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Abstract Nonparametric kernel-type estimation is discussed for modes which max-
imize nonparametric kernel-type density estimators. The discussion is made under a
weak dependence condition which unifies weak dependence conditions such as mix-
ing, association, Gaussian sequences and Bernoulli shifts. Consistency and asymptotic
normality are established for the mode estimator as well as for kernel estimators of
density derivatives. The convergence rate of the mode estimator is given in terms
of the bandwidth. An optimal bandwidth selection procedure is proposed for mode
estimation. A Monte-Carlo experiment shows that the proposed bandwidth yields a
substantially better mode estimator than the common bandwidths optimized for den-
sity estimation. Modes of log returns of Dow Jones index and foreign exchange rates
of US Dollar relative to Euro are investigated in terms of asymmetry.

Keywords Weak dependence · Kernel estimator · Mode · Consistency · Asymptotic
normality · Bandwidth · Asymmetry

1 Introduction

We are interested in estimation of the mode based on nonparametric kernel-type den-
sity estimators under a very general dependence condition. Doukhan and Louhichi
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(1999) have proposed a weak dependence condition, called ψ-weak dependence, for
stationary processes that unifies weak dependence conditions, such as mixing, asso-
ciation, Gaussian sequences and Bernoulli shifts. Essentially all classes of stationary
processes of real applications are in the class of ψ-weakly dependent processes as
claimed by Ango Nze et al. (2002) and others. Ango Nze and Doukhan (2004) showed
that stationary ARMA processes, and important nonlinear processes such as bilinear
processes, threshold autoregressive processes, and GARCH processes are examples
of ψ-weakly dependent processes, by showing that they are all Markovian processes
which in turn are Bernoulli shifts.

Because of their wide range of applicability, there have been recently many studies
on probabilistic properties of ψ-weakly dependent processes as given by Coulon-
Prieur and Doukhan (2000), Dedecker and Prieur (2004), Kallabis and Neumann
(2006), and Doukhan and Neumann (2007). Statistical applications were made by
Doukhan and Louhichi (2001) for asymptotics of kernel density estimators, Dedecker
et al. (2007) for functional estimation and spectral estimation, Doukhan et al. (2009)
for least squares estimation of ARCH(∞) among the ψ-weakly dependent processes
and Hwang and Shin (2012) for stationary bootstrapping of kernel density estimators.

As for the mode estimator, Parzen (1962) pioneered a work on the estimation of
modes. Convergence rates of the mode estimators were discussed by Eddy (1980,
1982), Romano (1988), Vieu (1996), Herrmann and Ziegler (2004), and Shi et al.
(2009a) under i.i.d. assumptions. In particular, Romano (1988) considered data-
dependent bandwidth to obtain optimal rates by minimizing the mean-squared error of
mode estimator.AfterRomano (1988), several authors such asVieu (1996),Mokkadem
and Pelletier (2005) and Ferraty et al. (2006) dealt with the density mode estimations.
Recently, Shi et al. (2009a) improved the convergence rates of the mode estimators of
Vieu (1996), Mokkadem and Pelletier (2005) and Ferraty et al. (2006) by establishing
a relationship between the convergence rate of the mode estimator and the bandwidth
in light of Shi et al. (2009b), which studied strong convergence rate of change point
estimator. Asymptotic normality of mode estimators is related with that of density
derivatives for which we know the results of Singh (1977) and Gasser and Müller
(1979) under i.i.d. samples, Györfi et al. (1989) and Rio (1997) under strong mixing
conditions, Jones (1994) for comparative studies, and Louani (1998) for randomly
right censorship models under i.i.d. errors.

Recently, some studies for mode estimation for dependent data have been made.
Wieczorek and Ziegler (2010) considered problems of optimal estimation of a non-
smooth mode in the fixed-design regression model with α-mixing errors. Meister
(2011) studied consistency of deconvolution mode estimation for contaminated data
where no smoothness assumption on the underlying curve is needed.

As for the conditional mode estimator, Samanta and Thavaneswaran (1990) dealt
with nonparametric estimation of the conditional mode, and Louani and Ould-Saïd
(1999) provided asymptotic normality for the kernel estimators of the conditional
mode under strong mixing condition.

This paper considers mode estimation based on kernel type density estimators
for a sequence of strictly stationary ψ-weakly dependent processes. We establish
consistency and asymptotic normality of the mode estimators. The convergence rate
of the mode is given in terms of the bandwidth. The consistency result extends the rate
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result of Shi et al. (2009a) for i.i.d. cases to themuchmore generalψ-weakly dependent
cases. Results for kernel type density derivative estimators are obtained as byproducts.

This asymptotic analysis provides us an asymptotically optimal bandwidth in terms
of the true mode. This enables us to develop an asymptotically optimal bandwidth
selection procedure. The unknown true mode is first estimated using an existing band-
width optimized for density estimation by, for example, Sheater and Jones (1991),
Rudemo (1982) and Bowman (1984), and then plugged in the optimal bandwidth
formula. This gives a data-dependent bandwidth optimized for mode estimator.

A Monte-Carlo experiment compares the mode estimator computed using the pro-
posed bandwidth with that computed using the bandwidth optimized for density esti-
mation. The proposed estimator is less-biased and has substantially smaller mean-
squared error (MSE). The experiment also investigates favorably finite sample nor-
mality of a t statistic for the significance of the mode.

The proposed method is applied to daily log returns of US Dow Jones index and
foreign exchange rates of US Dollar relative to Euro. Our results enable us to conduct
statistical tests regarding modes. The test for Dow Jones reveals that the mode is
significantly different from zero implying that the distribution of log return is not
symmetric about 0 and thus positive log returns have probabilistic features different
from those of negative log returns. On the other hand, the test for exchange rates shows
no significant mode.

The remaining of the paper is organized as follows. In Sect. 2,ψ-weakly dependent
processes are defined. In Sect. 3, main results of consistency and asymptotic normali-
ties are stated, and in Sect. 4 bandwidth selection for the mode estimator is discussed.
Section 5 presents small sample analysis for optimal bandwidth and Sect. 6 provides
a real data set analysis. Section 7 concludes the paper and the last section gives an
appendix containing results for density derivatives (“Large sample results for density
derivative estimators”) and proofs of the results (“Proofs”).

2 ψ-weakly dependent processes

The definition of ψ-weak dependence makes explicit the asymptotic independence
between “past” and “future”. In terms of the time series, for convenient functions g
and h, it is assumed that Cov(gpast, hfuture) is small when the distance between the
“past” and the “future” is sufficiently large. Asymptotics are expressed in terms of the
distance between indices of the initial time series in the “past” and the “future” terms;
the convergence is not assumed to hold uniformly on the dimension of the marginal
involved as seen in (1) of the definition below.

To define the notion of weak dependence, we first introduce some classes of func-
tions. Let L∞ = ⋃∞

n=1 L
∞(Rn), the set of real-valued and bounded functions on the

space Rn for n = 1, 2, . . . . Consider a function g : Rn → C where Rn is equipped
with its l1-norm (i.e. ||(x1, . . . , xn)||1 = |x1| + · · · + |xn|) and define the Lipschitz
modulus of g,

Lip(g) = sup
x �=y

|g(x) − g(y)|
||x − y||1 .
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Let

L =
∞⋃

n=1

Ln where Ln = {g ∈ L
∞(Rn); Lip(g) < ∞, ||g||∞ := sup

x
|g(x)| ≤ 1},

the class L is used together with the following two functions:

ψ1(g, h, n, m) = min(n, m)Lip(g)Lip(h)

ψ2(g, h, n, m) = 4(n + m)min{Lip(g),Lip(h)}

for functions g and h defined on R
n and R

m , respectively.
Let (Xn)n∈Z denote a strictly stationary sequence of real valued random variables.

We restrict to 1-dimensional samples for simplicity in this work but can extend to a
multi-dimensional frame.

Definition 1 (Doukhan andLouhichi 1999)The sequence (Xn)n∈Z is called (ε,L, ψ)-
weakly dependent (simply, ψ-weakly dependent), if there exists a sequence ε =
(εr )r∈Z decreasing to zero at infinity and a function ψ with arguments (g, h, n, m) ∈
Ln × Lm × N

2 such that for n-tuple (i1, . . . , in) and m-tuple ( j1, . . . , jm) with
i1 ≤ · · · ≤ in < in + r ≤ j1 ≤ · · · ≤ jm , one has

|Cov(g(Xi1, . . . , Xin ), h(X j1 , . . . , X jm ))| ≤ ψ(g, h, n, m)εr . (1)

According to Doukhan and Louhichi (1999), associated sequences are ψ1-weakly
dependent, and Bernoulli shifts and Markov processes are ψ2-weakly dependent. Our
main attraction is such examples of processes that are weakly dependent, but not
mixing.

3 Large sample analysis

We consider mode estimation of densities of strictly stationary ψ-weak dependent
sequences {Xt } of real-valued random variables. We assume that the marginal density
of Xt exists and we denote it by f (x). The standard kernel density estimate based on
data {X1, X2, . . . , Xn} is defined by

f̂n(x) = 1

nh

n∑

i=1

K

(
x − Xi

h

)

where K is some real-valued function called Kernel function, integrating to 1, being
Lipschizian and being rapidly convergent to 0 at infinity, and h := hn > 0 is called
bandwidth, such that h → 0 and nh → ∞ as n → ∞.

We estimate the mode via f̂n as in Parzen (1962) where the mode is defined as
the location at which f has maximum. Let I = [a, b] be a compact interval and
J = [a − �, b + �], � > 0 be a slight enlargement of I which is introduced to avoid
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boundary effects. We assume that f is unimodal in the interval I and denote its mode
by θ . Then, the mode satisfies

f (θ) > sup
x∈J :|x−θ |>ε

f (x),

for all ε > 0. A sample mode corresponding to the kernel estimator f̂n is the estimator
θ̂n satisfying

f̂n(θ̂n) = sup
x∈I

f̂n(x). (2)

Note that θ̂n exists if K is continuous; however, it may not be unique. It is known
that kernel estimators tend to produce some additional and superfluous modality. We
develop our consistency results so that the results are valid for any choice of θ̂n satis-
fying (2).

We first give consistency of the mode estimates and specifies the rate of conver-
gence under smoothness conditions on f . As in Shi et al. (2009a), we establish the
relationship between the convergence rate of the mode estimator and the bandwidth.
Convergence in probability is established for the mode under a set of mild conditions
(A1)–(A4) below. Under an additional condition (A5) below, we also establish almost
complete convergence for modes, which is a stronger convergence than almost sure
convergence. A sequence {Zn} of real-valued random variables is said to converge
almost completely to 0 if for every ε > 0 we have

∑∞
n=1 P(|Zn| > ε) < ∞. This

is denoted by Zn = oa.co.(1). The complete convergence implies almost sure conver-
gence and convergence in probability. A sequence {Zn} is said to be almost completely
bounded if there exists an M > 0 such that

∑∞
n=1 P(|Zn| > M) < ∞. This is denoted

by Zn = Oa.co(1). For a sequence an > 0, Zn = oa.co.(an) and Zn = Oa.co.(an)

denote Zn/an = oa.co.(1) and Zn/an = Oa.co.(1), respectively.
In Assumption 1 below, we describe conditions required for our study.

Assumption 1 (A1) Let ρ denote the regularity of the function f in terms of Hölder
spaces, this means that setting ρ = a + b with a ∈ N

+ and 0 ≤ b < 1 there
exists a constant A > 0 such that f is a-times continuously differentiable with
| f (a)(x) − f (a)(y)| ≤ A|x − y|b for x, y belonging to an arbitrary compact
interval of R, where f (a) is the ath order derivative of f . Assume f has k + ρ

times continuously differentiable for k = 0, 1, . . . , ρ.
(A2) ρ is an integer (≥ 2) and the kernel function K is of order ρ, i.e., it satisfies

∫

xi K (x) dx = 0 for i = 1, . . . , ρ − 1, and
∫

xρ K (x) dx �= 0.

Also we have |x |K (x) → 0 and |x |K (ρ)(x) → 0 as x → ∞. Here and in the
sequel, integrals are all over (−∞,∞). Assume that the kernel function K has
ρ bounded derivatives, and K (k) is Lipschitz continuous for k = 0, 1, . . . , ρ.

(A3) Let f0,n denote the joint density of X0 and Xn . There exists some positive
constant C such that for any positive integer n,

|| f ||∞ ≤ C and || f0,n||∞ ≤ C. (3)
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The stationary sequence (Xt ) satisfies the following weak dependence condi-
tion:

for all g, h ∈ L1, |Cov(g(X0), h(Xr ))| ≤ c Lip(g)Lip(h)εr , (4)

where c is a constant not depending on g, h and r and εr → 0 as n → ∞.
(A4) We have

f ( j)(θ) = 0 for j = 1, . . . , φ − 1 and f (φ)(θ) �= 0 (5)

for some positive integer φ, and f (φ)(x) is continuous in a neighborhood of θ .
(A5) Theweak dependence coefficients {εr } satisfy εr = o(r−2),U (r) := ∑∞

i=r εi =
O(r−3) and limn→∞ ||Xt ||γ = limn→∞(E |Xt |γ )1/γ < ∞ where γ ∼ √

n.

A common value for φ in (A4) is 2 because usually f (1)(θ) = 0 and f (2)(θ) �= 0.
In (A2), if K is an even function as usual, and x2K (x) is integrable, then ρ = 2
because

∫
x K (x) dx = 0 and

∫
x2K (x) dx > 0.

The first three conditions (A1)–(A3) are regularity conditions on the density f ,
kernel K , and the ψ-weakly dependent process Xt which were adopted by Doukhan
and Louhichi (2001) for asymptotic study of kernel density estimators. We also use
these three conditions and, additionally, the condition (A4) on derivatives of f (θ) for
establishing convergence in probability and asymptotic normality in Theorems 1(a),
2(a), and 3 below. The last one (A5) is related with weak dependence coefficient εr

and asymptotic norm condition of Xt . Under these conditions, we can establish an
exponential inequality, which is given in Lemma 2 in Appendix, and the inequality
will be used to show almost complete convergence results in Theorems 1(b) and 2(b)
below.

Theorem 1 Suppose that the stationary sequence (Xt )t∈N is either (ε,L, ψ1)- or
(ε,L, ψ2)-weakly dependent. Assume nh/ log n → ∞and h = O((log n/n)1/(2ρ+1)).

(a) If (A1)–(A4) hold, then θ̂n − θ = op(1) as n → ∞.
(b) If (A1)–(A5) hold, then θ̂n − θ = oa.co(1) as n → ∞.

Conditions on the bandwidth in Theorem1 state that h is of larger order than log n/n
and is of the same order as (log n/n)1/(2ρ+1). If a rate condition is imposed on h, a
rate is obtained for the convergence of θ̂n as given in the following theorem which
relates convergence rate of θ̂n with the bandwidth h.

Theorem 2 Suppose that the stationary sequence (Xt )t∈N is either (ε,L, ψ1)- or (ε,

L, ψ2)-weakly dependent. Assume nh/ log n →∞and h =o((log n/n)φ/(2ρ(φ−1)+3φ)).

(a) If (A1)–(A4) hold, then θ̂n − θ = Op

((
log n
nh3

)1/(2φ−2)
)

as n → ∞.

(b) If (A1)–(A5) hold, then θ̂n − θ = Oa.co

((
log n
nh3

)1/(2φ−2)
)

as n → ∞.
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Remark 1 Note that the rate result
(
log n/nh3

)1/(2φ−2)
in Op of Theorem 2(a) does

not require any condition on the ψ-weak dependent coefficients εr other than εr → 0.
The almost complete boundedness in Theorem 2(b), having the same rate as the order-
in-probability boundedness in Theorem 2(a), requires more restrictive conditions on
the ψ-weak dependent coefficients εr of (A5). The convergence rate in Theorem 2 is
sharp, in that it is the same as that in Theorem 1 of Shi et al. (2009a) and others in
i.i.d. cases. In the ψ-weak case, we are able to prove the same convergence rate by
suitably bounding a covariance term arising from expanding Var f̂ (k)

n (x), see Lemma
1(b) and Theorem 4(a), (c) and their proofs in Appendix.

We now consider the asymptotic normality of the mode estimator. To establish the
asymptotic normality of the mode estimator, we suppose that f is twice differentiable,
(i.e., φ = 2). (For general φ ≥ 2, the results will be similar.) That is,

f (1)(θ) = 0 and f (2)(θ) < 0.

A nonparametric kernel estimator of the kth derivative f (k) is given by

f̂ (k)
n (x) = 1

nhk+1

n∑

i=1

K (k)

(
x − Xi

h

)

(6)

where K (k) is the kth derivative of K , (k = 1, 2, . . . ).We choose a twice differentiable
kernel function K such that

f̂ (1)
n (θ̂n) = 0 and f̂ (2)

n (θ̂n) < 0.

By Taylor expansion of f̂ (1)
n (θ̂n) in a neighborhood of θ , we have 0 = f̂ (1)

n (θ̂n) =
f̂ (1)
n (θ) + (θ̂n − θ) f̂ (2)

n (θ∗
n ) where θ∗

n is between θ and θ̂n . Hence, we write

θ̂n − θ = − f̂ (1)
n (θ)

f̂ (2)
n (θ∗

n )
(7)

if the denominator does not vanish. The following theorem states asymptotic normality
of the mode estimator.

Theorem 3 Suppose that the stationary sequence (Xn)n∈N is either (ε,L, ψ1)-
weakly dependent with εr = O(r−12−ν), or (ε,L, ψ2)-weakly dependent with
εr = O(r−9−ν), for some ν > 0. Let the conditions (A1)–(A4) in Assumption 1
hold. If h = O(n−1/(2ρ+3)) and nh5 → ∞, then

√
nh3(θ̂n − θ)

D−→ N ( b(θ), σ 2(θ) )
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where

b(θ) = c′ · δρ,K
f (1+ρ)(θ)

f (2)(θ)
, σ 2(θ) = λ1,K

f (θ)

[ f (2)(θ)]2 ,

δρ,K = (−1)ρ

ρ!
∫

xρ K (x)dx, and λ1,K =
∫

(K (1)(x))2dx,

provided f (2)(θ) �= 0 for some constant c′. If h = c · n−1/(2ρ+3) for some constant c,
then c′ = −c(2ρ+3)/2.

Theorem 3 establishes a central limit theorem for nonparametric density estimator
of mode under more general class of ψ-weak dependent errors than the class of i.i.d.
errors under which Parzen (1962), Eddy (1980, 1982), and Romano (1988) established
central limit theorems for mode estimators. The asymptotic mean, bias, and variance
in Theorem 3 are determined by marginal quantities and are the same as those in i.i.d.
cases.

Theorem 3 can be used for statistical inference on mode. For example, testing for
significance of θ̂n can be performed by comparing

t
θ̂

=
(√

nh3θ̂n − b(θ̂n)
)

/σ(θ̂n)

with standard normal percentiles as is illustrated in Sects. 5 and 6 below.

Remark 2 Some authors discussed the bandwidth in terms of density mode estimator
in i.i.d. cases. Silveran (1978) and Romano (1988) showed that, for consistent estima-
tion of f (2)(θ), we should have nh5

n/ log n → ∞. Romano (1988) verified that, by
choosing h ∼ n−1/7, the kernel mode estimator achieves the optimal minimax rate of
n2/7. After Romano (1988), several authors dealt with the density mode estimations,
e.g., Vieu (1996), Mokkadem and Pelletier (2005) and Ferraty et al. (2006). Shi et
al. (2009a) established the relationship between the rate of convergence of the kernel
mode estimator and the bandwidth. In Remarks 5,6,7 of Shi et al. (2009a), they showed
that their almost complete convergence rate for density mode estimator is better than
those in Vieu (1996), Mokkadem and Pelletier (2005) and Ferraty et al. (2006).

4 Bandwidth selection

This section proposes a bandwidth selection procedure which is optimized for mode
estimation. Let the conditions in Theorem 3 hold. The theorem states that the mode
has a nontrivial limiting distribution for bandwidth h = O(n−1/(2ρ+3)). If h = c ·
n−1/(2ρ+3), the mean squared error of the mode estimator θ̂n is given by

E(θ̂n−θ)2 = Varθ̂n+(E θ̂n−θ)2 = 1

nh3

⎡

⎣σ 2(θ) + c2ρ+3

(

δρ,K
f (1+ρ)(θ)

f (2)(θ)

)2
⎤

⎦+o

(
1

nh3

)

.

(8)
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For h = c · n−1/(2ρ+3), we have

E(θ̂n −θ)2∼=n−2ρ/(2ρ+3)

⎡

⎣c−3σ 2(θ)+c2ρ
(

δρ,K
f (1+ρ)(θ)

f (2)(θ)

)2
⎤

⎦≡n−2ρ/(2ρ+3)g(c).

We obtain c = [3σ 2(θ)( f (2)(θ))2/{2ρδ2ρ,K ( f (1+ρ)(θ))2}]1/(2ρ+3) that minimizes
g(c) from g′(c) = 0. Thus, we obtain the optimal bandwidth

ĥθ =
[

3λ1,K f (θ)

2ρδ2ρ,K ( f (1+ρ)(θ))2

]1/(2ρ+3)

· n−1/(2ρ+3) (9)

which minimizes the MSE E(θ̂n − θ)2 approximately, provided f (1+ρ)(θ) �= 0.
Even though the optimal bandwidth (9) is valid only if f (1+ρ)(θ) �= 0 which is not

the case for normal distributions, it as well as (8) gives insight into the relation with
the MSE and bandwidth in normal cases. For normal distributions, f (1+ρ)(θ) = 0
and MSE in (8) becomes E(θ̂n − θ)2 = σ 2(θ)/nh3 + o

(
1/nh3

)
which decreases as h

increases. However, h cannot increase without limit because h should be in the form
c · n−1/(2ρ+3).

In the real world, the true distribution of “normally-looking” data would not be
exactly normal and should be close to the normal distribution. For such “close-normal”
distributions, the optimal bandwidth (9) is valid. For normal or “close-normal” cases,
bandwidth will be chosen to be larger than estimated value of (9) because the true
values of f (1+ρ)(θ) are zero or close to zero and hence ĥθ with estimates of f (θ) and
f (1+ρ)(θ) plugged-in underestimates its true value.
To implement the bandwidth in real data analysis, estimates of terms f (θ) and

f (1+ρ)(θ) should be plugged-in which require an estimate of the density f and an
initial estimate of the mode θ . For estimating f , a natural choice is using a good
kernel density estimator established in the literature. We use the bandwidth, h̄ say,
optimized for density estimation (“density-optimal” in the sequel) such as the rule
of thumb estimator, plug-in estimator of Sheater and Jones (1991) and others, or the
cross-validation estimator of Rudemo (1982) and others. See Sect. 5 for examples of
such estimators. Let f̄n be the kernel density estimator constructed with the density-
optimal bandwidth h̄. Now, an initial mode estimator θ̄n , say, can be constructed which
maximizes f̄n . Based on (8) and the above discussions on the normal cases, we propose
a “feasible” bandwidth

ĥ = H ·
[

3λ1,K f̄n(θ̄n)

2ρδ2ρ,K ( f̄ (1+ρ)
n (θ̄n))2

]1/(2ρ+3)

· n−1/(2ρ+3),

where f̄ (1+ρ)
n be the estimator of f (1+ρ) constructed using the density-optimal band-

width h̄. This is a bandwidth optimized for mode estimation. In the sequel, we will
call ĥ “mode-optimal” bandwidth. Here, according to the discussion in the previous
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paragraph, H is chosen to be greater than 1, for example 2. This choice is a com-
promise which covers both normal distributions with f (1+ρ)(θ) = 0 and non-normal
distributions with f (1+ρ)(θ) �= 0. A Monte-Carlo experiment in Sect. 5 reveals that
MSE performance of θ̂n is better than θ̄n over a wide range of H .

5 Small sample analysis

Afinite sampleMonte-Carlo experiment is conducted to compare twomode estimates.
One estimate θ̄n is constructed using the density-optimal bandwidth and the other esti-
mate θ̂n is constructed using the mode-optimal bandwidth. Also, rejection percentage

of the level 5% test t
θ̂

= (
√

nĥ3θ̂n − b(θ̂n))/σ (θ̂n) is compared with its nominal level
5%.

Four data generating processes are considered:

D1 : Xt = at ; D2 : Xt = 0.5Xt−1 + at ;
D3 : Xt = σt−1at , σ 2

t = 1 + 0.45σ 2
t−1 + 0.45X2

t−1;
D4 : Xt = eat − 1.032, t = 1, 2, . . . , n,

where X0 = 0, σ 2
0 = 1/(1− 0.45− 0.45) = 10 and at are i.i.d. N(0,1) errors. Mean

of all distributions is 0. The distribution D1 is considered as a standard distribution.
The distributions D2 and D3 are considered to investigate effects of AR(1)-type serial
correlation and GARCH(1,1)-type conditional heteroscedasticity, respectively. The
distribution D4 is a skewed one. Modes of the first three distributions D1, D2 and
D3 are zero and mode of D4 is −0.093. The first two distributions D1 and D2 are
normal and the last two distributions D3 and D4 are not normal. For sample size n,
we consider n = 100, 1000.

To compute initial mode estimator θ̄n and density function f̄n , three density-optimal
bandwidths are considered.Thefirst twobandwidths h̄RT and h̄SJ are plug-in estimators
which try to minimize a limit

AMISE(h) = 1

nh
R(K ) + h2ρ

(∫
1

ρ! xρ K (x)dx

)2

R( f (2))

of mean integrated squared error MISE(h) = E[ISE(h)], where R(F) = ∫
F2(x)dx

for a function F and ISE(h) = ∫ { f̂h(x) − f (x)}2dx is the integrated squared error
of f̂h . If we use normal kernel, AMISE(h) is minimized by h = (1/(2

√
π))1/5

[
n R( f (2))

]−1/5
. If the distribution is normal, this becomes h = 1.06σx n−1/5, where

σ 2
x is the variance of Xt . Since σ 2

x is not known in the real world, it is replaced by σ̂ 2
x ,

the sample variance of Xt , t = 1, . . . , n. This is called the rule of thumb estimator.
The resulting one h̄RT = 1.06σ̂x n−1/5 is our first choice. The second one h̄SJ is the
plug-in estimator of Sheater and Jones (1991) who estimate R( f (2)) by

R̂α(h)( f (2)) = 1

n(n − 1)

∑∑

i �= j

1

{α(h)}5 K (4)
(

Xi − X j

α(h)

)

,
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where

α(h)=(6
√
2)1/7

(
R̂a( f (2))

R̂b( f (3))

)1/7

· h5/7, a =0.920Q R · n−1/7, b=0.912Q R · n−1/9,

R̂a( f (2)) = 1

n(n − 1)

∑∑

i �= j

1

a5
K (4)

(
Xi − X j

a

)

,

R̂b( f (3)) = − 1

n(n − 1)

∑∑

i �= j

1

b7
K (6)

(
Xi − X j

b

)

,

and Q R is the interquartile range. Now, the Sheather and Jones estimator h̄SJ is the
solution to the equation

(1/(2
√

π))1/5 R̂α(h)( f (2))−1/5n−1/5 − h = 0.

The last one h̄CV is obtained by the least square cross-validation of Rudemo (1982) and
Bowman (1984) which minimizes an estimate of ISE(h) called least-squares cross-
validation function given by

1

2
√

πnh
+
∑∑

i �= j

1√
2h

K

(
Xi − X j√

2h

)

− 2

h
K

(
Xi − X j

h

)

.

Mode estimates θ̄n are constructed with density-optimal bandwidths h̄ =
h̄RT, h̄SJ, h̄CV and improved mode estimator θ̂n is constructed using the corre-
sponding mode-optimal bandwidths. The normal random errors at are generated by
RNNOA, an IMSLFORTRAN subroutine. As the kernel function, theGaussian kernel
K (x) = (2π)1/2e−x2/2 is used. As the tuning parameter H for computing θ̂n , four
values are considered: H = 1.5, 2, 3 and 4.

Averages and mean squared errors of the estimates are displayed in Table 1, which
is based on 1,000 independent replications. Relative efficiency of θ̂n over θ̄n is also
displayed, which is the ratio of the MSE of θ̄n over that of θ̂n . Rejection percentages
of the level 5% test t

θ̂
are displayed in Table 2 which reject H0 : θ = 0 if |t

θ̂
| > 1.96.

For D1, D2 and D3 having zero mode, the percentages are empirical sizes and, for D4
having mode −0.093, the percentage is empirical power.

General messages of these tables are:

1. The proposed estimator θ̂n is substantially better than θ̄n in terms of both bias and
MSE for all H considered here.

2. The test t
θ̂
has reasonable size values for D1, D2 and D3 while having good power

values for D4.
3. If we are interested in statistical testing, H = 2 seems a good choice giving us a

valid empirical size and a reasonable MSE performance.

More detailed discussion of the experiment results follows. In Table 1, we see that,
compared with θ̄n , θ̂n is substantially less-biased and more efficient. Exception is only
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Table 1 Averages and MSE of mode estimators

n Avg. of θ̄n Avg. of θ̂n MSE of θ̄n Rel. eff. of θ̂n over θ̄n

H H

1.5 2 3 4 1.5 2 3 4

h̄ = h̄RT
D1 100 −0.1015 0.0050 0.0045 0.0019 0.0007 0.03955 1.43 2.49 3.69 4.19

D1 1000 −0.0575 −0.0007 0.0020 0.0020 0.0018 0.01149 1.39 3.02 6.60 9.05

D2 100 −0.1199 0.0030 0.0052 0.0018 0.0003 0.07441 1.24 1.66 2.04 2.15

D2 1000 −0.0673 −0.0017 0.0012 0.0024 0.0026 0.01738 1.43 2.33 3.41 3.93

D3 100 −0.2052 0.0195 0.0178 0.0110 0.0082 0.17889 1.42 2.12 2.71 2.81

D3 1000 −0.0810 0.0043 0.0050 0.0041 0.0038 0.02595 1.39 2.44 3.65 4.02

D4 100 −0.1883 −0.1124 −0.0184 0.1150 0.2058 0.02220 1.41 1.04 0.37 0.21

D4 1000 −0.3012 −0.3268 −0.2460 −0.1215 −0.0288 0.04522 0.80 1.77 14.49 6.88

h̄ = h̄SJ
D1 100 −0.0911 0.0055 0.0050 0.0021 0.0009 0.03398 1.41 2.28 3.26 3.63

D1 1000 −0.0535 −0.0006 0.0017 0.0019 0.0017 0.01036 1.38 2.97 6.40 8.56

D2 100 −0.1106 0.0022 0.0045 0.0015 0.0002 0.06977 1.23 1.60 1.92 2.01

D2 1000 −0.0617 −0.0012 0.0015 0.0025 0.0027 0.01555 1.36 2.19 3.14 3.57

D3 100 −0.2049 0.0149 0.0136 0.0075 0.0053 0.18017 1.36 2.04 2.69 2.83

D3 1000 −0.1047 −0.0004 0.0035 0.0042 0.0042 0.04082 1.44 2.79 4.95 5.94

D4 100 −0.4709 −0.3924 −0.3174 −0.1995 −0.1093 0.15413 1.46 2.32 5.30 8.03

D4 1000 −0.5966 −0.5486 −0.4963 −0.4076 −0.3353 0.25712 1.21 1.52 2.42 3.83

h̄ = h̄CV
D1 100 −0.0176 0.0002 −0.0025 −0.0012 −0.0009 0.05991 1.75 2.75 4.39 5.21

D1 1000 −0.0112 −0.0018 0.0003 0.0016 0.0018 0.02097 2.08 4.09 9.71 14.27

D2 100 −0.0363 −0.0045 0.0001 0.0012 0.0011 0.09555 1.41 1.86 2.38 2.55

D2 1000 −0.0153 0.0022 0.0025 0.0028 0.0030 0.02967 1.82 3.08 4.96 6.03

D3 100 −0.0441 0.0098 0.0077 0.0033 0.0001 0.33115 1.89 2.85 4.23 4.57

D3 1000 −0.0075 0.0021 0.0026 0.0050 0.0046 0.09367 2.06 3.93 7.71 10.48

D4 100 −0.5112 −0.4439 −0.3803 −0.2781 −0.1957 0.19817 1.35 1.87 3.27 5.04

D4 1000 −0.6108 −0.5724 −0.5334 −0.4590 −0.3947 0.27527 1.16 1.37 1.93 2.71

for D4 with h̄ = h̄RT and n = 100, which is not a disappointing result because the
normal-based bandwidth h̄ = h̄RT, being based heavily on normality, does not work
well for small n = 100 under the asymmetric distribution D4. As H increases from
1.5 up to 3, θ̂n gets less-biased having smaller MSE but, as H increases from 3 to 4,
there appear several cases of increased bias and larger MSE. The better performance
for the larger H = 2, 3 than that for the smaller H = 1.5 tells us that smoother density
estimate with H = 2, 3 gives us better mode estimator. However, as H gets too large,
the good mode estimation tends to disappear. Among the three initial bandwidths
h̄ = h̄RT, h̄SJ and h̄CV, h̄SJ seems to be the best, giving the smallest MSE for θ̂n .
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Table 2 Rejection frequency (%) of level 5% test t
θ̂n

n h̄ = h̄RT h̄ = h̄SJ h̄ = h̄CV

1.5 2 3 4 1.5 2 3 4 1.5 2 3 4

Size

D1 100 8 3 1 0 8 3 1 0 12 5 2 1

D1 1000 12 5 3 2 12 5 3 2 13 6 2 1

D2 100 18 14 9 6 19 14 9 6 21 15 10 6

D2 1000 16 12 13 12 16 14 13 12 19 14 13 10

D3 100 5 2 0 0 7 3 0 0 11 5 1 0

D3 1000 9 4 2 1 10 5 3 2 13 6 3 3

Power

D4 100 36 7 1 1 94 86 57 27 93 89 70 52

D4 1000 100 100 88 20 100 100 100 98 100 100 100 99

In Table 2, the test t
θ̂
is slightly over-sized for H = 1.5. Size values are reasonably

close to the nominal value 5% for H = 2. The test has reasonable power for D4 except
for h = hRT with n = 100. This indicates that the rule of thumb bandwidth does
not work well for distributions which are much different from normal distributions,
especially for small n.

6 Example

The proposed method is applied to investigate asymmetric features of daily log returns
of Dow Jones index (DW) and US Dollar exchange rate (EX) relative to Euro for
the period from 01-04-2001 to 12-31-2009 whose plots are displayed in Figs. 1, 2.
Basic statistics are n = 2153, x̄ = −0.00005099, σ̂x = 0.01339189 for DW and
n = 2264, x̄ = 0.00018637, σ̂x = 0.0064877 for EX.

Finance variables such as stock prices and exchange rates have diverse asymmetric
aspects. Specifically, dynamics of the variables at up-times, i.e., the times at which
they are increasing, are different from those at down-times rendering the distributions
for positive values being different from those for negative values. Diverse models such
as TAR models and EGARCH models are employed to analyze the asymmetry.

Important asymmetric features of those variables would be revealed in their density
plots. In Figs. 3 and 4, kernel density plots are provided for Dow Jones and exchange
rates as well as the density curves based on normal approximations. The curves are
constructed using the mode-optimal bandwidths ĥSJ = 0.0047 and 0.0031 of Sect. 4,
whose computation is described in the later part of this section.

The figures show significant non-normality and asymmetry. Distributions of both
DW and EX are much different from normal density plots which correspond to
N (x̄, σ̂ 2

x ). Specifically, both DW and EX have heavier tails and sharper peaks than the
corresponding normal densities. This is due to volatility clustering as manifested in
Figs. 1 and 2: wilder variations for years 2008–2009 and milder variations for other
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Fig. 1 Log return of daily Dow Jones index, 2001–2009
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Fig. 2 Log return of daily exchange rates (Dollar/Euro), 2001–2009

times. Stronger conditional heteroscedasticity is observed for DW than for EX. We
have fitted GARCH(1,1) models and found that both DW and EX have very signifi-
cant GARCH coefficients. The data generating processes may well be approximated
by GARCH processes, which are special cases of ψ-weakly dependent processes.

The density plots also reveal asymmetric features. Among others, we observe that
distribution of DW is skewed to the right, having positive mode while that of EX is not
so much. To justify this claim formally, applying the result of Theorem 3, we conduct
tests for significance of the modes. If we use the Gaussian kernel and the bandwidth
h̄SJ of Sheater and Jones (1991) for initial mode estimation and H = 2 for the mode-
optimal bandwidth, we have mode θ̂n = 0.0006052 for DW being significant at 5%
level with t value 2.497 while mode θ̂n = 0.0001929 for EX is not significant with
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Fig. 3 Kernel density and normal density of daily Dow Jones index
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Fig. 4 Kernel density and normal density of daily exchange rates

t value 1.051. Since we are interesting in testing for significance of mode, following
the recommendation of Sect. 5, we have used H = 2. The other two bandwidths h̄RT
and h̄CV lead us to the same conclusion as those for the bandwidth h̄SJ.

Detailed procedures for computing themode values and their t values are described.
Description is made for the data set DW with h̄SJ. For DW, with n = 2153, σ̂x =
0.01339189, the density-optimal bandwidth of Sheater and Jones (1991) is h̄SJ =
0.0028. From the kernel density estimator constructed with this initial bandwidth,
we get an initial mode estimator θ̄n = −0.0000644. A mode-optimal bandwidth
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Table 3 Mode estimation

Initial BW θ̄n θ̂n t h̄ ĥ b(θ̂n) σ̂ (θ̂n)

Dow Jones Index, n = 2153, x̄ = −0.0000510, σ̂x = 0.0133919

h̄RT −0.0000644 0.0006052 2.438 0.0031 0.0050 −0.000000313 0.000004249

h̄SJ −0.0000644 0.0006454 2.497 0.0028 0.0047 −0.000000244 0.000003862

h̄CV −0.0000644 0.0006856 2.640 0.0012 0.0042 −0.000000172 0.000003396

Exchange rate, n = 2264, x̄ = .0001864, σ̂x =0.0064877

h̄RT −0.0000537 0.0002058 1.137 0.0015 0.0032 0.000000130 0.000001441

h̄SJ −0.0000796 0.0001929 1.051 0.0013 0.0031 0.000000125 0.000001387

h̄CV −0.0000537 0.0002058 1.137 0.0015 0.0032 0.000000130 0.000001441

ĥSJ = 0.0047 is obtained from the procedure in Section 4 with H = 2. Using this
mode-optimal bandwidth, we obtain mode estimator θ̂n = 0.0006454. According
to Theorem 3, when θ = 0, θ̂n is asymptotically normally distributed with mean

b(θ̂n)/

√
nĥ3

SJ = −0.0000163 and variance σ 2(θ̂n)/(nĥ3
SJ) = 0.00025832. Therefore,

the t statistic for significance of θ̂n is (0.0006454+ .000000244)/0.0002583 = 2.497
being significant at 5% level (Table 3).

7 Conclusion

Consistency and asymptotic normality have been established for mode estimators
based on kernel-type densities under a class of ψ-weakly dependent processes. The
convergence rate of the kernel density estimator of the mode is given in terms of
the bandwidth. A bandwidth selection procedure is proposed which is based on an
asymptotic optimal bandwidth. A finite-sample experiment shows that the mode esti-
mator based on the mode-optimal bandwidth is substantially better than that based
on density-optimal bandwidth. The proposed methods are applied to log returns of
US Dow Jones index and foreign exchange rates of US Dollar relative to EUR. The
analysis shows that the former has asymmetry of having mode significantly different
from zero while the latter has not.

Appendix

Large sample results for density derivative estimators

This subsection provides some results for density (derivative) estimators. Expres-
sions for large sample expectations and variances are given. Almost complete uniform
bounds are given for deviations of density (derivative) estimators from their expecta-
tions. Asymptotic normalities are established. These results are used in establishing
consistency and asymptotic normality ofmode estimators. Throughout this subsection,
we assume that k ∈ {0, 1, 2, . . . , ρ} is given. In the following lemmas and theorem, we
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suppose that the stationary sequence (Xt )t∈N is either (ε,L, ψ1)- or (ε,L, ψ2)-weakly
dependent and assume nh/ log n → ∞. The asymptotic results are for n → ∞.

Lemma 1 If (A1)–(A3) are fulfilled, then, for all x ∈ R,

(a) E f̂ (k)
n (x) = f (k)(x) + hρδρ,K f (k+ρ)(x) + o(hρ),

(b) Var f̂ (k)
n (x) = 1

nh2k+1 f (x)

∫

(K (k)(x))2dx + 2

nh2k+1�h + o

(
1

nh2k+1

)

for some �h, covariance term, satisfying

�h ≤ c1mh

(∫

|K (k)(x)|dx

)2

+ c2
h3 Lip2(K (k))

∞∑

i=m

εi

for some constants c1, c2, and for any sequence m = mn with m < n and m → ∞.

Lemma 2 Let {Xi } be a stationary sequence of ψ-weak dependent process with ψ-
weak dependence coefficient sequence {εi } and with mean zero. Let Sn = ∑n

i=1 Xi

and σ 2
n = V ar(Sn). If εr = o(r−2), then for any t > 0 and for sufficiently large n, we

have

P (|Sn| ≥ t) ≤ C0 log n exp

(

− t2

An + Bnt

)

provided ||Xi ||γ < ∞ where γ ∼ √
n for sufficiently large n, where An can be chosen

as any number greater than or equal to σ 2
n and Bn = n3/4 log n/An for some constant

C0 > 0.

The proof of Lemma 2 is given in Hwang and Shin (2014) [also seeHwang and Shin
(2013)] which establishes new exponential inequalities under some mild conditions.

Theorem 4 If (A1)–(A4) are fulfilled, then

(a) sup
x∈I

| f̂ (k)
n (x) − E f̂ (k)

n (x)| = Op

(√
log n

nh2k+1

)

,

(b) sup
x∈I

|E f̂ (k)
n (x) − f (k)(x)| = O(hρ).

If (A1)–(A5) are fulfilled, then

(c) sup
x∈I

| f̂ (k)
n (x) − E f̂ (k)

n (x)| = Oa.co

(√
log n

nh2k+1

)

.
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Remark 3 (a) By Theorem 4, we have

sup
x∈I

| f̂ (k)
n (x) − f (k)(x)| = Op

(√
log n

nh2k+1

)

+ O(hρ).

Therefore, if h = O((log n/n)1/(2ρ+1)) as in Theorem 1, then

sup
x∈I

| f̂ (k)
n (x) − f (k)(x)| = Op

((
log n

n

)(ρ−k)/(2ρ+1)
)

. (10)

(b) If the condition (A5) holds additionally, then (10) holds with Op replaced by
Oa.co.

Theorem 4 gives a key result of ourwork, andwill be used in the proofs of Theorems
1 and 2. In the proof of Theorem 4(c), Lemma 2 will be applied.

Remark 4 For stationary-associated random processes, Douge (2007) derived an
exponential inequality assuming boundedness and a convergence rate under condi-
tions nh/ log2 n → ∞ and h = O((log2 n/n)1/(2ρ+1)) as follows:

sup
x∈I

| f̂n(x) − f (x)| = Oa.s.

((
log2 n

n

)ρ/(2ρ+1)
)

.

Remark 3(a), (b) can be regarded as an extension of the result of Douge (2007) to
ψ-weak dependent processes.

Theorem 5 We suppose the same assumptions as in Lemma 1, and suppose moreover
that the sequence (Xt )t∈N is either (ε,L, ψ1)-weakly dependent with εr = O(r−12−ν),
or (ε,L, ψ2)-weakly dependent with εr = O(r−9−ν), for some ν > 0. Then

(a) if nh2k+1 → ∞, then for all x ∈ R,

√
nh2k+1[ f̂ (k)

n (x) − E f̂ (k)
n (x)] D−→ N ( 0, λk,K f (x) ),

where λk,K = ∫
(K (k)(x))2dx,

(b) if h = O(n−1/(2k+2ρ+1)), then for all x ∈ R,

√
nh2k+1[ f̂ (k)

n (x) − f (k)(x)] D−→ N ( bk,ρ(x), λk,K f (x) )

where bk,ρ(x) = c′ ·δρ,K f (k+ρ)(x) for some constant c′. If h = c ·n−1/(2k+2ρ+1)

then c′ = ck+ρ+1/2.
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Proofs

Proofs are arranged in the order that makes proofs proceed naturally without referring
later results. We first give proofs of Lemma 1 and Theorem 4 because they are used
in proving Theorems 1 and 2.

Proof of Lemma 1 Result (a) can be easily given by the stationarity of (Xn), and using
Taylor’s formula. To find the asymptotic variance of (b), let K (k)

i = K (k)((x − Xi )/h)

for simplicity. We have Var f̂ (k)
n (x) =

1

n2h2k+2 Var
[

n∑

i=1

K (k)
i

]

= 1

nh2k+2 VarK
(k)
1 + 2

nh2k+2

n∑

i=1

(

1− i

n

)

Cov
(

K (k)
1 , K (k)

1+i

)
.

We observe that
1

h
VarK (k)

1 = f (x)

∫

(K (k)(x))2dx + O(h),

since E K (k)
1 = O(hk+1) and E(K (k)

1 )2 = ∫ (
K (k)

( x−z
h

))2
f (z) dz = ∫ (

K (k) (s)
)2

× f (x − hs) h ds = h
∫ (

K (k) (s)
)2

f (x)ds + O(h2).
We now observe that

|�h | :=
∣
∣
∣
∣
∣

1

h

n∑

i=1

(

1 − i

n

)

Cov(K (k)
1 , K (k)

1+i )

∣
∣
∣
∣
∣

which is less than

1

h

n∑

i=1

|Cov(K (k)
1 , K (k)

1+i )| ≤ 1

h

∑

i<m

|Cov(K (k)
1 , K (k)

1+i )| + 1

h

∑

i≥m

|Cov(K (k)
1 , K (k)

1+i )|
(11)

for any sequence m := mn . In the first term on the righthand side of (11), we
use condition (3) to get |Cov(K (k)

1 , K (k)
1+i )| ≤ c1h2(

∫ |K (k)(x)|dx)2 for some c1.
Thus, the first term is less than or equal to c1mh(

∫ |K (k)(x)|dx)2. In the sec-
ond term of the right side of (11), under the assumption (4) of the weak depen-
dence, we have |Cov(K (k)

1 , K (k)
1+i )| ≤ c2

1
h2
Lip2(K (k))εi for some c2 and hence

1
h

∑
i≥m |Cov(K (k)

1 , K (k)
1+i )| ≤ c2

h3
Lip2(K (k))

∑∞
i=m εi . Thus the desired result in

Lemma 1(b) holds with inequality �h ≤ c1mh(
∫ |K (k)(x)|dx)2 + c2

h3
Lip2(K (k))

∑∞
i=m εi . �

Proof of Theorem 4 For the compact interval I [working as in Roussas (1988, 1990)],
we divide I into bn subintervals of each length δn with bnδn ≤ C for some constant
C , δn → 0, and δn log n = O(1/h3) as n → ∞. Let xnl be an arbitrary point in the
lth subinterval, l = 1, 2, . . . , bn .
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To show (a), we use Chebyshev inequality, and Lemma 1(b). For 0 < M < ∞,

P

(

sup
x∈I

| f̂ (k)
n (x) − E f̂ (k)

n (x)| ≥ M

√
log n

nh2k+1

)

≤
bn∑

l=1

P

(

| f̂ (k)
n (xnl) − E f̂ (k)

n (xnl)| ≥ M

√
log n

nh2k+1

)

=
bn∑

l=1

P

⎛

⎝ | f̂ (k)
n (xnl) − E f̂ (k)

n (xnl)|
√

V ar( f̂n(xnl))

≥ M
√
log n

√
f (xnl)

∫
(K (k)(x))2dx + c1mh(

∫ |K (k)(x)|dx)2 + c2Lip2(K (k))
∑∞

i=m εi/h3

⎞

⎠

≤ 1

M2 log n

bn∑

l=1

[

f (xnl)

∫

(K (k)(x))2dx

+c1mh

(∫

|K (k)(x)|dx

)2

+ c2
h3 Lip

2(K (k))

∞∑

i=m

εi

]

≤ C1

δn log n
+ C2mh

δn log n
+ C3

∑∞
i=m εi

h3δn log n

for generic constantsC1, C2, C3. Since δn log n = O(1/h3) → ∞, the first term tends
to zero. For the second and third terms, we choose the sequence m = (δn log n/h)1−ν

for some 0 < ν < 1, then m → ∞, mh/(δn log n) → 0 and
∑∞

i=m εi → 0. Thus,
result (a) holds. Note that this result is shown without any condition on εr . Result (b)
follows from Lemma 1(a).

To show (c),we applyLemma2above. LetYi (x) = K (k)((x−Xi )/h)−E K (k)((x−
Xi )/h), and Sn(x) = ∑n

i=1 Yi (x), (script k is omitted on Yi (·) and Sn(·) for notational
simplicity). Then, f̂ (k)

n (x) − E f̂ (k)
n (x) = Sn(x)/(nhk+1). For any 0 < M < ∞, and

for t = M
√

nh log n in applying Lemma 2,

P

(

sup
x∈I

| f̂ (k)
n (x) − E f̂ (k)

n (x)| ≥ M

√
log n

nh2k+1

)

≤
bn∑

l=1

P

(

| f̂ (k)
n (xnl) − E f̂ (k)

n (xnl)| ≥ M

√
log n

nh2k+1

)

=
bn∑

l=1

P
(
|Sn(xnl)| ≥ M

√
nh log n

)
≤ C0bn log n exp

(

− t2

An + Bnt

)

= C0bn log n exp

(

− M2nh log n

An + Bn M
√

nh log n

)

(12)

where An can be chosen as any number greater than or equal to V ar(Sn) and Bn =
n3/4 log n/An . ByLemma1(b), V ar(Sn(xnl)) = nh f (xnl)

∫
(K (k)(x))2dx+2nh�h+
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o(nh), and thuswechoose An = nh|| f ||∞
∫
(K (k)(x))2dx+2c1nmh2(

∫ |K (k)(x)|dx)2

+ 2c2nLip2(K (k))
∑∞

i=m εi/h2 ≥ V ar(Sn(xnl)), then the fraction in the exponent of
the right term of (12) is;

M2nh log n

C1nh + C2nmh2 + C3n
∑∞

i=m εi/h2 + Mn3/4 log n
√

nh log n/An

for some constants C1, C2, C3 with C1 = || f ||∞
∫
(K (k)(x))2dx . The fraction is

greater than or equal to

M2nh log n

C1nh + C2nmh2 + C3n
∑∞

i=m εi/h2 + Mn5/4(log n)3/2
√

h/(C1nh)

= M2 log n

C1 + C2mh + C3
∑∞

i=m εi/h3 + M(log n)3/2/(C1n3/4h3/2)
=:λn .

Note that λn/n → 0 and (log n)3/2/(C1n3/4h3/2) → 0. Thus

λn ∼ M2

C2mh + C3
∑∞

i=m εi/h3
log n.

Now we choose a sequence m → ∞ such that pn := M2/(C2mh + C3
∑∞

i=m εi/h3)

→ p for some p > 1. Under condition U (m) := ∑∞
i=m εi = O(m−3) in assumption

(A5), we may choose m = O(h−1), and then C2mh + C3
∑∞

i=m εi/h3 → c for
some c > 0, and thus pn → M2/c =: p. If we choose sufficiently large M such
that M2/c > 1, then λn ∼ p log n with p > 1, and (12) is less than or equal to
C0bn log n exp(−λn). Using bn = O(1/δn) = O(h3 log n),

bn log n

eλn
∼ h3(log n)2

ep log n
= h3(log n)2

n p
with p > 1.

Therefore,

∞∑

n=1

P

(

sup
x∈I

| f̂ (k)
n (x) − E f̂ (k)

n (x)| ≥ M

√
log n

nh2k+1

)

≤ C0

∞∑

n=1

h3(log n)2

n p
< ∞,

and result (c) holds. �
Proof of Theorem 1 Since f is uniform continuous in the interval I and has a unique
mode θ in I , proceeding as in Parzen (1962), we have, for |θ − θ̂n| ≥ ε, there exists
δ > 0 such that | f (θ) − f (θ̂n)| ≥ δ > 0. Hence P(|θ − θ̂n| ≥ ε) ≤ P(| f (θ) −
f (θ̂n)| ≥ δ). By the inequality | f (θ) − f (θ̂n)| ≤ | f (θ) − f̂n(θ̂n)| + | f (θ̂n) − f̂n(θ̂n)|
≤ supx∈I | f (x) − f̂n(θ̂n)| + supx∈I | f (x) − f̂n(x)| ≤ 2 supx∈I | f (x) − f̂n(x)|, we
have P(|θ − θ̂n| ≥ ε) ≤ P

(
supx∈I | f (x) − f̂n(x)| ≥ δ/2

)
. By Theorem 4 with

k = 0, if h = O((log n/n)1/(2ρ+1)), then (10) in Remark 3(a) holds to give us
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θ̂n − θ = op(1), yielding (a). Also, under addition of condition (A5), according to
Remark 3(b), θ̂n − θ = oa.co(1), yielding (b). �

Proof of Theorem 2 To prove Theorem 2, we apply the approach of Shi et al. (2009a).
As in the proof of Theorem 1, we apply Theorem 4(a) for proving (a) and Theorem
4(c) for proving (b).

For 0 < M < ∞, we have

P

(

|θ̂n − θ | > M

(
log n

nh3

)1/(2φ−2)
)

≤ P(|θ̂n − θ | ≥ ε) + P

(

|θ̂n − θ | > M

(
log n

nh3

)1/(2φ−2)

, |θ̂n − θ | < ε

)

.

Theorem 1 yields P(|θ̂n − θ | ≥ ε) → 0 under (A1)–(A4), and
∑∞

n=1 P(|θ̂n −
θ | ≥ ε) < ∞ under (A1)–(A5). We now consider the other term. Let Qn ={

x ∈ I

∣
∣
∣
∣ M

(
log n
nh3

)1/(2φ−2)
< |x − θ | < ε

}

. By definition of mode estimator, we

have

P

(

|θ̂n − θ | > M

(
log n

nh3

)1/(2φ−2)

, |θ̂n − θ | < ε

)

= P[θ̂n ∈ Qn] ≤ P

(

sup
x∈Qn

f̂n(x) ≥ f̂n(θ)

)

≤ P

(

sup
x∈Qn

f̂n(x)−E f̂n(x)−( f̂n(θ)−E f̂n(θ))

|x − θ | ≥ inf
x∈Qn

E f̂n(θ)−E f̂n(x)

|x − θ |

)

=:pn .

We will show

pn ≤ P

(

sup
x∈I

| f̂ (1)
n (x) − E f̂ (1)

n (x)| ≥ c

√
log n

nh3

)

. (13)

Then under (A1)–(A4), by Theorem 4(a) with k = 1, we have pn → 0 and thus

θ̂n − θ = Op

((
log n/(nh3)

)1/(2φ−2)
)
, arriving at (a). Under (A1)–(A5), by Theo-

rem 4(c) with k = 1, we have
∑∞

n=1 pn < ∞ and hence
∑∞

n=1 P
(|θ̂n − θ | > M

( log n
nh3

)1/(2φ−2))
< ∞ and thus θ̂n −θ = Oa.co

((
log n/(nh3)

)1/(2φ−2)), arriving at (b).
It remains to show (13).

By Theorem 4 with k = 0, we can write

sup
x∈Qn

f̂n(x) − E f̂n(x) − ( f̂n(θ) − E f̂n(θ))

|x − θ | = sup
x∈Qn

f̂n(x) − f (x) − ( f̂n(θ) − f (θ))

|x − θ | + o(1),
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and, again by Theorem 4 with k = 1, we have supx∈Qn
| f̂ (1)

n (x) − f (1)(x)| =
supx∈Qn

| f̂ (1)
n (x) − E f̂ (1)

n (x)| + o(1). Thus,

sup
x∈Qn

f̂n(x) − E f̂n(x) − ( f̂n(θ) − E f̂n(θ))

|x − θ | ≤ sup
x∈I

| f̂ (1)
n (x) − E f̂ (1)

n (x)| + o(1).

(14)
On the other hand, we consider [E f̂n(θ) − E f̂n(x)]/|x − θ |, which can be

splitted into following three parts, using Taylor’s expansion, E f̂n(x) = f (x) +
hρδρ,K f (ρ)(x) + o(hρ):

E f̂n(θ) − E f̂n(x)

|x − θ | = f (θ) − f (x)

|x − θ | + O(hρ)
f (ρ)(x) − f (ρ)(x)

|x − θ | + o(hρ)
1

|x − θ |
:= T1 + T2 + T3.

Without loss of generality, we only consider the case that x > θ for x ∈ Qn . By (5)

and by application of the Taylor theorem, we have T1 ≥ c|x − θ |φ−1 ≥ cM
√

log n
nh3

.

By Hölder continuity of f , we have T2 = O(hρ)/|x − θ |. Since x ∈ Qn ,

hρ

|x − θ | <
hρ

M

(
nh3

log n

)1/(2φ−2)

= o

(√
log n

nh3

)

,

the last equality holding under condition h = o((log n/n)φ/(2ρ(φ−1)+3φ)). Thus, for
generic c,

E f̂n(θ) − E f̂n(x)

|x − θ | ≥ cM

√
log n

nh3 + o

(√
log n

nh3

)

, inf
x∈Qn

E f̂n(θ) − E f̂n(x)

|x − θ | ≥ c

√
log n

nh3 .

(15)
By (14) and (15), we obtain the result in (13). �
To prove Theorem 3, we need the results of kernel estimator of density derivatives

in Lemma 1, Theorem 4 and Theorem 5. Therefore, proof of Theorem 5 is given prior
to that of Theorem 3.

Proof of Theorem 5 Let Sn = √
nh2k+1[ f̂ (k)

n (x)−E f̂ (k)
n (x)] ≡ 1√

n

∑n
i=1 L(k)

ni where

L(k)
ni = 1√

h
[K (k)(

x−Xi
h ) − E K (k)(

x−Xi
h )]. Let α = αn and β = βn be some integer-

valued sequences with α → ∞, β → ∞ and β
α

+ α
n → 0 as n → ∞.

Let τ = �n/(α + β)� be the integer part of n/(α + β). For j = 1, . . . , τ , we define
U j = 1√

α

∑
i∈I j

L(k)
ni with I j = [ ( j − 1)(α + β) + 1, ( j − 1)(α + β) + α ] and

define Tτ = 1√
τ

∑τ
j=1 U j .

To prove (a), we use three steps below. Then according to Step 1,
∏τ

j=1 E exp(ιtU j/
√

τ) → exp(− t2
2 λk,K f (x)) as τ → ∞, (where ι = √−1). From Step 2, Tτ

D−→
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N (0, λk,K f (x)) as τ → ∞ and hence Sn
D−→ N (0, λk,K f (x)) as n → ∞ by Step

3.
Step 1 Shows that (VarU1)

−3/2∑τ
j=1 E |U j/

√
τ |3 → 0 as n → ∞. By the similar

argument as in the proof of Lemma1,we haveVarU j = VarU1 = 1
hVarK

(k)
1 +o (1) →

f (x)
∫
(K (k)(x))2dx = f (x)λk,K . Also, by the stationarity and by Hölder inequality,

we have

τ∑

j=1

E

∣
∣
∣
∣

U j√
τ

∣
∣
∣
∣

3

= E |U1|3√
τ

≤ [E |U1|4]3/4√
τ

.

By Marcinkiewicz–Zygmund inequality under the weak dependence (see Doukhan
and Louhichi 1999), E |U1|4 = 1

α2 E[∑α
i=1 L(k)

ni ]4 ≤ 1
α2 · Bα2 = B for some positive

constant B not depending on n and α. Thus, the desired result is completed.
Step 2 Shows that |E exp(ιtTτ ) − ∏τ

j=1 E exp(ιt[U j/
√

τ ])| → 0 as n → ∞,

(ι = √−1). Note that the left term is less than or equal to

∣
∣
∣
∣Cov

(

exp(ιtTτ−1), exp

(

ιt
Uτ√

τ

))∣
∣
∣
∣ +

∣
∣
∣
∣
∣
∣
E exp(ιtTτ−1) −

τ−1∏

j=1

E exp

(

ιt
U j√

τ

)
∣
∣
∣
∣
∣
∣
.

Also note that exp(ιtTτ−1) and exp(ιtUτ /
√

τ) can be written, respectively, as
h(X0, . . . , X(τ−2)(α+β)+α) and g(X(τ−1)(α+β)+1, . . . , X(τ−1)(α+β)+α) for somemea-
surable functions h and g, (with ||h||∞ = ||g||∞ ≤ 1), composed of the exponential
function and the kth derivative of the kernel function.

Under (ε,L, ψ1)-weak dependence,

∣
∣
∣
∣Cov

(

exp(ιtTτ−1), exp

(

ιt
Uτ√

τ

))∣
∣
∣
∣ ≤ ψ1(h, g, α(τ − 1), α)εβ ≤ t2

τh3 εβ

since min(α(τ − 1), α) = α and Lip(h) = Lip(g) ≤ t/
√

ατh3. Thus, we have

∣
∣
∣
∣
∣
∣
E exp(ιtTτ ) −

τ∏

j=1

E exp

(

ιt
U j√

τ

)
∣
∣
∣
∣
∣
∣
≤ t2

h3 εβ

which tends to 0 for εβ = O(β−12−ν) if we choose β ∼ h−1 and α ∼ h−1−2k .

Under (ε,L, ψ2)-weak dependence,

∣
∣
∣
∣Cov

(

exp(ιtTτ−1), exp

(

ιt
Uτ√

τ

))∣
∣
∣
∣ ≤ ψ2(h, g, α(τ − 1), α)εβ ≤ 4ατ

t√
ατh3

εβ.
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Thus we have

∣
∣
∣
∣
∣
∣
E exp(ιtTτ ) −

τ∏

j=1

E exp

(

ιt
U j√

τ

)
∣
∣
∣
∣
∣
∣
≤ 4t

√
ατ 3

h3 εβ.

If we choose β ∼ nb and α ∼ nb+1/2k for 2/(9 + ν) < b < 3/(9 + ν), then

√
ατ 3

h3 εβ ∼
(

1

α + β

)√
α

α + β

(n

h

)3/2 1

β9+ν

which tends to 0 since 1/
√

(nh)3 < n3/2/(h3/2β9+ν) < 1/
√

nh3.
Step 3 Shows that Sn − Tτ = op(1) as n → ∞, (τ → ∞). We write Sn − Tτ =

1√
n

n∑

i=1

L(k)
ni − Tτ = 1√

n

⎛

⎝
τ∑

j=1

∑

i∈I j

L(k)
ni +

∑

j∈J

L(k)
nj

⎞

⎠

−Tτ =
(√

ατ√
n

− 1

)

Tτ + 1√
n

∑

j∈J

L(k)
nj ≡ V1 + V2

where J is a set of cardinal n −ατ (∼ βτ). Thus, Var(Sn − Tτ ) ≤ 2(VarV1 +VarV2).
Clearly, E(Sn − Tτ ) → 0. Observe that

VarV1 =
(√

ατ√
n

− 1

)2

VarTτ and VarV2 = |J |
n

Var

⎛

⎝ 1√|J |
∑

j∈J

L(k)
nj

⎞

⎠ .

Note that ατ/n → 1 and |J |/n → 0. Also, by the similar argument as in the proof of
Lemma 1, we have

VarTτ = 1

ατ
Var

⎡

⎣
τ∑

j=1

∑

i∈I j

L(k)
ni

⎤

⎦= 1

ατh
Var

⎡

⎣
τ∑

j=1

∑

i∈I j

K (k)
i

⎤

⎦= 1

h
VarK (k)

1 + o (1)<∞,

and

Var

⎛

⎝ 1√|J |
∑

j∈J

L(k)
nj

⎞

⎠ = 1

h
VarK (k)

1 + o (1) < ∞.

Hence, Var(Sn − Tτ ) = o(1), and we complete Step 3, and thus part (a). Result (b)
follows from Lemma 1 and (a). �
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Proof of Theorem 3 By (7), we write

√
nh3(θ̂n − θ) = − 1

f̂ (2)
n (θ∗

n )

[√
nh3{ f̂ (1)

n (θ) − E f̂ (1)
n (θ)}

]
−
√

nh3

(
E f̂ (1)

n (θ)

f̂ (2)
n (θ∗

n )

)

.

Wefirst show that f̂ (2)
n (θ∗

n )
p→ f (2)(θ). Since θ∗

n is between θ̂n and θ , we have θ∗
n

p→ θ

as n → ∞: for � > 0, we have P(|θ∗
n − θ | > �) → 0. Let J ′ := [θ − 2�, θ +

2�]. According to Theorem 4(a) and Remark 3(a) with k = 2, supx∈J | f̂ (2)
n (x) −

f (2)(x)| p→ 0. Therefore, | f̂ (2)
n (θ∗

n )− f (2)(θ)| ≤ | f̂ (2)
n (θ∗

n )− f (2)(θ∗
n )|+ | f (2)(θ∗

n )−
f (2)(θ)| p→ 0. Hence

√
nh3(θ̂n − θ) ∼= − 1

f (2)(θ)

[√
nh3{ f̂ (1)

n (θ) − E f̂ (1)
n (θ)}

]
−
√

nh3

(
E f̂ (1)

n (θ)

f (2)(θ)

)

.

The first term in the right-hand side converges to N (0, λ1,K f (θ)/[ f (2)(θ)]2) in dis-
tribution by Theorem 5(a) with k = 1, while the second term tends to −c(2ρ+3)/2 ·
δρ,K f (1+ρ)(θ)/ f (2)(θ) as n → ∞ if h = c · n−1/(2ρ+3) by Lemma 1. The desired
result is obtained. �
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