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Abstract In this paper, hypothesis testing for positive first-degree and higher-degree
expectation dependence is investigated. Some tests of Kolmogorov–Smirnov type
are constructed, which are shown to control type I error well and to be consistent
against global alternative hypothesis. Further, the tests can also detect local alternative
hypotheses distinct from the null hypothesis at a rate as close to the square root of
the sample size as possible, which is the fastest possible rate in hypothesis testing.
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A nonparametric Monte Carlo test procedure is applied to implement the new tests
because both sampling and limiting null distributions are not tractable. Simulation
studies and a real data analysis are carried out to illustrate the performances of the
new tests.

Keywords Expectation dependence · Nonparametric Monte Carlo ·
Test of Kolmogorov–Smirnov type

1 Introduction

Expectation dependence is an important issue in some scientific fields such as finance,
insurance and asset pricing. There are a number of proposals in the literature to
demonstrate the profound impact of expectation dependence in these fields. Wright
(1987) first introduced the notion of first-degree expectation dependence and Li (2011)
extended the concept to higher-degree expectation dependence. Wright (1987) and
Hadar and Seo (1988) used expectation dependence to study portfolio problem and
asset allocation. Tsetlin and Winkler (2005) and Li (2011) studied the demand for a
risky asset in the presence of financial risk and background risk. Denuit et al. (2012)
used first- and second-degree expectation dependence to obtain the sign of the equity
premium in the consumption-based CAPM. Denuit et al. (2013) further extended the
concept to an almost expectation dependence concept that is applied to portfolio diver-
sification, the determination of the sign of the equity premium in the consumption-
based CAPM and the optimal investment under a background risk. Denuit et al. (2005)
provided the detailed account of dependence structure and explained its relationship
with stochastic dominance.

Moreover, the notion of expectation dependence has been further developed
recently. Hong et al. (2011) gave a brief description for several notions of dependence
in economics, including quadrant dependence, regression dependence and expectation
dependence, and proved that positive or negative expectation dependence is a neces-
sary and sufficient condition for generalized Mossin’s Theorem. Recently, several
efforts were devoted to testing whether dependence between random variables holds
or not. Scaillet (2005) proposed a test of Kolmogorov–Smirnov type for quadrant
dependence. Denuit et al. (2007), in spirit similar to Scaillet’s (2005) proposal, sug-
gested a test of Kolmogorov–Smirnov type for shortfall dominance against parametric
alternatives. Denuit and Scaillet (2004) introduced a nonparametric test for quadrant
dependence and extended it to handle positive orthant dependence that is a higher
dimensional case. Gijbels et al. (2010) used an approximate sampling null distribu-
tion of the test statistic to replace the limiting null distribution. Gijbels and Sznajder
(2013) proposed a test for positive quadrant dependence under the null hypothesis of
positive quadrant dependence via resampling from a constrained copula. Scaillet and
Topaloglou (2010) developed consistent tests for stochastic dominance efficiency for
portfolio choice. Cebrián et al. (2004) introduced some testing procedures to analyze
concordance ordering.

It is well acknowledged that in the context of dependence, first-degree expectation
dependence is a stronger dependence than the correlation between random variables.
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Testing for positive expectation dependence 137

The notion has received more attention in recent years. But the problem whether posi-
tive or negative expectation dependence holds or not is not all so clear-cut in practice.
Directly assuming this type of dependence, without statistical evidence, can lead to
devastating effects, resulting in adverse performance in equity premium and asset
allocation. To the best of our knowledge, testing expectation dependence has not yet
received much attention. In this paper, we first propose a consistent test for first-degree
positive expectation dependence and extend it to the higher-degree cases. The related
asymptotic properties are studied, which show that the proposed tests can control the
type I error well and are consistent against global alternative hypotheses. Further, the
tests can detect local alternative hypotheses distinct from the null hypothesis at a rate
as close to 1/

√
n as possible. This rate is the fastest possible rate in hypothesis testing.

To implement the proposed tests, a nonparametric Monte Carlo test procedure is sug-
gested to simulate p values because of the intractability of the sampling and limiting
null distributions.

The rest of the paper is structured as follows: Section 2 contains related defini-
tions and notations, and the construction of consistent tests for expectation depen-
dence. Section 2.1 presents the results of first-degree expectation dependence and
the higher-degree extension is investigated in Sect. 2.2. The asymptotic properties
are also presented in this section. Section 3 is devoted to the implementation. In
Sect. 4, the performances of the proposed tests are examined through numerical stud-
ies. The real data analysis is discussed in Sect. 5. The technical proofs are relegated to
Appendix.

2 Test statistics and asymptotic properties

We first give some notations. Without loss of generality, suppose that the random
variables X1 and X2 take values in two sets �1 and �2, respectively.

Define

D1(z) = −cov[X1, I (X2 > z)];
Dk(z) = cov(X1, (z − X2)

k−1+ ) for k = 2, 3, . . . ; (1)

where (z− X2)
k−1+ = (z− X2)

k−1 I (z− X2 > 0) and I (·) denotes indicator function.

2.1 First-degree expectation dependence

Recall the concept of first-degree expectation dependence introduced byWright (1987)
as follows.

Definition 1 (Wright 1987) Let ED1(z) = E(X1) − E(X1|X2 ≤ z). If

ED1(z) ≥ 0 for all z, (2)

123



138 X. Zhu et al.

then the random variable X1 is positive first-degree expectation dependent on X2.
Negative first-degree expectation dependence is defined analogously if we reverse the
sign of the inequality in (2).

The hypothesis of interest for positive first-degree expectation dependence can now
be stated as:

H0 : E(X1) ≥ E(X1|X2 ≤ z) for all z; (3)

H1 : E(X1) < E(X1|X2 ≤ z) for some z. (4)

Note that for any given z, we have

E(X1) = P(X2 > z)E(X1|X2 > z) + P(X2 ≤ z)E(X1|X2 ≤ z) (5)

and

E(X1) = P(X2 > z)E(X1) + P(X2 ≤ z)E(X1). (6)

Therefore, from both Eqs. (5) and (6), we have

P(X2 > z)
(
E(X1|X2 > z) − E(X1)

)
= P(X2 ≤ z)

(
E(X1) − E(X1|X2 ≤ z)

)
.

It shows that the positive first-degree expectation dependence in (2) can be equivalently
restated as

E(X1|X2 > z) ≥ E(X1).

We can clearly see that:

P(X2 > z)
(
E(X1|X2 > z) − E(X1)

)
≥ 0

⇐⇒ E(X1 I (X2 > z)) − E(X1)E(I (X2 > z)) ≥ 0

⇐⇒ cov(X1, I (X2 > z)) ≥ 0.

The above equivalent forms imply that the positive first-degree expectation depen-
dence is equivalent to the positive correlation between X1 and I (X2 > z) for all z.
Correspondingly, we can similarly obtain that the negative first-degree expectation
dependence is equivalent to the negative correlation between X1 and I (X2 > z) for
all z.

Thus, we can further rewrite the null and alternative hypotheses as follows:

H0 : −cov(X1, I (X2 > z)) ≤ 0 for all z;
H1 : −cov(X1, I (X2 > z)) > 0 for some z.

The minus sign used here is for the convenience of technical details. Let D̄1 =
supz∈�2

√
n(D1(z)), where D1(·) is defined in (1). Under the null hypothesis H0,
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Testing for positive expectation dependence 139

D̄1 ≤ 0. However, under the alternative hypothesis H1, since there exists a constant
z satisfying −cov(X1, I (X2 > z)) > 0, we have D̄1 > 0. It is obvious that D̄1 can
be used as the base for constructing a test statistic, and the null hypothesis will be
rejected for large positive values of D̄1. Suppose that (X1i , X2i )

n
i=1 are independent

identically distributed observations. A natural estimator D1n(z) of D1(z) is as follows:

D1n(z) = −1

n

n∑
i=1

(X1i − X̄1)(I (X2i > z) − I (X2 > z)),

where X̄1 = ∑n
i=1 X1i/n and I (X2 > z) = ∑n

i=1 I (X2i > z)/n. A test of
Kolmogorov–Smirnov type can be defined as

T1n = sup
z∈�2

√
n(D1n(z)).

The null hypothesis H0 is rejected if the value of T1n exceeds some critical value c.
To obtain the asymptotic properties of this test statistic, we only need the following
condition:

(A) The second moment of X1 exists: E(X2
1) < ∞.

Remark 1 This condition is standard, by which we can ensure that the defined empir-
ical process converges to a Gaussian process, and the test statistic converges to a
maximum functional of this Gaussian process.

Lemma 1 Under Condition (A), the empirical process series
√
n{D1n(z) − D1(z)}

converges weakly to aGaussian process G withmean zero and the covariance function
given by

�(z1, z2) = E((X1 − E(X1))
2 I (z1 < X2))

+E((X1 − E(X1))
2E(I (z1 < X2))E(I (z2 < X2))

−E((X1 − E(X1))
2 I (z1 < X2))E(I (z2 < X2))

−E(I (z1 < X2))E((X1 − E(X1))
2 I (z2 < X2)) − D1(z1)D1(z2),

for all z1 > z2. Particularly, if X1 and X2 are independent random variables, the
covariance function can be reduced to

�(z1, z2) = cov(X1)cov(I (z1 < X2), I (z2 < X2))

for all z1, z2.

Therefore, we use the test statistic T1n to construct the decision rule as:

reject H0 if T1n > c,

where c is a critical value that will be determined later.
We get the following Propositions 1–2 that state the asymptotic properties of the

test statistic T1n .
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140 X. Zhu et al.

Proposition 1 Under Condition (A), we have

max
z∈�2

√
n{D1n(z) − D1(z)} −→ T̄1,

where T̄1 = maxz∈�2 G(z) and G is defined in Lemma 1. Let c be a positive finite
constant. We have

(I) under H0,

lim
n→∞ P[reject H0] ≤ P[T̄1 > c] = α(c);

(II) under H1,

lim
n→∞ P[reject H0] = 1.

Part (I) of Proposition 1 shows that the type I error is not more than α(c) and
thus, can be under control for our test. Part (II) demonstrates that the test is consistent
against the global alternative hypothesis H1. It is noteworthy to point out that the
limiting null distribution of the test statistic is unknown. Therefore, it is difficult to
obtain the critical value c satisfying P(T̄1 > c) = α. Thus, in spirit similar to that in
Neuhaus and Zhu (1998), Zhu and Neuhaus (2000) and Barrett and Donald (2003),
we suggest a Monte Carlo approximation to determine the critical value c or p value
to make the test operational. More details will be discussed in Sect. 3.

To further examine howsensitive the test is to the alternative hypothesis,we consider
a sequence of local alternative hypotheses D1(z), which is written as fn(z):

H1n : fn(z0) > 0 for some z0. (7)

Then we have the following results.

Proposition 2 Assuming the same condition in Lemma 1, we have that under H1n,

(I) if n1/2 fn(z) → f (z) with f (z0) > 0, then
√
nD1n converges to a Gaussian

process G + f where G is the Gaussian process in Lemma 1 and f is the shift
function that has the positive value f (z0) at z0;

(II) if nγ fn(z0) → f (z0) with f (z0) > 0 and 0 ≤ γ < 1/2, then

lim
n→∞ P[reject H0] = 1.

Part (I) of Proposition 2 indicates that T1n is able to detect the local alternative
hypotheses distinct from the null hypothesis at a rate as close to n−1/2 as possible.
This rate is the fastest possible rate in hypothesis testing. Part (II) suggests that T1n
has also asymptotically power 1 against the local alternative hypotheses converging
to the null hypothesis at any slower rate nγ with 0 ≤ γ < 1/2.
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Testing for positive expectation dependence 141

2.2 Higher-degree extension

Li (2011) extended the concept of first-degree expectation dependence to higher-
degree expectation dependence. Let

ED2(X1|z) =
∫ z

−∞
ED1(X1|s)P(X2 ≤ s)ds.

The general case is defined recursively as

EDk(X1|z) =
∫ z

−∞
EDk−1(X1|s)ds for k = 3, 4, . . . .

Li (2011) defined the concept of expectation dependence by controlling the sign of
EDk(X1|z).
Definition 2 (Li 2011). If

EDk(X1|z) ≥ 0 for all z, (8)

then the random variable X1 is positive kth-degree expectation dependent on X2.
Similarly, the random variable X1 is negative kth-degree expectation dependent on
X2 if the sign of the inequality in (8) is reversed.

Now we are in the position to test for positive kth-degree expectation dependence.
The corresponding hypotheses are defined as

Hk
0 : EDk ≥ 0 for all z;

Hk
1 : EDk < 0 for some z.

It is noteworthy that the equations (7) and (19) in Denuit et al. (2013) show that

EDk(X1|z) = − 1

(k − 1)!cov[X1, (z − X2)
k−1+ ], for k = 2, . . . . (9)

The equality of (9) implies that if cov(X1, (z − X2)
k−1+ ) ≤ 0 for all z, then X1 is

positive kth-degree expectation dependent on X2. Therefore, the testing problem can
be rewritten as:

Hk
0 : cov(X1, (z − X2)

k−1+ ) ≤ 0 for all z;
Hk
1 : cov(X1, (z − X2)

k−1+ ) > 0 for some z.

Define D̄k = supz∈�2

√
n(Dk(z)), where Dk(·) is defined in (1). As a result, under Hk

0 ,
D̄k ≤ 0; whereas under Hk

1 , D̄k > 0. Consequently, a test statistic can be developed
by the empirical version of D̄k .
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To this end, we first estimate D(k+1)(z) by D(k+1)n(z):

D(k+1)n(z) = 1

n

n∑
i=1

{
(X1i − X̄1)[(z − X2i )

k+ − (z − X2)
k+ ]

}
,

where X̄1 = ∑n
i=1 X1i/n, and (z − X2)

k+ = ∑n
i=1 (z − X2i )

k+/n. We then construct
a test statistic of Kolmogorov–Smirnov type as:

Tkn = sup
z∈�2

√
nDkn(z).

Analogously, the null hypothesis Hk
0 is rejected if Tkn exceeds some critical value ck .

To obtain the asymptotic properties of the test statistic Tkn , assume an additional
condition:

(B) The random variable X2 satisfies that E(X2k
2 ) < ∞ for k = 1, 2, . . . d.

Lemma 2 Under Conditions (A) and (B), for some fixed positive integer k, the empir-
ical process

√
n{D(k+1)n(z)− D(k+1)(z)} := Gkn(z) converges weakly to a Gaussian

process Gk with mean zero and the covariance function given by

�(z1, z2) = E((X1 − E(X1))
2 I (z1 > X2)(z1 − X2)

k(z2 − X2)
k)

+E((X1 − E(X1))
2E((z1 − X2)

k+)E((z2 > X2)
k+)

−E((X1 − E(X1))
2(z1 > X2)

k+)E((z2 > X2)
k+)

−E((z1 > X2)
k+)E((X1 − E(X1))

2(z2 > X2)
k+)

−Dk+1(z1)Dk+1(z2),

for all z1 ≤ z2. Particularly, if X1 and X2 are independent, the covariance function
can be reduced to

�(z1, z2) = cov(X1)cov((z1 − X2)
k+, (z2 − X2)

k),

for all z1, z2.

Similar to the first-degree case, use Tkn to build the decision rule as:

reject Hk
0 if Tkn > ck,

where ck is some critical value that will be determined later.
Then we have the following Propositions 3–4 which describe the behavior of the

test statistic Tkn .

Proposition 3 Under the same conditions in Lemma 2, we have

max
z∈�2

Gkn(z) −→ T̄k,
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Testing for positive expectation dependence 143

where T̄k = maxz∈�2 Gk(z) and Gk is the Gaussian process in Lemma 2. Let ck be a
positive finite constant. Then

(I) if Hk
0 is true,

lim
n→∞ P[reject Hk

0 ] ≤ P[T̄k > ck] = α(ck);

(II) if Hk
1 is true,

lim
n→∞ P[reject Hk

0 ] = 1.

Proposition 3 extends the results of Proposition 1 to higher-degree expectation
dependence. The results are parallel, and thus, we do not make more explanations.

Parallel to the sequence of the local alternative hypotheses (7), we consider the
following sequence as:

Hk
1n : cov(X1, (z0 − X2)

k−1+ ) := fkn(z0) > 0 for some z0. (10)

Then we obtain the following results which are similar to those those in Proposition 2.

Proposition 4 Assuming the same conditions as Lemma 2, under Hk
1n,

(I) if n1/2 fkn → fk with fk(z0) > 0, then
√
nDkn converges to a Gaussian process

Gk + fk where Gk is the Gaussian process in Lemma 2 and fk is the shift function
that has the positive value fk(z0) at z0;

(II) if nγ fkn → fk with fk(z0) > 0 and 0 ≤ γ < 1/2, then

lim
n→∞ P[reject Hk

0 ] = 1.

In practice, analogous to the first-degree case, we also need to determine the critical
value ck satisfying P(T̄k > ck) = α to make the test operational. Again because both
the sampling and limiting null distributions of the test statistic are unknown, a Monte
Carlo approximation is applied to simulate critical values or p values.

3 Implementation

We now suggest a Monte Carlo test procedure for implementation, which is in spirit
similar to that in Neuhaus and Zhu (1998), Zhu and Neuhaus (2000) and Barrett and
Donald (2003). Zhu (2005) is a relatively comprehensive reference for the similar
techniques.

First, generate i.i.d. random variables U = {Ui }ni=1 from N (0, 1). Denote the
following processes:

�̃1(z, D1n(z),U) = 1√
n

n∑
i=1

{
−(X1i − X̄1)(I (X2i > z)− I (X2 > z))−D1n(z)

}
Ui
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144 X. Zhu et al.

and

�̃k(z, Dkn(z),U)= 1√
n

n∑
i=1

{
(X1i − X̄1)((z−X2i )

k−1+ − (z − X2)
k−1+ ))−Dkn(z)

}
Ui

for k = 2, 3, . . . , d. By Propositions 1–4, the p values can be computed to be: for
given {(X1i , X2i ), i = 1, . . . , n}

p̂k = PU ( sup
z∈�2

�̃k(z, Dkn(z),U) > Tkn|{(X1i , X2i ), i = 1, . . . , n}),

for k = 1, 2, 3, . . . , d, where PU denotes the conditional probability function of
U given the sample (X1i , X2i )’s. In the following proposition, we will find that for
almost all sequences {(X1i , X2i ), i = 1, . . . , n, . . .}, this conditional distribution is
asymptotically the same as the distribution of Gkn under the null hypothesis Hk

0 .
In practice, when the support of the randomvariable X2 is bounded,we can compute

the maximum over the interval from â = minni=1 X2i to b̂ = maxni=1 X2i . When the

support of the random variable X2 is unbounded, we slightly modify â and b̂ to make
the tests more operational. Given a small value γ > 0, the modified values are:

â = max{X2i , Fn(X2i ) ≤ γ },
b̂ = max{X2i , Fn(X2i ) ≤ 1 − γ }.

Then the p values can be approximated by

p̂k ≈ 1

R

R∑
j=1

{
max
â≤z≤b̂

�̃k(z, Dkn(z),U j ) > Tkn| {(X1i , X2i ), i = 1, . . . , n}
}

,

where the averaging ismade on R replications by independently generating the random
variable setsU j = {Ui } j . When p̂k ≤ α for a given significance level α, we then reject
Hk
0 .

Lemma 3 Under Conditions (A) and (B), for almost all sequences {(X1i , X2i ), i =
1, . . . , n, . . .}, we have for any c > 0

∣∣∣∣P
(
max
â≤z≤b̂

�̃k(z, Dkn(z),U j

)
> c|{(X1i , X2i ), i = 1, . . . , n})

−P

(
sup
z∈�2

Gkn(z) > c

) ∣∣∣∣
p→ 0.

The lemma means that the conditional distribution approximates in probability to
the distribution of supz∈�2

Gkn(z) whose limit is the distribution of T̄k . Thus, its p
values converge to p values about T̄k . We can then have parallel results to those in
Propositions 1– 4.
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Testing for positive expectation dependence 145

Proposition 5 Under the same conditions in Lemma 3, assume that α < 1/2. If the
test for EDk has the following rule:

reject Hk
0 i f p̂k ≤ α.

Then, under Hk
0 ,

lim
n→∞ P(reject Hk

0 ) ≤ α.

Further, under the global alternative hypothesis Hk
1 ,

lim
n→∞ P(reject Hk

0 ) = 1;

and under the local alternative hypotheses Hk
1n, if n

γ fkn → fk with the positive value
fk(z0) at z0 and 0 ≤ γ < 1/2,

lim
n→∞ P(reject Hk

0 ) = 1.

This proposition shows that theMonteCarlo test procedure canwell simulate critical
values or p values such that the tests canmaintain the properties at the population level
that we described in Propositions 1–4.

4 Numerical studies

In this section, we investigate the performance of the proposed tests by two numerical
examples. A total of 2000 Monte Carlo test replications is considered to compute p
values, and each experiment is repeated 1000 times to compute empirical size and
power at the significance level α = 0.05.

Model 1 Generate data from the following model with sample sizes 50, 100, and
200 respectively:

X1i = 2Z1i − 1,

X2i = θX1i + 2Z2i − 1,

where both Z1i and Z2i are from the uniform distribution U (0, 1) and mutually inde-
pendent, θ is a parameter that varies across different experiments. Note that, expecta-
tion dependence has an important hierarchy property: positive lower-degree expecta-
tion dependence implies positive higher-degree expectation dependence.When θ = 0,
both X1i and X2i are mutually independent, and then ED1(z) ≡ 0 for all z. Using
the hierarchy property, X1 is then positive for any degree expectation dependence on
X2. Hence, θ = 0 implies that the model is under the null hypothesis. When θ �= 0,
X1 is not positive first-degree expectation dependent on X2, which corresponds to the
alternative hypotheses. We compute the empirical powers of the proposed tests T1n ,
T2n and T3n under different combinations of sample sizes and alternative hypotheses.
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Table 1 Empirical size and power under Model 1

θ n = 50 n = 100 n = 200

FED SED TED FED SED TED FED SED TED

0 0.0440 0.0560 0.0560 0.0470 0.0440 0.0530 0.0480 0.0500 0.0480

−0.1 0.1630 0.1910 0.1860 0.1950 0.2610 0.2590 0.2930 0.4090 0.4080

−0.2 0.3180 0.3800 0.3810 0.4780 0.6600 0.6540 0.7380 0.8720 0.8740

−0.3 0.4860 0.6700 0.6660 0.7660 0.8940 0.8940 0.9620 0.9940 0.9920

−0.4 0.7640 0.8780 0.8790 0.9520 0.9910 0.9900 1.0000 1.0000 1.0000

The null hypothesis corresponds to θ = 0

Table 2 Empirical size and power of the tests withModel 2

θ n = 50 n = 100 n = 200

FED SED TED FED SED TED FED SED TED

0 0.0460 0.0570 0.0610 0.0470 0.0460 0.0460 0.0490 0.0480 0.0490

−0.1 0.1690 0.1760 0.1690 0.2350 0.2560 0.2610 0.3600 0.4240 0.4230

−0.2 0.3250 0.3800 0.3800 0.5310 0.6200 0.5880 0.7490 0.8680 0.8500

−0.3 0.5770 0.6670 0.6610 0.8280 0.9150 0.8870 0.9780 0.9960 0.9940

−0.4 0.7540 0.8420 0.8310 0.9670 0.9870 0.9850 0.9990 1.0000 1.0000

The null hypothesis corresponds to θ = 0

The results are reported in Table 1. The results show that under the null hypothesis,
the empirical size is larger than the significance level, but not much even when n = 50.
This is what we expect when theMonte Carlo test procedure is applied in Sect. 3. Also,
it is expectable to have higher power with larger distinction (larger |θ |) from the null
hypothesis and larger size of sample, which approaches 1 quickly. Also, the test for
first-degree expectation dependence has lower empirical power than the other two tests
have.

Model 2 Consider the following model with sample sizes 50, 100 and 200:

X1i = Z1i ,

X2i = θ Z1i + Z2i ,

where both Z1i and Z2i are from standard normal distribution and mutually indepen-
dent. Again θ = 0 corresponds to the null hypothesis. In this case, the support is
infinite, we then consider a truncation with γ = 0.01. Then for ease of computation,
consider the truncated interval with two ends as â = max{X2i , Fn(X2i ) ≤ 0.005},
b̂ = max{X2i , Fn(X2i ) ≤ 0.995}.

The related results are listed in Table 2. From Table 2, the tests can still have
resonable empirical size and high empirical powers. Reasonably, large size of sample
helps on hypothesis testing with higher empirical power. We can also observe that the
empirical power performance is as much as that with Model 1.
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Fig. 1 Empirical power
functions of the tests for the first-
to third positive expectation
dependence at the 5%
significance level forModel 2
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Table 3 Approximated p values for first-degree expectation dependence for Danish fire insurance data,
based on 10000 Monte Carlo runs

p value (B, C) (B, P) (C, P) (C, B) (P, B) (P, C)

Case 1 0.0601 0.6979 0.7683 0.2070 0.3360 0.8033

Case 2 0.8543 1.0000 1.0000 1.0000 1.0000 0.9731

Case 3 0.8620 1.0000 1.0000 1.0000 1.0000 0.9676

To more clearly show the empirical power performance of the tests, Fig. 1 further-
more draws the empirical power curves of the different tests.

From Fig. 1, we can see that again the test for first-degree expectation dependence
has lower empirical power than the other two tests have. Together with the same phe-
nomenon withModel 1, it seems that the first-degree positive expectation dependence
would be slightly more difficult to detect than higher-degree ones.

5 Real data analysis

We now analyze the well-known Danish fire insurance data set for illustration that is
available at http://www.ma.hw.ac.uk/~mcneil/data.html. This data set has been stud-
ied for testing positive quadrant dependence by Denuit and Scaillet (2004), Gijbels
and Sznajder (2013) and Ledwina and Wyłupek (2014). The data set contains three
categories of claims referring to losses in buildings (B), their contents (C) and the
profit (P) which generated in the years 1980–1990. There exist 2167 observations
which contain 1502, 529, and 604 strictly positive observations for the respective
pairs of (B,C), (B,P) and (C,P). Further, the sample size is reduced to 517 with these
three variables being strictly positive. Here we also consider three cases, Case 1: all
the samples; Case 2: strictly positive observations for the respective pairs of (B,C),
(B,P) and (C,P); and Case 3: reduced samples which are strictly positive observations
for three variables. The p values for different pairs are presented in Table 3. We can
see clearly that in all the cases, (B,P) and (C,P) are positive first-degree expectation
dependent on each other with very large p values. It is known that positive quadrant
dependence implies positive expectation dependence. Thus our results are consistent
with those found in Ledwina andWyłupek (2014). On the other hand, reducing to 517
observations does not significantly change the inference in Case 2. However, Case 1
is very different from others, especial for (B,C) and (C,B).

Appendix

In this paper, because the proofs about the first-degree one are analogous to those
about the high-degree ones, we only give the proofs for Lemma 2, Propositions 3, 4
and 5.
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Proof of Lemma 2 Decomposing D(k+1)n(z), we have

D(k+1)n(z) = 1

n

n∑
i=1

{
(X1i − X̄1)((z − X2i )

k+ − (z − X2i )
k+))

}

= 1

n

n∑
i=1

{
(X1i − E(X1))((z − X2i )

k+ − E(z − X2i )
k+))

}

+(E(X1) − X̄1)
1

n

n∑
i=1

{
((z − X2i )

k+ − (z − X2i )
k+))

}

+(E((z − X2i )
k+) − (z − X2i )

k+))}1
n

n∑
i=1

{(X1i − X̄1)

+(E(X1) − X̄1)(E((z − X2i )
k+) − (z − X2i )

k+))}

= 1

n

n∑
i=1

{
(X1i − E(X1))((z − X2i )

k+ − E(z − X2i )
k+))

}

+(E(X1) − X̄1)(E((z − X2i )
k+) − (z − X2i )

k+))}
≡: Sk1n(z) + Sk2n(z),

where

Sk1n(z) = 1

n

n∑
i=1

{
(X1i − E(X1))((z − X2i )

k+ − E(z − X2i )
k+)

}
,

Sk2n(z) = 1

n

n∑
i=1

{
(E(X1) − X̄1)(E((z − X2i )

k+) − (z − X2i )
k+))

}
.

Define gkn(z) = √
n(Sk1n(z) − Dk+1(z)). Then we get

gkn(z) = √
n(Sk1n(z) − Dk+1(z))

= 1√
n

n∑
i=1

{
(X1i − E(X1))((z − X2i )

k+ − E(z − X2i )
k+)) − Dk+1(z)

}
.

It is easy to see that for z1 < z2, we have

H(z1, z2) = lim
n→∞Pgkn(z1)gkn(z2)

= E{[(X1 − E(X1))((z1 − X2)
k+ − E(z1 − X2)

k+) − Dk+1(z1)]
[(X1 − E(X1))((z2 − X2)

k+ − E(z2 − X2)
k+) − Dk+1(z2)]}

= E((X1 − E(X1))
2 I (z1 > X2)(z1 − X2)

k(z2 − X2)
k)

+E((X1 − E(X1))
2E((z1 − X2)

k+)E((z2 > X2)
k+)
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−E((X1 − E(X1))
2(z1 > X2)

k+)E((z2 > X2)
k+)

−E((z1 > X2)
k+)E((X1 − E(X1))

2(z2 > X2)
k+)

+Dk+1(z1)Dk+1(z2).

Let Mz(X1, X2, z) = (X1 − E(X1))((z − X2)
k+ − E(z − X2)

k+). It is easy to see
that the class of functions {Mz(X1, X2, z) : z is any real number} is a VC-class. Func-
tional Central Limit Theorem 10.6 of Pollard (1990) yields that the empirical process√
n(Sk1n(z) − cov(X1, (z − X2)

k I (z − X2 > 0))) converges weakly to a mean zero
Gaussian process whose covariance kernel is given by H(z1, z2) for all z1 < z2.

Further, note that (z − X2i )
k+ is consistent to E((z−X2i )

k+) and X̄1 is
√
n-consistent

to E(X1). By Central Limit Theorem, we then have

√
n(Sk2n(z)) = √

n(E(X1) − X̄1)(E((z − X2i )
k+) − (z − X2i )

k+))}
= √

n × Op

(
1√
n

)
× op(1) = op(1).

When X1 is independent of X2, Dk+1(z1) = Dk+1(z2) = 0 and E((X1 −
E(X1))

2(z1 > X2)
k+)E((z2 > X2)

k+) = E((X1 − E(X1))
2E((z1 − X2)

k+)E((z2 >

X2)
k+). Thus, simplifying H(z1, z2), we get that

H(z1, z2) = E((X1 − E(X1))
2E

{
I (z1 > X2)(z1 − X2)

k(z2 − X2)
k)

}

−E((z1 > X2)
k+)E((X1 − E(X1))

2(z2 > X2)
k+)

= E((X1 − E(X1))
2(E

{
I (z1 > X2)(z1 − X2)

k(z2 − X2)
k)

}

−E((z1 > X2)
k+)E((z2 > X2)

k+))

= cov(X1)cov((z1 > X2)
k+, (z2 > X2)

k+).

The proof of Lemma 2 is finished. �
Proof of Proposition 3 Lemma 2 implies that

√
n{Dkn(z) − Dk(z)} converges to the

Gaussian process Gk . As sup f (·) is a continuous function about f , the continuous
mapping theorem yields

max
z∈�2

√
n{Dkn(z) − Dk(z)} −→ T̄k .

Proof of (I): From the definition of Tkn and the fact that under Hk
0 , Dk(z) ≥ 0 for all

z ∈ �2, we get that

Tkn ≤ sup
z∈�2

√
n{Dkn(z) − Dk(z)} + sup

z∈�2

√
nDk(z)

≤ sup
z∈�2

√
n{Dkn(z) − Dk(z)}.
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Hence the results follows from the week convergence of
√
n{Dkn − Dk} and the

definition of T̄k .
Proof of (II): Under the alternative hypothesis, there exists some z̄ ∈ �2 satis-

fied Dk(z̄) = δ > 0. Due to the inequality Tkn ≥ √
nDkn(z̄) and the fact Tkn ≥√

nDkn(z̄) → ∞ as n → ∞, we obtain the result, i.e. limn→∞ P[reject Hk
0 ] = 1. �

Proof of Proposition 4 Proof of (I): By Lemma 2,
√
n{D(k+1)n(z) − Dk+1(z)} con-

verges to the Gaussian process Gk with mean zero and the covariance given by

�(z1, z2) = E((X1 − E(X1))
2 I (z1 > X2)(z1 − X2)

k(z2 − X2)
k)

+E((X1 − E(X1))
2E((z1 − X2)

k+)E((z2 > X2)
k+)

−E((X1 − E(X1))
2(z1 > X2)

k+)E((z2 > X2)
k+)

−E((z1 > X2)
k+)E((X1 − E(X1))

2(z2 > X2)
k+)

−Dk+1(z1)Dk+1(z2).

Note that Dk(z) = fkn . Further, under the local alternative hypotheses Hk+1
1n ,

n1/2 fkn → fk in which fk(z0) > 0 at z0. Thus, the shift function fk is not a zero
function whereas it is the case under the null hypothesis. Thus, the process converges
to Gk + fk .

Proof of (II): If the local alternative hypotheses hold, there exists some z̄ ∈ �2
satisfying Dk(z̄) ≥ fkn/2 > 0. Since nγ fkn → fk with fk > 0 and 0 ≤ γ < 1/2, we
can get Tkn ≥ √

nDn(z̄) ≥ √
n fkn/2 −→ ∞. Thenwe have limn→∞ P(reject Hk

0 ) =
1. Therefor, we have completed the justification. �
Proof of Lemma 3 The proof is very similar to that in Zhu (2005), we then give an
outline here. To obtain the results in this proposition, what we need is just to prove
that the process �̃k(·, Dkn(·)) is asymptotically equivalent to

√
n{Dkn(·) − Dk(·)}.

Rewrite �̃k(z, Dkn(z)) as

�̃k(z, Dkn(z)) = 1√
n

n∑
i=1

{
(X1i − X̄1)((z − X2i )

k+ − (z − X2i )
k+)) − Dkn(z)

}
Ui

= 1√
n

n∑
i=1

{
(X1i − X̄1)((z − X2i )

k+ − (z − X2i )
k+)) − Dk(z)

}
Ui

−(Dkn(z) − Dk(z))
1√
n

n∑
i=1

Ui .

Consider the second term −(Dkn(z) − Dk(z))
1√
n

∑n
i=1Ui . Lemma 2 implies that√

n(Dkn(z) − Dk(z)) converges weakly to a mean zero Gaussian distribution, and

then supz(Dkn(z) − Dk(z))
p−→ 0. Note that Ui are i.i.d. N (0, 1) random variables.

1√
n

∑n
i=1Ui is still normalwithmean zero and variance one. Thus, supz∈�2

|(Dkn(z)−
Dk(z))|| 1√

n

∑n
i=1Ui | converges weakly to zero. This holds true in probability for

almost all sequences of {(X1i , X2i ), i = 1, . . . , n, . . .}. Similar idea can be applied to
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the first term to have the asymptotic equivalence in probability between it and the one

when X̄1 and (z − X2i )
k+) are replaced by their corresponding expectations E(X1) and

E((z−X2i )
k+). Thus, we only need to deal with the first term for p value computation.

Therefore, we derive that �̃k(z, Dkn(z)) is asymptotically equivalent to

1√
n

n∑
i=1

{
(X1i − E(X1))((z − X2i )

k+ − E((z − X2i )
k+) − Dk(z)

}
Ui .

It is clear that the kernel function of this process is, for almost all sequences of
{(X1i , X2i ), i = 1, . . . , n, . . .}, asymptotically the same as �(z1, z2) in Lemma 2.
Then, the conditional distribution of supz∈�2

�̃k(z, Dkn(z)) given the sequence of
{(X1i , X2i ), i = 1, . . . , n, . . .} can well approximate the limiting null distribution of
supz∈�2

√
n{Dkn(z) − Dk(z)}, namely,

P

(
max
â≤z≤b̂

�̃k(z, Dkn(z),U j

)
> c|{(X1i , X2i ), i = 1, · · · , n})

− P

(
sup
z∈�2

Gkn(z) > c

)
p→ 0.

�
Proof of Proposition 5 Under null hypothesis, combining to Propositions 1 and 3, we
use the results of Lemma 3 to get directly that limn→∞ P(reject Hk

0 ) ≤ α.On the other
hand, it is worthwhile to point out that under the local alternatives in (10) approaching
the null hypothesis, supz∈�2

�̃k(z, Dkn(z)) still has the same limit as that under the
null hypothesis. This means that under the local alternative hypothesis, we can still
well approximate the limiting null distribution by using Monte Carlo test procedure
with �̃k(z, Dkn(z)). The results in the proposition follows. �
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