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Abstract A testapproach to the model selection problem based on characteristic func-
tions (CFs) is proposed. The scheme is close to that proposed by Vuong (Econometrica
57:257-306, 1989), which is based on comparing estimates of the Kullback—Leibler
distance between each candidate model and the true population. Other discrepancy
measures could be used. This is specially appealing in cases where the likelihood of a
model cannot be calculated or even, if it has a closed expression, it is either not easily
tractable or not regular enough. In this work, the closeness is measured by means of a
distance based on the CFs. As a prerequisite, some asymptotic properties of the mini-
mum integrated squared error estimators are studied. From these properties, consistent
tests for model selection based on CFs are given for separate, overlapping and nested
models. Several examples illustrate the application of the proposed methods.

Keywords Empirical characteristic function - Model selection - Misspecified
models

1 Introduction

The main purpose of this paper is to propose new tests for the model selection problem
that can be described as follows. Given a sample from an unknown population and two
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possibly misspecified parametric models, F and G, which may be separate, overlap-
ping or nested, the problem of model selection consists in testing if the two competing
models are equally close to the true population against the hypothesis that one model
is closer than the other. Vuong (1989) (see also Linhart 1988; Kishino and Hasegawa
1989) has proposed tests for this problem that are based on the likelihood ratio sta-
tistic, which estimates the difference of the Kullback—Leibler distance between each
candidate model and the true distribution. Although this approach is good and well
founded, some alternative procedures have been proposed. For example, it may happen
that, even if the data come from a continuous population, the available data consist
of the number of observations in certain intervals, a partition of the space where the
original data take values. In this case, because the Pearson Chi-square statistic is
widely used for this kind of data, it seems natural to measure the discrepancy between
the true population and the competing models by means of some Chi-square type
of distance. This approach was studied in Vuong and Wang (1993). Since the Pear-
son Chi-square statistic is a member of the class of ¢-divergence statistics and also
of the class of Kg-divergence statistics (see, for example, Pardo 2006), Jiménez-
Gamero et al. (2011, 2014) have studied the model selection problem by using these
two classes of statistics for non-overlapping models.

Thus, other discrepancy measures could be used to measure the closeness between
each competing model and the true population model. This is specially appealing in
cases where the likelihood of a model cannot be calculated. A typical example is the
case of some stable distributions, since it is only in a few instances that convenient
expressions for densities can be found. Even if the likelihood has a closed expression,
it may be either not easily tractable or not regular enough, in the sense that it does
not satisfy the regularity conditions in Vuong (1989). This is the case of the Laplace
distribution with location and scale parameters. A common feature of these examples
is that in each case, the characteristic function (CF) has a quite regular closed simple
expression. Therefore, in these cases it is more convenient to measure the closeness
between each competing model and the true population model by means of a dis-
tance based on the CFs (see Meintanis 2005; Matsui and Takemura 2008, for testing
problems in stable distributions).

A problem intimately related to that of model selection is that of testing for two sep-
arate families of distributions (see Cox 1961, 1962; White 1982b). A main difference
is that, while the latter assumes that one of the models is true and the objective is to
select the correct model, the former does not assume it and the objective is to select the
model which, according to some discrepancy measure, is closest to the true population
distribution. The Cox approach is based on comparing the observed difference of log
likelihoods with an estimate of that to be expected under the null hypothesis. Since
this approach is based on likelihoods, the same arguments given above can be applied
in favor of using other discrepancy measures. In this line, Feigin and Heathcote (1976)
have proposed using the empirical characteristic function (ECF). The proposed tech-
nique employs either the real or the imaginary part of the ECF evaluated at a single
point. To avoid working with either the real or the imaginary part, Epps et al. (1982)
proposed using the moment-generating function, but again evaluated at a single point.
A weak point of these two papers is that the ECF and the empirical moment-generating
function, respectively, are evaluated at a single point, which implies choosing it and
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losing the information given by the rest of the points. While the CF exists for all distrib-

utions, the moment-generating function may not exist, so we prefer to work with the CF.
To measure the closeness between two populations defined on R?, for some d € N,

with CFs ¢ () and ¢2(¢), t € R, we consider the following discrepancy measure:

D*(c1, ¢2) = / le1(t) — c2(D)PdW (1), ey

where for any complex number, z = a + ib, with i = =1, IZI2 = a® + b an
unspecified integral denotes integration over the whole space R, and W (r) denotes a
nondecreasing weight function whose total variation can, without loss of generality,
be taken as unity. Since |c1 () — c2(f) |2 < 4, the presence of dW (¢) in the expression
of D?(cy, ¢2) renders the integral in (1) finite. Observe that if

dW () = w(r)dr, withw(r) > 0, Vr € RY, 2)

then D(cy, c2) is a true distance between distributions; otherwise, c; = ¢ implies
that D(cy, c2) = 0, but the contrary is not true in general (see Feller 1971). Observe
also that if dW (¢) = w(z)dr, we can assume that w satisfies

w(t) = w(—t), VteRY, 3)

because otherwise by defining wi () = 0.5{w(z) + w(—t)}, which satisfies (3), we
have

/ le1 (1) — ca()Pw(r)dr = / le1 (1) — ca(t)Pwy (£)dr.

Therefore, from now on, whenever dW (t) = w(z)d¢, we will assume that (3) holds.

Roughly speaking, the method proposed in this paper consists in choosing that
model minimizing the discrepancy measure (1) between an estimator of the popula-
tion CF and an estimator of the model CF. To estimate the population CF we consider
the ECF, and an estimator of the model CF is obtained by replacing the unknown
parameters by suitable estimators. Specifically, the unknown parameters will be esti-
mated by their minimum integrated squared error (ISE) estimators, which minimize
the discrepancy measure (1) between the model and the ECF associated with the data.
Some asymptotic properties of these estimators have been studied in Heathcote (1977)
and Csorgd (1981) when the model is assumed to be correctly specified. For our objec-
tives, we also need to know some properties of these estimators when the model is
misspecified. This study is done in Sect. 2, where we give sufficient conditions for the
strong consistency and asymptotic normality of these estimators.

Given two parametric models, F and G, which may be separate, overlapping or
nested, we propose tests of the null hypothesis that both models are equivalent, in
the sense that the distance D defined in (1) between the population and each model
is the same, against that one of the models is closer than the other to the population
generating the observed data. Motivated by some results in Sect. 2, the test statistic
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is a sample version of the difference of the distances between the population and
each competing model. The problem is the same as the one studied in Vuong (1989),
but since the distances considered, and thus their estimators, are rather different, the
required assumptions and the proofs of the results also differ. These tests and some
properties are presented in Sect. 3. A CF analog of the Cox approach for separate
models is developed in Sect. 4.

In Sects. 3 and 4, it is assumed that the unknown parameters are estimated by their
ISE estimators. It is natural to wonder what happen if other estimators are used. This
topic is studied in Sect. 5, where we will see that some asymptotic results may change.

Section 6 gives two examples where neither Vuong nor Cox approaches can be
applied because the competing families are not regular, in the sense that the assump-
tions in Vuong (1989) and White (1982b) do not hold. In contrast, these families
satisfy the assumptions required by the methods proposed in this paper. The finite
sample performance of the proposed procedures is numerically investigated in each
example. Section 6 also presents an example where both approaches apply. Section 7
provides the conclusions to the article. All proofs are sketched in the last section.

Before ending this section, we introduce some notation: all limits in this paper

L . C - P

are taken when n — o00; — denotes convergence in distribution; — denotes

. oy a.s. . d
convergence in probability; —> denotes the almost sure convergence; if R C R?,
for some d € N, then R° denotes the interior of R; if x € RY, then |x| denotes the
Euclidean norm; the same symbol is used to denote the modulus of a complex number;
to simplify notation, all Os appearing in the paper represent vectors or matrices of
the appropriate dimension; Py denotes the probability under the null hypothesis, Pi
denotes the conditional probability, given the data.

2 Minimum ISE estimators

As aprerequisite to the model selection problem based on CFs, in this section we study
some asymptotic properties of the minimum ISE estimators. The strong consistency
and asymptotic normality of these estimators have been proved in Heathcote (1977)
under the assumption that the parametric model is correctly specified. The aim of this
section is to study the limit and the asymptotic normality of these estimators when
such assumption is dropped.

Let X1, X2, ..., X, be independent, identically distributed (IID) random vectors
from a population X taking values in R? with CF ¢(r) and cumulative distribution
function (CDF) F. Let F be a family of distributions so that each member in this
family has CF c(t; 6) and CDF F (x; 6), for some finite dimensional parameter 6; in
other words, we can write F = {c(z; 0); 0 € ©}, where ® C R¥, for some k € N.
Equivalently, we also write F = {F(¢; 0); 6 € ©}. We assume that the elements in
F are identifiable, where by identifiable we mean c(t; 1) # c(t; 62), in the sense
that sup, |c(t; 01) — c(t; 62)| > O, whenever 01 # 6. If c(¢t) € F, Heathcote (1977)
proposed estimating 6 by means of é” = én(Xl, X5, ..., X,), so that

A

0, = in 1,,(6),
" arggg(gn()

@ Springer



Fourier methods for model selection 109

where
1,(6) = / lon (1) — et O)PAW (1),

cn (1) stands for the ECF of the sample,

| — ,
)= — ir'X;),
cn (1) . E exp(ir' X ;)

j=1

and the prime denotes transpose. The statistic 6, is called the (minimum) ISE estimator
of 6.
Now, if the assumption c(r) € F is dropped, we define D(c(¢), F) =
Hing D(c(t), c(t,0)) and the projection of c(z) on F as c(¢; 0x), where 0, € O is
pre

such that

6, = argmin D*(c(1), c(t; 0)).
0e®

Since the elements in F are identifiable, if c(¢) € F, thatis, if c(t) = c(¢; 6), for some
6 € O, then 6, = 6; otherwise, c(¢; 64) is the element in F closest to c(¢). Note that
0, may not exist or, if it exists, it may not be unique. Along the manuscript we will
assume the following.

Assumption 1 D%(c(1), c(z: 0)) has a unique minimum at 9, € ®.

Assumption 1 is commonly used in papers dealing with projections, in the sense
of handling parameters minimizing some kind of distance or discrepancy measure
between a population and a parametric family of distributions. For example, it is the
analog of Assumption A3(b) in White (1982a), Assumption A.9 in Vuong and Wang
(1993), Assumption 30 in Lindsay (1994) and Assumption (C.1) in Broniatowski and
Keziou (2009), just to cite a few.

Note that, in general, 6, will depend on W. Thus, to be rigorous, we should denote
it as 6, (W). Nevertheless, to keep the notation as simple as possible, we will just write
0, for 0, (W).

Theorem 1 Suppose that Assumption 1 holds, then 6, 2509,

In practice, if I,,(0) can be differentiated, to calculate én we solve in 6 the equation

9
5 In©@) =0. )

Theorem 1 asserts that, if 6, € ©°, then there exists a root of (4) converging a.s. to 6.

Next, to study the convergence in law of 6,, we will need the following technical
assumption about the regularity of c¢(¢; 0) as a function of 6. Let u(¢) and v(¢) denote
the real and imaginary parts of c(t), thatis, c(t) = u(z) +iv(z). Analogously, for each
c(t;0) € F,wewrite c(t; 0) = u(t; 0) +iv(t; 0) and ¢, () = u, (t) + iv, (7).
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110 M. D. Jiménez-Gamero et al.

Assumption 2 For W-almost all 7, u(¢; 6) and v(t; 6) are twice continuously differ-
entiable on ®1, where ®; C © is an open neighborhood of 6,. In addition, %u(r; 0),

2
Lu(t:0), Lu(t:0) Zut; ), Hut; 0)Lv(t:0), Lv(t: 0)Zv(t; 0), shult; 0)

and %ge,v(t; 0) are uniformly (V6 € ©1) bounded by W-integrable functions.

Assumption 2 implies that 7, (9) is twice continuously differentiable on ®; and that
it can be differentiated under the integral sign. Let D{(0) = (D11(0), ..., D1x(0)),
with D1;(8) = 55-D>(c(t). c(t:0)). 1 < j < k,and Dy(8) = (Day(6)). with

J

2 .
D2ji(®) = 355,55 D*(c(0). c(t:0)). 1 < j. I < k.

Now, we are ready to derive the asymptotic normality of 6.

Theorem 2 Suppose that Assumptions 1 and 2 hold, then
1 n
VG, —6) = ﬁgDzw*)—lh(Xj;e*Hop(l), Q)

with h(x; 0) = (h1(x; 0), ..., hx(x; 0)),

hj(x;0) = /{cos(t’x) —u(t; 0)}8%140; 6)dW (1)

J

0
+/{Sin(t’X) —v(t; 0)}—v(; 0)dW (@),
20;
1 <j <k, and thus

Sy — 6,) 55 N0, D),

where ¥ = D1 (05) "' A(6x) D2 (65) " and A(9) = E{h(X; 0)h(X; 0)'}.

As observed after Theorem 1, the statement in Theorem 2 asserts that there exists
a root of (4), 6y, such that Jn (é,, — 6,) converges in law to a zero mean k-variate
normal distribution.

The next result gives the asymptotic behavior of D(c,(¢), c(t; én)) as an estimator
of D(c(t), c(t; 64)).

Theorem 3 (a) Suppose that Assumption 1 holds, 6, € ©° and u(t; 0) and v(t; )
are continuous as functions of 0 for all t, then

D(cn (1), c(t: ) = D(c(t), c(t: 6,)) = D(c(t), F).

(b) If assumptions in Theorem 2 hold and c(t) € F, then

o0
A L
nD*(cn (1), c(t: 6p)) —> D" Mxi,
j=1
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where X121’ X122, ... are independent Chi-square variates with one degree of free-
dom, the set {A?} are the eigenvalues of operator A defined on Lg(Rd, F(;0)) =

{g: R > R, [g(x)?dF(x;60) < oo} by
A (x) = / K (x. y: 0)a (1)AF(y: 0),
with k€ (x, y; 0) = k(x, y; 0) — h(x; 9)’D2(9)_1h(y; 0) and

k(x,y;0) = /{COS(t/X) — u(t; 0)}{cos(t'y) — u(r; )}dW (1)

+/{sin(t’x) —v(t; O)Ysin(t'y) — v(t; 6)}dW (2). (6)

(¢) If assumptions in Theorem 2 hold, c(t) ¢ F and W such that c*(6y) =
var{p(X)} > 0, where p(x) = E{k(X1, X2;04) | X1 = x}, then

VD2 0), e ) = DXe(), et 6.)) | £, N, 0%6,)).

A simple way to ensure that o2(6) > 0 is by taking W satisfying (2). Recall that
in this case D(cy, ¢p) is a true distance between distributions.

Remark 1 Let 9~,, = 5,1(X 1,---,X,) be an arbitrary estimator of 6 satisfying

- as(P)

6, L> 0p € O° If u(t;0) and v(t;0) are continuous as functions of 6
~ 5.(P)

for all ¢, then we also have that D(c,(t), c(t; 6,)) L) D(c(1), c(t; 6y)), but

D(c(t), c(t; 00)) # D(c(t), F) whenever 0y # 0,.

To end this section, we deal with the case of estimating parameters of two
families of distributions, F and G. In this setting, we will use the same notation
as before plus a subindex indicating the family. Specifically, F = {cp(t;0) =
up(t; 0)+ive(t; 0), 6 € ®}, where ® C R¥ or, equivalently, 7 = {F(¢; 0), 0 € O};
G = {cg(t;v) = ug(t;y) + ivg(t;y), y € T}, where ' € R”, or equiv-
alently, G = {G(t;y), vy € Tk IJ(0) = D*ca(0), cr(t;6)) and I8(y) =
D?(cn(1), cg(t; v)); we write Dy (0) and D;g(y) for the vectors of the first deriva-
tives of D2(c(1), cp(r; 0)) and D?(c(t), cg (t; v)), respectively; analogously, we write
D> (0) and Dyg(y) for 0.5 times the Hessian matrices of D%(c(t), cp(t; 0)) and
D*(c(t), cg(t; y)), respectively; we denote by hr(x; 0) and hg(x; y) the vector h
appearing in Theorem 2 for the families F and G, respectively; analogously, we write
AF(0) and Ag(y) for the matrix A appearing in Theorem 2 for the families F and
G, respectively; let Bpg (60, y) denote the k x r-matrix E{hr(X; 0) hg(X; y)'}; and
finally, let

D A B
Dyrg(0,y) = ( 26(9) Dzé)()/))’ Arc©.y) = (BFGF(éG)V)' f‘\GG((OV)V))
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112 M. D. Jiménez-Gamero et al.

Corollary 1 (a) Suppose that the families F and G both satisfy the assumptions in
Theorem 3(a), then

mEOn, Pn) ~= —D2(cp(t; 65), cG (15 v4)),

wheremp(0,y) = Eg{D*(c, (1), cp(t; 0))—D*(cu (1), ¢ (t; ¥))} and Eg denotes
expectation assuming that the data have CF cp(t; 0).

(b) Suppose that the families F and G both satisfy the assumptions in Theorem 2,
then

Oy — 0.\ £
J (?" - y*) L Neer 0, 556 0nr 1),
n '

where S (0, y) = Darg (0, y) ' Arc (0, y)Darg (0, v) 7.

Remark 2 Letf, = 6,(X1, ..., X,)and Yn = Yn(X1, - . ., X,,) bearbitrary estimators
of 6 and y, respectively, satisfying

-~ as.(P) _as(P)
0, —— 6o ©®° and j, — p eI'°. (7

If the families F and G both satisfy the assumptions in Theorem 3(a), then we also have

~ a.s.(P)
that m g (0,, 7u) ———— —D?(cp(t; 60), cg(t; v0)), where m ¢ (0, y) is as defined in

Corollary 1(a).

3 Model selection

This section deals with the CF approach to the problem studied in Vuong (1989). With
this aim, we first define the problem; then we give some results that will let us provide
several decision rules for separate, overlapping and nested models. Along this and
next sections, we will assume that the unknown parameters are estimated by means
of their ISE estimators. Later in Sect. 5, we will see that some results may change if
other estimators are used. From now on, we will assume that (2) holds, so that D is a
true distance between distributions.

3.1 Statement of the problem and main results

Given two possibly misspecified parametric models, F and G, which may be nested,
non-nested or overlapping, the problem of model selection consists in testing if the
two competing models are equally close to the true distribution, against the hypothesis
that one model is closer than the other. Here, the closeness is measured by means of
the distance D defined in (1). Therefore, the problem is that of constructing a test for

Hy: D*(c(t), cr(t; 6:)) = D*(c(t), ¢ (1 v4))

@ Springer



Fourier methods for model selection 113

against the alternatives

Hip: D*(c(t), cr(t; ) < D*(c(r), cG(t; yi)) or
Hig: D*(c(t), cr(t; 65)) > D*(c(t), cG(t; ).

Such a test is of practical interest since rejection of Hy in favor of Hyr (Hig) would

indicate that F(x; 6;) (G(x; yx)) is a better approximation to the true distribution.
The quantity 1L rG (0x. v4) = D*(c(1), ¢ (1: 65))—D*(c(t), ¢ (1: y)) is unknown,

but from Theorem 3(a), it can be consistently estimated through T(é,,, V), Where

TO,y) = D*(ca(t), cr(t; 8)) — D>(ca(1), cG(t; ). ®)

This difference converges to 0 under the null hypothesis Hp, but it converges to a
strictly negative or positive constant under alternatives. Thus, the null hypothesis Hy
should be rejected for “large” or “small” values of T (én, 7). To decide what is “large”
or “small”, we must calculate the null distribution of T(én, V), or at least a consistent
approximation to it. Since the exact null distribution of T(én, V) is clearly unknown,
we approximate it through its asymptotic null distribution. With this aim, we first
observe that

l n
TO,y)=— 2 £X;,0,7),

j=1

where & (x, 6, y) = [{ug(t; y)—ur(t; 0)}{2cos(t'x)—ug(t; y)—ur(t; 0)}w(t)dr+
J{vg (@t y) —vp@t: 0)}{2sin(r'x) — vg(t; y) — vp(t: 0)w(r)dr.

Theorem 4 Suppose that the families F and G both satisfy the assumptions in Theo-
rem 2.

A A L
@ If cr(t:0.) = cG(t; v), then nT @, 90) —> Ti = X5 2xi;, where
Xlzl’ X1227 ..., are independent Chi-square variates with one degree of freedom
and the set (X} are the eigenvalues of the matrix

Dy (6y) 0

SrG (s, v:) = (‘ 0 ch(y*)) ZFG O ¥)-

(b) If cp(1:6.) = ca(t: y) then sup, | PolnT (G, ) < x} = Pu(Ty < x)| =% 0,

where f"l Zk+r A j X12 and {)A» i} are the eigenvalues of the matrix S'F(;(én, ),
having thesamestructure as Srg (8, y) with Ar(0), Ag(0), Brg (0, Y), D2r(6)
and Dag(y) replaced by Ap(9) = —Zl Vhe(Xj:0)hp(Xj;0), Ag(y) =
%ijl he(Xj; v)hg(Xj: ), Brg(0.y) = ,1, ijl hp(Xj;0) hg(Xj:y),

N 2 A 2 .
Dyr(0) = %%If(@) and Dyg(y) = %%If(y), respectively. Moreover,

if Hyr holds then P*{f"l > nT(én, )} 251, while if Hig holds then P*{f"l <
nT G, Pu)} —> 1.

@ Springer
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(©) Ifer(t:0.) # cgt: yo). then/n [T@o, ) = 1pG 6ns v | = NO. 030,
Vi), with O']%G(Q, y) =var{§(X,0,y)} > 0.

Remark 3 Observe that, in spite of using rather different discrepancy measures
between populations, the results in Theorem 4 are quite similar to those in Theo-
rem 3.3 in Vuong (1989), in the sense that the limit distributions are of the same type,
that is, a linear combination of Chi-square variates in case (a), and a zero mean normal
distribution otherwise.

Theorem 4 says that the limiting distribution of T(@An, 7,) depends on whether or
not cg(t; 04) = cg(t; y«). Therefore, it is important to know if such equality holds.
The result in the next theorem, which is similar to that in Lemma 4.1 in Vuong (1989),
will be useful in this respect.

Theorem 5 Let G%G (6, v) be as defined in Theorem 4. Then, G%G @,y) =0 <«
cr(t;0) =cg(t;y), Vi.

Therefore, testing for cr (¢; 0,) = cg(t; yx) versus cp(t; 0y) # cg(t; Y«) s equiv-
alent to testing for

Hoo : 0260, v5) =0,
versus
Hi, : U%G(Q*, Vi) > 0.

With this aim, taking into accoAunt that G%G(Q, y) = var{é(X, 0, y)}, we estimate
O'?;G (6%, y«) by means of &%G (O, Pn), With

2

1 - 1 «
Grc0,7) =~ > E(X;,0,7) = 1= D> EX;.0.0) - ©)

j=1 j=l1
This estimator satisfies the following.

Theorem 6 (a) If the families F and G both satisfy Assumption 1, 0, € O°, y, €
['°, up(t;0) and v (t; 0) are continuous functions of 0 for each t and ug(t;y)

. . A N N a.s.
and v (t; y) are continuous functions of y for each t, then G%G s V) —

07 O, ¥5).
(b) If the families F and G both satisfy the assumptions in Theorem 2 and

~ A A L
026 O0n ) = 0, then T, = 02506} 00, Pu) —> S5E 27 %3, where
X121’ x122, ..., are independent Chi-square variates with one degree of freedom
and the set {A‘;} are the eigenvalues of the matrix Arc (0«, V+) ZFG (O, Vi)-

(c) Suppose that the families F and G both satisfy the assumptions in Theorem 2. If
Hoo is true, then sup, |Poo (T5 < x) — P*(f‘g <x) 25 0; otherwise, P*(YA}, <

T,) 28 1, where T, = le‘i’l X X12j and {):;f} are the eigenvalues of the matrix

a
J
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Apc 6, ?n)ﬁp(;(én, V), having the same structure as Apg (0, YZrG0,y)
wzth AF(Q) Ag(@), Brg@,y), Dar(0) and Dyg(y) replaced by AF(Q)
Ac(y), Brg(9,v), Dar(0) and DaG(v), respectively.

As a consequence of Theorem 6, for testing Hy, versus Hi,, the test that rejects
Hy, when T, > fg)l,a, where fgil,a is such that P*(ﬁ7 < fayl,a) = 1 — «, for some
a € (0, 1), is consistent against fixed alternatives. It rejects the null hypothesis with
probability tending to 1 when the null hypothesis is false and it is also asymptotically
correct in the sense that it asymptotically has the desired level «. Note that, since the
matrices ArgG (0, Y«), 2FG (O, Y«) are unknown, we cannot employ the asymptotic
null distribution of 7, for testing Hy,, but a consistent estimator of it. A further prac-
tical problem is the calculation of fg, 1—a, Since the distribution of a linear combination
of X2 variates is, in general, unknown. To overcome it, the conditional distribution of
T,, given the data, can be approximated either by simulation or by some numerical
method (see for example Kotz et al. 1967; Castafio-Martinez and Lépez-Blazquez
2005).

If we can assume that cr (¢; 6) = cg(t; y«), then reasomng analogously, it follows
from Theorem 4 that the test that rejects Hy when nT(@,,, ) < to,l or nT(@,,, V) >
tl_az, for any o1, ap > 0 with o] + a» = o, where tﬂ is such that P*(Tl < tﬂ) =8,
is asymptotically correct.

Now, we are ready to test for Hy versus Hir or Hig. Recall that the models F
and G can be nested, nonnested or overlapping. These three cases will be separately
studied.

3.2 Nonnested or separate models

Two models, F and G, are said to be nonnested or separate if 7 NG = @. In this case,
we always have that cr (¢; 6,) # cG(t; ys). Therefore, as an immediate consequence
of Theorems 3, 4 and 6, we have

(i) Under Ho, D = /nT On. 72)/6£G On. V) N N(O, D).
(i) Under H\ g, D 2% .
(iii) Under Hig, D 2% .

Thus, for fixed o € (0, 1), the decision rule is: if D < —Z;_4/, then select
model F; if D > Zj_q/2 then select model G; otherwise conclude that there is not
sufficient evidence to discriminate between the competing models F and G, where
®(Z1—¢s2) =1 — /2, ® being the CDF of a univariate standard normal distribution,
N(0, 1). From statements (i)—(iii) above, it follows that this test is asymptotically
correct and consistent, in the sense that it chooses the model F(G) with probability
tending to 1 when it is closer than G(F) to the true population.

3.3 Overlapping models

Two models, F and G, are said to be overlapping if FNG # @, F SZ Gand G g F.In
this case, since F N G # (@, it may happen that cr (¢; 05) = cg(t; y«). Therefore, we
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must first test Hy, versus Hi,. Since Hy, is included in Hy, if Hy, cannot be rejected,
then it is concluded that we cannot discriminate between the competing models. If
Hy, is rejected, then Hy can still be true. In this case, statements (i)—(iii) in Sect. 3.2
also apply.

Thus, for fixed a1, > € (0, 1), the decision rule is: if T, > fg,l_al and D <
—Z1—a,/2, then select model F; if T, > fa,l,al and D > Zj_g, 2, then select model
G; otherwise, conclude that there is not sufficient evidence to discriminate between
the competing models F and G.

Reasoning as in Vuong (1989), the sequential procedure described above has a
significance level which is asymptotically bounded above by the maximum of the
asymptotic significance levels oy and «;. The procedure is also consistent in the sense
explained in Sect. 3.2.

The above sequential procedure is needed for investigating if cr (¢; 6,) = cG (t; Yx),
but if we know that at least one of the models is correctly specified, such procedure
could be shortened because of the following property, which is analogous to Lemma 6.2
in Vuong (1989).

Lemma 1 If the families F and G both satisfy Assumption 1, are overlapping and at
least one model is correctly specified, then the following statements are equivalent:

(a) Fe FNg.
(b) cr(t; 0x) = cG(t; ys).
(©) D*(c(t), cr(t; 02)) = D?(c(t), cG(t; ).

Therefore, if at least one model is correctly specified, Hy is equivalentto ¢ (¢; 6,) =
cG(t; v«). Hence, as an immediate consequence of Theorems 3 and 4, we have that

(iv) Under Ho, nT 6y, ) —=> Ti.
(v) Under Hyp, nT (6,, Yn) =5 —o0.
(vi) Under Hyg, nT By, 7)) —> 0.

Thus, for fixed « = o) + ar € (0, 1), with a1, ap > 0, when the families are
overlapping and at least one model is correctly specified, the decision rule is: if
nT(Gn, V) < tal, then select model F; if nT(9n, V) > fi_ —ay» then select model
G; otherwise, conclude that there is not sufficient evidence to discriminate between
the competing models F and G. From statements (iv)—(vi) above, it follows that this
test is asymptotically correct and consistent.

3.4 Nested models

The model G is said to be nested in model F if G C F. Note that in this case
model G can never give a better fit to the data than F; therefore, we only have one
alternative, Hy versus Hjr. To study this case, we make the following assumption on
the parametrization of these families.

Assumption 3 There exists a function ¢ : I' — © such that forany y € ', cg(¢; y)

=cr(t; ¢(y)).
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The following result is analogous to Lemma 7.1 in Vuong (1989).

Lemma 2 If the families F and G both satisfy Assumption 1, G is nested in F and
Assumption 3 holds, then the following statements are equivalent:

(a) 6« = ¢(V*)

(b) 6, € (D).

(©) cr(t;04) = cg(t; vs).

(d) D*(c(t), cp(t; 05)) = D*(c(1), cG(t; ¥4)).

Therefore, if G is nested in F, then Hy is equivalent to cp(t; 6,) = cg(f; V).
Hence, statements (iv) and (v) in Sect. 3.3 apply. Thus, for fixed ¢ € (0, 1), the
decision rule is: if nT(én, Pn) < fy, then select model F; otherwise, conclude that
there is not sufficient evidence to discriminate between the competing models F and
G. This test is asymptotically correct and consistent.

In the above paragraph, the null distribution of the test statistic nT By, D) is esti-
mated as in Theorem 4(b). Nevertheless, in the nested case, calculations can be simpli-
fied because, as the next lemma shows, the nonzero eigenvalues of Sgg (0, yx) coin-
cide with those of S1rg (6«, v«) below, which has lower dimensions than Srg (6, v«),

0 0
S1FGOx, v4) = AF(Q*)3_W¢(V*)D2G(V*)_1 $¢/(V*) - AF(Q*)DZF(Q*)_ly

and, therefore, under the null hypothesis nT(én, ) i) Zl;zl Aj X]Zj’ where the set
{A;} are the eigenvalues of the matrix S1 g (6, Vs). ‘

Lemma 3 If the families F and G both satisfy the assumptions in Theorem 2, G
is nested in F, Assumption 3 holds and the function ¢ in Assumption 3 is twice
continuously differentiable in an open neighborhood of yx, then

(@) SrG (04, yx) and S1rG Oy, Y«) have the same nonzero eigenvalues.

(b) If Hy is true, then sup, ‘Po{nT(én, Pn) < x}— P*(’fz <x) 25 0; otherwise,
P*{f"z > nT(én, )} A% 1, where f"z = Zl;zl )A»ljxlzj and {)A\lj} are the
eigenvalues of the matrix S1 g 0y, Vn), having the same structure as S1pG (0, y)

with Ap(0), Dar(0) and Dag(y) replaced by Ap(9), Dop(0) and Dag(y),
respectively.

As an immediate consequence of Lemma 3, in the above rule. we can replace
nT Oy, Pn) <ty by nT Oy, V) < 2.4, Where £ 4 is such that P*(f"z <thg) =a.

Note that if model F is correctly specified and Assumption 3 holds, from Lemma 2
it follows that the problem of testing Hy versus Hirp is equivalent to the classical
parametric problem of testing Hppg : 6 € ¢(I') versus Hig : 6 ¢ ¢(I'). In this
setting and when Hj is true, the test in Vuong (1989) is asymptotically distribution
free. Specifically, it asymptotically has a szfr distribution. Routine calculations show
that if A F(O*)DZF(Q*)_I = I, then this good result is also true for the approach
studied in this work, but unfortunately such an equality does not hold.
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Finally, observe that in the nested case, testing Hy versus Hjp is equivalent to
testing Hy, versus Hj,. Therefore, we can also consider the following rule: if 7,, >
fg, 1—«, then select model F; otherwise, conclude that there is not sufficient evidence to
discriminate between the competing models F and G. From Theorem 6 and Lemma 2,
this test is asymptotically correct and consistent.

4 Cox approach for testing two separate families
Along this section, we will assume that F and G are two separate families. For testing
Hp : F is correctly specified versus Hg : G is correctly specified,  (10)

we consider the test statistic TcoxF (én, V), Where

TCOXF(Q’ V) = T(Qv J/) _mF(es )’), (11)

with T(0, y) and mp (6, y) as defined in (8) and Corollary 1, respectively. Observe
that TcOxF(én, 7,) 1s a CF version of the Cox statistic for the testing problem (10)
obtained by replacing the Kullback—Leibler distance by D?. From Theorem 3(a) and
Corollary 1(a),

Toxt B, Tn) —=3 D*(c(t), cr(t; 6,)) — D*(c(1), cG(t; )
+D?(cr(t; 604), ¢ (t; vi)).

As a consequence, if H is true then TCOXF(én, Vi) 2% 0, while if Hg is true then

TCOXF(én, Vi) 25 2D2(cF(t; 0x), cg(t; yx)) > 0. Thus, the hypothesis Hr should
be rejected in favor of Hg for “large” values of TCOXF(GAH, 7). To decide what is
“large” we must calculate the null distribution of TCOXF(én, 7). Since the exact null
distribution of T(én, 7,) is unknown, we approximate it through its asymptotic null
distribution. Let varg and covy denote the variance and covariance, respectively, when
the data have CF cg(¢; 0).

Theorem 7 If the families F and G both satisfy the assumptions in Theorem 2, then
under Hp

A L
Tcosk O, Pn) —> N(O, 066, v:)),

where

5 [ Varel& (X, 60, v)} covgl&(X,6,y), Hr (X, 0))
oipc@,y) =48 8,

cove{§(X,0,y), Hp(X,0)} varg{HF(X,0)}

Hp(X:0)=Dsp(0) 'hp(X;60),8' =1, Yr 0, y)) and yr (0, y) = D*(cp (t: 0),
cG(t; v)).
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For the result in Theorem 7 to be useful to approximate the distribution of
Tcoxp(On, V) under Hp, we need a consistent estimator of GIZFG. We will consider

67pGOn, ), where

62p(0,7) 25/(@{5(}(,9,1/)} A COV{E(X. 0, 7). Hr(X, 9)}/)
e Cov{é(X,0,y), Hr (X, 6)} Var{HF(X 0)} ’
Var{E(X, 0, )} = 6260, y). Hr(x;0) = Dyp(0) " hp(x; 0).

__ - 1 - .
COVEX, 0, y), Hr (X, 0)} = ~ > £(X;,0, ) Hp(X;, 0)
j=1

——Zsme y)= ZHF<X,,9>

] 1

var{ A (X, 0)} = 1ZﬁF<X~ 0)Hr (X;.0)
s n l_l J ]

1 n ~ 1 n .
—— ) Hp(X;,0)— > Hp(X;,0).
=2 Hp (X}, 0~ > Hi(X),0)

j=1 j=1

It can be easily checked that, under assumptions in Theorem 7, (A’leG(éna V) is a

. . . . L .
consistent estimator of a]2F - Therefore, if HF is true then Dcoxg —> N (0, 1), while

if Hg is true then Dooxp —> 00, where Deoxe = /A Tcoxt Ons Pn) /615G Gn. D).
Thus, the test that rejects Hr in favor of Hg when Dcoxr > Z1_4 has asymptotically
level o and is consistent.

If the roles of Hr and HG as null and alternative hypotheses are interchanged,
a test statistic DcoxG f TcoxG (B, Pn) /6 616 7 (6, V) is obtained. Observe
that TCOXF(QH’ ) = _TCOXG (Qn» V) — 2mF(0ns V), but since &1rg (9111 Vn) and
O1GF (9,1, V) are not related, the statistics Dcoxr and Dcoxg are different functions of
the observations.

Following the original Cox approach, in practice we test the null hypothesis Hr
versus the alternative Hg based on the test statistic Dcoxp and vice versa, that is, Hg
versus the alternative Hr based on the test statistic Dcoxg. The decision rule is: reject
both Hr and Hg if DcoxF > Z1—« and Dcoxg > Z1—q; reject neither Hrp nor Hg
if Dcoxp < Z1—¢ and Dcoxg < Z1—q; reject Hp, but not Hg if Dcoxp > Z1—4 and
DcoxG < Z1—¢; and reject Hg, but not Hr if Dcoxp < Z1—« and DcoxG > Z1—q-

5 On the use of other point estimators
In Sects. 3 and 4, we have estimated the parameters 6 and y by means of their ISE

estimators because, according to the definition of 6, and y, the ISE estimators are
their natural estimators. Nevertheless, motivated by the fact that in certain settings the
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calculation of the ISE estimators can be time consuming (see for example Matsui and
Takemura 2005), other estimators could be used. In such a case, although the proposed
methods could be applied, some asymptotic properties may differ while, as seen in
Remarks 1 and 2, others continue to be true, whenever the estimators satisfy certain
assumptions. The aim of this section is to rewrite the results in Sects. 3.1 and 4 when
instead of 6, and P, arbitrary estimators, say 6, and 7,, are employed. The results
in this section will be stated without proofs, since they follow quite similar steps to
those of the results in Sects. 3 and 4. In contrast to Sects. 3 and 4, where in addition to
deriving the asymptotic distribution of certain statistics, we also provided estimators
of such asymptotic distributions whenever they were unknown, to save space here
we will not deal with the estimation, which could be done along the same lines. The
decision rules given in Sects. 3.2-3.4 when 6 and y are estimated by means of 6, and
¥, respectively, will vary in an obvious way.

Assume that én = én (X1,...,Xp) and p, = p(Xy, ..., X)) are arbitrary estima-
tors of O and y, respectively, satisfying (7). We will also assume that

(E{hr(X;60)Y, Eth(X; v0)}) # 0, 12)

since otherwise the estimators , and 7, are (asymptotically) equivalent to the ISE
estimators. The following result is the analog of Theorem 4.

Theorem 8 Suppose that 6, and 7, satisfy (7) and (12), the families F and G both
satisfy Assumption 2 with 0, () replaced by 6y (yp) and

~ !
n’ (9,; — 07— y(;) £y (13)

for some © > 0 and for some random vector Yy. Let dj) = (—=2E{hr(X; 60)},2E{hg
(X5 y0)}).

(@) Ifcr(t: 60) = ca(t: y0), then n™T By, 7n) —=> d}Yo.
(b) Assume that cp(t; 0y) # cg(t; Y0)-
~ L
(b.1) If T < 1/2, then n* {T(@,,, 7 — kG (6o, )/0)} £, dYo.
(b2) Ift = 1/2 and

!

n
_ ~ ~ L
n'2 (071> E(X 00, v0)— G (B0, v0). 0y — 06, T — Vi | —> 11, (14)
j=1

for some random vector Yy, then nl/z{T(én, ) — rG (6o, Y0)} i) di Y1,
where d| = (1, d;)).

(b3) IfT > 1/2, thennV2(T @y, ) — 115G G0, Y0)) —=> N(O, 0260, o)), where
U[%G (6o, y0) is as defined in Theorem 4(c).
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From the above result, we observe that except when cp(t; 6y) # cg(t; yo) and
T > 1/2, the choice of other estimators, different from the ISE, makes the asymptotic
distributions of 7' (,, vn) and T (6, ) differ.

The asymptotic null distribution depends on whether cr(¢; 69) = cg(t; yp) and on
the value of t. Motivated by Theorem 5, when t > 1/2, which is the usual setting,
testing for cr (¢; 6p) = cg(t; yo) versus cr(t; 6p) # cg(t; vo) is equivalent to testing
for

Hoo : 0%0(90, ) =0,

versus

Hio : 0700, 0) > 0.

With this aim, taking into account that 0%0(9, y) = var{é(X, 0, y)}, we estimate
01% . vo) by means of 61%G (6, 7), with 61%-G (@, y) as defined in (9). The following
result is the analog of Theorem 6 and it gives some properties of 6%6 O, o).

Theorem 9 (a) Ifén and yy, satisfy (7),up(t; 0) and v (t; 0) are continuous functions
of 0 for each t, and ug(t; y) and v (t; y) are continuous functions of y for each

"o ~ a.s.(P) 5
t, then 6. On, Vn) — 05500, o).

(b) Suppose that the assumptions in Theorem 8 hold. Then O.25n€r%G (O, Vi) i)
YéMYo, where M is the variance matrix of the random vector (hp(X; 0o)’, hg (X;
v0)"), and Yy is as defined in (13).

The last result of this section is the analog of Theorem 7 and it gives the asymptotic
null distribution of the CF version of Cox tests statistic for testing Hr vs Hg when
arbitrary estimators én and y, are used, that is, for the test statistic Tcoxp (én, V), With
Tcoxr (0, v) as defined in (11).

Theorem 10 Suppose that the assumptions in Theorem 8 hold. Let Yo, denote the
first k components of Yy giving the marginal asymptotic distribution of n* (6, — 6p),
where Y is as defined in (13). Under Hf, we have:

~ C .
(@) IfT < 1/2, then n™ Teoxe . 7) —> —8)Y0.9. where 8 = mp (60, y0).

(b) Ift = 1/2and (14) holds for some random vector Y1, thenn]/zTCOXp(én, Vi) i)
81 Y1, where 8] = (1,8(,0,),0, = (0,...,0) e R".

(©) Ift > 1/2, then n'*Teoxg (On, V) N N(0, o} (60, v0)), where o} (60, v0)
is as defined in Theorem 4(c).

Observe that when 7 > 1/2,then n'/2{T (6,,, 7) — it rc (0o, o)} and n'/? Teoxr (6,
7,) both have the same asymptotic distribution, which does not depend on Yj.
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6 Some numerical examples

As in Sect. 1, a problem with the ordinary Vuong and Cox approaches is that, in some
cases, these methods cannot be applied because the required regularity assumptions
are not met. This section gives two practical examples of this case: when the support of
one of the competing models depends on the parameter; another is when the maximum
likelihood estimator (MLE) of the parameter of one of the families does not have a
limit under the competing model. In both examples, the methods proposed in this
work can be applied under quite mild conditions. The finite sample performance of
the proposed methods is numerically evaluated by means of some simulations.

The large sample properties of the ordinary Vuong and Cox tests based on likeli-
hoods and their analogs based on CFs are quite similar (asymptotically correct, con-
sistent). Although the goal of this paper is to propose alternative methods for model
selection that can be applied when the ordinary ones cannot, it is also of interest to com-
pare them in cases where both approaches can be applied. In this context, we worked
several examples, in some cases the likelihood approach beats the CF approach, while
in other instances the results were opposite. Moreover, we found an example where the
results are rather different for different values of the parameter values in the families.
A summary of the obtained results for this example is reported. In all examples we
took o = 0.05.

6.1 Example 1

Let £ be a completely specified probability density function (PDF), ® denote the
support of £ and L denote the CDF. For simplicity, we assume that ® € R is an
interval. Now, we consider the family of PDFs, which is obtained by truncating ¢ to
the left of 6 € ®,

W)
f@0) = 1=

Clearly, the family F = {f(x; 0), 6 € ®} does not satisfy the regularity assumptions
in Vuong (1989) (nor those in White 1982b for the Cox method).

Routine calculations show that if £(x) and %E(x) are bounded and the weight
function w is such that f [t|w(t)dt < oo, then the family F satisfies Assumption 2 in
this paper.

To study the finite sample performance of the CF version of the Vuong approach
to model selection for the above setting, we considered the families obtained by trun-
cating to the left at @ € ® = R the PDF of a standard normal distribution, family F,
and the PDF of a Laplace distribution with mean 0 and variance 2, family G. Figure 1
graphs the truncated PDFs for 6 = 0, 1, 2. In this example, the parameter is the same
for the two competing families. It was estimated through § = X (), the minimum of
the sample. If the population PDF has a bounded derivative, then n(X ) — ) con-
verges in law to a negative exponential random variate. Therefore, for this estimator
Theorem 8(b.3) holds. We generated 10,000 samples of size n (n = 50, 100, 200, 300)
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Table 1 Percentage of selections for the CF Vuong procedure

n 6=0 0=1 0=2
F G Both F G Both F G Both

w is the PDF of a law N(0, 1)
(a)

50 43.09 0.00 55.91 81.82 0.00 18.18 99.09 0.00 0.91
100 63.26 0.00 36.74 97.08 0.00 2.92 99.99 0.00 0.01
200 88.08 0.00 11.92 99.96 0.00 0.04 100.00 0.00 0.00
300 96.52 0.00 3.48  100.00 0.00 0.00 100.00 0.00 0.00
(b)
50 0.70 12.26 87.04 0.06 37.73 62.21 0.00 70.27 29.73
100 0.10 26.76 73.14 0.00 71.12 28.88 0.00 96.14 3.86
200 0.00 54.30 45.70 0.00 95.65 4.35 0.00 99.96 0.04
300 0.00 73.74 26.26 0.00 99.47 0.53 0.00 100.00 0.00

w is the PDF of a law Ca(0, 1)
(@)

50 32.38 0.04 67.58 73.92 0.00 26.08 97.28 0.00 2.72
100 52.08 0.00 47.92 94.00 0.00 6.00 99.96 0.00 0.04
200 79.14 0.00 20.86 99.94 0.00 0.06 100.00 0.00 0.00
300 92.53 0.00 7.47  100.00 0.00 0.00 100.00 0.00 0.00
(b)
50 0.25 16.60 83.15 0.03 37.84 62.13 0.00 71.48 28.52
100 0.07 32.85 67.08 0.00 70.45 29.55 0.00 96.07 3.93
200 0.00 58.79 41.21 0.00 94.86 5.14 0.00 99.97 0.03
300 0.00 76.90 23.10 0.00 99.46 0.54 0.00 100.00 0.00

True population: (a) F, (b) G
F truncated normal, G truncated Laplace

from the families F and G and applied the CF version of Vuong approach for model
selection. We considered two weight functions: the PDF of a standard normal distribu-
tion, N (0, 1), and the PDF of a standard Cauchy distribution, Ca (0, 1). These choices
for the weight function were motivated by the ease of computation of the resulting test
statistic, in the sense that most calculations can be analytically done. Table 1 displays
the percentage of times that the decision is: F' = choose model F, G = choose model
G or both = cannot discriminate between the competing models. Table 2 displays the
results for the CF version of Cox approach. Looking at Fig. 1 we see that as 6 increases,
the PDFs of these families become more different. This fact is captured by the results
in Tables 1 and 2: larger sample sizes are necessary for a perfect discrimination when
6 = 0, since in this case the models are rather close, while as 0 increases the required
sample size for a perfect discrimination decreases. As for the choice of the weight
function, we see that, as expected from theory, it has little effect on the percentage of
correct selections for large sample sizes.
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Table 2 Percentage of selections for the CF Cox procedure

n 6=0 6=1 0=2
G Both None F G Both None F G Both None

w is the PDF of a law N(0, 1)
(a)
50 89.68 249 7779 0.04 9735 0.08 0.00 2.57 9799 0.00 0.00 2.01
100 96.84 097 0.00 2.19 97.06 0.00 0.00 294 9755 0.00 0.00 245
200 96.29 0.00 0.00 3.71 96.55 0.00 0.00 345 9639 0.00 0.00 3.61
300 96.15 0.00 0.00 3.85 96.24 0.00 0.00 376 9696 0.00 0.00 3.04
(b)
50 8.74 70.78 20.48 0.00 1.29 9196 0.00 6.75 0.00 92.13 0.00 7.87
100 552 92.02 0.17 2.29 0.00 9338 0.00 6.62 000 92.78 0.00 7.22
200 0.13 9358 0.00 6.29 0.00 9361 0.00 639 000 9357 0.00 6.43
300  0.00 93.94 0.00 6.06 0.00 9320 0.00 6.80 0.00 94.10 0.00 5.90
w is the PDF of a law Ca(0, 1)
(a)
50 8456 448 1091 0.05 9695 020 0.00 285 9748 0.00 0.00 2.52
100 9536 1.88 0.01 275 96.87 0.00 0.00 3.13 97.04 0.00 0.00 2.96
200 9528 0.01 0.00 4.71 96.18 0.00 0.00 382 96.14 0.00 0.00 3.86
300 9530 0.00 0.00 470 96.03 0.00 0.00 397 96.03 0.00 0.00 3.97
(b)
50 6.60 74.15 19.25 0.00 1.73 9264 0.00 563 000 9286 0.00 7.14
100 476 9335 0.39 1.50 0.00 93.83 0.00 6.17 0.00 93.19 0.00 6.81
200 0.13 9464 0.00 5.23 0.00 9363 0.00 6.37 0.00 93.83 0.00 6.17
300 0.00 94.40 0.00 5.60 0.00 9393 0.00 6.07 0.00 9439 0.00 5.61

True population: (a) F, (b) G
F truncated normal, G truncated Laplace

6.2 Example 2

Let F be the set of normal distributions with mean 0 and variance # € ® = (0, c0), and
let G be the set of Cauchy distributions with location parameter O and scale parameter
y € I' = (0, 00). The MLE of 9 is éML = % Zi Xl.z, which clearly does not have a
limit when the data come from the family G, and therefore Vuong and Cox procedures
cannot be applied. To discriminate between these families, we applied the CF versions
proposed in this paper taking as weight function w(¢) = exp(—|t|). As in the above
example, the choice of this weight function was guided by the ease of computation.
The parameters were estimated by their ISE estimators. We generated 10,000 samples
of size n (n = 50, 100, 200) from the families F, with & = 1, and G, with y = 1, and
applied the CF version of Vuong and Cox approaches. Table 3 displays the obtained
results. Observe that the CF version of Cox procedure gives very good results even
for n = 50, in the sense of yielding a high percentage of correct classifications, while
the CF version of Vuong procedure requires a bit larger sample sizes.
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Table 3 Percentage of selections

n

True population F

True population G

Vuong Cox

Vuong

Cox

F G Both F

G Both

None F

G

Both

F

Both

None

50
100
200

72.28 0.00 27.72 95.44
93.70 0.00 6.30 95.34
99.78 0.00 0.22 95.11

0.05 0.00
0.00 0.00
0.00 0.00

4.51
4.66
4.89

0.06 33.97 65.97
0.00 64.59 3541
0.00 92.94

7.06

3.97
0.02
0.00

92.55
93.37
94.15

0.08
0.00
0.00

3.40
6.61
5.85

F normal, G Cauchy

Table 4 Percentage of selections

a=1

a=

0.5

Vuong Cox

Vuong

Cox

F G Both F

G

Both

None

Both

F

Both

None

(a)

ML

62.55 0.00 37.45 92.40

CF1 67.40 0.00 32.60 93.55
CF2 72.05 0.00 27.95 87.40
CF3 69.80 0.00 30.20 88.70

(b)

ML

320 1.25 95.55 35.00

CF1 190 0.05 98.05 0.00
CF2 130 2.10 96.60 0.00
CF3 1.15 3.25 95.60 0.00

(©)

ML
CF1

0.05 14.45 85.50 4.50
0.00 20.20 79.80 0.40

CF2 0.20 14.50 85.30 3.85
CF3 0.25 13.50 86.25 6.00

0.20
1.85
0.10
0.20

12.75
4.10
8.30
8.55

57.10
37.35
33.10
32.15

0.05
3.45
3.35
2.00

52.10
95.90
91.70
91.45

38.40
62.25
63.05
61.85

7.35
1.15
9.15
9.10

0.15
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.30
0.20
0.50
0.80

0.15
7.35
4.00
3.70

0.20
0.10
0.30
0.65

6.95
5.00
1.30
1.20

13.60
0.05
0.15
0.20

13.30
8.55
2.70
2.35

92.75
94.80
98.20
98.00

86.25
92.60
95.85
96.10

86.50
91.35
97.00
97.00

6.85
0.00
0.00
0.00

2.55
0.00
0.00
0.00

2.50
0.00
0.00
0.00

14.60
5.90
6.00
6.25

19.60
4.05
5.80
6.70

22.10
8.35
7.85
8.20

78.55
94.10
94.00
93.75

77.85
95.95
94.20
93.30

75.40
91.65
92.15
91.80

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

True population: (a) N (0, 1), (b) N(0, 2), (c) 0.5N(a, 1) +0.5N(—a, 1)
F normal, G equal mixture of two normals

6.3 Example 3

Let F be the set of normal distributions with mean 0 and variance 6 € ® = (0, 00),
N(0, 6), and let G be the set of equal mixtures of two normal populations with equal
variance y € I' = (0, 0co) and known means a and —a, 0.5N (a, y) + 0.5N(—a, y).
Both families satisfy the required regularity assumptions for applying the classical
approach (denoted as ML) and the one proposed in this paper. To discriminate between
these families we applied both approaches. For the CF methodology, we took as weight
function the PDF of a normal law with mean O and standard deviation 1, 2 and 3
(denoted as CF1, CF2 and CF3, respectively). We carried out an experiment similar to
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that described in Sect. 6.2 for several values of 6, y and a. Table 4 displays the results
for n = 100. Looking at this table, we observe that rather different results are obtained
for different values of the parameters. For example, in cases (b)a = 1 and (¢c)a = 0.5,
the ordinary Vuong test outperforms the one proposed in this work; the opposite is
observed in cases (a) a = 1 and (b) a = 0.5; in cases (a) ¢« = 0.5 and (¢c) a = 1,
the results are quite similar. For Cox test, in all cases the likelihood-based method has
the highest percentage of both right decisions and wrong decisions (except in case (a)
a = 1). Figure 2 graphs the PDF and the CF of a standard normal law (black) together
with the closest PDF and CF of the mixture model (dashed) witha = 1 and a = 0.5.
When a = 1, we see that the PDFs have rather different shapes (also the CFs); when
a = 1, they are really close. Because of this reason, the results in case (a) fora = 1
are better than for a = 0.5.

In the light of the above simulation results, at present we cannot give a general
recommendation on what method to use when both apply. This point certainly deserves
further research.

7 Conclusions

Two methods for the model selection problem have been proposed and studied. They
are based on measuring the distance between the CF of the population generating the
data and the CF in each competing model. The first method is a CF analog to that
developed by Vuong (1989), while the second one is a CF version of the Cox (1961,
1962) approach for the problem of testing for two separate models. Two examples are
used to illustrate that the proposed methods can be applied in settings where neither
Vuong nor Cox approaches can be used.

Some generalizations of the proposed methods are possible: (a) throughout the
paper we have assumed that we have only two competing models; the case of three or
more competing models can be dealt by applying multiple comparison techniques as
suggested in Shimodaira (1998); (b) throughout the paper we have assumed that the
available data consist of IID observations; the proposed procedures can be extended to
other more general settings such as regression models or dependent data; (c) throughout
the paper we have assumed that the competing models are parametric; the proposed
procedures can be extended to other more general models such as semiparametric
models. These as well as other possible extensions constitute a field of future research.

Another open question that deserves further study is what method should be applied
in cases where both approaches can be applied.

8 Proofs

Proof of Theorem 1 For each fixed 6 € O, I,,(0) is a degree-2 V-statistic, I,(0) =
nizzﬂ k(X;, X;;0), with kernel k(x,y;6) as defined in (6). From the SLLN

for V-statistics (see for example Serfling 1980), I,,(6) 25 E{k(X1, X2;0)} =
D? (c(1), c(t; 0)). Thus, for any § # 0 such that 6, + § € ®, we have that, at least for
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largeAn, I, (0« +6) —I,,(6,) > 0 with probability one. Since § is arbitrary, we conclude
that 6, is strongly consistent for 6. O

Proof of Theorem 2 From Assumptions 1 and 2, D{(6,) = 0 and D, (0) is positive
definite for all 6 in a neighborhood of 6,.. By Taylor expansion,

—al(é)—81(9)+ 32l(é Y6, — 65) (15)
—aenn—aen* n\YUln)\Un *)

0
00006’

with 0, = b, + (1 — a)b,, for some a € (0,1). We have 51,(0) =
213 (X3 0), 2E(h(X:0)} = —D1(0) and E{h(X: 0)h(X;60)'} = A(0).
Thus, from the CLT,

19

VA== 1,0, 5 N0, 40.). (16)

On the other side, E {%329,1,,(9)} = 2D;(0). Since él,, 2% 0., from Lemma 3.1 in
White (1981), it follows

92 A s,
9597 @) = 2D2(6,). (17)
Finally, the result follows from (15)—(17). |

Proof of Theorem 3 (a) We have

D?(cn (1), c(t; 6,)) = 1,(6,) = / {0 (1) — u(t; 6,))*dW (1)
+ / {va (1) — v(t; 0,))2dW (). (18)

For the first integral in the right hand side of (18), we have

/ {Un (1) — u(t; 0)2dW (1) = / {1 (1) — u(t; 6,)*dW (1)
+/{u(r; 6,) — u(t: 6,) AW ()

+2/{u,,(t) —u(t; ) Hu(t; 6,) —u(t; 6,)}dW (1) := S1 + 52 +253.

From the proof of Theorem 1, S1 25 f{u(t) — u(t; 0,)}2dW(1). To deal with
S2, we observe the following facts: let ¢ > 0 be arbitrary but fixed, then there
exists a compact set K C R¥ such that fK dW() > 1 —e¢;let § > 0 be such
that ©; = B(6,;8) C O, where B(6;8) = {x € R¥ : |x — 6] < 8}; from
the assumptions made, u(¢; 0) is a continuous function, as a function of the pair
(t, 0); thus it is a uniformly continuous function on C = K x ®p, which implies
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that there exists a ¢ > 0 such that |u(z;0) — u(t’;0')| < &, whenever (¢, 0),

(t',0") € K x O and |(¢,0) — (¢',0")| < ¢. From Theorem 1, for large enough

n, we have that 6, € B(6y; §) with probability 1. Therefore, for large enough n,

0< /{u(r; 0.) — u(t: 6,) AW (1) < 82/ dW (1) +4/ dW (1) < &% + 4,
K K

where K¢ denotes the complementary of K. Since ¢ > 0 is arbitrary, this implies
that 2 =5 0. As for $3, taking into account that |S3| < S1'/2521/2 and 0 <
[{ur) — u(r; 6,)}>dW (1) < 4, we have that $3 ~= 0. Thus,

/ {tn (1) — u(t; 0,))2dW (1) =5 / {u(t) — u(t; 6,02 dW (1).

Proceeding analogously with the second term in the right hand side of (18), we
get the result.

(b) The result follows from the results in Sections 6 and 8 of Csorgd (1981) or from
Theorem 1 in Jiménez-Gamero et al. (2009).

(c) By Taylor expansion,

. . d A
D (ca (), ¢(t; 6p)) = 1, (0) = 1,(0x) + a_eln(eln)/(en —04), 19)

with él,, = aéy, + (1 — a)b,, for some o € (0, 1). Now, we separately study each
term in the right hand side of (19).
As observed in the proof of Theorem 1, I,,(0) is a degree-2 V-statistic with kernel
k(x, y; 9), defined in (6), satisfying |k(x, y; 0)| < 8, Vx, y, 8. We are assuming that
var{p(X)} = 02(6,) > 0. Thus, from Theorem 6.4.1A in Serfling (1980),

V{102 = DXe), ;6] = N©, 0>, 20)

Routine calculations show that
d A P
ﬁ%ln(gln) (O — 0x) — 0. (2D

Finally, the result follows from (19)—(21). O

Proof of Corollary 1 (a) The result follows from Theorem 1 because mp(@, y) =

—D*(cr(1:0), c(t: v)).
(b) The result follows from Theorem 2.
O

Proof of Theorem 4 (a) From Taylor expansion of D%(c, (1), cp(t; 6,)) around O, we
obtain

D?(cn(1), cr(t; 6.)) = D*(ca(t), cr(t; 6,))
4+ — 65 Dar (0) O — 65) + op(n 1. (22)
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Similarly,

D?(cn (1), ¢ (t; v4)) = D*(cu (1), G (t; )
+Pn — 1) D26 (i) Pn — vi) +op(n™ ). (23)

From (22) and (23),

nT(én,)?n):«/E(e”_e*) (—ng(e*) 0 )ﬁ(e”_e*)+0p(1).

7>n — Vx Do (vs) )7;1 — Vx

Now, the result follows from the above equality and the result in Corollary 1(b).
(b) This part is a direct consequence of Lemma 3.1 in White (1981) that the eigen-
values of a matrix are a continuous function of the entries in the matrix and the
Polya theorem (see for example Lemma 8.2.6 in Athreya and Lahiri 2006).
(c) Note that E{£(X,0,y)} = urg0,y) and 0 < var{é(X, 0, y)} = U%G(Q, y).
Thus from the CLT,

1 c
EZ{axj,e,y) —1rc®. )} —> N, 0} 0. ). (24)
j=1
Since 55 1rG 0. ) = guurcEay) = 01 < j < k1 <1 <
(24) and Theorem 2.13 of Randles (1982) both imply that ﬁ{T(én, Vu) —
c
1rG (Ox, )/*)} — N(0, U%G(Q*, V*))

]

Proof of Theorem 5 Ifcp(t; 04) = cg(t; vs),then 012,6(9*, Vi) = var{§(X, O, y4)} =
0. To show the another implication, note that 0'12;0 O, y5) = 0iff

E(x, 04, yx) = k1, forsomex; € R, Vx € RY. (25)
The equality in (25) can be rewritten as follows:
Cx) =—=8x) +«2, (26)

for some k» € R, Vx € R?, where C(x) = fcos(t’x){uF(t; 0.) —ug(t; ye)jw(t)dr,
S(x) = [sin(t’x){vr(r; 65) — v6(t; y<)}w(r)dt. Since C(x) = C(—x) and S(x) =
—8(—x), Vx € R?, from (26) we conclude that S(x) = 0 and C(x) = k2, Vx € R?.
Because cos(—t'x)w(—t) = cos(t’x)w(t), vp(t;0) = —vp(—t;0) and vg(t;0) =
—vg(—t;0),Vx,t € R4, V0 € O, Vy € T', we have

/cos(t/x){vp(t; 0:) —vg(t; y)lw()dt =0, Vx e RY, 27
Now, S(x) = 0 and (27) are tantamount to saying that the Fourier transform of the
function {vp(t; 0,) — v (t; y«)}w(t) is equal to 0. The uniqueness of the Fourier

transform implies that {vg(¢; 6,) — v (¢; yx)}w(t) =0, Vt € R?. Since w(t) > 0, it
follows that v (t; 0y) = v (t; Y«), VI € R4, Proceeding analogously,
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/sin(t’x){up(t; 0,) — ug(t; y)w(t)dr =0, Vx e RY. (28)

Now, C(x) = k> and (28) are tantamount to saying that the Fourier transform of the
function {ur(t; 0,) — ug(t; y«)}w(t) is equal to k2. The Riemann—Lebesgue lemma
implies that k» = 0. Reasoning as before, we get up(¢; 6x) = ug(t; y«), Vt € R4,
This proves the result. O

Proof of Theorem 6 (a) The result follows from Theorem 1 and Lemma 3.1 in White
(1981). .
(b) By Taylor expansion of 51%0 (6, yn) around (6., y,)’, we obtain

A~ / A~
N AA O — 6 O, — 6
n

n = /x %

Now, the result follows from the above expression and the result in Corollary 1(b).
(c) The proof is the same as that of Theorem 4(b); so we omit it.
O

The proof of Lemma 1 is easy, and thus it is omitted. The proof of Lemma 2 is quite
similar to the proof of Lemma 7.1 in Vuong (1989); so we omit it. The proof of
Lemma 3(a) is quite similar to the proof of Theorem 7.2(i) in Vuong (1989); so we
omit it. Lemma 3(b) is a direct consequence of part (a) and Theorem 4(a).

Proof of Theorem 7 We have \/ETCOXF(én, V) = \/E{T(én, V) — mp (O, vi) +
mp O, v.) —mp @, 7). Under Hr, 115G 0s, v6) = mp (B, ve) = —D*(cr(t: 04),
cG(t; vs)). From the proof of Theorem 4(c), /n{T (0, Pn) — mpBs, vs)} =
Jiﬁ Z?:] E(Xj, 0k, v«) — WFG(Ox, v«) + op(1). Routine calculations show that
\/ﬁ{_mF(én’ 7;n) +mpOx, Vi) = YF (s, V*)/\/L;l Z?=1 HF(va 0s) +op(1). Sum-
marizing,

A A / 1 - X',Q*, *) 9*1 *
Vo O, F)=(1, Y@ v)) 2 > 1(2&},’93) ol V))+0P<1>.
J:

The result follows from the above expression and CLT. O
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