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Abstract In this study, we investigate the smoothing Hill plot and change point
test for the tail index of power-transformed and threshold generalized autoregressive
conditional heteroscedasticity (PTTGARCH) and autoregressive and moving average
(ARMA)–GARCH innovations. It is shown that their asymptotic properties are the
same as those in the i.i.d. sample case. For illustration, we provide a simulation study
and real data analysis.
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1 Introduction

Tail index estimation has long been a core issue in extreme value theory and diverse
research fields. For instance, managing the risk of extreme events is a crucial task in
finance and financial asset returns often follow heavy-tailed distributions. Since the
seminal paper of Hill (1975), Hill’s estimator has been extensively studied by many
authors: for example, seeHall (1982),Mason (1982), Hall andWelsh (1985) andDrees
et al. (2000),who focus on i.i.d. samples, andHsing (1991),Resnick andStărică (1998),
Drees (2003) and Hill (2010), who focus on dependent data. For relevant studies, we
can also refer to Csörgő et al. (1985), Feuerverger and Hall (1999), Gomes et al.
(2008), and Kim and Lee (2008). In financial time series, obtaining information on
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the tail behavior of model innovations rather than the time series itself often plays an
important role. For example, when the one-step ahead conditional value-at-risk of a
financial asset is calculated, the tail index of innovations should be estimated based
on the residuals [cf. Chan et al. (2007)]. Furthermore, in heavy-tailed autoregressive
and moving average (ARMA) models, estimating the tail index of i.i.d. innovations
enhances the accuracy of estimation [cf. Ling and Peng (2004)].

In this study, among financial time series models, we pay special attention to
the power-transformed and threshold generalized autoregressive conditional het-
eroscedasticity (PTTGARCH) and ARMA–GARCH models, considering their popu-
larity and importance in theories and applications. Fitting procedures in these models
are properly implemented with statistical softwares such as R-package ‘fGarch’. For
the relevant references for the former, we refer to Lee and Lee (2012) and the papers
cited therein. In these two models, we focus on the issues of the smoothing Hill plot
and tail index change test: the parameter estimation procedure in those models is well
established under mild moment conditions on i.i.d. innovations [cf. Pan et al. (2008)
and Zhu and Ling (2011)]. It is well known that Hill’s estimators fluctuate according
to the choice of tail sample fractions, which makes the task of selecting an appropriate
estimate difficult to accomplish in practice. As a remedy to overcome this difficulty,
here we consider the smoothing Hill plot proposed by Resnick and Stǎricǎ (1997b).
Meanwhile, the change point test for time series models has long been a core issue
in the time series context since time series often undergo parameter changes in their
underlying models due to critical social events and changes in monetary policies:
see, for instance, Kim and Lee (2009) and the papers cited therein and Quintos et al.
(2001) who propose several tests for examining tail index changes. In this study, the
smoothing method and change point test are all designed based on residuals. It will
be shown that the same asymptotic properties as in i.i.d. samples are also obtained in
PTTGARCH and ARMA–GARCH models.

The remainder of this paper is organized as follows. In Sect. 2, we present the
main results of this study: in Sect. 2.1, we review the asymptotic properties of Hill’s
estimator in i.i.d. samples; in Sects. 2.2 and 2.3, we investigate Hill’s estimators based
on residuals; in Sect. 2.4, we introduce the smoothingmethod and change point test for
the tail index. In Sects. 3 and 4, we provide a simulation study and real data analysis.
In Sect. 5, we provide the proofs of the theorems in Sect. 2.

2 Main results

2.1 A review of the asymptotic results of Hill’s estimator

In this subsection, we review the asymptotic properties of Hill’s estimator in indepen-
dent identically distributed random variables (i.i.d. r.v.s). Inwhat follows, {Ui } denotes
a sequence of i.i.d. r.v.s defined on a probability space (�,F , P) and F denotes the
common distribution of {Ui }. We assume that there exist α > 0 and a measurable
function, �, such that

1 − F(x) = x−α�(x), lim
x→∞

�(λx)

�(x)
= 1 for each λ > 0, (1)
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where α is the tail index of F . Define

Hn(ρ, s, t) := 1

�ρk�
�nt�∑

i=�ns�+1

(
logUi − logU(ρ,s,t)

)
+ , ρ > 0, k ∈ N, (2)

whereU(ρ,s,t) indicates the (�ρk(t − s)�+1)-th largest order statistic inU�ns�+1, . . . ,

U�nt�. It is assumed that k = kn varies as n → ∞, such that for some ν > 0,

nν = o(k) and k = o(n) as n → ∞. (3)

Let b(x) = inf
{
y : F(y) ≥ 1 − x−1

}
. In addition,we provide the following regularity

conditions.

Regularity conditions
There exist C > 0, γ < 0, and non-zero D ∈ R, such that

�(x) = C
(
1 + Dxγ + xγ 	(x)

)
, (4)

where 	(x) is differentiable in terms of x , with

	(x) → 0 and
d

dx
	(x) = o

(
x−1

)
as x → ∞. (5)

Furthermore, there exists a finite number, M ≥ 0, such that

lim
n→∞

√
k(b(n/k))γ = M. (6)

Remark 1 Many articles assume (4) [see Hall (1982), Hall and Welsh (1985), and
Feuerverger and Hall (1999)]. In fact, this is an example of a second-order regular
variation. In particular, we have

∫ ∞

0
e−αu �(ux)

�(x)
du − 1

α
∼ γ Dxγ

α(α − γ )
as x → ∞ (7)

[cf. Goldie and Smith (1987)]. The assumption of second-order regular variations is
necessary to investigate the asymptotic properties of several tail index estimators [see
Hsing (1991), Feuerverger and Hall (1999), and Resnick and Stărică (1997a)].

Remark 2 Under (4), we have

b(x) = C1/αx1/α
(
1 + Cγ /αD

α
xγ /α + o

(
xγ /α

))
as x → ∞. (8)

Let ν◦ = −γ /α and ν∗ = 2ν◦
2ν◦+1 . The constant M in (6) is strictly positive and finite

if and only if k ∼ δnν∗ (δ > 0) with M = δ1/2+ν◦C−ν◦ . If k = o(nν∗), M = 0.
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Theorem 1 Let 0 < ρ◦ < ρ∗ < ∞ and t0 ∈ (
0, 1

2

)
. Suppose that {Ui } is i.i.d. and

(1), (3), (4) and (6) hold. Then,

ρt
√
k

(
Hn(ρ, 0, t) − 1

α
− γ DMρ−γ /α

√
kα(α − γ )

)
d−→ 1

α
B(ρ, t) in D([ρ◦, ρ∗] × [t0, 1]),

(9)

ρ
√
k

⎡

⎣
t
(
Hn(ρ, 0, t) − 1

α
− γ DMρ−γ /α√

kα(α−γ )

)

(1 − t)
(
Hn(ρ, t, 1) − 1

α
− γ DMρ−γ /α√

kα(α−γ )

)

⎤

⎦ d−→ 1

α

(
B(ρ, t)

B(ρ, 1) − B(ρ, t)

)

(10)

in D2([ρ◦, ρ∗] × [t0, 1 − t0]), where B denotes a standard Brownian sheet.

A standard Brownian sheet B is a continuous Gaussian process with two-
dimensional parameter (ρ, t) ∈ R

2+ such that

EB(ρ1, t2) = 0, Cov(B(ρ1, t1), B(ρ2, t2)) = (ρ1 ∧ ρ2) · (t1 ∧ t2)

for all (ρ1, t1) and (ρ2, t2). The results of Theorem 1 are a sort of combinations of
Proposition 3.1 of Resnick and Stǎricǎ (1997b) and Theorem 1 ofQuintos et al. (2001).
The former deals with the case of t = 1 and the latter handles the case of fixed ρ > 0.

Below, we verify that the above theorem still holds for the residuals from
PTTGARCHandARMA–GARCHmodels.We then apply it to the smoothingHill plot
and tail index change test. For this task, we need a consistent estimator of the model
parameters that converges to the true parameter at the rate of nκ , κ > 0. In PTTGARCH
and ARMA–GARCH models,

√
n-consistent estimators are established under mild

moment conditions on innovations. For PTTGARCH models, nκ -consistent estima-
tors with κ ∈ (

0, 1
2

]
can be employed. In comparison, for ARMA–GARCH models,

the
√
n-consistency is required to include the case of ARMA–IGARCH models.

2.2 PTTGARCH models

In this subsection, we consider the power-transformed and threshold generalized
autoregressive conditional heteroscedasticity (PTTGARCH) models. Let {εi } be a
strictly stationary PTTGARCH(p, q) process satisfying the equation:

εi = σiUi ,

σ 2δ◦
i = ω◦ +

p∑

j=1

{
ψ◦
1, j (εi− j )

2δ◦
+ + ψ◦

2, j (εi− j )
2δ◦
−

}
+

q∑

j=1

β◦
j σ

2δ◦
i− j , (11)

where

123



Tail index inference for GARCH models 241

p, q ∈ N, min{δ◦, ω◦, ψ◦
1,1, ψ

◦
2,1, . . . , ψ

◦
1,p, ψ

◦
2,p, β

◦
1 , . . . , β

◦
q } > 0,

q∑

i=1

β◦
i < 1.

(12)

Note that (11) can be represented as a stochastic recurrence equation as in Pan et al.
(2008), (A.1–A.3). We assume that

E |U0|ν < ∞ for some ν

> 0 and the top Lyapunov exponent is strictly negative. (13)

Then, {εi } is the unique non-anticipative strictly stationary solution of (11) [cf.
Bougerol and Picard (1992)]: see also the appendix of Pan et al. (2008) for more
details.

PTTGARCH models include diverse variants of GARCH models. If ψ◦
1,i 
= ψ◦

2,i
for some i ∈ {1, . . . , p}, the model becomes an asymmetric GARCH model that
accommodates leverage effects; δ◦ indicates the order of the power transformation
in the conditional variance equation, which makes the PTTGARCH models include
nonlinear ARCH models with δ◦ > 0 not being equal to 1 [cf. Higgins and Bera
(1992)]. Further, ψ◦

1, j and ψ◦
2, j are the coefficients depending upon the sign of εi− j .

If
ψ◦
1, j = ψ◦

2, j =: ψ◦
j for each j = 1, . . . , p, δ◦ = 1, (14)

model (11) is reduced to a simple GARCH(p, q) process.
Suppose that ε1, . . . , εn , n ∈ N, are observed. Let θ◦

1 := (δ◦, ω◦, ψ◦
1,1, ψ

◦
2,1, . . . ,

ψ◦
1,p, ψ

◦
2,p, β

◦
1 , . . . , β

◦
q )

′ be the parameter vector of (11) and let θ̂1 be its estimator
based on ε1, . . . , εn . We assume that

there exists κ > 0 such that nκ |θ̂1 − θ◦
1| = OP (1) and

√
k = o(nκ−ν) for some ν >0,

(15)

where |·| denotes the Euclidean norm. This condition implicitly assumes that a suitable
identifiability condition is satisfied [see assumptions (A1), (A3) and (A4) in Pan et al.
(2008)].

Now, we define Hill’s estimator based on the residuals for this model. For a given

θ1 = (δ, ω,ψ1,1, ψ2,1, . . . , ψ1,p, ψ2,p, β1, . . . , βq)
′,

we recursively obtain

ĥi (θ1) = ω +
p∑

j=1

{
ψ1, j (ε̃i− j )

2δ+ + ψ2, j (ε̃i− j )
2δ−
}

+
q∑

j=1

β j ĥi− j (θ1) for i = 1, . . . , n, (16)
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where ε̃i = εi (i = 1, . . . , n) and ε̃0 = · · · = ε̃1−p = ĥ0(θ1) = · · · = ĥ1−q(θ1) = 0.

Letting ĥi = ĥi (θ̂1), we define Ũi = εi/(ĥi )1/(2δ̂) and H̃n in the same fashion as in
(2), with Ui replaced by Ũi .

Theorem 2 Assume that the conditions in Theorem 1 hold. Moreover, suppose that
(11)–(13) and (15) hold. Then, (9)–(10) with Hn replaced by H̃n are fulfilled.

2.3 ARMA–GARCH models

In this subsection, we deal with ARMA–GARCH models. Let {εi } be a strictly sta-
tionary sequence satisfying (11–13) and let {Xi } be a strictly stationary ARMA( p̄, q̄)

process, where p̄, q̄ are non-negative integers, with possibly infinite variance error
process {εi } in (11) as follows:

Xi =
p̄∑

j=1

φ◦
j Xi− j + εi −

q̄∑

j=1

ϑ◦
j εi− j for every i ∈ Z, (17)

where (φ◦
1 , . . . , φ

◦̄
p) and (ϑ◦

1 , . . . , ϑ ◦̄
q ) satisfy the following:

if 1 − φ◦
1 z − · · · − φ◦̄

pz
p̄ 
= 0 and 1 − ϑ◦

1 z − · · · − ϑ ◦̄
q z

q̄ 
= 0 for all |z| ≤ 1. (18)

Note that {Xi } is causal and invertible. Moreover, we assume (14) with

EU0 = 0, EU 2
0 < ∞, EU 2

0 ·
p∑

j=1

ψ◦
j +

q∑

j=1

β◦
j ≤ 1 (19)

to cover the case of ARMA–IGARCH models, where ‘I’ means ‘integrated’.
Suppose that X1, . . . , Xn are observed.Let θ◦

2 := (φ◦
1 , . . . , φ

◦̄
p, ϑ

◦
1 , . . . , ϑ ◦̄

q , ω◦, ψ◦
1 ,

. . . , ψ◦
p, β

◦
1 , . . . , β

◦
q )

′ be the parameter vector of (17) and let θ̂2 be its estimator based
on X1, . . . , Xn . It is assumed that

√
n|θ̂2 − θ◦

2| = OP (1) (20)

under a suitable identifiability condition [cf. Zhu and Ling (2011)]. The residual-based
estimator is defined in the following way: for a given

θ2 = (φ1, . . . , φ p̄, ϑ1, . . . , ϑq̄ , ω,ψ1, . . . , ψp, β1, . . . , βq)
′,

we recursively obtain

ε̂i (θ2) = X̃i −
p̄∑

j=1

φ j X̃i− j +
q̄∑

j=1

ϑ j ε̂i− j (θ2), (21)
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where X̃i = Xi , i = 1, . . . , n, and X̃0 = · · · = X̃1− p̄ = ε̂0(θ2) = · · · = ε̂1−q̄(θ2) =
0. Then, for ω > 0 and θ2, we define

σ̂ 2
i (θ2) = ω +

p∑

j=1

ψ j ε̂
2
i− j (θ2) +

q∑

j=1

β j σ̂
2
i− j (θ2), (22)

where ε̂20(θ2) = · · · = ε̂21−p(θ2) = σ̂ 2
0 (θ2) = · · · = σ̂ 2

1−q(θ2) = 0. Define ε̂i =
ε̂i (θ̂2), σ̂ 2

i = σ̂ 2
i (θ̂2), and Ūi = ε̂i/σ̂i as the residuals, and H̄n in the same way as in

(2), with Ui replaced by Ūi .

Theorem 3 Assume that the conditions in Theorem 1 hold. Moreover, suppose that
(11)–(14) and (17)–(20) hold. Then, (9)–(10) with Hn replaced by H̄n are satisfied.

Remark 3 Theorems 2 and 3 still holdwhen the residuals are replaced by their absolute
values, provided that (1) and (4)–(6) hold for the distribution of |U0|. In this case, the
proofs are modified slightly.

2.4 Applications of asymptotic results

In this subsection, we apply the asymptotic results from the previous subsections to
the smoothing Hill plot and tail index change test.
Smoothing Hill’s estimator
Let

H∗
n (m) = H∗

n

(
k−1m, 0, 1

)
, wherem ∈ N and H∗

n stands for H̃n or H̄n .

Then, {(m, H∗
n (m)) : m = 1, . . . ,m0} (m0 ∈ N is chosen to be suitably large) is called

the Hill plot and is used to make a proper estimate [cf. Drees et al. (2000)]. However,
it is not easy to implement when the Hill plot fluctuates significantly. In this case, we
consider a local average of Hill’s estimators. That is, we use

avH∗
n(k ; ρ0, ρ1) = 1

k(ρ1 − ρ0)

�ρ1k�∑

m=�ρ0k�+1

H∗
n (m), 0 < ρ0 < ρ1 < ∞, (23)

avH∗
n(m0,m1) = 1

m1 − m0

m1∑

m=m0+1

H∗
n (m), m0,m1 ∈ N, m0 < m1. (24)

The following is the asymptotic law of the local averages. The proof is essentially the
same as that of Proposition 4.1 of Resnick and Stǎricǎ (1997b).
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Corollary 1 Assume that (9) holds with Hn replaced by H∗
n . Let ν◦ = −γ /α and

ν∗ = 2ν◦
2ν◦+1 . Suppose that k = nν∗ . Then, for 0 < ρ0 < ρ1 < ∞, we have

α
√
k

(
avH∗

n(k ; ρ0, ρ1) − 1

α

)

d−→ N

(
− ν◦D
Cν◦(1 + ν◦)2

· ρ
1+ν◦
1 − ρ

1+ν◦
0

ρ1 − ρ0
,

2

ρ1 − ρ0

(
1 − ρ0

ρ1 − ρ0
log

ρ1

ρ0

))
.

(25)

Furthermore, if k = o(nν∗) as n → ∞, (25) still holds with the asymptotic mean 0.

Change point test for tail index
Suppose we need to test the following hypothesis:

H0 : α remains constant in i = 1, . . . , n, vs. H1 : notH0.

For ρ > 0 and t0 ∈ (
0, 1

2

)
, we define

Qrec(ρ) := sup
t0≤t≤1

{
t
√
kρ

(
H∗
n (ρ, 0, t)

H∗
n (ρ, 0, 1)

− 1

)}2

,

Q�
rec(ρ) := sup

0≤t≤1−t0

{
(1 − t)

√
kρ

(
H∗
n (ρ, t, 1)

H∗
n (ρ, 0, 1)

− 1

)}2

,

Qrol(ρ) := sup
t0≤t≤1

{
t0
√
kρ

(
H∗
n (ρ, t − t0, t)

H∗
n (ρ, 0, 1)

− 1

)}2

,

Qseq(ρ) := sup
t0≤t≤1−t0

t (1 − t)

{√
kρ

(
H∗
n (ρ, 0, t)

H∗
n (ρ, t, 1)

− 1

)}2

,

Q�
seq(ρ) := sup

t0≤t≤1−t0
t (1 − t)

{√
kρ

(
H∗
n (ρ, t, 1)

H∗
n (ρ, 0, t)

− 1

)}2

,

which are referred to as the recursive (rec), rolling (rol), and sequential (seq) tests,
respectively. For a motivation of the above test statistics, see Quintos et al. (2001). All
the three testsmeasure the discrepancy betweenHill’s estimators based on sub-samples
in different sub-periods and rejectH0 when the discrepancy is sufficiently large. The
following corollary provides the asymptotic distributions of the above statistics under
H0. Since these can be easily proven using Theorems 2 and 3 and a mapping theorem
[cf. Billingsley (1999)], we omit the detailed proofs for brevity.
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Corollary 2 Assume that (9)–(10) with Hn replaced by H∗
n hold. Then, for ρ > 0 and

t0 ∈ (
0, 1

2

)
,

Qrec(ρ)
d−→ sup

t0≤t≤1

{
B◦(t)

}2
, Q�

rec(ρ)
d−→ sup

t0≤t≤1

{
B◦(t)

}2
,

Qseq(ρ)
d−→ sup

t0≤t≤1−t0

{B◦(t)}2
t (1 − t)

, Q�
seq(ρ)

d−→ sup
t0≤t≤1−t0

{B◦(t)}2
t (1 − t)

,

Qrol(ρ)
d−→ sup

t0≤t≤1
{(B(t) − B(t − t0)) − t0B(1)}2 ,

where B denotes a standard Brownian motion and B◦(t) = B(t) − t B(1).

The above tests rely on the choice of ρ. Thus, we consider smoothing the test
statistics with respect to ρ. That is, for 0 < ρ0 < ρ1 < ∞,

avQrec(ρ0, ρ1) := 1

ρ1 − ρ0

∫ ρ1

ρ0

Qrec(ρ)dρ,

avQ�
rec(ρ0, ρ1) := 1

ρ1 − ρ0

∫ ρ1

ρ0

Q�
rec(ρ)dρ,

avQseq(ρ0, ρ1) := 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
t0≤t≤1−t0

{
t (1 − t)

√
kρ

(
H∗
n (ρ, 0, t)

H∗
n (ρ, t, 1)

− 1

)}2

dρ,

avQ�
seq(ρ0, ρ1) := 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
t0≤t≤1−t0

{
t (1 − t)

√
kρ

(
H∗
n (ρ, t, 1)

H∗
n (ρ, 0, t)

− 1

)}2

dρ.

Corollary 3 Assume that (9)–(10) with Hn replaced by H∗
n hold. Then, for 0 < ρ0 <

ρ1 < ∞ and t0 ∈ (
0, 1

2

)
,

avQrec(ρ0, ρ1)
d−→ 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
t0≤t≤1

{B◦(ρ, t)}2 dρ
ρ

,

avQ�
rec(ρ0, ρ1)

d−→ 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
1≤t≤1−t0

{B◦(ρ, t)}2 dρ
ρ

,

avQseq(ρ0, ρ1)
d−→ 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
t0≤t≤1−t0

{B◦(ρ, t)}2 dρ
ρ

,

avQ�
seq(ρ0, ρ1)

d−→ 1

ρ1 − ρ0

∫ ρ1

ρ0

sup
t0≤t≤1−t0

{B◦(ρ, t)}2 dρ
ρ

,

where B denotes a standard Brownian sheet and B◦(ρ, t) = B(ρ, t) − t B(ρ, 1).

Remark 4 Since the asymptotic laws of recursive and sequential tests are well known,
the critical values can be found in several studies [e.g., Quintos et al. (2001), Appendix,
and Csörgő and Horváth (1997), p. 25]. The critical values of the rolling test are
provided in Quintos et al. (2001). However, the critical values of the local averages,
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Table 1 The critical values of
the local average avQs

(ρ0, ρ1) t0 Nominal level

10 % 5 % 1 %

(0.5, 1) 0.1 1.39 1.71 2.45

(0.5, 1) 0.2 1.38 1.68 2.40

(0.25, 1) 0.1 1.29 1.54 2.34

(0.25, 1) 0.2 1.32 1.60 2.25

Table 2 The performance of the estimators with α = 2.5 in the PTTGARCH case

m

10 20 30 40 50 60 70

H∗
n (m) MSE 1.065 0.349 0.203 0.167 0.125 0.114 0.118

Coverage rate 0.950 0.913 0.963 0.941 0.968 0.931 0.903

avH∗
n(10, 70) MSE 0.138

Coverage rate 0.961

avQs, are unknown. Therefore, we obtain these by means ofMonte Carlo simulations.
The critical values are listed in Table 1. Note that both the smoothing method and
change point tests are still valid when we use the absolute values of the residuals, as
long as (1) and (4–6) hold for the distribution of |U0| (cf. Remark 3).

3 Simulation study

In this section, we conduct a simulation study to evaluate the performance of the
proposed methods.

Smoothing Hill’s estimator
In this study, we consider the PTTGARCH(1,1) model with parameters (δ◦, ω◦, ψ◦

1,1,

ψ◦
2,1, β

◦
1 ) = (0.8, 0.2, 0.2, 0.1, 0.4) and the AR(1)-GARCH(1,1) model with

(φ◦
1 , ω

◦, ψ◦
1 , β◦

1 ) = (0.8, 0.1, 0.1, 0.5). The innovations follow a t-distribution with
α degrees of freedom. In this case, α is the tail index of the innovations. For each
case, 1,000 series are generated. A PTTGARCH(1,1) model is fitted to each series
and the least absolute deviations estimation (LADE) residuals are obtained through
the recursion in (16) [cf. Pan et al. (2008)]. Furthermore, in the AR-GARCH case,
the AR(1)-GARCH(1,1) model is fitted and the global self-weighted quasi-maximum
exponential likelihood estimator (QMELE) residuals are obtained using (21–22) [cf.
Zhu and Ling (2011)]. Using the obtained absolute residuals, we estimate the tail index
of the innovations based on both Hill’s estimator and the smoothing method. Tables 2,
3, 4, 5 present the MSEs and coverage rates of 95 % confidence intervals. Overall, the
results look fairly reasonable and are similar to those in the i.i.d. sample case. Note
that the local averages are more accurate and yield good coverage rates without a bias
correction.
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Table 3 The performance of the estimators with α = 3.5 in the PTTGARCH case

m

10 15 20 25 30 35 40

H∗
n (m) MSE 1.329 0.690 0.450 0.431 0.393 0.391 0.370

Coverage rate 0.971 0.957 0.990 0.953 0.920 0.901 0.903

avH∗
n(10, 40) MSE 0.378

Coverage rate 0.959

Table 4 The performance of the estimators with α = 2.5 in the AR-GARACH case

m

10 20 30 40 50 60 70

H∗
n (m) MSE 1.026 0.366 0.230 0.164 0.129 0.117 0.111

Coverage rate 0.942 0.950 0.944 0.938 0.934 0.924 0.896

avH∗
n(10, 70) MSE 0.133

Coverage rate 0.949

Table 5 The performance of the estimators with α = 3.5 in the AR-GARACH case

m

10 15 20 25 30 35 40

H∗
n (m) MSE 1.369 0.784 0.610 0.502 0.450 0.447 0.430

Coverage rate 0.958 0.958 0.948 0.920 0.916 0.886 0.850

avH∗
n(10, 40) MSE 0.401

Coverage rate 0.950

Change point test for tail index
Here, we only consider the GARCH(1,1) model case as follows: θ◦ = (ω◦, ψ◦

1 , β◦
1 ) =

(0.01, 0.05, 0.5) and 0 < τ ≤ 1,

εi =
{

εi,1, i ≤ [nτ ],
εi,2, i > [nτ ],

{
εi, j = σi, j ·Ui, j ,

σ 2
i, j = ω◦ + ψ◦

1 ε2i−1, j + β◦
1 σ 2

i−1, j ,
for j = 1, 2,

where {Ui,1} and {Ui,2} follow a scaled t-distribution with degrees of freedom α1 and
α2, respectively, satisfying

E
|U0,1|

1 + |U0,1| = E
|U0,2|

1 + |U0,2| = 1

2
. (26)

We fit the GARCH(1,1) model [i.e., (14) holds] to ε1, . . . , εn using the quasi-
maximum likelihood estimator (QMLE), based on the density function h(x) =
0.5/(1 + |x |)2 instead of the standard normal density, as follows:
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Table 6 The size of change point tests for tail index at nominal level 5 % (τ = 1 and α1 = 2.1)

n Type k

40 50 60 70 80 90 100 110 120 130 140 150

1,000 Qrec 0.080 0.078 0.060 0.064 0.056 0.058 0.082 0.052 0.074 0.064 0.054 0.060

Q�
rec 0.090 0.082 0.074 0.086 0.056 0.076 0.068 0.058 0.062 0.058 0.070 0.060

Qrol 0.058 0.048 0.050 0.050 0.036 0.048 0.052 0.058 0.056 0.058 0.032 0.038

Qseq 0.118 0.104 0.096 0.068 0.066 0.060 0.046 0.048 0.040 0.056 0.060 0.056

Q�
seq 0.162 0.118 0.104 0.088 0.068 0.056 0.048 0.058 0.056 0.056 0.060 0.048

2,000 Qrec 0.114 0.090 0.102 0.084 0.094 0.068 0.058 0.064 0.068 0.060 0.046 0.062

Q�
rec 0.090 0.082 0.098 0.088 0.076 0.066 0.064 0.062 0.046 0.060 0.054 0.068

Qrol 0.054 0.038 0.052 0.078 0.068 0.056 0.046 0.052 0.044 0.044 0.042 0.044

Qseq 0.132 0.100 0.088 0.086 0.090 0.062 0.062 0.040 0.044 0.034 0.032 0.042

Q�
seq 0.146 0.116 0.116 0.098 0.086 0.082 0.080 0.076 0.074 0.070 0.066 0.066

We set t0 = 0.2 in recursive and sequential tests, t0 = 0.4 in rolling test

θ̂ = arg min
θ

n∑

i=1

{
2 log

(
1 + |εi |

σ̂i (θ)

)
+ log σ̂i (θ)

}
, σ̂i (θ) = {ĥi (θ)}1/2

[cf. Berkes and Horváth (2004), Example 2.3]. When {εi } is stationary (equiva-
lently, τ = 1),

√
n|θ̂ − θ◦| = OP (1) as n → ∞ by (26). Note that h(x) is more

suitable to deal with heavy-tailed distributions since a moment condition such as
E |U0, j |4 < ∞, j = 1, 2, is not required: the

√
n-consistency may not be guaran-

teed when the standard normal density is used unless the 4th moment condition is
imposed. We obtain the residuals using the recursion in (16) with ψ̂1,1 = ψ̂2,1 = ψ̂1,
δ̂ = 1, and (θ̂ = (ω̂, ψ̂1, β̂1)

′) and implement a test. Table 6 lists the sizes of
the change point tests when the tail of innovations is thick with α1 = 2.1 and
τ = 1. In all cases, the sizes are fairly acceptable when k is selected to be mod-
erate. On the other hand, Table 7 presents the sizes when the tail is relatively thin,
say, with α1 = 7. Here, the sizes are slightly larger than the nominal level of
5 % when n = 1, 000, which is improved as n increases to 2,000. Table 9 shows
their powers when the tail of innovations becomes thinner with α1 = 2.1, α2 = 7
and τ = 0.5. Among the tests, Q�

rec and Qseq appear to be the most powerful.
On the other hand, Table 10 lists the powers when the tail becomes thicker with
α1 = 7 and α2 = 2.1. In this case, Qrec and Q�

seq are the most powerful. These
results show that the recursive and sequential tests have asymmetric powers, whereas
the rolling test has symmetric power similarly to the i.i.d. case [cf. Quintos et al.
(2001)].

We also investigate the performance of the local averages. Table 8 illustrates their
sizes at the nominal level of 5%. They are seemingly acceptable although both avQseq
and avQ�

seq have sizes slightly larger than 5%. Table 11 shows their powers in the same
cases as in the previous study. The results show that the local averages perform better
regardless of ρ. The performance of the tail index estimator, local average method,
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Table 7 The size of change point tests for tail index at nominal level 5 % (τ = 1 and α1 = 7)

n Type k

40 50 60 70 80 90 100 110 120 130 140 150

1,000 Qrec 0.080 0.076 0.082 0.086 0.086 0.098 0.070 0.098 0.088 0.082 0.090 0.094

Q�
rec 0.094 0.096 0.088 0.096 0.082 0.084 0.088 0.092 0.082 0.078 0.080 0.078

Qrol 0.070 0.056 0.074 0.054 0.078 0.078 0.076 0.072 0.070 0.082 0.086 0.098

Qseq 0.084 0.074 0.048 0.054 0.058 0.050 0.054 0.050 0.058 0.048 0.058 0.048

Q�
seq 0.128 0.090 0.096 0.100 0.090 0.074 0.066 0.062 0.068 0.060 0.054 0.064

2,000 Qrec 0.078 0.074 0.044 0.052 0.050 0.044 0.066 0.074 0.062 0.058 0.044 0.032

Q�
rec 0.072 0.056 0.046 0.050 0.070 0.052 0.050 0.058 0.058 0.048 0.042 0.040

Qrol 0.032 0.038 0.036 0.048 0.042 0.050 0.044 0.062 0.056 0.040 0.038 0.044

Qseq 0.096 0.060 0.068 0.050 0.048 0.038 0.032 0.058 0.038 0.038 0.030 0.024

Q�
seq 0.144 0.108 0.082 0.080 0.066 0.066 0.044 0.044 0.050 0.040 0.036 0.036

We set t0 = 0.2 in recursive and sequential tests, t0 = 0.4 in rolling test

Table 8 The size of local
averages at nominal level 5 %
(τ = 1)

We set
k = 120, ρ0 = 0.5, ρ1 = 1 and
t0 = 0.2

n α1 avQrec avQ�
rec avQseq avQ�

seq

1,000 7 0.036 0.030 0.070 0.072

2.1 0.040 0.044 0.088 0.078

2,000 7 0.036 0.032 0.064 0.078

2.1 0.062 0.048 0.088 0.084

Table 9 The power of change point tests for tail index at nominal level 5 % (τ = 0.5, α1 = 2.1, α2 = 7).

n Type k

40 50 60 70 80 90 100 110 120 130 140 150

1,000 Qrec 0.29 0.36 0.40 0.49 0.50 0.58 0.53 0.59 0.63 0.65 0.63 0.64

Q�
rec 0.66 0.70 0.63 0.66 0.66 0.70 0.73 0.67 0.63 0.64 0.66 0.65

Qrol 0.23 0.30 0.33 0.42 0.38 0.38 0.42 0.47 0.44 0.44 0.43 0.52

Qseq 0.70 0.79 0.75 0.76 0.71 0.76 0.78 0.69 0.68 0.71 0.68 0.69

Q�
seq 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.02 0.01 0.01

2,000 Qrec 0.16 0.25 0.27 0.38 0.46 0.49 0.60 0.57 0.62 0.66 0.69 0.75

Q�
rec 0.90 0.89 0.94 0.95 0.93 0.93 0.91 0.89 0.95 0.93 0.91 0.92

Qrol 0.48 0.55 0.59 0.63 0.68 0.72 0.82 0.82 0.80 0.80 0.80 0.80

Qseq 0.89 0.89 0.89 0.92 0.94 0.95 0.92 0.93 0.93 0.91 0.91 0.90

Q�
seq 0.03 0.03 0.01 0.01 0.03 0.05 0.06 0.08 0.11 0.15 0.19 0.25

We set t0 = 0.2 in recursive and sequential tests, t0 = 0.4 in rolling test

and change point test might depend upon the choice of GARCH parameter estimators.
However, our past experience indicates that the result is not much affected as far as
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Table 10 The power of change point tests for tail index at nominal level 5% (τ = 0.5, α1 = 7, α2 = 2.1)

n Type k

40 50 60 70 80 90 100 110 120 130 140 150

1,000 Qrec 0.55 0.66 0.66 0.61 0.61 0.65 0.71 0.59 0.61 0.61 0.59 0.59

Q�
rec 0.23 0.27 0.37 0.47 0.43 0.52 0.54 0.52 0.60 0.59 0.62 0.57

Qrol 0.19 0.32 0.37 0.41 0.40 0.45 0.47 0.50 0.53 0.54 0.55 0.50

Qseq 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.03 0.05

Q�
seq 0.76 0.74 0.74 0.73 0.76 0.73 0.74 0.72 0.69 0.71 0.71 0.66

2,000 Qrec 0.85 0.81 0.88 0.90 0.91 0.93 0.94 0.93 0.94 0.95 0.92 0.92

Q�
rec 0.21 0.19 0.29 0.34 0.38 0.56 0.52 0.60 0.65 0.67 0.77 0.75

Qrol 0.43 0.51 0.62 0.70 0.69 0.72 0.70 0.77 0.76 0.79 0.82 0.81

Qseq 0.03 0.01 0.01 0.01 0.01 0.00 0.04 0.07 0.09 0.10 0.13 0.21

Q�
seq 0.81 0.82 0.85 0.87 0.91 0.90 0.95 0.95 0.94 0.94 0.95 0.95

We set t0 = 0.2 in recursive and sequential tests, t0 = 0.4 in rolling test

Table 11 The power of local
averages at nominal level 5 %
(τ = 0.5)

We set
k = 120, ρ0 = 0.5, ρ1 = 1, and
t0 = 0.2

n α1 α2 avQrec avQ�
rec avQseq avQ�

seq

1,000 7 2.1 0.67 0.57 0.09 0.86

2.1 7 0.57 0.67 0.83 0.09

2,000 7 2.1 0.94 0.70 0.37 0.97

2.1 7 0.53 0.92 0.93 0.27

the estimators behave regularly (
√
n-consistent). Overall, our simulation confirms the

validity of our methods in both the smoothing Hill plot and change point test.

4 Real data analysis

Smoothing Hill Plot for Hang Seng Index
We analyze the data set ε1, . . . , εn of the daily Hang Seng Index from January 2,
2001 to December 31, 2003 (n = 739). Pan et al. (2008) fitted a PTTGARCH(1,1)
model to the same data and estimated the tail index of the absolute innovations using
the absolute values of the residuals. However, since the reciprocals of Hill’s estimates
fluctuate from 3.5 to 5 as k changes from 1 to 100, it is difficult to select an appropriate
estimate [see Figure 6 in Pan et al. (2008)]. Therefore, we apply the smoothingmethod.
Table 12 list the standard errors and 95% confidence intervals obtained from (25) with
assuming M = 0 in (6). The results show that the innovation has a finite third moment
and an infinite sixth moment.

Change point analysis of tail behavior for Kuala Lumpur composite index
We next perform a change point test for the data set ε1, . . . , εn of the daily Kuala
Lumpur Composite Index from January 2, 1995 to October 16, 1998. Here, the sample
size is n = 935. Quintos et al. (2001) analyzed this data set and demonstrated that
the tail index of daily returns significantly decreases around the Asian financial crisis
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Table 12 Smoothing Hill’s
estimates for the real data (*
confidence level: 95 %)

Estimate Standard error Confidence
interval*

1/avH∗
n(10, 70) 4.467 0.670 (3.329, 5.995)

1/avH∗
n(20, 80) 4.575 0.613 (3.519, 5.948)

1/avH∗
n(30, 90) 4.446 0.546 (3.497, 5.653)

1/avH∗
n(40, 100) 4.281 0.488 (3.424, 5.351)

Table 13 The values of the test statistics for the real data (bold figures indicate significance at level 5 %)

Type k

40 50 60 70 80 90

Upper tail Qrec 0.772 1.428 0.568 0.776 1.197 1.270

Q�
rec 0.650 0.830 1.164 0.997 1.628 5.614

Qrol 4.392 0.966 1.473 0.946 1.681 1.226

Qseq 0.985 1.948 1.459 2.354 2.688 5.510

Q�
seq 2.219 5.466 3.224 6.049 7.229 23.265

Lower tail Qrec 1.459 0.642 0.376 0.478 0.607 0.379

Q�
rec 0.789 1.140 1.111 0.858 0.178 0.291

Qrol 2.386 1.389 1.142 0.825 1.667 2.990

Qseq 7.685 8.655 4.315 2.194 1.060 1.011

Q�
seq 2.150 2.217 1.734 1.162 1.100 1.568

Tail of absolute residuals Qrec 0.321 0.177 0.264 0.632 0.818 1.032

Q�
rec 1.124 2.407 1.338 0.279 0.544 0.633

Qrol 0.631 1.246 1.058 1.015 1.093 2.338

Qseq 3.595 3.755 1.936 0.570 2.278 4.032

Q�
seq 1.405 1.559 1.043 0.408 1.157 1.769

t0 = 0.214 in recursive and sequential tests, t0 = 0.428 in rolling test

Table 14 The values of the
local averages (k = 90, ρ0 =
0.5, ρ1 = 1, t0 = 0.214)

avQrec avQ�
rec avQseq avQ�

seq

Upper tail 0.756 1.436 0.554 1.579

Lower tail 0.631 0.794 0.714 0.315

Tail of absolute residuals 0.821 0.555 0.464 0.228

period in 1997, that is, the tail gets thicker after the crisis. To see the tail index change
of innovations, a GARCH(1,1) model is fitted to the returns and the QMLE is obtained
based on the power density h(x) = 0.5/(1 + |x |)2 [cf. Berkes and Horváth (2004),
Example 2.3], that is, (ω̂, ψ̂1, β̂1) = (0.0118, 0.0534, 0.8012). Then, the residuals
are obtained using the recursion in (16) with ψ̂1,1 = ψ̂2,1 = ψ̂1 and δ̂ = 1. Table 13
reveals that the test statistics and significance at the 5 % level depend upon both k
and the type of tests. Therefore, we employ the smoothing method and obtain the
results in Table 14. These results indicate that none of them rejectH0 at the 5 % level.
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Since this confirms the constancy of the tail index, there are other possible reasons
for the increased volatility at the Asian financial crisis period. First, maybe the returns
follow an IGARCH(1,1) model: note that the second moment of the innovations is

estimated to be 4.05 and ̂EU 2
0 · ψ̂1 + β̂1 = 4.05 · 0.0534 + 0.801 ≈ 1. Second,

the GARCH parameters may experience a change and cause a spurious integration
[cf. Hillebrand (2005)], since the tail index of GARCH(1,1) models is determined by
both the innovation distribution and the GARCH parameters [cf. Mikosch and Stărică
(2000), Theorem 2.1]. To get a conclusive answer, a more detailed analysis would be
required. Since this is beyond the scope of this study, we leave it as a task of our future
study.

5 Proofs

In what follows, K denotes a universal positive constant. Let Fi = σ {. . . ,Ui−1,Ui }
and let Ei ( · ) = E( · |Fi ) be the conditional expectation with respect toFi . The proofs
of all the lemmas in this section are provided in the supplementary material.

5.1 Preliminary results

In this subsection, we assume that {Ui } is a sequence of i.i.d. r.v.s and (1–6) hold.
Further, Nm (m ∈ N) and B denote an m-variate normal distribution and a standard
Brownian sheet, respectively. Let G(y, t) be a continuous Gaussian process defined
on (y, t) ∈ [0,∞) × [0, 1] such that

• For 0 ≤ s < t ≤ 1 and 0 = y0 < y1 < · · · , ym < ∞ (m ∈ N),

(G(y1, t) − G(y0, t), . . . ,G(ym, t) − G(ym−1, t))
′ ∼ Nm(0, tα−2ϒ), (27)

where

ϒ := ϒ(y1, . . . , ym) =
⎛

⎜⎝
τ1,1 · · · τ1,m
...

. . .
...

τ1,m · · · τm,m

⎞

⎟⎠

with τi,i := 2
(
yi − yi−1 − yi−1 log

yi
yi−1

)
and τi, j := (yi − yi−1) log

y j
y j−1

(con-

ventionally, 0 · log(∞) = 0),
• For 0 ≤ s < t ≤ 1, A(t) − A(s) and A(s) are independent, where

A(u) = (G(y1, u),G(y2, u), . . . ,G(ym, u)) , u ∈ [0, 1].

In this subsection, we provide three propositions that play a prominent role in
proving Theorem 1. In what follows, let y∗ > 1 and
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M∗
n (y, t) := 1√

k

�nt�∑

i=1

{
I
(
Ui ≥ y−1/αb(n/k)

)
− P

(
Ui ≥ y−1/αb(n/k)

)}

for 0 ≤ y ≤ y∗ and t ∈ [0, 1]. The following lemma is useful to verify Proposition 1
below.

Lemma 1

lim
n→∞ sup

0≤y1<y≤y∗

∣∣∣∣∣∣
n

k

P
(
y−1/α ≤ U1/b(n/k) < y−1/α

1

)

y − y1
− 1

∣∣∣∣∣∣
= 0.

In what follows, we use the symbols:

M∗
n (B) = M∗

n (y2, t2) − M∗
n (y1, t2) − M∗

n (y2, t1) + M∗
n (y1, t1)

with B = (y1, y2] × (t1, t2] and Tn = {i/n : i = 1, 2, . . . , n}.
Proposition 1 There exist K1 = K1(y∗) > 0 and n0 ∈ N such that for every n ≥ n0,

E
({

M∗
n (B1)

}2 {
M∗

n (B2)
}2) ≤ K1(y2 − y)(y − y1)(t2 − t1)

2, (28)

E
({

M∗
n (B3)

}2 {
M∗

n (B4)
}2) ≤ K1(y2 − y1)

2(t − t1)(t2 − t) (29)

with

B1 = (y1, y] × (t1, t2], B2 = (y, y2] × (t1, t2],
B3 = (y1, y2] × (t1, t], B4 = (y1, y2] × (t, t2],

where 0 ≤ y1 < y < y2 ≤ y∗ and t1 < t < t2 lie in Tn. Further, for t ∈ [0, 1] and
0 = y0 < y1 < · · · < ym ≤ y∗ (m ∈ N),

⎛

⎜⎝
M∗

n (y1, t) − M∗
n (y0, t)

...

M∗
n (ym, t) − M∗

n (ym−1, t)

⎞

⎟⎠
d−→ Nm (0 , t · diag{y1 − y0, · · · , ym − ym−1}) .

(30)
Hence,

M∗
n (y, t)

d−→ B(y, t) in D([0, y∗] × [0, 1]). (31)

Proof Following the arguments in the proof of Proposition 2.1 of Resnick and Stǎricǎ
(1997b) and using Lemma 1, we can easily see that (28) holds. Further, (29) is easy
to check owing to the independence. This indicates that {M∗

n } is tight [cf. Bickel and
Wichura (1971), Theorem 3, and the appended comment]. Since (30) is easy to check
using standard arguments, the proposition is validated. ��
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For y ≥ 0, set

Zni (y) :=
(
logUi − log b(n/k) + 1

α
log y

)

+
and

L∗
n(y, t) := 1√

k

�nt�∑

i=1

{Zni (y) − EZni (y)} . (32)

The following results are useful to prove Proposition 2 below:

Lemma 2 Let y∗ > 1. Then, as n → ∞,

E{Zni (y2) − Zni (y1)} ∼ k

αn
(y2 − y1) , (33)

E{Zni (y2) − Zni (y1)}2 ∼ 2k

α2n

(
y2 − y1 − y1 log

y2
y1

)
, (34)

E{Zni (y2) − Zni (y1)}3 ∼ 3k

α3n

(
2y2 − y1 − y1

(
log

y2
y1

+ 1

)2
)

, (35)

E{Zni (y4) − Zni (y3)}{Zni (y2) − Zni (y1)} ∼ k

α2n

(
log

y4
y3

)
(y2 − y1), (36)

E{Zni (y4) − Zni (y3)}2{Zni (y2) − Zni (y1)}2 ∼ 2k

α2n

(
log

y4
y3

)2

×
(
y2 − y1 − y1 log

y2
y1

)
(37)

uniformly in 0 ≤ y1 < y2 ≤ y3 < y4 < y∗.

We set

L∗
n(B) = L∗

n(y2, t2) − L∗
n(y1, t2) − L∗

n(y2, t1) + L∗
n(y1, t1)

with B = (y1, y2] × (t1, t2].

Proposition 2 Let 0 < y◦ < y∗ < ∞. Then, there exist K1 = K1(y◦, y∗) > 0 and
n0 ∈ N, such that for every n ≥ n0,

E
({

L∗
n(B1)

}2 {
L∗
n(B2)

}2) ≤ K1(y2 − y)(y − y1)(t2 − t1)
2, (38)

E
({

L∗
n(B3)

}2 {
L∗
n(B4)

}2) ≤ K1(y2 − y2)
2(t − t1)(t2 − t) (39)

for
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B1 = (y1, y] × (t1, t2], B2 = (y, y2] × (t1, t2],
B3 = (y1, y2] × (t1, t], B4 = (y1, y2] × (t, t2],

where 0 ≤ y1 < y < y2 ≤ y∗ and t1 < t < t2 lie in Tn. Further, for t ∈ [0, 1] and
0 = y0 < y1 < · · · < ym ≤ y∗ (m ∈ N),

(
L∗
n(y1, t) − L∗

n(y0, t), . . . , L
∗
n(ym, t) − L∗

n(ym−1, t)
)

d−→ Nm

(
0 , tα−2ϒ(y1, . . . , ym)

)
. (40)

Hence,

L∗
n(y, t)

d−→ G(y, t) in D ([y◦, y∗] × [0, 1]) . (41)

Proof The proof is omitted since it is essentially the same as that of Proposition 1.
��

Proposition 3 Let 0 < y◦ < y∗ < ∞. Then,

L∗
n(y, t) − α−1M∗

n (y, t)
d−→ α−1B(y, t) in D ([y◦, y∗] × [0, 1]) . (42)

Proof Since {L∗
n(y, t) − α−1M∗

n (y, t)} is tight, it suffices to show that every finite-
dimensional distribution of L∗

n(y, t) − α−1M∗
n (y, t) converges weakly to the corre-

sponding finite-dimensional distribution of α−1B. Let t ∈ [0, 1], 0 = y0 < y1 <

· · · , ym ≤ y∗ (m ∈ N), and let

Y i =
(
L∗
n(yi , t) − L∗

n(yi−1, t), α
−1 {M∗

n (yi , t) − M∗
n (yi−1, t)

}) ′,

Ri = v′Y i , v = (1,−1) ′.

Then, we can easily check that

⎛

⎜⎝
Y1
...

Ym

⎞

⎟⎠
d−→ N2m

⎛

⎜⎝0,

⎛

⎜⎝
�1 · · · �1,m
...

. . .
...

�1,m
′ · · · �m

⎞

⎟⎠

⎞

⎟⎠ ,

where

�i := t

α2

(
2
(
yi − yi−1 − yi−1 log

yi
yi−1

)
yi − yi−1 − yi−1 log

yi
yi−1

yi − yi−1 − yi−1 log
yi

yi−1
yi − yi−1

)
,

�i, j := t

α2

(
(yi − yi−1) log

y j
y j−1

0

(yi − yi−1) log
y j

y j−1
0

)
.

Thus,

(R1, . . . , Rm) ′ d−→ Nm

(
0, tα−2 · diag{y1 − y0, · · · , ym − ym−1}

)
.
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Further, we also have that the limit process of

An(s) =
(
L∗
n(y1, s) − α−1M∗

n (y1, s), . . . , L
∗
n(ym, s) − α−1M∗

n (ym, s)
)

has stationary and independent increments. Hence, the proposition is established. ��

5.2 The proof of theorem 1

In this subsection, we assume that (1)-(6), (31), (41), and (42) hold. Further, it is
assumed thatM ∈ [0,∞) in (6). Here, we do not require the independence assumption
on {Ui }.

For ζ ∈ R, ρ > 0, and 0 ≤ s < t ≤ 1, set

Ln(ρ, ζ, s, t) = 1√
k

�nt�∑

i=�ns�+1

{(
logUi − log b

(
n

ρk

)
− ζ√

k

)

+

−E

(
logUi − log b

(
n

ρk

)
− ζ√

k

)

+

}
,

Mn(ρ, ζ, s, t) = 1

α
√
k

�nt�∑

i=�ns�+1

{
I

(
Ui ≥ eζ/

√
kb

(
n

ρk

))

−P

(
Ui ≥ eζ/

√
kb

(
n

ρk

))}
,

Wn(ρ, s, t) = √
k

{
logU(ρ,s,t) − log b

(
n

ρk

)}
.

Below,we state a series of standard lemmas useful to proveTheorem1: Lemmas 3, 4
and 5, andLemmas 6 and7 are used to proveLemmas 4, 7, andTheorem1, respectively.

Lemma 3 Let ρ∗ > 0. Then,

log b

(
n

ρk

)
= log b(n/k) − 1

α
log ρ + MD

α
√
k
(ρ−γ /α − 1) + o

(
1√
k

)

uniformly in 0 < ρ ≤ ρ∗.

Lemma 4 Let ζ ∈ R and 0 < ρ◦ < ρ∗ < ∞. Then,

Wn(ρ, s, t) ≥ ζ if and only if Mn(ρ, ζ, s, t) ≥ ζρ(t − s) + o(1) (43)
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uniformly in ρ◦ < ρ < ρ∗ and 0 ≤ s < t ≤ 1 with t − s > 1/
√
k. Further, for any

K > 0 and ε > 0,

lim
n→∞ P

(
sup

ρ◦≤ρ≤ρ∗
sup

−K≤ζ≤K
sup

t∈[0,1]
∣∣Ln(ρ, ζ, 0, t) − L∗

n(ρ, t)
∣∣ > ε

)
= 0, (44)

lim
n→∞ P

(
sup

ρ◦≤ρ≤ρ∗
sup

−K≤ζ≤K
sup

t∈[0,1]

∣∣∣Mn(ρ, ζ, 0, t) − α−1M∗
n (ρ, t)

∣∣∣ > ε

)
= 0, (45)

and

lim
δ→0

lim sup
n→∞

P

(
sup

δ

|Ln(ρ1, 0, 0, s) − Ln(ρ2, 0, 0, t)| > ε

)
= 0, (46)

where the supremum is taken over |(ρ1, s) − (ρ2, t)| ≤ δ with ρ◦ < ρ1 ≤ ρ2 < ρ∗.
Hence, {Ln(ρ, 0, 0, t) : (ρ, t) ∈ [ρ◦, ρ∗] × [0, 1]} is tight.

Lemma 5 Let 0 < ρ◦ < ρ∗ < ∞ and t0 ∈ (0, 1). Then, {ρtWn(ρ, 0, t) : (ρ, t) ∈
[ρ◦, ρ∗]× [t0, 1]} and {ρ(1− t)Wn(ρ, t, 1) : (ρ, t) ∈ [ρ◦, ρ∗]× [0, 1− t0]} are tight.

Lemma 6 Let 0 < ρ◦ < ρ∗ < ∞ and K > 0. Then,

E

(
logUi − log b

(
n

ρk

)
− ζ√

k

)

+
= ρk

n

{
1

α
− ζ√

k
+ γ DM√

kα(α − γ )
ρ−γ /α

+o

(
1√
k

)}
(47)

uniformly in ζ ∈ [−K , K ] and ρ◦ ≤ ρ ≤ ρ∗.

Lemma 7 Let 0 < ρ◦ < ρ∗ < ∞. Then,

Ln(ρ, 0, 0, t) − ρtWn(ρ, 0, t)
d−→ 1

α
B(ρ, t) in D([ρ◦, ρ∗] × [t0, 1]),

(
Ln(ρ, 0, 0, t) − ρtWn(ρ, 0, t)

Ln(ρ, 0, t, 1) − ρ(1 − t)Wn(ρ, t, 1)

)
d−→ 1

α

(
B(ρ, t)

B(ρ, 1) − B(ρ, t)

)
,

in D2([ρ◦, ρ∗] × [t0, 1]).

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We only prove (9) since (10) can be proven similarly. FromLem-
mas 5 and 6, we have

Ln(ρ,Wn(ρ, 0, t), 0, t)

= ρt
√
k

(
Hn(ρ, 0, t) − 1

α
+ Wn(ρ, 0, t)√

k
− γ DM√

kα(α − γ )
ρ−γ /α + oP

(
1√
k

))
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uniformly in ρ◦ < ρ < ρ∗ and t ∈ [t0, 1]. Thus, from (44) and Lemma 5, we get

ρt
√
k

(
Hn(ρ, 0, t) − 1

α
− γ DMρ−γ /α

√
kα(α − γ )

)

= Ln(ρ,Wn(ρ, 0, t), 0, t) − ρtWn(ρ, 0, t) + oP (1)

= Ln(ρ, 0, 0, t) − ρtWn(ρ, 0, t) + oP (1)

uniformly in ρ◦ < ρ < ρ∗ and t ∈ [t0, 1]. Hence, the lemma is asserted by Lemma 7.
��

5.3 Proof of theorem 2

In this subsection, we assume that (1–6), (11–13), and (15) hold. We first verify the
following proposition.

Proposition 4 Let 0 < y < ȳ < ∞. Then,

sup
y<y<ȳ

sup
0≤t≤1

1√
k

∣∣∣∣∣∣

�nt�∑

i=1

{
I
(
Ui ≥ y− 1

α b(n/k)
)

− I
(
Ũi ≥ y− 1

α b(n/k)
)}

∣∣∣∣∣∣
= oP (1),

(48)

sup
y<y≤ȳ

sup
0≤t≤1

1√
k

∣∣∣∣∣∣

�nt�∑

i=1

{(
logUi − log y− 1

α b(n/k)
)

+

−
(
log Ũi − log y− 1

α b(n/k)
)

+

}∣∣∣∣ = oP (1). (49)

Note that Proposition 4 implies Theorem 2 under (1–6). Letting

M̃∗
n (y, t) := 1√

k

�nt�∑

i=1

{
I
(
Ũi ≥ y−1/αb(n/k)

)
− P

(
Ui ≥ y−1/αb(n/k)

)}
,

L̃∗
n(y, t) := 1√

k

�nt�∑

i=1

{(
log Ũi − log y−1/αb(n/k)

)

+ − E
(
logUi − log y−1/αb(n/k)

)

+

}
,

owing to (31), (41), (42), and Proposition 4, we can see that

M̃∗
n (y, t)

d−→ B(y, t), L̃∗
n(y, t)

d−→ G(y, t) in D([y, ȳ] × [0, 1]),
L̃∗
n(y, t) − α−1M̃∗

n (y, t)
d−→ α−1B(y, t) in D

(
[y, ȳ] × [0, 1]

)
.

Thus, Theorem 2 can be established by following the lines in the proof of Theorem 1
with M∗

n and L∗
n replaced with M̃∗

n and L̃∗
n , respectively.
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Below, we only prove (48) since (49) can be proved in essentially the same way.
For brevity, we remove the subscript from θ1 and θ̂1, that is, θ and θ̂ , respectively. Let

B = B(θ) =
[

β1×(q−1) βq

I(q−1)×(q−1) 0(q−1)×1

]
,

where β1×(q−1) = (β1, · · · , βq−1), I(q−1)×(q−1) denotes the (q−1)×(q−1) identity
matrix, and 0(q−1)×1 denotes the (q − 1) × 1 zero matrix. Set B◦ = B(θ◦), and let
{hi (θ) : i ∈ Z} be the unique strictly stationary sequence satisfying

⎡

⎢⎣
hi (θ)

...

hi−q+1(θ)

⎤

⎥⎦ = B

⎡

⎢⎣
hi−1(θ)

...

hi−q(θ)

⎤

⎥⎦ +
[

ω + ∑p
j=1 f j (εi− j )

0

]
,

where f j (x) = ψ1, j (x)2δ+ + ψ2, j (x)2δ− . From this, we get

hi (θ) = ω

∞∑

j=0

B j (1, 1) +
∞∑

j=0

B j (1, 1)
p∑

l=1

fl(εi− j−l),

where B j (a, b) denotes the (a, b)-th entry of B j . Finally, we set

Nn(η) =
{
θ : |θ − θ◦| ≤ η

nκ

}
and N−

n (η) = Nn(η) − {θ◦}, η > 0,

which is a shrinking neighborhood of θ◦ of order n−κ .
The following two standard lemmas (Lemmas 9 and 10) are useful to prove

Lemma 11 below and can be verified using (4.3), the arguments up to (4.6) in Francq
and Zakoïan (2004), and Lemma 8:

Lemma 8 There exists s > 0 such that E |ε0|s < ∞.

Lemma 9 Let η > 0. Then, there exist r ∈ (0, 1) and K > 0, such that for large n,

sup
θ∈Nn(η)

B j (1, b) ≤ Kr j for j ∈ N and b = 1, 2, . . . , q, (50)

and there exists a sequence of positive Fi -measurable r.v.s {Vi } such that EV ν
i < ∞

for some ν > 0, and
sup

θ∈Nn(η)

hi (θ) ≤ Vi . (51)

Lemma 10 There exists r ∈ (0, 1) and aF0-measurable r.v. V ≥ 0, such that EV ν <

∞ for some ν > 0 and for large n,

sup
θ∈Nn(η)

∣∣∣ĥi (θ) − hi (θ)

∣∣∣ ≤ r i V .
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Let hi = hi (θ
◦). Then, we can express

hi − hi (θ) = ω◦
∞∑

j=0

B j◦ (1, 1) − ω

∞∑

j=0

B j (1, 1)

+
∞∑

j=0

p∑

l=1

B j◦ (1, 1)
{
f ◦
l (εi− j−l) − fl(εi− j−l)

}

+
∞∑

j=0

p∑

l=1

{
B j◦ (1, 1) − B j (1, 1)

}
fl(εi− j−l),

where f ◦
j (x) = ψ◦

1, j (x)
2δ◦+ +ψ◦

2, j (x)
2δ◦− . Lemma 12 below plays a crucial role to allow

an approximation of h1(θ) to h1 while θ stays in a shrinking neighborhood of θ◦. The
following lemma is useful to verify Lemma 12 that is used to establish Lemma 13
below.

Lemma 11 Let ε > 0. For each j ∈ N,

{B((1 + ε)θ◦)} j (1, 1) ≤ (1 + ε) j B j◦ (1, 1), (52)

and there exists n0 ∈ N such that for n ≥ n0 and j ∈ N,

B j◦ (1, 1) ≤ (1 + ε) j inf
θ∈Nn(η)

B j (1, 1). (53)

Lemma 12 Let η > 0. Then, for every w > 0,

lim sup
n→∞

E

∣∣∣∣∣ sup
θ∈N−

n (η)

|h1 − h1(θ)|
|θ◦ − θ |h1(θ)

∣∣∣∣∣

w

< ∞.

Lemma 15 below plays a main role to prove Proposition 4. Its proof is rather
standard and similar to that of Lemma 3.1 in Ling and Peng (2004). Set bn = b(n/k),

Ũi (θ) := Ui

{
1+ hi (θ) − ĥi (θ)

ĥi (θ)

}1/(2δ) {
1 + hi − hi (θ)

hi (θ)

}1/(2δ)

{hi }1/(2δ◦)−1/(2δ) ,

Ai (y, θ) := I
(
Ũi (θ) > y−1/αbn

)
, Ai (y) := I

(
Ui > y−1/αbn

)
.

Then, Ũi (θ̂) = Ũi . The following two lemmas are useful to verify Lemma 15.

Lemma 13 Let η > 0 and mn → ∞ with mn < n as n → ∞. Then, there exist

r0 ∈ [0, 1), ν0 > 0, aFi−1-measurable r.v. Vi ≥ 0, and	n,i = 	n,i (η) ≥ 0 (54)
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such that supi∈N E |Vi |ν0 < ∞ and

1

n

n∑

i=1

E	n,i = O(1), max
1≤i≤n

	n,i

nκ
= oP (1) as n → ∞. (55)

Moreover, there exists η0 > 0, such that with probability tending to 1 as n → ∞,

Ai (y, η,−η0) ≤ Ai (y, θ) ≤ Ai (y, η, η0) for each θ ∈ Nn(η) and i = mn, . . . , n,

(56)
where

Ai (y, η, η0) := I

(
Ui

{
1 + r i0η0Vi

}{
1 + η0	n,i

nκ

}{
1 + η0h

η0/nκ

i | log hi |
nκ

}

> y− 1
α bn

)
. (57)

Lemma 14 Let η > 0, ε0 ∈ (0, 1), and r1 ∈ (r0, 1), where r0 is the one in (54). If
mn < n and mn → ∞ as n → ∞ and η0 ∈ R, we have that for i = mn, . . . , n,

n

k
wi |Ei−1 {Ai (y, η, η0) − Ai (y)}| ≤ Kymax

{
r i1,

|η0|	n,i

nκ
,
|η0|hη0/nκ

i | log hi |
nκ

}
,

where

wi = I

(
|η0|max

{
	n,i

nκ
,
hη0/nκ

i | log hi |
nκ

}
≤ ε0, r

i
0|η0|Vi < r i1

)
. (58)

Lemma 15 Let η > 0, η0 ∈ R, 0 < y < ȳ < ∞ and Bi (y, η, η0) = Ai (y, η, η0) −
Ai (y). Then,

sup
y≤y≤ȳ

sup
0≤t≤1

∣∣∣∣∣∣
1√
k

�nt�∑

i=1

Bi (y, η, η0)

∣∣∣∣∣∣
= oP (1).

The Proof of (48) in Proposition 4. Let η > 0 and let {mn} be a sequence of positive
integers such that mn → ∞ and mn = o(

√
k) as n → ∞. Then, due to (56), there

exists η0 > 0 such that with probability tending to 1,

Ai (y, η,−η0) − Ai (y) ≤ Ai (y, θ) − Ai (y) ≤ Ai (y, η, η0) − Ai (y) (59)
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for θ ∈ Nn(η) and i = mn, . . . , n, (cf. Lemma 13). Thus, from Lemma 15, we have
that for every η > 0,

sup
θ∈Nn(η)

sup
y<y<ȳ

sup
0≤t≤1

1√
k

∣∣∣∣∣∣

�nt�∑

i=1

{Ai (y, θ) − Ai (y)}
∣∣∣∣∣∣
= oP (1).

Owing to this and (15), we assert the proposition. ��

5.4 The proof of theorem 3

In this subsection, we assume that (1), (3), (4), (6), (17)–(20) hold.

Proposition 5 Let 0 < y < ȳ < ∞. Then,

sup
y<y<ȳ

sup
0≤t≤1

1√
k

∣∣∣∣∣∣

�nt�∑

i=1

{
I
(
Ūi ≥ y− 1

α b(n/k)
)

− I
(
Ui ≥ y− 1

α b(n/k)
)}

∣∣∣∣∣∣
= oP (1),

(60)

sup
y<y≤ȳ

sup
0≤t≤1

1√
k

∣∣∣∣∣∣

�nt�∑

i=1

{(
log Ūi − log y− 1

α b(n/k)
)

+

−
(
logUi − log y− 1

α b(n/k)
)

+

}∣∣∣∣ = oP (1). (61)

Below, we only prove (60) since (61) can be proven in essentially the same manner.
We denote θ2 and θ̂2 by θ and θ̂ , respectively. Let {εi (θ)} and {σ 2

i (θ)} be the strictly
stationary sequences satisfying

⎡

⎢⎣
εi (θ)

...

εi−q̄+1(θ)

⎤

⎥⎦ = B1

⎡

⎢⎣
εi−1(θ)

...

εi−q̄(θ)

⎤

⎥⎦ +
[
Xi − ∑ p̄

j=1 φ j Xi− j

0

]
,

and

⎡

⎢⎣
σ 2
i (θ)
...

σ 2
i−q+1(θ)

⎤

⎥⎦ = B

⎡

⎢⎣
σ 2
i−1(θ)

...

σ 2
i−q(θ)

⎤

⎥⎦ +
[

ω + ∑p
j=1 ψ jε

2
i− j (θ)

0

]
,

respectively, where

B1 = B1(θ) =
[

ϑ1 · · · ϑq̄−1 ϑq̄

I(q̄−1)×(q̄−1) 0(q̄−1)×1

]
.
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From this, we obtain

εi (θ) =
∞∑

j=0

B j
1 (1, 1)

⎧
⎨

⎩Xi− j −
p̄∑

l=1

φ j Xi− j−l

⎫
⎬

⎭ ,

σ 2
i (θ) = ω

∞∑

j=0

B j (1, 1) +
∞∑

j=0

B j (1, 1)
p∑

l=1

ψlε
2
i− j−l(θ),

where B j
1 (a, b) denotes the (a, b)-th entry of B j

1 . Let

σ̃ 2
i (θ) = ω◦

∞∑

j=0

B j◦ (1, 1) +
∞∑

j=0

B j◦ (1, 1)
p∑

l=1

ψ◦
l ε2i− j−l(θ).

As in the previous subsection, we set

Nn(η) =
{
θ : |θ − θ◦| ≤ η√

n

}
, N−

n (η) = Nn(η) − {θ◦}, η > 0.

The following two lemmas are due to Theorem 1 of Ling (2007) and the arguments
up to (4.38) and (4.39) of Francq and Zakoïan (2004), respectively.

Lemma 16 E |ε0|ν < ∞ for every ν ∈ (0, 2).

Lemma 17 There exists r ∈ (0, 1) and Fi−1-measurable r.v.s Vi ≥ 0, such that
EV ν

i < ∞ for some ν > 0, and

sup
θ∈Nn(η)

∣∣ε̂i (θ) − εi (θ)
∣∣ ∨

∣∣∣σ̂ 2
i (θ) − σ 2

i (θ)

∣∣∣ ≤ r i Vi for large n and each i ∈ N.

Lemmas 16, 17 and 18 below are used to verify some arguments useful to verify
Proposition 5.

Lemma 18 Let η > 0 and v ∈ (0, 2). Then, for every w > 0,

lim sup
n→∞

E

{
sup

θ∈N−
n (η)

|σ̃ 2
1 (θ) − σ 2

1 (θ)|
|θ − θ◦|σ 2

1 (θ)

}w

< ∞, (62)

and there exist �1,n,i = �1,n,i (η, v) ≥ 0 and �2,n,i = �2,n,i (η, v) ≥ 0, such that

|σ 2
i − σ̃ 2

i (θ)|
σ̃ 2
i (θ)

≤ |θ − θ◦|�1,n,i + |θ − θ◦|2�2,n,i , when θ ∈ Nn(η), (63)

and lim supn E{�1,n,1}v < ∞ and lim supn E{�2,n,1}v/2 < ∞.
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Now, let η > 0 and v0 ∈ (1, 2) such that

n1−v0/2 = o(
√
k) as n → ∞ (64)

[cf. (3)]. Define

Ūi (θ) := Ui

{
1 + σ 2

i (θ) − σ̂ 2
i (θ)

σ̂ 2
i (θ)

} 1
2
{
1 + σ 2

i − σ 2
i (θ)

σ 2
i (θ)

} 1
2

+ ε̂i (θ) − εi

σ̂i (θ)
,

�3,n,i := �3,n,i (η) := sup
θ∈N−

n (η)

1

|θ − θ◦|
|εi (θ) − εi |

σ̂i (θ)
∈ Fi−1.

Then,
lim sup

n
E�

v0
3,n,1 < ∞, (65)

(cf. Lemma 16) and Ūi = Ūi (θ̂). Moreover, we have from Lemma 18 that when
θ ∈ Nn(η),

∣∣σ 2
i − σ 2

i (θ)
∣∣

σ 2
i (θ)

≤
∣∣σ 2

i − σ̃ 2
i (θ)

∣∣

σ̃ 2
i (θ)

· σ̃ 2
i (θ)

σ 2
i (θ)

+
∣∣σ̃ 2

i (θ) − σ 2
i (θ)

∣∣

σ 2
i (θ)

≤ {|θ − θ◦|�1,n,i + |θ − θ◦|2�2,n,i
} σ̃ 2

i (θ)

σ 2
i (θ)

+
∣∣σ̃ 2

i (θ) − σ 2
i (θ)

∣∣

σ 2
i (θ)

= |θ − θ◦|
{

�1,n,i
σ̃ 2
i (θ)

σ 2
i (θ)

+
∣∣σ̃ 2

i (θ) − σ 2
i (θ)

∣∣

|θ − θ◦|σ 2
i (θ)

}
+ |θ − θ◦|2�2,n,i

σ̃ 2
i (θ)

σ 2
i (θ)

.

Further, owing to Lemma 18, we have

�∗
1,n,i := sup

θ∈N−
n (η)

{
�1,n,i

σ̃ 2
i (θ)

σ 2
i (θ)

+
∣∣σ̃ 2

i (θ) − σ 2
i (θ)

∣∣

|θ − θ◦|σ 2
i (θ)

}
, �∗

2,n,i := sup
θ∈Nn(η)

�2,n,i
σ̃ 2
i (θ)

σ 2
i (θ)

,

so that
E |�∗

1,n,1|v0 < ∞, E |�∗
2,n,1|v0/2 < ∞ for large n. (66)

Note that due to (64), it follows from Lemma 18 that for every ε > 0,

1√
k

n∑

i=1

I

(
max

{ |η0|�∗
1,n,i√
n

,
|η0|2�∗

2,n,i

n
,
|η0|�3,n,i√

nbn

}
> ε

)
= oP (1). (67)

Now, let Ai (y, θ) := I (Ūi (θ) > y− 1
α bn), Ai (y) := I (Ui > y− 1

α bn) and

Ai (y, η, η0) := I

(
Ui

{
1 + r i0η0Vi

}{
1 + η0�

∗
1,n,i√
n

+ sgn(η0)
η20�

∗
2,n,i

n

}

+η0�3,n,i√
n

+ r i0η0Vi > y− 1
α bn

)
,
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for y ∈ [y, ȳ] and η0 ∈ R, where r0 ∈ [0, 1) and the Fi−1-measurable Vi ≥ 0 are
obtained from Lemma 17. Using the arguments between (64) and (67), we can obtain
Lemmas 19 and 20: the former is used to verify the latter.

Lemma 19 Let η > 0, ε0 ∈ (0, 0.1), r1 ∈ (r0, 1), and {mn} be a sequence such
that mn < n and mn → ∞ as n → ∞. Then, there exists η0 > 0 such that when
θ ∈ Nn(η),

wi Ai (y, η,−η0) ≤ wi Ai (y, θ) ≤ wi Ai (y, η, η0) for each i = mn, . . . , n,

where

wi := I

(
max

{ |η0|�∗
1,n,i√
n

,
|η0|2�∗

2,n,i

n
,
|η0|�3,n,i√

nbn

}
< ε0, r

i
0|η0|Vi < r i1

)
(68)

and

n

k
wi |Ei−1 {Ai (y, η, η0) − Ai (y)} |

≤ Kwi max

{
r i1,

|η0|�∗
1,n,i√
n

,
|η0|2�∗

2,n,i

n
,
|η0|�3,n,i√

nbn

}
. (69)

In particular,

1√
k

n∑

i=mn

(1 − wi ) = oP (1), (70)

√
k log n · E |η0|2�∗

2,n,1

n
I

( |η0|2�∗
2,n,1

n
< ε0

)
= o(1) as n → ∞. (71)

Lemma 20 Let η > 0, η0 ∈ R, 0 < y < ȳ < ∞, and Bi (y, η, η0) = Ai (y, η, η0) −
Ai (y). Then, we have

sup
y≤y≤ȳ

sup
0≤t≤1

∣∣∣∣∣∣
1√
k

�nt�∑

i=1

Bi (y, η, η0)

∣∣∣∣∣∣
= oP (1).

The Proof of (60) in Proposition 5. The proposition can be verified using Lemmas 19
and 20 and following the lines in the proof of (48). ��
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