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Abstract This paper considers a new way of parameterizing mixture models where
parameters are interpreted as the generalized moments of the mixing distribution.
Following a dimensionality reduction approach, approximate models have a finite-
dimensional parameter with a corresponding parameter space: a moment space. The
geometry of the moment space is studied and we derive the properties of the recon-
structed mixing distributions. Links between the reparameterization and estimation
methods for mixture models are also briefly discussed.

Keywords Moments · Chebyshev system · Local mixture models · Functional
principle component analysis

1 Introduction

Mixture models can be found in a wide variety of statistical applications; a compre-
hensive introduction can be found inMcLachlan and Peel (2000). This paper considers
the class of non-parametric mixtures of exponential families

fMix(x; Q):=
∫ b

a
f (x; θ)dQ(θ), x ∈ S,
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where for each θ ∈ [a, b], the component distribution f (x; θ) is in the exponential
family, i.e.

f (x; θ) = h(x) exp(η(θ)T (x) − A(θ)),

where T (x), h(x), η(θ) and A(θ) are known functions, and the mixing distribution
Q(θ) is a probability measure over a known, compact set [a, b].
Example 1 Consider a general mixture of Poisson distributions,

fMix(x; Q) =
∫ b

a
Pois(x; θ)dQ(θ),

where Pois(x; θ) is the probabilitymass function of a Poisson distributionwithmean θ

and Q(θ) is a probability measure over a compact set [a, b]. Because the above model
takes more variability into account than a single Poisson distribution, it has been used
in a wide range of scientific fields for modelling non-homogeneous populations; see
Schlattmann (2009).

As an example, consider a Thailand-based cohort study analyzed by Böhoning
(1995). To study the health status of 602 pre-school children, the number of times
that a child who showed symptoms of fever, a cough, a runny nose, or these symp-
toms together, is recorded. Previous studies showed the existence of overdispersion.
Therefore, a mixture of Poisson is suggested.

Example 2 Consider a general mixture of normal distributions,

fMix(x; Q) =
∫ b

a
N (x; θ, σ 2)dQ(θ),

where N (x; θ, σ 2) is the probability density function of a normal distribution with
mean θ and variance σ 2, and Q(θ) is a probability measure over a compact region
[a, b]. The above model has wide applications due to its flexibility; see McLachlan
and Peel (2000).

One possible application of a mixture of normals is to assess the impact of possi-
ble underlying genotypes that display continuous variation in the population. Roeder
(1994) gave an example of the sodium–lithium countertransport (SLC) activity in red
blood cells. The data set consists of the SLC activity from 190 individuals. It is sus-
pected that the SLC activity is mainly affected by a gene with two alleles. This implies
that there are three possible genotypes. And thus, it is reasonable to consider a mixture
of normals with at most three components; see Roeder (1994).

A general, or nonparametric, mixture model has an infinite dimensional parameter
space. In frequentist statistics, the maximum likelihood estimator with an infinite
dimensional parameter may not be consistent and may not be efficient in the sense
that the Cramer–Rao bound is not attained even asymptotically; see Neyman and Scott
(1948). In Bayesian statistics, a prior on an infinite dimensional space is not easily
defined and can be highly informative even with large amounts of data; see Marriott
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Parameterizing mixture models 271

(2007). To deal with this issue, we can use the modified likelihood (Lindsay 1980)
or reduce the dimension of the parameter space (Marriott 2002, 2007). This paper
follows the dimensionality reduction idea and makes several contributions.

Firstly, we give a general framework for the reparameterization of a mixture model
with a complete orthonormal basis in a Hilbert space. The new parameters are inter-
preted as the moments of the mixing distribution Q(θ), which are induced by Cheby-
shev systems (defined in Sect. 2).

Definition 1 Let {ui (θ)}ri=0 form aChebyshev systemover [a, b]. For i = 0, 1, . . . , r ,
the i th moment of a probability measure Q(θ) induced by {ui (θ)}ri=0 is defined as:

mi (Q):=Eθ [ui (θ); Q] =
∫ b

a
ui (θ)dQ(θ) < ∞.

Secondly, after approximating the reparameterized model using a dimensionality
reduction technique, we introduce the moment space (defined in Sect. 3) as the para-
meter space of the approximated model. The moment space is natural from the point
of view of the interpretation of the parameters and allows us to reconstruct the mixing
distribution from the moments.

Lastly, we study the geometry of the moment space, showing important properties
of the reconstructed mixing distributions, including results on existence, uniqueness,
number of support points and gradient characterization.

In Sect. 2, we illustrate how to reparameterize a mixture model by a complete
orthonormal basis and interpret the new parameters. In Sect. 3, we approximate the
reparameterized model by a model with a finite-dimensional parameter and study the
quality of the approximation. In Sect. 4, we study the geometry of the moment space
in two ways: the positive representation and the gradient characterization. In Sect. 5,
we show two real examples to demonstrate the application of the reparameterization
method.Lastly,wediscuss the links between the reparameterization and twoestimation
methods: the method of moments and the maximum likelihood estimator.

2 Parameterization in moments

Consider a measure space (S,Σ,μ0) and the L2(S, μ0) space induced by it. We
assumeμ0 is a probability measure with support S. We will also denote, where appro-
priate, μ0(x) = f0(x)μ(x) with respect to a fixed measure μ, typically Lebesgue
or a counting measure. The probability function f0(x) is either fully known or lies
in a parametric family. Let the set {ei (x)}∞i=0 form a complete orthonormal basis of
L2(S, μ0), i.e.

〈ei (x), e j (x)〉L2(S,μ0)
=

∫
S
ei (x)e j (x) f0(x)dx = δi j ,

where δ is the Kronecker delta.
Assume that for each θ ∈ [a, b], the function f (x; θ)/ f0(x) belongs to L2(S, μ0),

i.e.,
∫
S f (x; θ)2/ f0(x)dx < ∞. According to standard results in Hilbert spaces
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272 Z. Huang, P. Marriott

(Debnath and Mikusiński 1999), we have the expansion

f (x; θ) =
∞∑
i=0

ui (θ)ei (x) f0(x), (1)

where for each i ∈ {0, 1, . . . },

ui (θ) =
〈
ei (x),

f (x; θ)

f0(x)

〉
L2(S,μ0)

. (2)

Taking expectations on both sides of (1), with respect to θ under themixing distribution
Q(θ), gives

fμ0(x;m∞) =
∞∑
i=0

mi (Q)ei (x) f0(x),

where m∞ = (m1,m2, . . .)
T ∈ R∞, and for each i ,

mi (Q) =
∫ b

a
ui (θ)dQ(θ) = Eθ [ui (θ); Q].

When e0(x) ≡ 1, x ∈ S, we have u0(x) = ∫
S 1 × f (x;θ)

f0(x)
f0(x)dx = 1, and so gives a

reparameterization

fμ0(x;m∞) = f0(x) +
∞∑
i=1

mi (Q)ei (x) f0(x). (3)

Furthermore, by orthogonality, for i > 0, we have
∫
S 1 × ei (x) f0(x)dx = 0 so that

(3) integrates to one.

Definition 2 The set of functions {ui (θ)}ri=0 is aChebyshev system overΘ ⊆ R, if we
have det(ui (θ j ))

r
i, j=0 > 0whenever θ0 < θ1 < · · · < θr and θ j ∈ Θ , j = 0, 1, . . . , r .

Definition 3 If {ui (θ)}∞i=0 in (2) forms a Chebyshev system over [a, b] with u0(θ) ≡
1, then for a given f0(x), x ∈ S, the formula (3) is the reparameterization of the
mixture model f (x; Q) in the moments induced by {ui (θ)}∞i=0.

When e0(x) ≡ 1, the reparameterization of themixturemodel fMix(x; Q) is locally
definedby {ei (x)}∞i=0 at f0(x). The choice of the basis depends on the specific inference
problem. Here, we give an example where the mean of the mixed distribution, rather
than the whole of the mixing distribution, is of inferential interest. Other examples
will be seen in Sect. 3.
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Parameterizing mixture models 273

2.1 The moments induced by power functions

This subsection considers inference for the mean parameter θ0 in the mixture model

fMix(x; θ0, Q) =
∫ b

a
f (x; θ0 + η)dQ(η),

where Q(η) is a zero mean, for identification reasons, probability measure over
[a, b]. Furthermore, the component distributions are natural exponential models with
quadratic variance functions. This class includes the normal, Poisson, gamma, bino-
mial and negative binomial families; see Morris (1982, 1983), and has the following
formal definition.

Definition 4 If f (x; θ) is a natural exponential family in the mean parameterization,
then V f (θ), defined by V f (θ):=EX [(X − θ)2], is called the variance function. If the
variance function V f (θ) is quadratic with the form V f (θ) = v0 + v1θ + v2θ

2, then
we say f (x; θ) is a natural exponential family with quadratic variance function.

In this problem θ0 is the parameter of interest and the mixing distribution Q is con-
sidered as a nuisance parameter. Themixturemodel fMix(x; θ0, Q) could be expanded
by a Laplace expansion; see Marriott (2007). Here, we describe this process within
our new framework.

Following (Morris 1983), we define, for i = 0, 1, 2, . . . ,

Pi (x; θ) = V i
f (θ)

f (x; θ)

∂ i

∂θ i
f (x; θ),

ai = i !∏i−1
j=0(1+ jv2) ≡ i !bi , and let f0(x) = f (x; θ0). Morris (1983) showed that

〈Pi (x; θ0), Pj (x; θ0)〉L2(S,μ0)
= δi j ai V

i
f (θ0)

and
〈
Pi (x; θ0),

f (x; θ)

f0(x)

〉
L2(S,μ0)

=
∫
S
Pi (x; θ0) f (x; θ)dx = bi (θ − θ0)

i = biη
i .

For a given θ0 ∈ (a, b), a mixture of natural exponential families with quadratic
variance functions can be reparameterized as:

f (x;mθ0,∞) = f (x; θ0) +
∞∑
i=2

mi (Q)
1

i !
Pi (x; θ0)

V i
f (θ0)

f (x; θ0), (4)

where mθ0,∞ = (θ0,m2,m3, . . .)
T ∈ R∞ and for each i = 1, 2, . . . ,

mi (Q) =
∫ b

a
ηidQ(η).
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274 Z. Huang, P. Marriott

For each i , ui (η) = ηi . The set {ui (η)}∞i=0 is a power set in a compact region and so
forms a Chebyshev system. So, (4) is a reparameterization of mixture models in the
moments induced by power functions.

3 Dimensionality reduction in parameter spaces

In the reparameterization of mixture model in Definition 3, we still have a non-finite
dimensional parameter space which could be problematic from an inferential point of
view; see Marriott (2007). Following Marriott (2002, 2007), we approximate (3) with
a finite sum

fμ0(x;mc):= f0(x) +
r∑

i=1

mi (Q)ei (x) f0(x), (5)

where mc = (m1,m2, . . . ,mr )
T ∈ Rr . The error between fμ0(x;mc)/ f0(x) and

fμ0(x;m∞)/ f0(x) in L2(S, μ0) is

er (Q) := ∥∥(
fμ0(x;mc) − fμ0(x;m∞)

)
/ f0(x)

∥∥2
L2(S,μ0)

=
∫
S

( ∞∑
i=r+1

mi (Q)ei (x)

)2

f0(x)dx

=
∞∑

i=r+1

m2
i (Q) < ∞. (6)

3.1 The moments induced by an integral operator

To find a good finite dimensional approximation, one approach is to find an ortho-
normal basis {γi (x)}∞i=0 in L2(μ0,S) which minimizes er (Q) for a given r . However
since the error er (Q) depends on the unknown mixing distribution Q, instead we aim
to minimize an upper bound of er (Q) instead. By the Cauchy–Schwarz inequality, an
upper bound is ∫ b

a
(dQ(θ)/dθ)2dθ ×

∞∑
i=r+1

∫ b

a
u2i (θ)dθ. (7)

With the assumption that
∫ b
a (dQ(θ)/dθ)2dθ is finite, minimizing

∑∞
i=r+1

∫ b
a u2i (θ)dθ

is equivalent to minimizing the upper bound.
We can obtain a basis {γi (x)}∞i=0 from the eigenfunctions {γ̃i (x)}∞i=0 to the integral

operator

(Ag)(x):=
∫
S
g(y)K (x, y)dy < ∞, (8)
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Parameterizing mixture models 275

with the kernel function

K (x, y):=
∫ b

a

f (x; θ)

f 1/20 (x)

f (y; θ)

f 1/20 (y)
dθ, (x, y) ∈ S × S.

This integral operator is positive and self-adjoint; see Debnath andMikusiński (1999).
If A(·) is also compact, the set {γi (x)}∞i=0 forms the complete orthonormal basis in

L2(μ0,S) that minimizes
∑∞

i=r+1

∫ b
a u2i (θ)dθ , where for each i ,

γi (x):=γ̃i (x)/ f
1/2
0 (x), x ∈ S; (9)

see the results on functional principle component analysis in Horváth and Kokoszka
(2012). To show the compactness of A(·), one sufficient condition is that

∫ b

a

∫
S

f 2(x; θ)/ f0(x)dxdθ < ∞;

see (16) in the Appendix.
To have γ0(x) ≡ 1 and γ̃0(x) = f 1/20 (x), we need

λ0 f
1/2
0 (y) =

∫
S

f 1/20 (x)K (x, y)dx

= f −1/2
0 (y)

∫
S

∫ b

a
f (x; θ) f (y; θ)dθdx

= f −1/2
0 (y)

∫ b

a
f (y; θ)dθ.

It follows that λ0 = b − a and γ0(x) ≡ 1 when f0(x) = 1
b−a

∫ b
a f (x; θ)dθ .

Theorem 1 For each i = 0, 1, . . . , let

φi (θ):=
〈
γi (x),

f (x; θ)

f0(x)

〉
L2(S,μ0)

=
∫
S

f (x; θ)γi (x)dx < ∞, θ ∈ [a, b],

where γi (x) is defined by (9). For each r = 1, 2, . . ., the set of functions {φi (θ)}ri=0
forms a Chebyshev system over [a, b].
Proof See the Appendix.

Example 1 (continued) Let [a, b] = [0, 25] and

f0(x) = 1

25

∫ 25

0
Pois(x; θ)dθ.
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276 Z. Huang, P. Marriott

It can be shown that

∞∑
x=0

(Pois(x; θ))2 / f0(x) < ∞,

for each θ ∈ [0, 25]. Figure 1 shows the largest 10 eigenvalues of the integral operator
A(·) in (8), the functions γi (x) and φi (θ) corresponding to the largest 4 eigenvalues.

Example 2 (continued) For each fixed σ 2 ≥ 0, let [a, b] = [0, 0.7] and

f0(x) = 1

0.7

∫ 0.7

0
N (x; θ, σ 2)dθ.

It can be shown that
∫ ∞

−∞

(
N (x; θ, σ 2)

)2
/ f0(x)dx < ∞,

for each θ ∈ [a, b]. For σ 2 = 0.072, Fig. 2 shows the largest 10 eigenvalues of the
integral operator A(·) in (8), the functions γi (x) and φi (θ) corresponding to the largest
4 eigenvalues.

3.2 The quality of the approximation

We need to consider the parameter space for the new parameters, mc, and also recon-
struct themixingdistributionQ frommc. Recall that the newparameters are interpreted
as the moments of Q. Then, it is natural to consider the moment space in Definition 5
as the parameter space of (5). More nice properties of the moment space will be seen
in Sect. 4.

Definition 5 Let {ui (θ)}ri=0 form a Chebyshev system over [a, b] with u0(θ) ≡ 1.
The moment space induced by {ui (θ)}ri=0 is

Kr =
{
mc = (m1,m2, . . . ,mr )

T ∈ Rr |mc =
∫ b

a
uc(θ)dQ(θ)

}
,

where uc(θ) = (u1(θ), u2(θ), . . . , ur (θ))T ∈ Rr and Q is a probability measure over
[a, b].

Note that there is no requirement that fμ0(x;mc) be a non-negative function for
any mc ∈ Kr . To ensure that fμ0(x;mc) behaves like a probability density (or mass)
function, the non-negative condition for each x ∈ S also should be considered; see
Marriott (2002, 2007). However, the non-negative conditions could be omitted in some
cases, as we will see in Sect. 4.2.
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Parameterizing mixture models 279

By (6), we have, for any mixing distribution Q over [a, b],

min
mc∈Kr

‖ (
fμ0(x;mc) − fMix(x; Q)

)
/ f0(x)‖2L2(S,μ0)

≤ er (Q).

Furthermore, if fμ0(x;mc) is reparameterized with the moments induced by
{φi (θ)}∞i=0, we can have

er (Q) ≤
∫ b

a
(dQ(θ)/dθ)2dθ ×

∞∑
i=r+1

∫ b

a
φ2
i (θ)dθ

=
∫ b

a
(dQ(θ)/dθ)2dθ ×

∞∑
i=r+1

∫
S

γ̃i (x)(Aγ̃i )(x)dx

=
∫ b

a
(dQ(θ)/dθ)2dθ ×

∞∑
i=r+1

λi .

Wereturn toExamples 1 and2 to examine thenon-negativeness and thequality of the
approximation of fμ0(x;mc) over the sample space. Because each fμ0(x;mc) can be
written as a convex combination of fμ0(x; uc(θ)), we aim to study the approximation
of fμ0(x; uc(θ)) to the component distribution f (x; θ) at each (x, θ) ∈ S × [a, b].
The quality of the approximation is measured by

ε4(x; θ) = fμ0(x; uc(θ)) − f (x; θ) (10)

for each (x, θ) ∈ S × [a, b].
Example 1 (continued) Let uc(θ) = (u1(θ), . . . u4(θ))T ∈ R4. We consider the cases
that uc(θ) is induced by {(θ − 12.5)i }4i=0 in Sect. 2.1 and {φi (θ)}4i=0 in Sect. 3.1.
Figure 3 shows the negative region of fμ0(x; uc(θ)) over S × [0, 25] in these two
cases.

Figure 4 examines the quality of the approximation. Various issues of the repa-
rameterization with power moments are seen from panel (a). Firstly, the quality of
the approximation is non-uniform at each point in the sample space. Secondly, the
approximation is poor when θ is away from θ = θ0. This is due to the nature of the
underlying Laplace approximation where a polynomial approximation only behaves
well in a small neighbourhood of θ = θ0. On the other hand, from the panel (b), we see
that the quality of the approximation is almost uniformat each point (x, θ) ∈ S×[a, b],
when the moments are induced by {φi (θ)}4i=0.

Example 2 (continued) Consider a fixed σ 2 = 0.072. Again consider uc(θ) =
(u1(θ), . . . u4(θ))T ∈ R4 and uc(θ) is induced by either {(θ−0.35)i }4i=0 or {φi (θ)}4i=0.
Figure 5 shows the negative regions of fμ0(x; uc(θ)) over S × [0, 0.7] under these
two types of reparameterizations. Also, Fig. 6 gives the contour plots of ε4(x; θ) over
S × [0, 0.7]. From the panel (a), we see the non-uniform and local approximation
properties of the reparameterization with the power moments. On the other hand,
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the quality of the approximation is more uniform when the moments are induced by
{φi (θ)}4i=0.

4 The geometry of moment spaces

In this section, we study the geometry of the moment-based parameter space. We aim
to link the moments mc ∈ Kr to the probability measure Q(θ) and we do this in two
ways: the positive representation and the gradient characterization.

First, we introduce the moment cone induced by a Chebyshev system and its con-
nection to themoment space. Let {ui (θ)}ri=0 form aChebyshev system over [a, b]with
u0(θ) ≡ 1 and assume that for each i = 0, 1, . . . , r , the function ui (θ) is continuous.
When θ moves from a to b, the trace of u(θ) = (u0(θ), . . . , ur (θ))T ∈ Rr+1 forms
the moment curve Γr+1 in Rr+1.

Definition 6 The conical cone of the curve Γr+1 is called the moment cone induced
by {ui (θ)}ri=0, that is

Mr+1:=
{
c = (c0, c1, . . . , cr )

T ∈ Rr+1|c = ∫ b
a u(θ)dσ(θ)

}
,

where σ(θ) is a nondecreasing right continuous function of bounded variation and
θ ∈ [a, b].

Themoment cone contains the convexhull ofΓr+1, denoted by conv(Γr+1), because
for each m ∈ conv(Γr+1), the vector m = (1,mT

c )T = ∫ b
a u(θ)dQ(θ), where Q(θ)

is a probability measure over [a, b]. Moreover, we have the following result.

Proposition 1 If u0(θ) ≡ 1 in a Chebyshev system {ui (θ)}ri=0 over [a, b], then the
boundary of conv(Γr+1) is a subset of the boundary of themoment coneMr+1 induced
by {ui (θ)}ri=0.

Proof See the Appendix.

4.1 The positive representations

As will be shown, a positive representation of a vector m ∈ conv(Γr+1) corresponds
to a mixing distribution Q. To illustrate the positive representation of a nonzero vector
in conv(Γr+1), we need to first introduce the positive representation and its index.

Definition 7 A nonzero vector c has a positive representation in a Chebyshev system
{ui (θ)}ri=0, if it can be written in the form of

c =
J∑

j=1

β ju(θ j ), (11)

where u(θ) ∈ Γr+1, a ≤ θ1 < θ2 < · · · < θJ ≤ b and β j > 0, j = 1, 2, . . . , J . If∑J
j=1 β j = 1, the positive representation (11) is called a convex representation.
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Parameterizing mixture models 285

Definition 8 Let

I(θ):=
{
1, if θ ∈ (a, b);
1/2, if θ = a or b.

If c has the positive representation (11), the index of c, denoted by I(c), is
∑J

j=1 I(θ j ).

According toCarathéodory’s theorem, for each vectorm ∈ conv(Γr+1), there exists
a convex representation of m by {ui (θ)}ri=0 with J < r + 1. We have the following:

Theorem 2 For each mc ∈ Kr , the moment space, there exists a probability measure
Q(θ) such that mc = ∫ b

a uc(θ)dQ(θ) and Q(θ) has at most r + 1 support points over
[a, b].

If we further assume m is on the boundary of conv(Γr+1), the upper bound of the
number of support points can be sharpened using the following proposition in Karlin
and Studden (1966).

Proposition 2 A nonzero vector c is a boundary point of Mr+1, the moment cone,
induced by {ui (θ)}ri=0 over [a, b] if and only if I(c) < (r + 1)/2. Moreover, its
positive representation is unique with J ≤ (r + 2)/2.

With Proposition 2 and the fact that m̂ is on the boundary of Mr+1, we have the
following.

Theorem 3 Ifmc is on the boundaryofKr , there exists oneuniqueprobabilitymeasure
Q̂(θ) such that mc = ∫ b

a uc(θ)dQ̂(θ) and Q̂(θ) has at most (r + 2)/2 support points.

Example 1 (continued) Figure 7 shows the moment cones M3 induced by {(θ −
12.5)i }2i=0 and {φi (θ)}2i=0. In each plot, the curve Γ3 is induced by the corresponding
Chebyshev system and its convex hull conv(Γ3).

The boundary of M3 contains the boundary of conv(Γ3); see Proposition 1. The
boundary vectors of conv(Γ3) are either u(θ) ∈ R3 or (1 − α)u(0) + αu(1), where
0 < α < 1. Therefore, the index of a boundary vector is either 1 or 3/2; see Theorem
3. On the other hand, if the index of a vector is less than 3/2, it must locate on the
boundary. Moreover, when m is on the boundary, it uniquely corresponds to a mixing
distribution. For example, one point on Γ3 is the image of Pois(12) in R3.

4.2 The gradient characterization

The gradient characterization is useful for computational algorithms. In the literature
of the non-parametric MLE for mixture models, there exists a class of computational
algorithms based on the same convex structure as considered here; see Böhoning
(1995) and Wang (2007). This class has more stable computational speeds than the
EM algorithm, which is also commonly used for mixture models.
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In this subsection, we consider the following optimization problem:

min
mc

L(mc) (12)

s.t. mc ∈ Kr ,

whereL(mc) is an arbitrary loss function and strictly convex with respect tomc. Given
a random sample X1, X2, . . . , XN , one example of L(mc) is the log-likelihood type
function

�(mc):= −
N∑

n=1

log( fμ0(xn;mc)). (13)

Denote

sn := � log( fμ0(xn;mc)) =
(

e1(x) f0(x)

fμ0(xn;mc)
, . . . ,

er (x) f0(x)

fμ0(xn;mc)

)T

,

and ST:=(s1, . . . , sN ). Note that

��(mc) = −ST1,

and

�2�(mc) = STS,

where 1 = (1, . . . , 1)T ∈ RN , � is the gradient and �2 is the Hessian. The objective
function �(mc) is strictly convex if and only if the matrix STS is positive definite.
Note that the non-negative condition on fμ0(x;mc) does not need to be explicitly
included here because for each observed X , the value of fμ0(x;mc) must be positive
to minimize the objective function.

Since the optimization problem (12) is convex, its solution m̂c is unique and on the
boundary of Kr . So there exists a supporting hyperplane of Kr at m̂c such that

H =
{
h = (h1, . . . , hr )

T ∈ Rr |(m̂c − h)T � L(m̂c) = 0
}

.

The following theorem states the relationship betweenH and the support points of Q̂
in Theorem 3. Recall that, we have defined uc(θ) = (u1(θ), . . . , ur (θ))T ∈ Rr .

Theorem 4 Let Θ̂ be the set of support points of Q̂. Then, if a point θ̂ ∈ [a, b] is an
element of Θ̂ , then uc(θ̂) is on the hyperplane H. The converse also holds.

Proof See Lindsay (1983a, b).
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The above theorem also implies that Θ̂ is the set of zeros of the gradient function
of the objective function L(mc) which is defined as:

D(m̂c, uc(θ)) := ∂

∂ε
L((1 − ε)m̂c + εuc(θ))

∣∣∣∣
ε=0

= (uc(θ) − m̂c)
T � L(m̂c).

Moreover, we can use the gradient function to characterize m̂c as follows.

Theorem 5 The following three statements are equivalent:

1. m̂c minimizes L(mc).
2. infθ D(m̂c, uc(θ)) = 0.
3. m̂c maximizes infθ D(mc, uc(θ)).

Proof See Lindsay (1983a, b).

Now, we continue Example 1 to illustrate Theorems 4 and 5.

Example 1 (continued) In each panel of Fig. 8, we see the curve Γ3 induced by
{φ1(θ), φ2(θ)} and its convex hull K2 in the space of (m1,m2)

T ∈ R2. The contours
show the identical values of the objective function

L(mc) = (t − mc)
T(t − mc), (14)

where mc ∈ R2 and t = (−2, 0)T. This objective function is chosen for its nice
visual interpretation in Fig. 8. Because t /∈ K2, L(mc) is strictly convex with respect
to mc. The minimum value of L(mc) over K2 is 0.5517. As we see, the contour
L(mc) = 0.5517 has a unique intersection m̂c withK2. Moreover, the intersection m̂c

is on the boundary ofK2. In Fig. 8a, the solid line represents the supporting hyperplane
H of K2 at m̂c. Here, we have m̂c = uc(θ̂) ∈ H; see Theorem 4.

Moreover, �L(m̂c) is orthogonal to the supporting hyperplane. For any vector
uc(θ) �= m̂c on Γ3, we have the vector uc(θ) − m̂c. From Fig. 8a, it can be seen that
the angle ψ ∈ [0, π ] between �L(m̂c) and uc(θ) − m̂c is always acute. Therefore,
we have

cos(ψ) = D(m̂c, uc(θ))√
(uc(θ) − m̂c)T(uc(θ) − m̂c)

√
(�L(m̂c))T(�L(m̂c))

> 0;

see Theorem 5 (2). It is also obvious that cos(ψ) = 0 if and only if uc(θ) = m̂c.
In Fig. 8b, we see that for any m′

c �= m̂c in K2, there always exists a uc(θ ′) ∈ Γ3
such that the angle ψ ′ between �L(m′

c) and uc(θ ′) − m′
c is obtuse. It follows that

infθ D(m′
c, uc(θ)) < 0; see Theorem 5 (3).
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5 Real examples

5.1 The Thailand cohort study data

Consider the data onmorbidity in northeast Thailandwhichwas analyzed byBöhoning
(1995); see also Schlattmann (2009). We fit a mixture of Poisson with [a, b] = [0, 25]
by minimizing �(mc) in (13) over Kr , where fμ0(x;mc) is induced by {φi (θ)}ri=0

from Example 1 in Sect. 3.1 and r = 2, 3, . . . , 24. Let m̂(r)
c ∈ Rr be the solution

and Q̂(r) be the probability measure reconstructed from m̂(r)
c . Also, let Q̂(∞) be the

non-parametric MLE of the mixing distribution.
The results are summarized in Table 1. When r ≤ 5, the m̂(r)

c ∈ Rr is not on the
boundary of Kr and, thus, no unique mixing distribution could be reconstructed from
the moments. For each r ≥ 6, the probability measure Q̂(r) is unique and reported
in Table 1. The log-likelihoods of fMix(x; Q̂(r)) become stable and close to the log-
likelihood of fMix(x; Q̂(∞)), when r is large; also see Fig. 9b. Furthermore, for large
r , the two distributions Q̂(r) and Q̂(∞) are almost the same; see Table 1. Both of the
observations support that the quality of the approximation of fμ0(x;mc) to fMix(x; Q)

is accurate, where mc ∈ Kr and r is finite.

5.2 The sodium–lithium countertransport data

Consider the SLC data analyzed by Roeder (1994). We fit a mixture of normal with
same variance. Let [a, b] = [0, 0.7]. For each r ≥ 4, we minimize �(mc, σ

2)

over Kr × R+, where mc ∈ Rr is the moment vector induced by {φi (θ)}ri=1
from Example 2 in Sect. 3.1. Note here {φi (θ)}ri=1 depends on the value of σ 2.

Given σ 2, let m̂(r)
c (σ 2) minimize �(mc, σ

2). The variance is estimated as the σ̂ 2 =
argminR+ �(m̂(r)

c (σ 2), σ 2). Let Q̂(r) be the reconstructed mixing distribution from
m̂c(σ̂

2) ∈ Kr .

Table 1 Some results of the fitted models to the Thailand cohort study data

r Mixing parameters Mixing proportions Log-likelihod (103)

6 (0.433, 0.3778, 10.664) (0.2823, 0.4983, 0.2194) −1.7943

7 (0, 2.93, 6.516, 13.301) (0.1552, 0.4350, 0.2981, 0.1117) −1.5896

8 (0.200, 2.951, 8.328, 15.948) (0.2119, 0.4776, 0.2568, 0.0538) −1.5295

9 (0, 2.008, 3.942, 8.587, 16.157) (0.1535, 0.3128, 0.2487, 0.2349, 0.0500) −1.5304

10 (0.158, 2.816, 8.102, 16.019) (0.1995, 0.4758, 0.2699, 0.0548) −1.5268

11 (0, 0.878, 2.961, 8.226, 16.091) (0.1363, 0.0964, 0.5966, 0.1175, 0.0533) −1.5225

12 (0.147, 2.824, 8.173, 16.164) (0.1981, 0.4794, 0.2689, 0.0537) −1.5225

13 (0.143, 2.817, 8.164, 16.154) (0.1968, 0.4800, 0.2693, 0.0538) −1.5225

.

.

.
.
.
.

.

.

.
.
.
.

∞ (0.143, 2.817, 8.164, 16.156) (0.1969, 0.4800, 0.2689, 0.0539) −1.5225
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Table 2 Some results of the fitted models to the SLC data

r Mixing parameters Mixing proportions Standard deviation Log-likelihod

5 (0.220, 0.511) (0.9015, 0.0985) 0.060 164.68

6 (0.195, 0.345) (0.6429, 0.3571) 0.090 165.59

7 (0.246, 0.393, 0.521) (0.8907, 0.0677, 0.0417) 0.081 183.31

8 (0.234, 0.339) (0.8597, 0.1403) 0.069 182.51

9 (0.221, 0.372, 0.563) (0.7735, 0.2198, 0.0067) 0.064 189.26

10 (0.231, 0.393, 0.567) (0.8300, 0.1534, 0.0166) 0.069 188.04

11 (0.209, 0.251, 0.392, 0.582) (0.4460, 0.3576, 0.1737, 0.0226) 0.057 190.37

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

The results are summarized in Table 2 and some of the fitted models are plotted in
Fig. 10. From the figure, we can see that fMix(x; Q̂(r)) may not give sensible fitting
until r ≥ 9. Based on the prior knowledge that the data may consist of three sub-
populations, we choose fMix(x; Q̂(9)) as our final fitted model. This result is close
to the three component mixture of normal with same variance fitted by maximizing
the log-likelihood, in which the mixing parameters are (0.223, 0.379, 0.577) with
the mixing proportions (0.774, 0.202, 0.024) and a standard deviation of 0.058; see
Roeder (1994). Lastly, we want to point out that the non-parametric MLE is not
appropriate here because it is exactly the empirical distribution of the sample.

6 Discussion and conclusion

The essential idea in this paper is to use a moment space in Rr to approximate an
infinite-dimensional parameter space. We end this paper with a brief discussion of the
following issues.

The links to the method of moments The method of moments for mixture models
has a long history; see McLachlan and Peel (2000). It can be computed easily but
suffers from a lack of efficiency; see Lindsay (1989). As a result, it is typically used
to find the initial value for the computational algorithms of other estimation methods.
According to the discussion in Sect. 2, the moments of mixing distribution are induced
locally and correspond to local approximations of non-parametric mixtures. We may
expect that the quality of the approximation is related to the efficiency of the method
of moments. However, the connection between the two still remains unclear.

The links to the non-parametric MLE The link between the reparameterization in
moments and the non-parametric MLE is their geometry. Lindsay (1983a, b) studied
the geometry in the likelihood-based embedding spaces and gave the fundamental
properties of the non-parametric MLE. Because the set of mixture is a convex hull of
a curve in both cases, the properties of the reparameterization in moments are similar
to those given by Lindsay.

The two types of geometry are different. The dimension of the likelihood-based
embedding space is the number of distinct values in a random sample; see Lindsay
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(1983a) and Lindsay (1983b), while the dimension of the moment space is chosen
depending on the quality of the approximation. In the two examples of the moments
discussed in this paper, the dimension of the moment space is usually smaller than
that of the likelihood-based embedding space, especially when the mixing region
[a, b] is narrow and the decay of the eigenvalues of (8) is fast. This makes the mixing
distribution reconstructed from the moments have a sharpened upper bound of the
number of support points.

Extension to the generalized linear mixed models As pointed out by the referees,
mixturemodels have amuchwider application in the context of regression. Thesemod-
els are known as the generalized linear mixed models or the random effects models;
see Diggle et al. (2002). It would be interesting future work to examine the perfor-
mance of the reparameterization of mixture models to the generalized linear mixed
models and in practical applications.

Appendix A

7.1 Strictly totally positive kernel functions

The strictly totally positive kernel functions and Chebyshev systems are defined in the
following ways in (Karlin and Studden 1966).

Definition 9 A real-valued kernel function K (s, θ), (s, θ) ∈ S × Θ ⊆ R2, is
called strictly totally positive of order r , if for each J = 1, 2, . . . , r , we have
det(K (si , θ j ))

J
i, j=0 > 0, whenever s0 < s1 < · · · < sr , θ0 < θ1 < · · · < θr

and (si , θ j ) ∈ S × Θ , i, j = 0, 1, . . . , r .

Consider a kernel function for (x, y) ∈ S × S ′ ⊆ R2,

K ∗(x, y):=
∫ b

a
L(x, θ)M(y, θ)dθ, (15)

where L(x, θ), (x, θ) ∈ S × [a, b] ⊂ R2 and M(y, θ), (y, θ) ∈ S ′ × [a, b] ⊂ R2.
The following proposition is proved in Karlin and Studden (1966).

Proposition 3 If the kernel function in (15) exists for each (x, y) ∈ S×S ′ and L(x, θ)

and M(x, θ) are strictly totally positive, then K (x, y) is strictly totally positive.

Pinkus (1996) further states that the eigenfuctions from a strictly totally positive
kernel function could also form a Chebyshev system.

Proposition 4 Let

(A′g)(θ) =
∫ b

a
g(θ)K ′(θ, θ ′)dθ,

be a compact, self-adjoint, positive integral operator in the form of (8). Moreover,
the kernel function K ′(θ, θ ′) is strictly totally positive over [a, b] × [a, b]. Then, the
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integral operator A′(·) has the eigenvalues λ0 > λ1 > · · · > 0 and associated
eigenfunctions φ0(θ), φ1(θ), . . ., which are continuous over [a, b]. For each r =
1, 2, . . ., the set {φi (θ)}ri=0 forms a Chebyshev system over [a, b].

It is known that a Hilbert–Schmidt operator is compact; see Debnath and
Mikusiński (1999). To show K ∗(x, y) is Hilbert–Schmidt, one sufficient condition
is

∫ b
a

∫
S L2(x; θ)dxdθ < ∞ and

∫ b
a

∫
S ′ M2(y; θ)dydθ < ∞, because

∫
S

∫
S ′

(
K ∗(x, y)

)2 dxdy ≤ ∫ b
a

∫
S L2(x; θ)dxdθ × ∫ b

a

∫
S ′ M2(y; θ)dydθ. (16)

7.2 Proof of Theorem 1

Firstly, we show that {φi (θ)}∞i=0 is the set of eigenfunctions of the integral operator

(A′g)(θ) =
∫ b

a
g(θ)K ′(θ, θ ′)dθ,

where

K ′(θ, θ ′) =
∫
S

f (x; θ) f (x; θ ′)
f0(x)

dx .

For each i , we have

λiφi (θ) = λi

∫
S

γ̃i (x)

f 1/20 (x)
f (x; θ)dx

=
∫
S

f (x; θ)

f 1/20 (x)

∫
S

γ̃i (y)K (x, y)dydx

=
∫ b

a

∫
S

γ̃i (y)
f (y; θ ′)
f 1/20 (y)

dy
∫
S

f (x; θ) f (x; θ ′)
f0(x)

dxdθ ′

=
∫ b

a
φi (θ

′)K ′(θ, θ ′)dθ ′.

Next, note that the one-parameter exponential family f (x; θ) is strictly totally pos-
itive; see Lidnsay and Roeder (1993). According to Proposition 3, the kernel function
K ′(θ, θ ′) is strictly totally positive. Then, it follows from Proposition 4 that the set of
eigenfuctions {φi (θ)}ri=0 forms a Chebyshev system over [a, b]. ��

7.3 Proof of Proposition 1

We want to show that for each boundary vector m∗ of conv(Γr+1), there exists a
supporting hyperplane of conv(Γr+1) at m∗ which is also a supporting hyperplane of
Mr+1 at m∗.

123



296 Z. Huang, P. Marriott

Firstly, the convex hull conv(Γr+1) is the intersection ofMr+1 and the hyperplane
H1 = {

h = (1, h1, h2, . . . , hr )T ∈ Rr+1
}
. Then, in H1, there exists a vector β̃c =

(β̃1, β̃2, . . . , β̃r )
T ∈ Rr such that for each m ∈ conv(Γr+1), we have

r∑
i=1

mi β̃i ≥
r∑

i=1

m∗
i β̃i .

Let β̃0 = −∑r
i=1 m

∗
i β̃i . For each m ∈ conv(Γr+1), we have

r∑
i=0

mi β̃i ≥
r∑

i=0

m∗
i β̃i .

Therefore, the vector β̃ = (β̃0, β̃
T
c )T ∈ Rr+1 determines the hyperplane

{
h ∈ Rr+1|(h − m∗)Tβ̃ = 0

}
(17)

as a supporting hyperplane of conv(Γr+1) at m∗.
Note that any vector in Mr+1 can be written as Δm, where Δ ≥ 0 and m ∈

conv(Γr+1). We have the inequality:

r∑
i=0

(Δmi − m∗
i )β̃i = (Δ − 1)β̃0 +

r∑
i=1

(Δmi − m∗
i )β̃i

= (1 − Δ)

r∑
i=1

m∗
i β̃i +

r∑
i=1

(Δmi − m∗
i )β̃i

= Δ

r∑
i=1

(mi − m∗
i )β̃i ≥ 0,

and thus the hyperplane (17) is also a supporting hyperplane of Mr+1. ��
Acknowledgments The authors thank the Editor, the Associate Editor and the two referees for their
insightful comments and suggestions that lead to substantially improve the paper.
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