisher information matrix Ĩ0 is invertible.

Theorem 1 Under regularity conditions (i)–(vi), the maximum profile log-likelihood
estimator θ̃n for the generalized proportional hazards model (2) obtained maximizing
(8) is asymptotically normal distributed as

√
n(θ̃n − θ0)

d−−−→
n→∞ N (0, Ĩ−1

0 )

where Ĩ0 = P0[(�̃θ0,�
0
0
)(�̃θ0,�

0
0
)′] with �̃θ0,�

0
0

given in (6).

Proof To apply Corollary 1 of the main result of Murphy and van der Vaart (2000)
we need to verify Conditions (8)–(11) of Murphy and van der Vaart (2000) and also
conditions of its Theorem 1.

Let us define the least favorable submodel

t �→ �t(θ,�0)
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with t ∈ R
d+1, where

�t(θ ,�0)(s) = �t(s) =
∫ s

0
(1 + (θ − t)′h0(u))d�0(u),

where h0 : R → R
d+1 is the least favorable direction at the true parameter (θ0,�

0
0).

For t small enough �t(θ ,�0) ∈ Ĥ . Moreover, we obtain

�θ (θ,�0)(·) = �θ (·) = �0(·),

that is, Condition (8) of Murphy and van der Vaart (2000) is satisfied.
The least favorable direction h0(·) is given by

h0(x) = P0[K (θ, z)1{X≥x}]
P0[K̃ (θ , z)K (θ , z)1{X≥x}]

,

with K̃ (θ , z) as (7). Details about the construction of h0(·) is given in “Appendix A”
at the end of this work.

On the other hand, we consider the map t �→ �(t, θ ,�0)(y) defined by

�(t, θ ,�0)(y) = log pt,�t (y), (9)

thus the log-likelihood for the data y under the least favorable submodel is given by

�(t, θ ,�0)(y) = δ[log((1 + (θ − t)′h0(x))λ0(x))

+ log K (t, z)] − K (t, z)
∫ x

0
(1 + (θ − t)′h0(s))d�0(s)

and its score function for t is given by

�̇(t, θ ,�0)(y) = ∂

∂t
�(t, θ ,�0)(y) (10)

= δ K̃ (t, z) −
∫ τ

0
K̃ (t, z)K (t, z)1{X≥s}(1 + (θ − t)′h0(s))d�0(s)

− δh0(x)

(1 + (θ − t)′h0(x))
+

∫ τ

0
K (t, z)1{X≥s}h0(s)d�0(s) (11)

=
∫ τ

0

(
K̃ (t, z) − h0(s)

1 + (θ − t)′h0(s)

)
dM(s), (12)

with dM(s) = d1{X≤s}δ − K (t, z)1{X≥s}(1 + (θ − t)′h0(s))d�0(s). Thus, we have

�̇(θ0, θ0,�
0
0)(y) = �̃θ0,�

0
0
(y),

this is, Condition (9) of Murphy and van der Vaart (2000) is satisfied.
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In addition, considering the likelihoodL(θ ,�0), themaximizer of�0 �→ L(θ ,�0)

has the form

�̂θ (t) =
∫ t

0

Pn[dN (u)]
Pn[1{X≥u}K (θ, z)] , (13)

with Pn the empirical distribution function and N (u) = 1{X≤u}δ. This estimator is
equivalent to the Breslow cumulative baseline hazard estimator in Cox model. Note
that, the estimator (13) depends on the parameter θ . In Theorem 5 (“Appendix B”) it

is verified that �̂
θ̃n

is uniformly consistent for �0 for any sequence θ̃n
P→ θ0. Thus,

Condition (10) of Murphy and van der Vaart (2000) is satisfied.
The non-bias Condition (11) of Murphy and van der Vaart (2000) is verified in

Lemma 6 in “Appendix B” of this work.
Finally, standard arguments allow to prove Donsker and Glivenko–Cantelli condi-

tions of Theorem 1 of Murphy and van der Vaart (2000) (see “Appendix B”).
Then, we can apply Theorem 1 of Murphy and van der Vaart (2000) and we obtain

log p�n(θ̃n) = log p�n(θ0) + (θ̃n − θ0)
′

n∑
i=1

�̃0(yi )

− 1

2
n(θ̃n − θ0)

′Ĩ0(θ̃n − θ0) + oP0(
√

n‖θ̃n − θ0‖ + 1)2

where �̃0 is the efficient score function for θ at (θ0,�0
0) given in (6) and Ĩ0 is the

efficient Fisher matrix for θ at (θ0,�0
0).

Now, assuming that Ĩ0 is invertible (Assumption iv)) and Theorem 5 of “Appendix
B”, we can apply Corollary 1 of Murphy and van der Vaart (2000) and we obtain

√
n(θ̃n − θ0)

d−−−→
n→∞ N (0, Ĩ−1

0 ),

where, the efficient Fisher matrix is given by

Ĩ0 = P0[(�̃θ0,�
0
0
)(�̃θ0,�

0
0
)′].


�

Last theorem establishes the asymptotic distribution of the maximum profile log-
likelihood estimator of the unknown parameters of model (2), but we propose to use
maximum partial log-likelihood estimator. Nevertheless, next lemma shows equiva-
lence of the partial likelihood and profile likelihood estimators.

Lemma 2 The estimator θ̃n based on the profile log-likelihood for the model (2) under
right censoring and the estimator θ̂n based on the partial log-likelihood function (3)
are equivalent.
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Proof We define the function Ni (x) = 1{Xi ≤x}δi , thus the partial likelihood function
for the sample is given by

Ln(θ) =
n∏

i=1

∏
0≤x≤τ

(
1{Xi ≥x}K (θ, zi )∑n

j=1 1{X j ≥x}K (θ, z j )

)�Ni (x)

,

the partial log-likelihood is

ln(θ) = log(Ln(θ))

=
n∑

i=1

∫ τ

0

⎛
⎝log[1{Xi ≥x}K (θ , zi )] − log

⎡
⎣ n∑

j=1

1{X j ≥x}K (θ, z j )

⎤
⎦

⎞
⎠ dNi (x),

and its score function is given by

∂

∂θ
ln(θ) = nPn

[∫ τ

0

(
K̃ (θ, z) − Pn[1{X≥x} K̃ (θ , z)K (θ , z)]

Pn[1{X≥x}K (θ, z)]

)
dN (x)

]
. (14)

On the other hand, if we consider the second term of the score efficient function
(6) and the empirical density function we have

Pn

[
−K (θ , z)

∫
[0,x]

(
K̃ (θ, z) − Pn[1{X≥x} K̃ (θ , z)K (θ , z)]

Pn[1{X≥x}K (θ, z)]

)
d�̂0(s)

]

= −
∫ τ

0

(
Pn[1{X≥x} K̃ (θ , z)K (θ , z)] −

Pn[1{X≥x}K (θ, z)]Pn[1{X≥x} K̃ (θ, z)K (θ , z)]
Pn[1{X≥x}K (θ, z)]

)
d�̂0(s)

= 0,

with �̂0(·) the estimator of the cumulative baseline hazard function. Taking the first
term of (6) we have

Pn

[
δ

(
K̃ (θ, z) − En[1{X≥x} K̃ (θ , z)K (θ , z)]

En[1{X≥x}K (θ , z)]

)]

= Pn

[∫ τ

0

(
K̃ (θ , z) − En[1{X≥x} K̃ (θ , z)K (θ , z)]

En[1{X≥x}K (θ, z)]

)
dN (x)

]
.

Thus, the estimator θ̂n and the estimator θ̃n are equivalent. 
�
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6 Simulation study

The aim of this section is to check the normality of the estimators of the covariate
effects of model (2) for finite-sample through a simulation study.

The survival times t were generated under the model

λ(t | θ , z) = λ0(t)K (θ, z),

with

K (θ, z) =
(

1

1 + exp(−β ′z)

)α

, α > 0 fixed

as

t = �−1
0

(− log(u)

K (θ, z)

)
,

where u ∼ U(0, 1) (Bender et al. (2005)). We assume that the cumulative baseline
hazard function �0 is a Weibull distribution with shape parameter γ = 3.2 and scale
parameter μ = 1.1. We consider three different experiment designs:
First Design: We consider Z′β = Z1β1 + Z2β2 + Z3β3 + Z4β4 with true values
of the parameters β0 = (0.5, 0.2, 0.3, 0.1) and α = 8, the covariates Z1, Z2 and
Z3 are binary variables that were generated from a factor of 4 levels and each level
has a probability of {0.37, 0.19, 0.30, 0.14}, respectively, and Z4 is generated from a
U(−1, 1).
Second Design: We consider Z′β = Z1β1+ Z2β2+ Z3β3 with true values of the para-
meters β0 = (0.3, 0.6, 0.1) and α = 8, the covariates Z1, Z2 and Z3 were generated
from a B(0.35), U(−1, 1) and N (1.5, 2), respectively.
Third Design: We consider Z′β = Z1β1 + Z2β2 with true values of the parameters
β0 = (2,−1) and α = 0.2, the covariates Z1 and Z2 were generated from a N (0, 1)
and U(−1, 1), respectively.

Several sample sizes n = 100, 200, 400 and different percent of censoring 15, 45
and 70 % for First and Second designs were considered and only 15 % of censoring
for Third design was considered. A total of 500 simulated datasets were generated for
each configuration of three designs.

In Sect. 5, we proved the asymptotic normality of the estimators of the covariate
effects and now we investigate this property for small and moderate sample sizes.
Therefore, we fit a generalized logit-based proportional hazard model for each one of
the 500 simulate datasets. In Tables 2, 3 and 5,we present the average and themedian of
the estimators of the covariate effects, their estimated standard errors (SE), empirical
standard errors (SEe), the p value for the Shapiro–Wilks test for testing normality by
marginals and the coverage probabilities (CP) of a 90, 95 and 99% confidence interval
by marginals, respectively. In Table 4, the p values for the Henze–Zirkler multivariate
normality test are presented for the First and Second Designs for each sample size
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Table 4 p Values for the
Henze–Zirkler test

Censoring Sample size p values Design 1 p values Design 2

15 % 100 0.000025 0.000016

200 0.000008 0.000011

400 0.183852 0.005988

45 % 100 0.000000 0.000000

200 0.010884 0.008949

400 0.125454 0.030476

70 % 100 0.000000 0.000000

200 0.000000 0.000000

400 0.118224 0.348330

and each censoring percentage. Moreover, Fig. 3 shows the estimated density plots
of the standardized parameter estimates (by marginals) to check the normality of the
estimator of β, and Fig. 4 shows the multivariate qq-plots, for sample size 400 for
First and Second designs and different censoring.

From Tables 2 and 3 it can be seen that the average of the estimates of the para-
meters is really close to the true value of the parameters for all configurations in both
designs. Furthermore, the estimated standard errors are very near to the empirical
ones. The empirical coverage probabilities appear to be quite close to the nominal
levels. Although the p values of the Shapiro–Wilks normality test increase with n for
most censoring, some p values are too small for not rejecting the normality of some
estimations, even for n = 400. This can be caused by the optimization algorithm used
that it favors one estimator over the others. However, the p values of the Henze–Zirkler
multivariate normality test (Table 4) accept the multivariate normality for n = 400.
Moreover, sometimes the results of the formal tests contradict with the impressions of
the graphical analysis. In particular for large sample sizes the blind trust on the formal
tests for normality can lead to erroneous results. Figure 3 shows that the empirical
density plots (by marginals) improve when n increases and these plots are near to a
normal density for moderate censoring, even for small sample size and Fig. 4 sup-
ports the approach to a multivariate normality distribution based on the qq-plots for
n = 400.

From Table 5, we can see that the estimation of the parameters is bad, however, it is
expected because for the Third design α is near to zero, so the model approaches to a
non-parametric model. Therefore, we should prevent to use this model for α less than
0.5 since the estimations get worse cause the model approaches to non-parametric
form.

Appendix A: The efficient score function and the least favorable direction

To find the efficient score function for the model (2), we follow the steps in the Cox
model Example of Murphy and van der Vaart (2000).
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Fig. 3 Empirical density plots for the standardized parameter estimates for sample sizes n = 100, 200 and
400 for the First and Second design with a 15 % of censoring, b 45 % of censoring and c 70 % of censoring
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Fig. 4 Multivariate qq-plots for sample sizes n = 400 for the First and Second design with a 15 % of
censoring, b 45 % of censoring and c 70 % of censoring
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The efficient score function for θ at (θ,�0
0) is defined as

�̃θ0,�
0
0
(y) = �̇θ0,�

0
0
(y) − �θ0,�

0
0
�̇θ0,�

0
0
(y) (15)

where �̇θ0,�
0
0
(y) is the score function for θ at (θ,�0

0) and�θ0,�
0
0
minimizes the squared

distance P0(�̇θ0,�
0
0

− g)2 over all functions g in the closed linear span of the score
functions for �0.

In this case, as in the Cox model, we have

�θ0,�
0
0
�̇θ0,�

0
0

= Aθ0,�
0
0
h0 (16)

h0 = (A∗
θ0,�

0
0

Aθ0,�
0
0
)−1A∗

θ0,�
0
0
�̇θ0,�

0
0

(17)

where Aθ0,�
0
0
h is the score function for �0 at (θ0,�0

0), A∗
θ0,�

0
0
is the adjoint operator

and h0 is the least favorable direction.
Then, the score function for θ of the model (2) is given by

�̇(θ,�0)(y) =
([

∂

∂β
�(θ,�0)(y)

]′
,

∂

∂α
�(θ ,�0)(y)

)′
.

From (5) we have

∂

∂β
�(θ ,�0)(y) = δK1(θ, z) − �0(x)K1(θ , z)K (θ , z),

∂

∂α
�(θ ,�0)(y) = δK2(θ, z) − �0(x)K2(θ, z)K (θ , z),

with

K1(θ, z) = αz
1 + exp(β ′z)

and

K2(θ , z) = ln[K (θ, z)].

Note that, the score function for θ can be expressed as

�̇(θ ,�0)(y) = δ K̃ (θ , z) − �0(x)K̃ (θ, z)K (θ , z), (18)

with

K̃ (θ , z) = (K1(θ , z)′, K2(θ , z))′.
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To obtain the score function for �0, we define the path

�t(x) =
∫ x

0
(1 + t′h(s))d�0(s) (19)

for t ∈ R
d+1, �0(·) given and a bounded function h : [0, τ ] → R

d+1. The path
�t(·) ∈ Ĥ if t ≈ 0. Replacing the path (19) in the log-likelihood (5) we obtain

�(θ,�t)(y) = δ[log((1 + t′h(x))λ0(x)) + log K (θ, z)]
−K (θ , z)

∫ x

0
(1 + t′h(s))d�0(s) + c,

thus, its derivative with respect to t is given by

∂

∂t
�(θ,�t)(y) = δ

h(x)

(1 + t′h(x))
− K (θ, z)

∫ x

0
h(s)d�0(s),

and taking t = 0, we can get

∂

∂t
�(θ ,�t)(y)

∣∣∣∣
t=0

= δh(x) − K (θ, z)
∫ x

0
h(s)d�0(s)

= Aθ ,�0h(y). (20)

Then, if we consider that h0 is the least favorable direction and by expressions (15),
(16), (18) and (20) the efficient score function for θ is given by

�̃θ ,�0(y) = δ(K̃ (θ , z) − h0(x)) − K (θ, z)
∫ x

0
(K̃ (θ , z) − h0(s))d�0(s).

In addition, to find the expression of the least favorable direction h0 we use (17),
so it is necessary to obtain the expressions of A∗

θ ,�0
�̇(θ ,�0)(y) and A∗

θ ,�0
Aθ ,�0(x)

where A∗
θ ,�0

is the adjoint operator characterized by

Pθ ,�0 [(Aθ,�0h)g] = �0[h(A∗
θ,�0

g)].

Using the last expression we can get

Pθ ,�0 [(Aθ,�0g)(Aθ,�0h)] = �0[g(A∗
θ,�0

Aθ ,�0h)] (21)

and

�0[(A∗
θ ,�0

�̇(θ ,�0))h] = Pθ ,�0 [�̇(θ,�0)(Aθ ,�0h)]. (22)
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First, we calculate (Aθ ,�0g)(Aθ,�0h) that it is given by

(Aθ ,�0g(y))′(Aθ ,�0h(y)) = δg(x)′h(x) − δK (θ , z)
[

g(x)′
∫ x

0
h(s)d�0(s)

+ h(x)′
∫ x

0
g(s)d�0(s)

]

+ (K (θ, z))2
(∫ x

0
g(s)d�0(s)

)′ ∫ x

0
h(s)d�0(s).

We define

a(x) = g(x)′
∫ x

0
h(s)d�0(s) + h(x)′

∫ x

0
g(s)d�0(s)

and integrating partially we have

(Aθ ,�0g(y))′(Aθ ,�0h(y))

= δg(x)′h(x) − δK (θ, z)a(x) + (K (θ, z))2
∫ x

0
a(s)d�0(s).

Furthermore, we can obtain

Pθ ,�0 [−δK (θ, z)a(x)] = −
∫ τ

0
a(x)E[(K (θ , z))21{X≥x}]d�0(x).

Therefore, we have

Pθ ,�0

[
δg(x)′h(x) − δK (θ, z)a(x) + (K (θ, z))2

∫ x

0
a(s)d�0(s)

]

= Pθ ,�0 [δg(x)′h(x)]
=

∫ τ

0
g(x)′h(x)

[∫
Rd

K (θ, z)P[T ∧ C > x |z]pZ(z)dz
]
d�0(x)

=
∫ τ

0
g(x)′E[K (θ, z)1{X≥x}]h(x)d�0(x)

= �0[g′E[K (θ, z)1{X≥x}]h].

Finally, by Eq. (21)

A∗
θ ,�0

Aθ ,�0h(y) = E[K (θ, z)1{X≥x}]h(y).

Analogously, taking the product �̇(θ ,�0)Aθ ,�0h, integrating and using (22) we have

A∗
θ ,�0

�̇(θ ,�0)(y) = E[K̃ (θ , z)K (θ , z)1{X≥x}].
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Then, we can define the least favorable direction at the true parameters (θ0,�
0
0) as

h0(x) = E0[K̃ (θ , z)K (θ , z)1{X≥x}]
E0[K (θ, z)1{X≥x}] .

Appendix B: Technical details for the proof of Theorem 1

We follow the procedure of Murphy (1994) to establish the consistency of the esti-
mators of the generalized proportional hazards model. First, we prove the following
lemmas.

Lemma 3 The estimator (13) is consistent at θ0, this is,

sup
x∈[0,τ ]

|�̂θ0(x) − �0
0(x)| a.s.→ 0,

when n → ∞.

Proof We can obtain that

sup
x∈[0,τ ]

|�̂θ0(x) − �0
0(x)| ≤ sup

x∈[0,τ ]

∣∣∣∣ 1

Pn[1{Xi ≥x}K (θ0, z)] − 1

P0[1{Xi ≥x}K (θ0, z)]
∣∣∣∣

+ sup
x∈[0,τ ]

∣∣∣∣(Pn − P0)

[
N (x)

P0[1{X≥x}K (θ0, z)]
]∣∣∣∣ .

On the other hand, the classes

{1{X≥x}K (θ , z) : x ∈ [0, τ ], θ ∈ 
}

and {
N (x)

P0[1{X≥x}K (θ , z)] : x ∈ [0, τ ], θ ∈ 


}
(23)

are Donsker, and as consequence they are Glivenko–Cantelli classes. Thus, we have

sup
x∈[0,τ ]

|(Pn − P0)[1{Xi ≥x}K (θ0, z)]| a.s.→ 0,

additionally, as P0[1{Xi ≥x}K (θ0, z)] > 0 for x ∈ [0, τ ]

sup
x∈[0,τ ]

∣∣∣∣ 1

Pn[1{Xi ≥x}K (θ0, z)] − 1

P0[1{Xi ≥x}K (θ0, z)]
∣∣∣∣ a.s.→ 0.

Moreover, as the class given in (23) is Glivenko–Cantelli we obtain

sup
x∈[0,τ ]

∣∣∣∣(Pn − P0)

[
N (x)

P0[1{X≥x}K (θ0, z)]
]∣∣∣∣ a.s.→ 0.
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Then, the stated lemma follows. 
�
Lemma 4 lim sup �̂θ (τ ) < ∞ almost surely.

Proof Under assumption (iv), there exist 0 < c < ∞ such as

||z|| < c.

We define the constant c2 such as

c2 = min||z||<c
K (θ, z)

for θ given. Thus, we obtain

Pn[1{X≥x}K (θ , z)] ≥ c2Pn[1{X≥x}],

and by the law of large numbers, almost surely we have

Pn[1{X≥x}K (θ, z)] ≥ c2P0[1{X≥x}] + oP0(1).

We assume that P0[1{X≥x}] > 0 for x ∈ [0, τ ], thus,

Pn[1{X≥x}K (θ , z)] > 0

almost surely when n → ∞. This is, the jumps of �̂θ in τ are bounded by 1/c2, thus,

0 ≤ �̂θ (τ ) ≤ O(1)Pn N (τ )/c2

almost surely when n → ∞, with N (x) = 1{X≤x}δ. 
�
Now, we can prove the following consistency theorem, where θ̃n is the maximum

profile log-likelihood estimator of model (2).

Theorem 5 The estimators of the generalized proportional hazards model (2) con-
sidering n right-censored data are consistent, this is

sup
x∈[0,τ ]

|�̂
θ̃n

(x) − �0
0(x)| and ||θ̃n − θ0||

converge to 0 almost surely when n → ∞.

Proof By Lemma 4 and Helly’s selection Theorem, we have that along of a sequence

�̂
θ̃n

(x) → �∗(x) for x ∈ [0, τ ],

where �∗(·) is a continuous non-decreasing function and θ̃n → θ∗ with θ∗ ∈ 
.
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On the other hand, because Pn[1{X≥x}K (θ , z)] > ε > 0, we have that �̂
θ̃n

(·)
is absolutely continuous with respect to �̂θ0(·) and

d�̂
θ̃n

(x)

d�̂θ0 (x)
converges to a bounded

measurable function ζ(x), this is

�∗(x) =
∫ x

0
ζ(s)d�0

0(s).

Thus,�∗(·) is absolutely continuous with respect to�0
0(·) and its derivative is denoted

by λ∗(·), moreover ζ(x) = λ∗(x)

λ00(x)
.

In addition, as (θ̃n, �̂
θ̃n

) maximize �n(θ ,�0) we have

0 ≤ 1

n

n∑
i=1

[�(θ̃n, �̂
θ̃n

)(y) − �(θ0, �̂θ0)(y)],

if n → ∞,

0 ≤ P0[�(θ∗,�∗)(y) − �(θ0,�
0
0)(y)].

By the Glivenko–Cantelli Theorem and as
d�̂

θ̃n
(x)

d�̂θ0 (x)
converges uniformly to λ∗(x)

λ00(x)
, we

can conclude that the Kullback–Leibler information between the density given by the
parameters (θ∗,�∗) and the density given by the parameters (θ0,�0

0) is negative, thus
two densities are equal almost surely. This implies that θ∗ = θ0 and �∗(·) = �0

0(·)
in [0, τ ]. Then, θ̃n → θ0 and �̂

θ̃n
(x) → �0

0(x) almost surely with x ∈ [0, τ ]. 
�

Lemma 6 Under the consistency of the estimators θ̃n and �̂
θ̃n

we have

P0[�̇(θ0, θ̃n, �̂
θ̃n

)] = oP0(‖θ̃n − θ0‖).

Proof From expression (11) we have

P0[�̇(θ0, θ̃n, �̂
θ̃n

)] =P0

[∫ τ

0
K (θ0, z)1{X≥s}(h0(s) − K̃ (θ0, z))d�̂

θ̃n
(s)

−
∫ τ

0
K̃ (θ0, z)K (θ0, z)1{X≥s}(θ̃n − θ0)

′h0(s)d�̂θ̃n
(s)

+ δ(K̃ (θ0, z) − h0(x))

1 + (θ̃n − θ0)′h0(x)
+ δ K̃ (θ0, z)(θ̃n − θ0)

′h0(x)

1 + (θ̃n − θ0)′h0(x)

]
.

Moreover, we can obtain the following equalities
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P0[K (θ0, z)1{X≥x}(h0(x) − K̃ (θ0, z))] = 0,

P0

[
δ(K̃ (θ0, z) − h0(x))

1 + (θ̃n − θ0)′h0(x)

]
= 0

and

P0

[
δ K̃ (θ0, z)(θ̃n − θ0)

′h0(x)

1 + (θ̃n − θ0)′h0(x)

]
= P0

[
δh0(x)(θ̃n − θ0)

′h0(x)

1 + (θ̃n − θ0)′h0(x)

]
.

Thus,

P0[�̇(θ0, θ̃n, �̂
θ̃n

)] = P0

[
−

∫ τ

0
K̃ (θ0, z)K (θ0, z)1{X≥s}(θ̃n − θ0)

′h0(s)d�̂θ̃n
(s)

+ δh0(x)(θ̃n − θ0)
′h0(x)

1 + (θ̃n − θ0)′h0(x)

]
. (24)

As

M(s) = N (s) −
∫ s

0
K (θ0, z)1{X≥s}(1 + (θ − θ0)

′h0(s))d�
0
0(s)

is a martingale with media 0, we have

P0[�̇(θ0, θ̃n,�0
0)] = 0

= P0

[
−

∫ τ

0
K̃ (θ0, z)K (θ0, z)1{X≥s}(θ̃n − θ0)

′h0(s)d�
0
0(s)

+ δ
h0(x)(θ̃n − θ0)

′h0(x)

1 + (θ̃n − θ0)′h0(x)

]
. (25)

Finally, from expressions (24) and (25) we have

P0[�̇(θ0, θ̃n, �̂
θ̃n

)] = P0[�̇(θ0, θ̃n, �̂
θ̃n

)] − P0[�̇(θ0, θ̃n,�0
0)]

= P0

[
−

∫ τ

0
K̃ (θ0, z)K (θ0, z)1{X≥s}(θ̃n − θ0)

′h0(s)d(�̂θ̃n
(s)

− �0
0(s)) +2δh0(x)(θ̃n − θ0)

′h0(x)

1 + (θ̃n − θ0)′h0(x)

]

= oP0(‖θ̃n − θ0‖).


�
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Lemma 7 Let V be a neighborhood of (θ0, θ0,�
0
0) where θ0 and �0

0 are the true
values of the parameter of the generalized proportional hazards model (2) considering
right-censored data and �(t, θ ,�0) the log-likelihood function for the submodel as
(9).

(i) The class of functions

{�̇(t, θ ,�0) : (t, θ ,�0) ∈ V }

is Donsker with squared-integrable envelope function.
(ii) The class of functions

{�̈(t, θ ,�0) : (t, θ ,�0) ∈ V }

is Glivenko–Cantelli and bounded in L1(P0).

Proof Let F be the set of continuous distribution functions. For ρ > 0, we define

Cρ = {P ∈ F : ‖P − P0‖∞ ≤ ρ},

where P0 is the true distribution function.
On the other hand, as the vector z is bounded (assumption iv), the class

{β ′z : β ∈ 
β}

is Donsker, with
β such as
 = 
β ×
α . As the function exp(β ′z) is differentiable
and its derivatives are bounded, the class

{exp(β ′z) : β ∈ 
β}

is Donsker. Moreover, as 1 + exp(β ′z) > 0 we have that

{
K (θ, z) =

(
1

1 + exp(−β ′z)

)α

: θ ∈ 


}
, (26)

and
{

K1(θ, z) = αz
1 + exp(β ′z)

: θ ∈ 


}

are Donsker. In addition, as f (x) = ln(x) with domain in [c,∞) where c > 0 is
Lipschitz we obtain that the class

{K2(θ , z) = ln[K (θ, z)] : θ ∈ 
}

is Donsker. Thus,

{K̃ (θ , z) : θ ∈ 
}
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is Donsker. As the class {1{X≥x} : x ∈ [0, τ ]} is Donsker, we have that the classes

{K (θ, z)1{X≥x} : x ∈ [0, τ ], θ ∈ 
}

and

{K̃ (θ , z)K (θ , z)1{X≥x} : x ∈ [0, τ ], θ ∈ 
}

are Donsker. For P ∈ Cρ , as the function P → EP [ f ] is Lipschitz, the classes

{EP [K (θ, z)1{X≥x}] : x ∈ [0, τ ], θ ∈ 
, P ∈ Cρ}

and

{EP [K̃ (θ , z)K (θ , z)1{X≥x}] : x ∈ [0, τ ], θ ∈ 
, P ∈ Cρ}

are Donsker. On the other hand, as z is bounded as θ ∈ 
, there exist m and M such
as

0 < m < K (θ, z) < M < ∞. (27)

As the function P → EP [ f ] is continuous, there exist ρ1 > 0 such as for each P ∈ Cρ

we have
EP [1{X≥x}] ≥ ρ1 > 0. (28)

From (27) and (28) we obtain

0 < ρ1m ≤ m EP [1{X≥x}] ≤ EP [K (θ, z)1{X≥x}] ≤ M EP [1{X≥x}] < ∞

thus, the class

{
1

EP [K (θ, z)1{X≥x}] : x ∈ [0, τ ], θ ∈ 
, P ∈ Cρ

}

is Donsker and in consequence the class

{
K̃ (θ, z) − EP [K̃ (θ , z)K (θ , z)1{X≥x}]

EP [K (θ, z)1{X≥x}] : x ∈ [0, τ ], θ ∈ 
, P ∈ Cρ

}
(29)

is it. As the function �0 → ∫
f d�0 is Lipschitz, the class

{∫
[0,x]

(
K̃ (θ, z) − EP [K̃ (θ , z)K (θ , z)1{X≥x}]

EP [K (θ, z)1{X≥x}]

)
d�0 : x ∈ [0, τ ], θ∈
, P∈Cρ

}

(30)
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384 M. L. Avendaño, M. C. Pardo

is Donsker. Finally, from (26), (29) and (30) we have that

{�̃(θ ,�0) : x ∈ [0, τ ], θ ∈ 
, P ∈ Cρ}

is Donsker with squared-integrable envelope function, this proves (i). Analogously,
(ii) could be proved. 
�
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