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Abstract A test approach to themodel selection problembased on characteristic func-
tions (CFs) is proposed. The scheme is close to that proposed byVuong (Econometrica
57:257–306, 1989), which is based on comparing estimates of the Kullback–Leibler
distance between each candidate model and the true population. Other discrepancy
measures could be used. This is specially appealing in cases where the likelihood of a
model cannot be calculated or even, if it has a closed expression, it is either not easily
tractable or not regular enough. In this work, the closeness is measured by means of a
distance based on the CFs. As a prerequisite, some asymptotic properties of the mini-
mum integrated squared error estimators are studied. From these properties, consistent
tests for model selection based on CFs are given for separate, overlapping and nested
models. Several examples illustrate the application of the proposed methods.

Keywords Empirical characteristic function · Model selection · Misspecified
models

1 Introduction

Themain purpose of this paper is to propose new tests for the model selection problem
that can be described as follows. Given a sample from an unknown population and two
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106 M. D. Jiménez-Gamero et al.

possibly misspecified parametric models, F and G, which may be separate, overlap-
ping or nested, the problem of model selection consists in testing if the two competing
models are equally close to the true population against the hypothesis that one model
is closer than the other. Vuong (1989) (see also Linhart 1988; Kishino and Hasegawa
1989) has proposed tests for this problem that are based on the likelihood ratio sta-
tistic, which estimates the difference of the Kullback–Leibler distance between each
candidate model and the true distribution. Although this approach is good and well
founded, some alternative procedures have been proposed. For example, it may happen
that, even if the data come from a continuous population, the available data consist
of the number of observations in certain intervals, a partition of the space where the
original data take values. In this case, because the Pearson Chi-square statistic is
widely used for this kind of data, it seems natural to measure the discrepancy between
the true population and the competing models by means of some Chi-square type
of distance. This approach was studied in Vuong and Wang (1993). Since the Pear-
son Chi-square statistic is a member of the class of φ-divergence statistics and also
of the class of Kφ-divergence statistics (see, for example, Pardo 2006), Jiménez-
Gamero et al. (2011, 2014) have studied the model selection problem by using these
two classes of statistics for non-overlapping models.

Thus, other discrepancy measures could be used to measure the closeness between
each competing model and the true population model. This is specially appealing in
cases where the likelihood of a model cannot be calculated. A typical example is the
case of some stable distributions, since it is only in a few instances that convenient
expressions for densities can be found. Even if the likelihood has a closed expression,
it may be either not easily tractable or not regular enough, in the sense that it does
not satisfy the regularity conditions in Vuong (1989). This is the case of the Laplace
distribution with location and scale parameters. A common feature of these examples
is that in each case, the characteristic function (CF) has a quite regular closed simple
expression. Therefore, in these cases it is more convenient to measure the closeness
between each competing model and the true population model by means of a dis-
tance based on the CFs (see Meintanis 2005; Matsui and Takemura 2008, for testing
problems in stable distributions).

A problem intimately related to that of model selection is that of testing for two sep-
arate families of distributions (see Cox 1961, 1962; White 1982b). A main difference
is that, while the latter assumes that one of the models is true and the objective is to
select the correct model, the former does not assume it and the objective is to select the
model which, according to some discrepancy measure, is closest to the true population
distribution. The Cox approach is based on comparing the observed difference of log
likelihoods with an estimate of that to be expected under the null hypothesis. Since
this approach is based on likelihoods, the same arguments given above can be applied
in favor of using other discrepancy measures. In this line, Feigin and Heathcote (1976)
have proposed using the empirical characteristic function (ECF). The proposed tech-
nique employs either the real or the imaginary part of the ECF evaluated at a single
point. To avoid working with either the real or the imaginary part, Epps et al. (1982)
proposed using the moment-generating function, but again evaluated at a single point.
Aweak point of these two papers is that the ECF and the empirical moment-generating
function, respectively, are evaluated at a single point, which implies choosing it and
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losing the information given by the rest of the points.While the CF exists for all distrib-
utions, themoment-generating functionmaynot exist, soweprefer toworkwith theCF.

To measure the closeness between two populations defined on R
d , for some d ∈ N,

with CFs c1(t) and c2(t), t ∈ R
d , we consider the following discrepancy measure:

D2(c1, c2) =
∫

|c1(t) − c2(t)|2dW (t), (1)

where for any complex number, z = a + ib, with i = √−1, |z|2 = a2 + b2, an
unspecified integral denotes integration over the whole space R

d , andW (t) denotes a
nondecreasing weight function whose total variation can, without loss of generality,
be taken as unity. Since |c1(t) − c2(t)|2 ≤ 4, the presence of dW (t) in the expression
of D2(c1, c2) renders the integral in (1) finite. Observe that if

dW (t) = w(t)dt, with w(t) > 0, ∀t ∈ R
d , (2)

then D(c1, c2) is a true distance between distributions; otherwise, c1 = c2 implies
that D(c1, c2) = 0, but the contrary is not true in general (see Feller 1971). Observe
also that if dW (t) = w(t)dt , we can assume that w satisfies

w(t) = w(−t), ∀t ∈ R
d , (3)

because otherwise by defining w1(t) = 0.5{w(t) + w(−t)}, which satisfies (3), we
have

∫
|c1(t) − c2(t)|2w(t)dt =

∫
|c1(t) − c2(t)|2w1(t)dt.

Therefore, from now on, whenever dW (t) = w(t)dt , we will assume that (3) holds.
Roughly speaking, the method proposed in this paper consists in choosing that

model minimizing the discrepancy measure (1) between an estimator of the popula-
tion CF and an estimator of the model CF. To estimate the population CF we consider
the ECF, and an estimator of the model CF is obtained by replacing the unknown
parameters by suitable estimators. Specifically, the unknown parameters will be esti-
mated by their minimum integrated squared error (ISE) estimators, which minimize
the discrepancy measure (1) between the model and the ECF associated with the data.
Some asymptotic properties of these estimators have been studied in Heathcote (1977)
and Csörgő (1981) when the model is assumed to be correctly specified. For our objec-
tives, we also need to know some properties of these estimators when the model is
misspecified. This study is done in Sect. 2, where we give sufficient conditions for the
strong consistency and asymptotic normality of these estimators.

Given two parametric models, F and G, which may be separate, overlapping or
nested, we propose tests of the null hypothesis that both models are equivalent, in
the sense that the distance D defined in (1) between the population and each model
is the same, against that one of the models is closer than the other to the population
generating the observed data. Motivated by some results in Sect. 2, the test statistic
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108 M. D. Jiménez-Gamero et al.

is a sample version of the difference of the distances between the population and
each competing model. The problem is the same as the one studied in Vuong (1989),
but since the distances considered, and thus their estimators, are rather different, the
required assumptions and the proofs of the results also differ. These tests and some
properties are presented in Sect. 3. A CF analog of the Cox approach for separate
models is developed in Sect. 4.

In Sects. 3 and 4, it is assumed that the unknown parameters are estimated by their
ISE estimators. It is natural to wonder what happen if other estimators are used. This
topic is studied in Sect. 5, where we will see that some asymptotic results may change.

Section 6 gives two examples where neither Vuong nor Cox approaches can be
applied because the competing families are not regular, in the sense that the assump-
tions in Vuong (1989) and White (1982b) do not hold. In contrast, these families
satisfy the assumptions required by the methods proposed in this paper. The finite
sample performance of the proposed procedures is numerically investigated in each
example. Section 6 also presents an example where both approaches apply. Section 7
provides the conclusions to the article. All proofs are sketched in the last section.

Before ending this section, we introduce some notation: all limits in this paper

are taken when n → ∞;
L−→ denotes convergence in distribution;

P−→ denotes
convergence in probability;

a.s.−→ denotes the almost sure convergence; if R ⊂ R
d ,

for some d ∈ N, then R◦ denotes the interior of R; if x ∈ R
d , then |x | denotes the

Euclidean norm; the same symbol is used to denote the modulus of a complex number;
to simplify notation, all 0s appearing in the paper represent vectors or matrices of
the appropriate dimension; P0 denotes the probability under the null hypothesis, P∗
denotes the conditional probability, given the data.

2 Minimum ISE estimators

As a prerequisite to themodel selection problem based on CFs, in this section we study
some asymptotic properties of the minimum ISE estimators. The strong consistency
and asymptotic normality of these estimators have been proved in Heathcote (1977)
under the assumption that the parametric model is correctly specified. The aim of this
section is to study the limit and the asymptotic normality of these estimators when
such assumption is dropped.

Let X1, X2, . . . , Xn be independent, identically distributed (IID) random vectors
from a population X taking values in R

d with CF c(t) and cumulative distribution
function (CDF) F . Let F be a family of distributions so that each member in this
family has CF c(t; θ) and CDF F(x; θ), for some finite dimensional parameter θ ; in
other words, we can write F = {c(t; θ); θ ∈ �}, where � ⊆ R

k , for some k ∈ N.
Equivalently, we also write F = {F(t; θ); θ ∈ �}. We assume that the elements in
F are identifiable, where by identifiable we mean c(t; θ1) �= c(t; θ2), in the sense
that supt |c(t; θ1) − c(t; θ2)| > 0, whenever θ1 �= θ2. If c(t) ∈ F , Heathcote (1977)
proposed estimating θ by means of θ̂n = θ̂n(X1, X2, . . . , Xn), so that

θ̂n = argmin
θ∈�

In(θ),

123



Fourier methods for model selection 109

where

In(θ) =
∫

|cn(t) − c(t; θ)|2dW (t),

cn(t) stands for the ECF of the sample,

cn(t) = 1

n

n∑
j=1

exp(it ′X j ),

and the prime denotes transpose. The statistic θ̂n is called the (minimum) ISE estimator
of θ .

Now, if the assumption c(t) ∈ F is dropped, we define D(c(t),F) =
inf
θ∈�

D(c(t), c(t, θ)) and the projection of c(t) on F as c(t; θ∗), where θ∗ ∈ � is

such that

θ∗ = argmin
θ∈�

D2(c(t), c(t; θ)).

Since the elements inF are identifiable, if c(t) ∈ F , that is, if c(t) = c(t; θ), for some
θ ∈ �, then θ∗ = θ ; otherwise, c(t; θ∗) is the element in F closest to c(t). Note that
θ∗ may not exist or, if it exists, it may not be unique. Along the manuscript we will
assume the following.

Assumption 1 D2(c(t), c(t; θ)) has a unique minimum at θ∗ ∈ �.

Assumption 1 is commonly used in papers dealing with projections, in the sense
of handling parameters minimizing some kind of distance or discrepancy measure
between a population and a parametric family of distributions. For example, it is the
analog of Assumption A3(b) in White (1982a), Assumption A.9 in Vuong and Wang
(1993), Assumption 30 in Lindsay (1994) and Assumption (C.1) in Broniatowski and
Keziou (2009), just to cite a few.

Note that, in general, θ∗ will depend on W . Thus, to be rigorous, we should denote
it as θ∗(W ). Nevertheless, to keep the notation as simple as possible, we will just write
θ∗ for θ∗(W ).

Theorem 1 Suppose that Assumption 1 holds, then θ̂n
a.s.−→ θ∗.

In practice, if In(θ) can be differentiated, to calculate θ̂n we solve in θ the equation

∂

∂θ
In(θ) = 0. (4)

Theorem 1 asserts that, if θ∗ ∈ �◦, then there exists a root of (4) converging a.s. to θ∗.
Next, to study the convergence in law of θ̂n, we will need the following technical

assumption about the regularity of c(t; θ) as a function of θ . Let u(t) and v(t) denote
the real and imaginary parts of c(t), that is, c(t) = u(t)+ iv(t). Analogously, for each
c(t; θ) ∈ F , we write c(t; θ) = u(t; θ) + iv(t; θ) and cn(t) = un(t) + ivn(t).
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110 M. D. Jiménez-Gamero et al.

Assumption 2 For W -almost all t , u(t; θ) and v(t; θ) are twice continuously differ-
entiable on �1, where �1 ⊆ � is an open neighborhood of θ∗. In addition, ∂

∂θ
u(t; θ),

∂
∂θ

v(t; θ), ∂
∂θ
u(t; θ) ∂

∂θ
u(t; θ)′, ∂

∂θ
u(t; θ) ∂

∂θ
v(t; θ)′, ∂

∂θ
v(t; θ) ∂

∂θ
v(t; θ)′, ∂2

∂θ∂θ ′ u(t; θ)

and ∂2

∂θ∂θ ′ v(t; θ) are uniformly (∀θ ∈ �1) bounded by W -integrable functions.

Assumption 2 implies that In(θ) is twice continuously differentiable on�1 and that
it can be differentiated under the integral sign. Let D1(θ) = (D11(θ), . . . , D1k(θ))′,
with D1 j (θ) = ∂

∂θ j
D2(c(t), c(t; θ)), 1 ≤ j ≤ k, and D2(θ) = (D2 jl(θ)), with

D2 jl(θ) = 1
2

∂2

∂θ j ∂θl
D2(c(t), c(t; θ)), 1 ≤ j, l ≤ k.

Now, we are ready to derive the asymptotic normality of θ̂n .

Theorem 2 Suppose that Assumptions 1 and 2 hold, then

√
n(θ̂n − θ∗) = 1√

n

n∑
j=1

D2(θ∗)−1h(X j ; θ∗) + oP (1), (5)

with h(x; θ) = (h1(x; θ), . . . , hk(x; θ))′,

h j (x; θ) =
∫

{cos(t ′x) − u(t; θ)} ∂

∂θ j
u(t; θ)dW (t)

+
∫

{sin(t ′x) − v(t; θ)} ∂

∂θ j
v(t; θ)dW (t),

1 ≤ j ≤ k, and thus

√
n(θ̂n − θ∗)

L−→ Nk(0, �),

where � = D2(θ∗)−1A(θ∗)D2(θ∗)−1 and A(θ) = E{h(X; θ)h(X; θ)′}.
As observed after Theorem 1, the statement in Theorem 2 asserts that there exists

a root of (4), θ̂n , such that
√
n(θ̂n − θ∗) converges in law to a zero mean k-variate

normal distribution.
The next result gives the asymptotic behavior of D(cn(t), c(t; θ̂n)) as an estimator

of D(c(t), c(t; θ∗)).

Theorem 3 (a) Suppose that Assumption 1 holds, θ∗ ∈ �◦ and u(t; θ) and v(t; θ)

are continuous as functions of θ for all t, then

D(cn(t), c(t; θ̂n))
a.s.−→ D(c(t), c(t; θ∗)) = D(c(t),F).

(b) If assumptions in Theorem 2 hold and c(t) ∈ F , then

nD2(cn(t), c(t; θ̂n))
L−→

∞∑
j=1

λA
j χ

2
1 j ,
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where χ2
11, χ

2
12, . . . are independent Chi-square variates with one degree of free-

dom, the set {λA
j } are the eigenvalues of operatorA defined on L2(R

d , F(·; θ)) =
{g : R

d → R,
∫
g(x)2dF(x; θ) < ∞} by

A	(x) =
∫

kc(x, y; θ)	(y)dF(y; θ),

with kc(x, y; θ) = k(x, y; θ) − h(x; θ)′D2(θ)−1h(y; θ) and

k(x, y; θ) =
∫

{cos(t ′x) − u(t; θ)}{cos(t ′y) − u(t; θ)}dW (t)

+
∫

{sin(t ′x) − v(t; θ)}{sin(t ′y) − v(t; θ)}dW (t). (6)

(c) If assumptions in Theorem 2 hold, c(t) /∈ F and W such that σ 2(θ∗) =
var{ρ(X)} > 0, where ρ(x) = E{k(X1, X2; θ∗) | X1 = x}, then

√
n

{
D2(cn(t), c(t; θ̂n)) − D2(c(t), c(t; θ∗))

} L−→ N (0, σ 2(θ∗)).

A simple way to ensure that σ 2(θ∗) > 0 is by taking W satisfying (2). Recall that
in this case D(c1, c2) is a true distance between distributions.

Remark 1 Let θ̃n = θ̃n(X1, . . . , Xn) be an arbitrary estimator of θ satisfying

θ̃n
a.s.(P)−−−−→ θ0 ∈ �◦. If u(t; θ) and v(t; θ) are continuous as functions of θ

for all t , then we also have that D(cn(t), c(t; θ̃n))
a.s.(P)−−−−→ D(c(t), c(t; θ0)), but

D(c(t), c(t; θ0)) �= D(c(t),F) whenever θ0 �= θ∗.

To end this section, we deal with the case of estimating parameters of two
families of distributions, F and G. In this setting, we will use the same notation
as before plus a subindex indicating the family. Specifically, F = {cF (t; θ) =
uF (t; θ)+ ivF (t; θ), θ ∈ �}, where� ⊆ R

k or, equivalently,F = {F(t; θ), θ ∈ �};
G = {cG(t; γ ) = uG(t; γ ) + ivG(t; γ ), γ ∈ 
}, where 
 ⊆ R

r , or equiv-
alently, G = {G(t; γ ), γ ∈ 
}; I Fn (θ) = D2(cn(t), cF (t; θ)) and I Gn (γ ) =
D2(cn(t), cG(t; γ )); we write D1F (θ) and D1G(γ ) for the vectors of the first deriva-
tives of D2(c(t), cF (t; θ)) and D2(c(t), cG(t; γ )), respectively; analogously, wewrite
D2F (θ) and D2G(γ ) for 0.5 times the Hessian matrices of D2(c(t), cF (t; θ)) and
D2(c(t), cG(t; γ )), respectively; we denote by hF (x; θ) and hG(x; γ ) the vector h
appearing in Theorem 2 for the families F and G, respectively; analogously, we write
AF (θ) and AG(γ ) for the matrix A appearing in Theorem 2 for the families F and
G, respectively; let BFG(θ, γ ) denote the k × r -matrix E{hF (X; θ) hG(X; γ )′}; and
finally, let

D2FG(θ, γ ) =
(
D2F (θ) 0

0 D2G(γ )

)
, AFG(θ, γ ) =

(
AF (θ) BFG(θ, γ )

BFG(θ, γ )′ AG(γ )

)
.
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Corollary 1 (a) Suppose that the families F and G both satisfy the assumptions in
Theorem 3(a), then

mF (θ̂n, γ̂n)
a.s.−→ −D2(cF (t; θ∗), cG(t; γ∗)),

wheremF (θ, γ ) = Eθ {D2(cn(t), cF (t; θ))−D2(cn(t), cG(t; γ ))}and Eθ denotes
expectation assuming that the data have CF cF (t; θ).

(b) Suppose that the families F and G both satisfy the assumptions in Theorem 2,
then

√
n

(
θ̂n − θ∗
γ̂n − γ∗

)
L−→ Nk+r (0, �FG(θ∗, γ∗)),

where �FG(θ, γ ) = D2FG(θ, γ )−1AFG(θ, γ )D2FG(θ, γ )−1.

Remark 2 Let θ̃n = θ̃n(X1, . . . , Xn) and γ̃n = γ̃n(X1, . . . , Xn)be arbitrary estimators
of θ and γ , respectively, satisfying

θ̃n
a.s.(P)−−−−→ θ0 ∈ �◦ and γ̃n

a.s.(P)−−−−→ γ0 ∈ 
◦. (7)

If the familiesF andG both satisfy the assumptions in Theorem 3(a), thenwe also have

that mF (θ̃n, γ̃n)
a.s.(P)−−−−→ −D2(cF (t; θ0), cG(t; γ0)), where mF (θ, γ ) is as defined in

Corollary 1(a).

3 Model selection

This section deals with the CF approach to the problem studied in Vuong (1989). With
this aim, we first define the problem; then we give some results that will let us provide
several decision rules for separate, overlapping and nested models. Along this and
next sections, we will assume that the unknown parameters are estimated by means
of their ISE estimators. Later in Sect. 5, we will see that some results may change if
other estimators are used. From now on, we will assume that (2) holds, so that D is a
true distance between distributions.

3.1 Statement of the problem and main results

Given two possibly misspecified parametric models, F and G, which may be nested,
non-nested or overlapping, the problem of model selection consists in testing if the
two competing models are equally close to the true distribution, against the hypothesis
that one model is closer than the other. Here, the closeness is measured by means of
the distance D defined in (1). Therefore, the problem is that of constructing a test for

H0 : D2(c(t), cF (t; θ∗)) = D2(c(t), cG(t; γ∗))
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against the alternatives

H1F : D2(c(t), cF (t; θ∗)) < D2(c(t), cG(t; γ∗)) or

H1G : D2(c(t), cF (t; θ∗)) > D2(c(t), cG(t; γ∗)).

Such a test is of practical interest since rejection of H0 in favor of H1F (H1G) would
indicate that F(x; θ∗) (G(x; γ∗)) is a better approximation to the true distribution.

The quantityμFG(θ∗, γ∗) = D2(c(t), cF (t; θ∗))−D2(c(t), cG(t; γ∗)) is unknown,
but from Theorem 3(a), it can be consistently estimated through T (θ̂n, γ̂n), where

T (θ, γ ) = D2(cn(t), cF (t; θ)) − D2(cn(t), cG(t; γ )). (8)

This difference converges to 0 under the null hypothesis H0, but it converges to a
strictly negative or positive constant under alternatives. Thus, the null hypothesis H0
should be rejected for “large” or “small” values of T (θ̂n, γ̂n). To decide what is “large”
or “small”, we must calculate the null distribution of T (θ̂n, γ̂n), or at least a consistent
approximation to it. Since the exact null distribution of T (θ̂n, γ̂n) is clearly unknown,
we approximate it through its asymptotic null distribution. With this aim, we first
observe that

T (θ, γ ) = 1

n

n∑
j=1

ξ(X j , θ, γ ),

where ξ(x, θ, γ ) = ∫ {uG(t; γ )−uF (t; θ)}{2 cos(t ′x)−uG(t; γ )−uF (t; θ)}w(t)dt+∫ {vG(t; γ ) − vF (t; θ)}{2 sin(t ′x) − vG(t; γ ) − vF (t; θ)}w(t)dt.

Theorem 4 Suppose that the families F and G both satisfy the assumptions in Theo-
rem 2.

(a) If cF (t; θ∗) = cG(t; γ∗), then nT (θ̂n, γ̂n)
L−→ T1 = ∑k+r

j=1 λ jχ
2
1 j , where

χ2
11, χ

2
12, . . . , are independent Chi-square variates with one degree of freedom

and the set {λ j } are the eigenvalues of the matrix

SFG(θ∗, γ∗) =
(−D2F (θ∗) 0

0 D2G(γ∗)

)
�FG(θ∗, γ∗).

(b) If cF (t; θ∗) = cG(t; γ∗) then supx

∣∣∣P0{nT (θ̂n, γ̂n) ≤ x} − P∗(T̂1 ≤ x)
∣∣∣ a.s.−→ 0,

where T̂1 = ∑k+r
j=1 λ̂ jχ

2
1 j and {λ̂ j } are the eigenvalues of the matrix ŜFG(θ̂n, γ̂n),

having the same structure as SFG(θ, γ )with AF (θ), AG(θ), BFG(θ, γ ), D2F (θ)

and D2G(γ ) replaced by ÂF (θ) = 1
n

∑n
j=1 hF (X j ; θ)hF (X j ; θ)′, ÂG(γ ) =

1
n

∑n
j=1 hG(X j ; γ )hG(X j ; γ )′, B̂FG(θ, γ ) = 1

n

∑n
j=1 hF (X j ; θ) hG(X j ; γ )′,

D̂2F (θ) = 1
2

∂2

∂θ∂θ ′ I Fn (θ) and D̂2G(γ ) = 1
2

∂2

∂γ ∂γ ′ I Gn (γ ), respectively. Moreover,

if H1F holds then P∗{T̂1 > nT (θ̂n, γ̂n)} a.s.−→ 1, while if H1G holds then P∗{T̂1 <

nT (θ̂n, γ̂n)} a.s.−→ 1.
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(c) If cF (t; θ∗) �= cG(t; γ∗), then
√
n

{
T (θ̂n, γ̂n) − μFG(θ∗, γ∗)

} L−→ N (0, σ 2
FG(θ∗,

γ∗)), with σ 2
FG(θ, γ ) = var{ξ(X, θ, γ )} > 0.

Remark 3 Observe that, in spite of using rather different discrepancy measures
between populations, the results in Theorem 4 are quite similar to those in Theo-
rem 3.3 in Vuong (1989), in the sense that the limit distributions are of the same type,
that is, a linear combination of Chi-square variates in case (a), and a zero mean normal
distribution otherwise.

Theorem 4 says that the limiting distribution of T (θ̂n, γ̂n) depends on whether or
not cF (t; θ∗) = cG(t; γ∗). Therefore, it is important to know if such equality holds.
The result in the next theorem, which is similar to that in Lemma 4.1 in Vuong (1989),
will be useful in this respect.

Theorem 5 Let σ 2
FG(θ, γ ) be as defined in Theorem 4. Then, σ 2

FG(θ, γ ) = 0 ⇐⇒
cF (t; θ) = cG(t; γ ), ∀t.

Therefore, testing for cF (t; θ∗) = cG(t; γ∗) versus cF (t; θ∗) �= cG(t; γ∗) is equiv-
alent to testing for

H0σ : σ 2
FG(θ∗, γ∗) = 0,

versus

H1σ : σ 2
FG(θ∗, γ∗) > 0.

With this aim, taking into account that σ 2
FG(θ, γ ) = var{ξ(X, θ, γ )}, we estimate

σ 2
FG(θ∗, γ∗) by means of σ̂ 2

FG(θ̂n, γ̂n), with

σ̂ 2
FG(θ, γ ) = 1

n

n∑
j=1

ξ2(X j , θ, γ ) −
⎧⎨
⎩
1

n

n∑
j=1

ξ(X j , θ, γ )

⎫⎬
⎭

2

. (9)

This estimator satisfies the following.

Theorem 6 (a) If the families F and G both satisfy Assumption 1, θ∗ ∈ �◦, γ∗ ∈

◦, uF (t; θ) and vF (t; θ) are continuous functions of θ for each t and uG(t; γ )

and vG(t; γ ) are continuous functions of γ for each t, then σ̂ 2
FG(θ̂n, γ̂n)

a.s.−→
σ 2
FG(θ∗, γ∗).

(b) If the families F and G both satisfy the assumptions in Theorem 2 and

σ 2
FG(θ∗, γ∗) = 0, then Tσ = 0.25nσ̂ 2

FG(θ̂n, γ̂n)
L−→ ∑k+r

j=1 λσ
j χ

2
1 j , where

χ2
11, χ

2
12, . . . , are independent Chi-square variates with one degree of freedom

and the set {λσ
j } are the eigenvalues of the matrix AFG(θ∗, γ∗)�FG(θ∗, γ∗).

(c) Suppose that the families F and G both satisfy the assumptions in Theorem 2. If

H0σ is true, then supx

∣∣∣P0σ (Tσ ≤ x) − P∗(T̂σ ≤ x)
∣∣∣ a.s.−→ 0; otherwise, P∗(T̂σ ≤

Tσ )
a.s.−→ 1, where T̂σ = ∑k+r

j=1 λ̂σ
j χ

2
1 j and {λ̂σ

j } are the eigenvalues of the matrix
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ÂFG(θ̂n, γ̂n)�̂FG(θ̂n, γ̂n), having the same structure as AFG(θ, γ )�FG(θ, γ )

with AF (θ), AG(θ), BFG(θ, γ ), D2F (θ) and D2G(γ ) replaced by ÂF (θ),

ÂG(γ ), B̂FG(θ, γ ), D̂2F (θ) and D̂2G(γ ), respectively.

As a consequence of Theorem 6, for testing H0σ versus H1σ , the test that rejects
H0σ when Tσ ≥ t̂σ,1−α , where t̂σ,1−α is such that P∗(T̂σ ≤ t̂σ,1−α) = 1− α, for some
α ∈ (0, 1), is consistent against fixed alternatives. It rejects the null hypothesis with
probability tending to 1 when the null hypothesis is false and it is also asymptotically
correct in the sense that it asymptotically has the desired level α. Note that, since the
matrices AFG(θ∗, γ∗), �FG(θ∗, γ∗) are unknown, we cannot employ the asymptotic
null distribution of Tσ for testing H0σ , but a consistent estimator of it. A further prac-
tical problem is the calculation of t̂σ,1−α, since the distribution of a linear combination
of χ2 variates is, in general, unknown. To overcome it, the conditional distribution of
T̂σ , given the data, can be approximated either by simulation or by some numerical
method (see for example Kotz et al. 1967; Castaño-Martínez and López-Blázquez
2005).

If we can assume that cF (t; θ∗) = cG(t; γ∗), then reasoning analogously, it follows
from Theorem 4 that the test that rejects H0 when nT (θ̂n, γ̂n) ≤ t̂α1 or nT (θ̂n, γ̂n) ≥
t̂1−α2 , for any α1, α2 ≥ 0 with α1 + α2 = α, where t̂β is such that P∗(T̂1 ≤ t̂β) = β,
is asymptotically correct.

Now, we are ready to test for H0 versus H1F or H1G . Recall that the models F
and G can be nested, nonnested or overlapping. These three cases will be separately
studied.

3.2 Nonnested or separate models

Two models, F and G, are said to be nonnested or separate if F ∩G = ∅. In this case,
we always have that cF (t; θ∗) �= cG(t; γ∗). Therefore, as an immediate consequence
of Theorems 3, 4 and 6, we have

(i) Under H0, D = √
nT (θ̂n, γ̂n)/σ̂FG(θ̂n, γ̂n)

L−→ N (0, 1).

(ii) Under H1F , D
a.s.−→ −∞.

(iii) Under H1G , D
a.s.−→ ∞.

Thus, for fixed α ∈ (0, 1), the decision rule is: if D < −Z1−α/2 then select
model F ; if D > Z1−α/2 then select model G; otherwise conclude that there is not
sufficient evidence to discriminate between the competing models F and G, where
�(Z1−α/2) = 1 − α/2,� being the CDF of a univariate standard normal distribution,
N (0, 1). From statements (i)–(iii) above, it follows that this test is asymptotically
correct and consistent, in the sense that it chooses the model F(G) with probability
tending to 1 when it is closer than G(F) to the true population.

3.3 Overlapping models

Two models,F and G, are said to be overlapping ifF ∩G �= ∅,F � G and G � F . In
this case, since F ∩ G �= ∅, it may happen that cF (t; θ∗) = cG(t; γ∗). Therefore, we
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must first test H0σ versus H1σ . Since H0σ is included in H0, if H0σ cannot be rejected,
then it is concluded that we cannot discriminate between the competing models. If
H0σ is rejected, then H0 can still be true. In this case, statements (i)–(iii) in Sect. 3.2
also apply.

Thus, for fixed α1, α2 ∈ (0, 1), the decision rule is: if Tσ ≥ t̂σ,1−α1 and D <

−Z1−α2/2, then select model F ; if Tσ ≥ t̂σ,1−α1 and D > Z1−α2/2, then select model
G; otherwise, conclude that there is not sufficient evidence to discriminate between
the competing models F and G.

Reasoning as in Vuong (1989), the sequential procedure described above has a
significance level which is asymptotically bounded above by the maximum of the
asymptotic significance levels α1 and α2. The procedure is also consistent in the sense
explained in Sect. 3.2.

The above sequential procedure is needed for investigating if cF (t; θ∗) = cG(t; γ∗),
but if we know that at least one of the models is correctly specified, such procedure
could be shortened because of the followingproperty,which is analogous toLemma6.2
in Vuong (1989).

Lemma 1 If the families F and G both satisfy Assumption 1, are overlapping and at
least one model is correctly specified, then the following statements are equivalent:

(a) F ∈ F ∩ G.

(b) cF (t; θ∗) = cG(t; γ∗).
(c) D2(c(t), cF (t; θ∗)) = D2(c(t), cG(t; γ∗)).

Therefore, if at least onemodel is correctly specified, H0 is equivalent to cF (t; θ∗) =
cG(t; γ∗). Hence, as an immediate consequence of Theorems 3 and 4, we have that

(iv) Under H0, nT (θ̂n, γ̂n)
L−→ T1.

(v) Under H1F , nT (θ̂n, γ̂n)
a.s.−→ −∞.

(vi) Under H1G , nT (θ̂n, γ̂n)
a.s.−→ ∞.

Thus, for fixed α = α1 + α2 ∈ (0, 1), with α1, α2 > 0, when the families are
overlapping and at least one model is correctly specified, the decision rule is: if
nT (θ̂n, γ̂n) < t̂α1 , then select model F ; if nT (θ̂n, γ̂n) > t̂1−α2 , then select model
G; otherwise, conclude that there is not sufficient evidence to discriminate between
the competing models F and G. From statements (iv)–(vi) above, it follows that this
test is asymptotically correct and consistent.

3.4 Nested models

The model G is said to be nested in model F if G ⊂ F . Note that in this case
model G can never give a better fit to the data than F ; therefore, we only have one
alternative, H0 versus H1F . To study this case, we make the following assumption on
the parametrization of these families.

Assumption 3 There exists a function φ : 
 → � such that for any γ ∈ 
, cG(t; γ )

= cF (t;φ(γ )).
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The following result is analogous to Lemma 7.1 in Vuong (1989).

Lemma 2 If the families F and G both satisfy Assumption 1, G is nested in F and
Assumption 3 holds, then the following statements are equivalent:

(a) θ∗ = φ(γ∗).
(b) θ∗ ∈ φ(
).

(c) cF (t; θ∗) = cG(t; γ∗).
(d) D2(c(t), cF (t; θ∗)) = D2(c(t), cG(t; γ∗)).

Therefore, if G is nested in F , then H0 is equivalent to cF (t; θ∗) = cG(t; γ∗).
Hence, statements (iv) and (v) in Sect. 3.3 apply. Thus, for fixed α ∈ (0, 1), the
decision rule is: if nT (θ̂n, γ̂n) < t̂α, then select model F ; otherwise, conclude that
there is not sufficient evidence to discriminate between the competing models F and
G. This test is asymptotically correct and consistent.

In the above paragraph, the null distribution of the test statistic nT (θ̂n, γ̂n) is esti-
mated as in Theorem 4(b). Nevertheless, in the nested case, calculations can be simpli-
fied because, as the next lemma shows, the nonzero eigenvalues of SFG(θ∗, γ∗) coin-
cide with those of S1FG(θ∗, γ∗) below, which has lower dimensions than SFG(θ∗, γ∗),

S1FG(θ∗, γ∗) = AF (θ∗)
∂

∂γ ′ φ(γ∗)D2G(γ∗)−1 ∂

∂γ
φ′(γ∗) − AF (θ∗)D2F (θ∗)−1,

and, therefore, under the null hypothesis nT (θ̂n, γ̂n)
L−→ ∑k

j=1 λ jχ
2
1 j , where the set{λ j } are the eigenvalues of the matrix S1FG(θ∗, γ∗).

Lemma 3 If the families F and G both satisfy the assumptions in Theorem 2, G
is nested in F , Assumption 3 holds and the function φ in Assumption 3 is twice
continuously differentiable in an open neighborhood of γ∗, then

(a) SFG(θ∗, γ∗) and S1FG(θ∗, γ∗) have the same nonzero eigenvalues.

(b) If H0 is true, then supx

∣∣∣P0{nT (θ̂n, γ̂n) ≤ x} − P∗(T̂2 ≤ x)
∣∣∣ a.s.−→ 0; otherwise,

P∗{T̂2 > nT (θ̂n, γ̂n)} a.s.−→ 1, where T̂2 = ∑k
j=1 λ̂1 jχ

2
1 j and {λ̂1 j } are the

eigenvalues of the matrix Ŝ1FG(θ̂n, γ̂n), having the same structure as S1FG(θ, γ )

with AF (θ), D2F (θ) and D2G(γ ) replaced by ÂF (θ), D̂2F (θ) and D̂2G(γ ),

respectively.

As an immediate consequence of Lemma 3, in the above rule. we can replace
nT (θ̂n, γ̂n) < t̂α by nT (θ̂n, γ̂n) < t̂2,α , where t̂2,α is such that P∗(T̂2 ≤ t̂2,α) = α.

Note that if modelF is correctly specified and Assumption 3 holds, from Lemma 2
it follows that the problem of testing H0 versus H1F is equivalent to the classical
parametric problem of testing H0,θ : θ ∈ φ(
) versus H1,θ : θ /∈ φ(
). In this
setting and when H0 is true, the test in Vuong (1989) is asymptotically distribution
free. Specifically, it asymptotically has a χ2

k−r distribution. Routine calculations show
that if AF (θ∗)D2F (θ∗)−1 = Ik, then this good result is also true for the approach
studied in this work, but unfortunately such an equality does not hold.
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Finally, observe that in the nested case, testing H0 versus H1F is equivalent to
testing H0σ versus H1σ . Therefore, we can also consider the following rule: if Tσ ≥
t̂σ,1−α, then select modelF ; otherwise, conclude that there is not sufficient evidence to
discriminate between the competing modelsF and G. From Theorem 6 and Lemma 2,
this test is asymptotically correct and consistent.

4 Cox approach for testing two separate families

Along this section, we will assume thatF and G are two separate families. For testing

HF : F is correctly specified versus HG : G is correctly specified, (10)

we consider the test statistic TCoxF(θ̂n, γ̂n), where

TCoxF(θ, γ ) = T (θ, γ ) − mF (θ, γ ), (11)

with T (θ, γ ) and mF (θ, γ ) as defined in (8) and Corollary 1, respectively. Observe
that TCoxF(θ̂n, γ̂n) is a CF version of the Cox statistic for the testing problem (10)
obtained by replacing the Kullback–Leibler distance by D2. From Theorem 3(a) and
Corollary 1(a),

TCoxF(θ̂n, γ̂n)
a.s.−→ D2(c(t), cF (t; θ∗)) − D2(c(t), cG(t; γ∗))

+D2(cF (t; θ∗), cG(t; γ∗)).

As a consequence, if HF is true then TCoxF(θ̂n, γ̂n)
a.s.−→ 0, while if HG is true then

TCoxF(θ̂n, γ̂n)
a.s.−→ 2D2(cF (t; θ∗), cG(t; γ∗)) > 0. Thus, the hypothesis HF should

be rejected in favor of HG for “large” values of TCoxF(θ̂n, γ̂n). To decide what is
“large” we must calculate the null distribution of TCoxF(θ̂n, γ̂n). Since the exact null
distribution of T (θ̂n, γ̂n) is unknown, we approximate it through its asymptotic null
distribution. Let varθ and covθ denote the variance and covariance, respectively, when
the data have CF cF (t; θ).

Theorem 7 If the families F and G both satisfy the assumptions in Theorem 2, then
under HF

√
nTCoxF(θ̂n, γ̂n)

L−→ N (0, σ 2
1FG(θ∗, γ∗)),

where

σ 2
1FG(θ, γ ) = δ′

(
varθ {ξ(X, θ, γ )} covθ {ξ(X, θ, γ ), HF (X, θ)}′
covθ {ξ(X, θ, γ ), HF (X, θ)} varθ {HF (X, θ)}

)
δ,

HF (X; θ)=D2F (θ)−1hF (X; θ), δ′ =(1, ψF (θ, γ )′) andψF (θ, γ )= ∂
∂θ

D2(cF (t; θ),

cG(t; γ )).
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For the result in Theorem 7 to be useful to approximate the distribution of
TCoxF(θ̂n, γ̂n) under HF , we need a consistent estimator of σ 2

1FG . We will consider
σ̂ 2
1FG(θ̂n, γ̂n), where

σ̂ 2
1FG(θ, γ ) = δ′

(
v̂ar{ξ(X, θ, γ )} ĉov{ξ(X, θ, γ ), ĤF (X, θ)}′
ĉov{ξ(X, θ, γ ), ĤF (X, θ)} v̂ar{ĤF (X, θ)}

)
δ,

v̂ar{ξ(X, θ, γ )} = σ̂ 2
FG(θ, γ ), ĤF (x; θ) = D̂2F (θ)−1hF (x; θ),

ĉov{ξ(X, θ, γ ), ĤF (X, θ)} = 1

n

n∑
j=1

ξ(X j , θ, γ )ĤF (X j , θ)

−1

n

n∑
j=1

ξ(X j , θ, γ )
1

n

n∑
j=1

ĤF (X j , θ),

v̂ar{ĤF (X, θ)} = 1

n

n∑
j=1

ĤF (X j , θ)ĤF (X j , θ)′

−1

n

n∑
j=1

ĤF (X j , θ)
1

n

n∑
j=1

ĤF (X j , θ)′.

It can be easily checked that, under assumptions in Theorem 7, σ̂ 2
1FG(θ̂n, γ̂n) is a

consistent estimator of σ 2
1FG . Therefore, if HF is true then DCoxF

L−→ N (0, 1), while

if HG is true then DCoxF
a.s.−→ ∞, where DCoxF = √

nTCoxF(θ̂n, γ̂n)/σ̂1FG(θ̂n, γ̂n).
Thus, the test that rejects HF in favor of HG when DCoxF > Z1−α has asymptotically
level α and is consistent.

If the roles of HF and HG as null and alternative hypotheses are interchanged,
a test statistic DCoxG = √

nTCoxG(θ̂n, γ̂n)/σ̂1GF (θ̂n, γ̂n) is obtained. Observe
that TCoxF(θ̂n, γ̂n) = −TCoxG(θ̂n, γ̂n) − 2mF (θ̂n, γ̂n), but since σ̂1FG(θ̂n, γ̂n) and
σ̂1GF (θ̂n, γ̂n) are not related, the statistics DCoxF and DCoxG are different functions of
the observations.

Following the original Cox approach, in practice we test the null hypothesis HF

versus the alternative HG based on the test statistic DCoxF and vice versa, that is, HG

versus the alternative HF based on the test statistic DCoxG. The decision rule is: reject
both HF and HG if DCoxF > Z1−α and DCoxG > Z1−α; reject neither HF nor HG

if DCoxF < Z1−α and DCoxG < Z1−α; reject HF , but not HG if DCoxF > Z1−α and
DCoxG < Z1−α; and reject HG, but not HF if DCoxF < Z1−α and DCoxG > Z1−α .

5 On the use of other point estimators

In Sects. 3 and 4, we have estimated the parameters θ and γ by means of their ISE
estimators because, according to the definition of θ∗ and γ∗, the ISE estimators are
their natural estimators. Nevertheless, motivated by the fact that in certain settings the
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calculation of the ISE estimators can be time consuming (see for example Matsui and
Takemura 2005), other estimators could be used. In such a case, although the proposed
methods could be applied, some asymptotic properties may differ while, as seen in
Remarks 1 and 2, others continue to be true, whenever the estimators satisfy certain
assumptions. The aim of this section is to rewrite the results in Sects. 3.1 and 4 when
instead of θ̂n and γ̂n , arbitrary estimators, say θ̃n and γ̃n , are employed. The results
in this section will be stated without proofs, since they follow quite similar steps to
those of the results in Sects. 3 and 4. In contrast to Sects. 3 and 4, where in addition to
deriving the asymptotic distribution of certain statistics, we also provided estimators
of such asymptotic distributions whenever they were unknown, to save space here
we will not deal with the estimation, which could be done along the same lines. The
decision rules given in Sects. 3.2–3.4 when θ and γ are estimated by means of θ̃n and
γ̃n , respectively, will vary in an obvious way.

Assume that θ̃n = θ̃n(X1, . . . , Xn) and γ̃n = γ̃n(X1, . . . , Xn) are arbitrary estima-
tors of θ and γ , respectively, satisfying (7). We will also assume that

(E{hF (X; θ0)}′, E{hG(X; γ0)}′) �= 0, (12)

since otherwise the estimators θ̃n and γ̃n are (asymptotically) equivalent to the ISE
estimators. The following result is the analog of Theorem 4.

Theorem 8 Suppose that θ̃n and γ̃n satisfy (7) and (12), the families F and G both
satisfy Assumption 2 with θ∗ (γ∗) replaced by θ0 (γ0) and

nτ
(
θ̃ ′
n − θ ′

0, γ̃
′
n − γ ′

0

)′ L−→ Y0 (13)

for some τ > 0 and for some random vector Y0. Let d ′
0 = (−2E{hF (X; θ0)}′, 2E{hG

(X; γ0)}′).

(a) If cF (t; θ0) = cG(t; γ0), then nτT (θ̃n, γ̃n)
L−→ d ′

0Y0.
(b) Assume that cF (t; θ0) �= cG(t; γ0).

(b.1) If τ < 1/2, then nτ
{
T (θ̃n, γ̃n) − μFG(θ0, γ0)

} L−→ d ′
0Y0.

(b.2) If τ = 1/2 and

n1/2

⎛
⎝n−1

n∑
j=1

ξ(X j , θ0, γ0)−μFG(θ0, γ0), θ̃
′
n − θ ′

0, γ̃
′
n − γ ′

0

⎞
⎠

′
L−→ Y1, (14)

for some random vector Y1, then n1/2{T (θ̃n, γ̃n) − μFG(θ0, γ0)} L−→ d ′
1Y1,

where d ′
1 = (1, d ′

0).

(b.3) If τ > 1/2, then n1/2{T (θ̃n, γ̃n)−μFG(θ0, γ0)} L−→ N (0, σ 2
FG(θ0, γ0)),where

σ 2
FG(θ0, γ0) is as defined in Theorem 4(c).
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From the above result, we observe that except when cF (t; θ0) �= cG(t; γ0) and
τ > 1/2, the choice of other estimators, different from the ISE, makes the asymptotic
distributions of T (θ̂n, γ̂n) and T (θ̃n, γ̃n) differ.

The asymptotic null distribution depends on whether cF (t; θ0) = cG(t; γ0) and on
the value of τ . Motivated by Theorem 5, when τ ≥ 1/2, which is the usual setting,
testing for cF (t; θ0) = cG(t; γ0) versus cF (t; θ0) �= cG(t; γ0) is equivalent to testing
for

H̃0σ : σ 2
FG(θ0, γ0) = 0,

versus

H̃1σ : σ 2
FG(θ0, γ0) > 0.

With this aim, taking into account that σ 2
FG(θ, γ ) = var{ξ(X, θ, γ )}, we estimate

σ 2
FG(θ0, γ0) bymeans of σ̂ 2

FG(θ̃n, γ̃n), with σ̂ 2
FG(θ, γ ) as defined in (9). The following

result is the analog of Theorem 6 and it gives some properties of σ̂ 2
FG(θ̃n, γ̃n).

Theorem 9 (a) If θ̃n and γ̃n satisfy (7), uF (t; θ) and vF (t; θ) are continuous functions
of θ for each t, and uG(t; γ ) and vG(t; γ ) are continuous functions of γ for each

t, then σ̂ 2
FG(θ̃n, γ̃n)

a.s.(P)−−−−→ σ 2
FG(θ0, γ0).

(b) Suppose that the assumptions in Theorem 8 hold. Then 0.25nσ̂ 2
FG(θ̃n, γ̃n)

L−→
Y ′
0MY0, where M is the variance matrix of the random vector (hF (X; θ0)

′, hG(X;
γ0)

′)′, and Y0 is as defined in (13).

The last result of this section is the analog of Theorem 7 and it gives the asymptotic
null distribution of the CF version of Cox tests statistic for testing HF vs HG when
arbitrary estimators θ̃n and γ̃n are used, that is, for the test statistic TCoxF(θ̃n, γ̃n), with
TCoxF(θ, γ ) as defined in (11).

Theorem 10 Suppose that the assumptions in Theorem 8 hold. Let Y0,θ denote the
first k components of Y0 giving the marginal asymptotic distribution of nτ (θ̃n − θ0),

where Y0 is as defined in (13). Under HF , we have:

(a) If τ < 1/2, then nτTCoxF(θ̃n, γ̃n)
L−→ −δ′

0Y0,θ , where δ0 = ∂
∂θ
mF (θ0, γ0).

(b) If τ = 1/2 and (14) holds for some random vector Y1, then n1/2TCoxF(θ̃n, γ̃n)
L−→

δ′
1Y1, where δ′

1 = (1, δ′
0, 0

′
r ), 0r = (0, . . . , 0)′ ∈ R

r .

(c) If τ > 1/2, then n1/2TCoxF(θ̃n, γ̃n)
L−→ N (0, σ 2

FG(θ0, γ0)), where σ 2
FG(θ0, γ0)

is as defined in Theorem 4(c).

Observe that when τ > 1/2, then n1/2{T (θ̃n, γ̃n)−μFG(θ0, γ0)} and n1/2TCoxF(θ̃n,
γ̃n) both have the same asymptotic distribution, which does not depend on Y0.
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6 Some numerical examples

As in Sect. 1, a problem with the ordinary Vuong and Cox approaches is that, in some
cases, these methods cannot be applied because the required regularity assumptions
are not met. This section gives two practical examples of this case: when the support of
one of the competingmodels depends on the parameter; another is when themaximum
likelihood estimator (MLE) of the parameter of one of the families does not have a
limit under the competing model. In both examples, the methods proposed in this
work can be applied under quite mild conditions. The finite sample performance of
the proposed methods is numerically evaluated by means of some simulations.

The large sample properties of the ordinary Vuong and Cox tests based on likeli-
hoods and their analogs based on CFs are quite similar (asymptotically correct, con-
sistent). Although the goal of this paper is to propose alternative methods for model
selection that can be appliedwhen the ordinary ones cannot, it is also of interest to com-
pare them in cases where both approaches can be applied. In this context, we worked
several examples, in some cases the likelihood approach beats the CF approach, while
in other instances the results were opposite. Moreover, we found an example where the
results are rather different for different values of the parameter values in the families.
A summary of the obtained results for this example is reported. In all examples we
took α = 0.05.

6.1 Example 1

Let � be a completely specified probability density function (PDF), � denote the
support of � and L denote the CDF. For simplicity, we assume that � ⊆ R is an
interval. Now, we consider the family of PDFs, which is obtained by truncating � to
the left of θ ∈ �,

f (x; θ) = �(x)

1 − L(θ)
, x > θ.

Clearly, the family F = { f (x; θ), θ ∈ �} does not satisfy the regularity assumptions
in Vuong (1989) (nor those in White 1982b for the Cox method).

Routine calculations show that if �(x) and ∂
∂x �(x) are bounded and the weight

function w is such that
∫ |t |w(t)dt < ∞, then the family F satisfies Assumption 2 in

this paper.
To study the finite sample performance of the CF version of the Vuong approach

to model selection for the above setting, we considered the families obtained by trun-
cating to the left at θ ∈ � = R the PDF of a standard normal distribution, family F ,
and the PDF of a Laplace distribution with mean 0 and variance 2, family G. Figure 1
graphs the truncated PDFs for θ = 0, 1, 2. In this example, the parameter is the same
for the two competing families. It was estimated through θ̃ = X(1), the minimum of
the sample. If the population PDF has a bounded derivative, then n(X(1) − θ) con-
verges in law to a negative exponential random variate. Therefore, for this estimator
Theorem 8(b.3) holds.We generated 10,000 samples of size n (n = 50, 100, 200, 300)
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Table 1 Percentage of selections for the CF Vuong procedure

n θ = 0 θ = 1 θ = 2

F G Both F G Both F G Both

w is the PDF of a law N (0, 1)

(a)

50 43.09 0.00 55.91 81.82 0.00 18.18 99.09 0.00 0.91

100 63.26 0.00 36.74 97.08 0.00 2.92 99.99 0.00 0.01

200 88.08 0.00 11.92 99.96 0.00 0.04 100.00 0.00 0.00

300 96.52 0.00 3.48 100.00 0.00 0.00 100.00 0.00 0.00

(b)

50 0.70 12.26 87.04 0.06 37.73 62.21 0.00 70.27 29.73

100 0.10 26.76 73.14 0.00 71.12 28.88 0.00 96.14 3.86

200 0.00 54.30 45.70 0.00 95.65 4.35 0.00 99.96 0.04

300 0.00 73.74 26.26 0.00 99.47 0.53 0.00 100.00 0.00

w is the PDF of a law Ca(0, 1)

(a)

50 32.38 0.04 67.58 73.92 0.00 26.08 97.28 0.00 2.72

100 52.08 0.00 47.92 94.00 0.00 6.00 99.96 0.00 0.04

200 79.14 0.00 20.86 99.94 0.00 0.06 100.00 0.00 0.00

300 92.53 0.00 7.47 100.00 0.00 0.00 100.00 0.00 0.00

(b)

50 0.25 16.60 83.15 0.03 37.84 62.13 0.00 71.48 28.52

100 0.07 32.85 67.08 0.00 70.45 29.55 0.00 96.07 3.93

200 0.00 58.79 41.21 0.00 94.86 5.14 0.00 99.97 0.03

300 0.00 76.90 23.10 0.00 99.46 0.54 0.00 100.00 0.00

True population: (a) F , (b) G
F truncated normal, G truncated Laplace

from the families F and G and applied the CF version of Vuong approach for model
selection.We considered two weight functions: the PDF of a standard normal distribu-
tion, N (0, 1), and the PDF of a standard Cauchy distribution, Ca(0, 1). These choices
for the weight function were motivated by the ease of computation of the resulting test
statistic, in the sense that most calculations can be analytically done. Table 1 displays
the percentage of times that the decision is: F = choose model F , G = choose model
G or both = cannot discriminate between the competing models. Table 2 displays the
results for the CF version of Cox approach. Looking at Fig. 1we see that as θ increases,
the PDFs of these families become more different. This fact is captured by the results
in Tables 1 and 2: larger sample sizes are necessary for a perfect discrimination when
θ = 0, since in this case the models are rather close, while as θ increases the required
sample size for a perfect discrimination decreases. As for the choice of the weight
function, we see that, as expected from theory, it has little effect on the percentage of
correct selections for large sample sizes.
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Table 2 Percentage of selections for the CF Cox procedure

n θ = 0 θ = 1 θ = 2

F G Both None F G Both None F G Both None

w is the PDF of a law N (0, 1)

(a)

50 89.68 2.49 7.79 0.04 97.35 0.08 0.00 2.57 97.99 0.00 0.00 2.01

100 96.84 0.97 0.00 2.19 97.06 0.00 0.00 2.94 97.55 0.00 0.00 2.45

200 96.29 0.00 0.00 3.71 96.55 0.00 0.00 3.45 96.39 0.00 0.00 3.61

300 96.15 0.00 0.00 3.85 96.24 0.00 0.00 3.76 96.96 0.00 0.00 3.04

(b)

50 8.74 70.78 20.48 0.00 1.29 91.96 0.00 6.75 0.00 92.13 0.00 7.87

100 5.52 92.02 0.17 2.29 0.00 93.38 0.00 6.62 0.00 92.78 0.00 7.22

200 0.13 93.58 0.00 6.29 0.00 93.61 0.00 6.39 0.00 93.57 0.00 6.43

300 0.00 93.94 0.00 6.06 0.00 93.20 0.00 6.80 0.00 94.10 0.00 5.90

w is the PDF of a law Ca(0, 1)

(a)

50 84.56 4.48 10.91 0.05 96.95 0.20 0.00 2.85 97.48 0.00 0.00 2.52

100 95.36 1.88 0.01 2.75 96.87 0.00 0.00 3.13 97.04 0.00 0.00 2.96

200 95.28 0.01 0.00 4.71 96.18 0.00 0.00 3.82 96.14 0.00 0.00 3.86

300 95.30 0.00 0.00 4.70 96.03 0.00 0.00 3.97 96.03 0.00 0.00 3.97

(b)

50 6.60 74.15 19.25 0.00 1.73 92.64 0.00 5.63 0.00 92.86 0.00 7.14

100 4.76 93.35 0.39 1.50 0.00 93.83 0.00 6.17 0.00 93.19 0.00 6.81

200 0.13 94.64 0.00 5.23 0.00 93.63 0.00 6.37 0.00 93.83 0.00 6.17

300 0.00 94.40 0.00 5.60 0.00 93.93 0.00 6.07 0.00 94.39 0.00 5.61

True population: (a) F , (b) G
F truncated normal, G truncated Laplace

6.2 Example 2

LetF be the set of normal distributionswithmean 0 and variance θ ∈ � = (0,∞), and
let G be the set of Cauchy distributions with location parameter 0 and scale parameter
γ ∈ 
 = (0,∞). The MLE of θ is θ̂ML = 1

n

∑
i X

2
i , which clearly does not have a

limit when the data come from the family G, and therefore Vuong and Cox procedures
cannot be applied. To discriminate between these families, we applied the CF versions
proposed in this paper taking as weight function w(t) = exp(−|t |). As in the above
example, the choice of this weight function was guided by the ease of computation.
The parameters were estimated by their ISE estimators. We generated 10,000 samples
of size n (n = 50, 100, 200) from the families F , with θ = 1, and G, with γ = 1, and
applied the CF version of Vuong and Cox approaches. Table 3 displays the obtained
results. Observe that the CF version of Cox procedure gives very good results even
for n = 50, in the sense of yielding a high percentage of correct classifications, while
the CF version of Vuong procedure requires a bit larger sample sizes.
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Table 3 Percentage of selections

n True population F True population G

Vuong Cox Vuong Cox

F G Both F G Both None F G Both F G Both None

50 72.28 0.00 27.72 95.44 0.05 0.00 4.51 0.06 33.97 65.97 3.97 92.55 0.08 3.40

100 93.70 0.00 6.30 95.34 0.00 0.00 4.66 0.00 64.59 35.41 0.02 93.37 0.00 6.61

200 99.78 0.00 0.22 95.11 0.00 0.00 4.89 0.00 92.94 7.06 0.00 94.15 0.00 5.85

F normal, G Cauchy

Table 4 Percentage of selections

a = 1 a = 0.5

Vuong Cox Vuong Cox

F G Both F G Both None F G Both F G Both None

(a)

ML 62.55 0.00 37.45 92.40 0.20 0.05 7.35 0.30 6.95 92.75 6.85 14.60 78.55 0.00

CF1 67.40 0.00 32.60 93.55 1.85 3.45 1.15 0.20 5.00 94.80 0.00 5.90 94.10 0.00

CF2 72.05 0.00 27.95 87.40 0.10 3.35 9.15 0.50 1.30 98.20 0.00 6.00 94.00 0.00

CF3 69.80 0.00 30.20 88.70 0.20 2.00 9.10 0.80 1.20 98.00 0.00 6.25 93.75 0.00

(b)

ML 3.20 1.25 95.55 35.00 12.75 52.10 0.15 0.15 13.60 86.25 2.55 19.60 77.85 0.00

CF1 1.90 0.05 98.05 0.00 4.10 95.90 0.00 7.35 0.05 92.60 0.00 4.05 95.95 0.00

CF2 1.30 2.10 96.60 0.00 8.30 91.70 0.00 4.00 0.15 95.85 0.00 5.80 94.20 0.00

CF3 1.15 3.25 95.60 0.00 8.55 91.45 0.00 3.70 0.20 96.10 0.00 6.70 93.30 0.00

(c)

ML 0.05 14.45 85.50 4.50 57.10 38.40 0.00 0.20 13.30 86.50 2.50 22.10 75.40 0.00

CF1 0.00 20.20 79.80 0.40 37.35 62.25 0.00 0.10 8.55 91.35 0.00 8.35 91.65 0.00

CF2 0.20 14.50 85.30 3.85 33.10 63.05 0.00 0.30 2.70 97.00 0.00 7.85 92.15 0.00

CF3 0.25 13.50 86.25 6.00 32.15 61.85 0.00 0.65 2.35 97.00 0.00 8.20 91.80 0.00

True population: (a) N (0, 1), (b) N (0, 2), (c) 0.5N (a, 1) + 0.5N (−a, 1)
F normal, G equal mixture of two normals

6.3 Example 3

Let F be the set of normal distributions with mean 0 and variance θ ∈ � = (0,∞),
N (0, θ), and let G be the set of equal mixtures of two normal populations with equal
variance γ ∈ 
 = (0,∞) and known means a and −a, 0.5N (a, γ ) + 0.5N (−a, γ ).
Both families satisfy the required regularity assumptions for applying the classical
approach (denoted asML) and the one proposed in this paper. To discriminate between
these families we applied both approaches. For the CFmethodology, we took asweight
function the PDF of a normal law with mean 0 and standard deviation 1, 2 and 3
(denoted as CF1, CF2 and CF3, respectively). We carried out an experiment similar to
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that described in Sect. 6.2 for several values of θ , γ and a. Table 4 displays the results
for n = 100. Looking at this table, we observe that rather different results are obtained
for different values of the parameters. For example, in cases (b) a = 1 and (c) a = 0.5,
the ordinary Vuong test outperforms the one proposed in this work; the opposite is
observed in cases (a) a = 1 and (b) a = 0.5; in cases (a) a = 0.5 and (c) a = 1,
the results are quite similar. For Cox test, in all cases the likelihood-based method has
the highest percentage of both right decisions and wrong decisions (except in case (a)
a = 1). Figure 2 graphs the PDF and the CF of a standard normal law (black) together
with the closest PDF and CF of the mixture model (dashed) with a = 1 and a = 0.5.
When a = 1, we see that the PDFs have rather different shapes (also the CFs); when
a = 1, they are really close. Because of this reason, the results in case (a) for a = 1
are better than for a = 0.5.

In the light of the above simulation results, at present we cannot give a general
recommendation onwhatmethod to usewhen both apply. This point certainly deserves
further research.

7 Conclusions

Two methods for the model selection problem have been proposed and studied. They
are based on measuring the distance between the CF of the population generating the
data and the CF in each competing model. The first method is a CF analog to that
developed by Vuong (1989), while the second one is a CF version of the Cox (1961,
1962) approach for the problem of testing for two separate models. Two examples are
used to illustrate that the proposed methods can be applied in settings where neither
Vuong nor Cox approaches can be used.

Some generalizations of the proposed methods are possible: (a) throughout the
paper we have assumed that we have only two competing models; the case of three or
more competing models can be dealt by applying multiple comparison techniques as
suggested in Shimodaira (1998); (b) throughout the paper we have assumed that the
available data consist of IID observations; the proposed procedures can be extended to
othermore general settings such as regressionmodels or dependent data; (c) throughout
the paper we have assumed that the competing models are parametric; the proposed
procedures can be extended to other more general models such as semiparametric
models. These as well as other possible extensions constitute a field of future research.

Another open question that deserves further study is what method should be applied
in cases where both approaches can be applied.

8 Proofs

Proof of Theorem 1 For each fixed θ ∈ �, In(θ) is a degree-2 V-statistic, In(θ) =
1
n2

∑
jl k(X j , Xl; θ), with kernel k(x, y; θ) as defined in (6). From the SLLN

for V-statistics (see for example Serfling 1980), In(θ)
a.s.−→ E{k(X1, X2; θ)} =

D2(c(t), c(t; θ)). Thus, for any δ �= 0 such that θ∗ + δ ∈ �, we have that, at least for
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large n, In(θ∗ +δ)− In(θ∗) > 0 with probability one. Since δ is arbitrary, we conclude
that θ̂n is strongly consistent for θ∗. ��
Proof of Theorem 2 From Assumptions 1 and 2, D1(θ∗) = 0 and D2(θ) is positive
definite for all θ in a neighborhood of θ∗. By Taylor expansion,

0 = ∂

∂θ
In(θ̂n) = ∂

∂θ
In(θ∗) + ∂2

∂θ∂θ ′ In(θ̂1n)(θ̂n − θ∗), (15)

with θ̂1n = αθ̂n + (1 − α)θ∗, for some α ∈ (0, 1). We have ∂
∂θ

In(θ) =
−2 1

n

∑n
j=1 h(X j ; θ), 2E{h(X; θ)} = −D1(θ) and E{h(X; θ)h(X; θ)′} = A(θ).

Thus, from the CLT,

√
n
1

2

∂

∂θ
In(θ∗)

L−→ Nk(0, A(θ∗)). (16)

On the other side, E
{

∂2

∂θ∂θ ′ In(θ)
}

= 2D2(θ). Since θ̂1n
a.s.−→ θ∗, from Lemma 3.1 in

White (1981), it follows

∂2

∂θ∂θ ′ In(θ̂1n)
a.s.−→ 2D2(θ∗). (17)

Finally, the result follows from (15)–(17). ��
Proof of Theorem 3 (a) We have

D2(cn(t), c(t; θ̂n)) = In(θ̂n) =
∫

{un(t) − u(t; θ̂n)}2dW (t)

+
∫

{vn(t) − v(t; θ̂n)}2dW (t). (18)

For the first integral in the right hand side of (18), we have

∫
{un(t) − u(t; θ̂n)}2dW (t) =

∫
{un(t) − u(t; θ∗)}2dW (t)

+
∫

{u(t; θ∗) − u(t; θ̂n)}2dW (t)

+2
∫

{un(t) − u(t; θ∗)}{u(t; θ∗) − u(t; θ̂n)}dW (t) := S1 + S2 + 2S3.

From the proof of Theorem 1, S1
a.s.−→ ∫ {u(t) − u(t; θ∗)}2dW (t). To deal with

S2, we observe the following facts: let ε > 0 be arbitrary but fixed, then there
exists a compact set K ⊂ R

k such that
∫
K dW (t) ≥ 1 − ε; let δ > 0 be such

that �1 = B̄(θ∗; δ) ⊆ �, where B̄(θ∗; δ) = {x ∈ R
k : |x − θ∗| ≤ δ}; from

the assumptions made, u(t; θ) is a continuous function, as a function of the pair
(t, θ); thus it is a uniformly continuous function on C = K × �1, which implies
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that there exists a ζ > 0 such that |u(t; θ) − u(t ′; θ ′)| < ε, whenever (t, θ),
(t ′, θ ′) ∈ K × �1 and |(t, θ) − (t ′, θ ′)| < ζ . From Theorem 1, for large enough
n, we have that θ̂n ∈ B̄(θ∗; δ) with probability 1. Therefore, for large enough n,

0 ≤
∫

{u(t; θ∗) − u(t; θ̂n)}2dW (t) ≤ ε2
∫
K
dW (t) + 4

∫
Kc

dW (t) ≤ ε2 + 4ε,

where Kc denotes the complementary of K . Since ε > 0 is arbitrary, this implies
that S2

a.s.−→ 0. As for S3, taking into account that |S3| ≤ S11/2S21/2 and 0 ≤∫ {u(t) − u(t; θ∗)}2dW (t) ≤ 4, we have that S3
a.s.−→ 0. Thus,∫

{un(t) − u(t; θ̂n)}2dW (t)
a.s.−→

∫
{u(t) − u(t; θ∗)}2dW (t).

Proceeding analogously with the second term in the right hand side of (18), we
get the result.

(b) The result follows from the results in Sections 6 and 8 of Csörgő (1981) or from
Theorem 1 in Jiménez-Gamero et al. (2009).

(c) By Taylor expansion,

D2(cn(t), c(t; θ̂n)) = In(θ̂n) = In(θ∗) + ∂

∂θ
In(θ̂1n)

′(θ̂n − θ∗), (19)

with θ̂1n = αθ̂n + (1− α)θ∗, for some α ∈ (0, 1). Now, we separately study each
term in the right hand side of (19).
As observed in the proof of Theorem 1, In(θ) is a degree-2 V-statistic with kernel

k(x, y; θ), defined in (6), satisfying |k(x, y; θ)| ≤ 8, ∀x, y, θ . We are assuming that
var{ρ(X)} = σ 2(θ∗) > 0. Thus, from Theorem 6.4.1A in Serfling (1980),

√
n

{
In(θ∗) − D2(c(t), c(t; θ∗))

} L−→ N (0, σ 2(θ∗)). (20)

Routine calculations show that

√
n

∂

∂θ
In(θ̂1n)

′(θ̂n − θ∗)
P−→ 0. (21)

Finally, the result follows from (19)–(21). ��
Proof of Corollary 1 (a) The result follows from Theorem 1 because mF (θ, γ ) =

−D2(cF (t; θ), cG(t; γ )).
(b) The result follows from Theorem 2.

��
Proof of Theorem 4 (a) FromTaylor expansion of D2(cn(t), cF (t; θ∗)) around θ̂n,we

obtain

D2(cn(t), cF (t; θ∗)) = D2(cn(t), cF (t; θ̂n))

+(θ̂n − θ∗)′D2F (θ∗)(θ̂n − θ∗) + oP (n−1). (22)
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Similarly,

D2(cn(t), cG(t; γ∗)) = D2(cn(t), cG(t; γ̂n))

+(γ̂n − γ∗)′D2G(γ∗)(γ̂n − γ∗) + oP (n−1). (23)

From (22) and (23),

nT (θ̂n, γ̂n) = √
n

(
θ̂n − θ∗
γ̂n − γ∗

)′ (−D2F (θ∗) 0
0 D2G(γ∗)

)√
n

(
θ̂n − θ∗
γ̂n − γ∗

)
+ oP (1).

Now, the result follows from the above equality and the result in Corollary 1(b).
(b) This part is a direct consequence of Lemma 3.1 in White (1981) that the eigen-

values of a matrix are a continuous function of the entries in the matrix and the
Polya theorem (see for example Lemma 8.2.6 in Athreya and Lahiri 2006).

(c) Note that E{ξ(X, θ, γ )} = μFG(θ, γ ) and 0 < var{ξ(X, θ, γ )} = σ 2
FG(θ, γ ).

Thus from the CLT,

1√
n

n∑
j=1

{
ξ(X j , θ, γ ) − μFG(θ, γ )

} L−→ N (0, σ 2
FG(θ, γ )). (24)

Since ∂
∂θ j

μFG(θ∗, γ∗) = ∂
∂γl

μFG(θ∗, γ∗) = 0, 1 ≤ j ≤ k, 1 ≤ l ≤ r ,

(24) and Theorem 2.13 of Randles (1982) both imply that
√
n{T (θ̂n, γ̂n) −

μFG(θ∗, γ∗)} L−→ N (0, σ 2
FG(θ∗, γ∗)).

��
Proof of Theorem 5 If cF (t; θ∗) = cG(t; γ∗), thenσ 2

FG(θ∗, γ∗) = var{ξ(X, θ∗, γ∗)}=
0. To show the another implication, note that σ 2

FG(θ∗, γ∗) = 0 iff

ξ(x, θ∗, γ∗) = κ1, for some κ1 ∈ R, ∀x ∈ R
d . (25)

The equality in (25) can be rewritten as follows:

C(x) = −S(x) + κ2, (26)

for some κ2 ∈ R, ∀x ∈ R
d , where C(x) = ∫

cos(t ′x){uF (t; θ∗) − uG(t; γ∗)}w(t)dt ,
S(x) = ∫

sin(t ′x){vF (t; θ∗) − vG(t; γ∗)}w(t)dt . Since C(x) = C(−x) and S(x) =
−S(−x), ∀x ∈ R

d , from (26) we conclude that S(x) = 0 and C(x) = κ2, ∀x ∈ R
d .

Because cos(−t ′x)w(−t) = cos(t ′x)w(t), vF (t; θ) = −vF (−t; θ) and vG(t; θ) =
−vG(−t; θ), ∀x, t ∈ R

d , ∀θ ∈ �, ∀γ ∈ 
, we have
∫

cos(t ′x){vF (t; θ∗) − vG(t; γ∗)}w(t)dt = 0, ∀x ∈ R
d . (27)

Now, S(x) = 0 and (27) are tantamount to saying that the Fourier transform of the
function {vF (t; θ∗) − vG(t; γ∗)}w(t) is equal to 0. The uniqueness of the Fourier
transform implies that {vF (t; θ∗) − vG(t; γ∗)}w(t) = 0, ∀t ∈ R

d . Since w(t) > 0, it
follows that vF (t; θ∗) = vG(t; γ∗), ∀t ∈ R

d . Proceeding analogously,
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∫
sin(t ′x){uF (t; θ∗) − uG(t; γ∗)}w(t)dt = 0, ∀x ∈ R

d . (28)

Now, C(x) = κ2 and (28) are tantamount to saying that the Fourier transform of the
function {uF (t; θ∗) − uG(t; γ∗)}w(t) is equal to κ2. The Riemann–Lebesgue lemma
implies that κ2 = 0. Reasoning as before, we get uF (t; θ∗) = uG(t; γ∗), ∀t ∈ R

d .
This proves the result. ��
Proof of Theorem 6 (a) The result follows from Theorem 1 and Lemma 3.1 in White

(1981).
(b) By Taylor expansion of σ̂ 2

FG(θ̂n, γ̂n) around (θ ′∗, γ ′∗)′, we obtain

nσ̂ 2
FG(θ̂n, γ̂n) = 4

√
n

(
θ̂n − θ∗
γ̂n − γ∗

)′
AFG(θ∗, γ∗)

√
n

(
θ̂n − θ∗
γ̂n − γ∗

)
+ oP (1).

Now, the result follows from the above expression and the result in Corollary 1(b).
(c) The proof is the same as that of Theorem 4(b); so we omit it.

��
The proof of Lemma 1 is easy, and thus it is omitted. The proof of Lemma 2 is quite
similar to the proof of Lemma 7.1 in Vuong (1989); so we omit it. The proof of
Lemma 3(a) is quite similar to the proof of Theorem 7.2(i) in Vuong (1989); so we
omit it. Lemma 3(b) is a direct consequence of part (a) and Theorem 4(a).

Proof of Theorem 7 We have
√
nTCoxF(θ̂n, γ̂n) = √

n{T (θ̂n, γ̂n) − mF (θ∗, γ∗) +
mF (θ∗, γ∗)−mF (θ̂n, γ̂n)}.Under HF ,μFG(θ∗, γ∗) = mF (θ∗, γ∗) = −D2(cF (t; θ∗),
cG(t; γ∗)). From the proof of Theorem 4(c),

√
n{T (θ̂n, γ̂n) − mF (θ∗, γ∗)} =

1√
n

∑n
j=1 ξ(X j , θ∗, γ∗) − μFG(θ∗, γ∗) + oP (1). Routine calculations show that

√
n{−mF (θ̂n, γ̂n)+mF (θ∗, γ∗)} = ψF (θ∗, γ∗)′ 1√

n

∑n
j=1 HF (X j , θ∗)+oP (1). Sum-

marizing,

√
nTCoxF(θ̂n, γ̂n)=(1, ψF (θ∗, γ∗)′)

1√
n

n∑
j=1

(
ξ(X j , θ∗, γ∗)−μFG(θ∗, γ∗)
HF (X j , θ∗)

)
+oP (1).

The result follows from the above expression and CLT. ��
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Csörgő, S. (1981). The empirical characteristic process when parameters are estimated. In J. Gani, V. K.
Rohatgi (Eds.), Contributions to probability: A collection of papers dedicated to Eugene Lukacs (pp.
708–723). New York: Academic Press.

Epps, T. W., Singleton, K. J., Pulley, L. B. (1982). A test of separate families of distributions based on the
empirical moment generating function. Biometrika, 69, 391–399.

Feigin, P. D., Heathcote, C. R. (1976). The empirical characteristic function and the Cramér–von Mises
statistic. Sankhya, 38, 309–325.

Feller, W. (1971). An introduction to probability theory and its applications (Vol. 2). New York: Wiley.
Heathcote, C. R. (1977). The integrated squared error estimation of parameters. Biometrika, 64, 64–255.
Jiménez-Gamero, M. D., Alba-Fernández, V., Muñoz-García, J., Chalco-Cano, Y. (2009). Goodness-of-

fit tests based on empirical characteristic functions. Computational Statistics & Data Analysis, 53,
3957–3971.

Jiménez-Gamero, M. D., Pino-Mejías, R., Alba-Fernández, V., Moreno-Rebollo, J. L. (2011). Minimum φ-
divergence estimation in misspecified multinomial models.Computational Statistics &Data Analysis,
55, 3365–3378.

Jiménez-Gamero, M. D., Pino-Mejías, R., Rufián-Lizana, A. (2014). Minimum Kφ -divergence estimators
for multinomial models and applications. Computational Statistics, 29, 363–401.

Kishino, H., Hasegawa, M. (1989). Evaluation of the maximum likelihood estimate of the evolutionary tree
topologies from DNA sequence data, and the branching order in Hominoidea. Journal of Molecular
Evolution, 29, 170–179.

Kotz, S., Johnson, N. L., Boyd, D. W. (1967). Series representations of quadratic forms in normal variables.
I. Central case. The Annals of Mathematical Statistics, 38, 823–837.

Lindsay, B. G. (1994). Efficiency versus robustness: the case for minimum Hellinger distance and related
methods. The Annals of Statistics, 22, 1081–1114.

Linhart, H. (1988). A test whether two AIC’s differ significantly. South African Statistical Journal, 22,
153–161.

Matsui, M., Takemura, A. (2005). Empirical characteristic function approach to goodness-of-fit tests for
the Cauchy distribution with parameters estimated by MLE or EISE. Annals of the Institute of Math-
ematical Statistics, 57, 183–199.

Matsui, M., Takemura, A. (2008). Goodness-of-fit tests for symmetric stable distributions-Empirical char-
acteristics function approach. Test, 17(3), 546–566.

Meintanis, S. G. (2005). Consistent tests for symmetric stability with finite mean based on the empirical
characteristic function. Journal of Statistical Planning and Inference, 128(2), 373–380.

Pardo, L. (2006). Statistical inference based on divergence measures. Boca Raton: Chapman & Hall.
Randles, R. H. (1982). On the asymptotic normality of statistics with estimated parameters. The Annals of

Statistics, 10, 462–474.
Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley.
Shimodaira, H. (1998). An application of multiple comparison techniques to model selection. Annals of the

Institute of Mathematical Statistics, 50, 1–13.
Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica,

57, 257–306.
Vuong, Q. H., Wang, W. (1993). Minimum chi-square estimation and tests for model selection. Journal of

Econometrics, 56, 141–168.
White, H. (1981). Misspecified nonlinear regression models. Journal of the American Statistical Society,

76, 419–433.
White, H. (1982a). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.
White, H. (1982b). Regularity conditions for Cox’s test of non-nested hypothesis. Journal of Econometrics,

19, 301–315.

123


	Fourier methods for model selection
	Abstract
	1 Introduction
	2 Minimum ISE estimators
	3 Model selection
	3.1 Statement of the problem and main results
	3.2 Nonnested or separate models
	3.3 Overlapping models
	3.4 Nested models

	4 Cox approach for testing two separate families
	5 On the use of other point estimators
	6 Some numerical examples
	6.1 Example 1
	6.2 Example 2
	6.3 Example 3

	7 Conclusions
	8 Proofs
	Acknowledgments
	References




