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Abstract We propose a functional single-index model (FSiM) to study the link
between a scalar response variable and multiple functional predictors, in which the
mean of the response is related to the linear predictors via an unknown link function.
The FSiM serves as a good tool for dimension reduction in regression with multi-
ple predictors and it is more flexible than functional linear models. Assuming that the
functional predictors are observed at discrete points, we use B-spline basis functions to
estimate the slope functions and the link function based on the least-squares criterion,
and propose an iterative estimating procedure. Moreover, we provide uniform conver-
gence rates of the proposed spline estimators in the FSiM, and construct asymptotic
simultaneous confidence bands for the slope functions for inference. Our proposed
method is illustrated by simulation studies and by an analysis of a diffusion tensor
imaging data application.

Keywords Single-index models · Functional data analysis · Functional linear
models · B splines · Confidence bands · Simultaneous inference

1 Introduction

In the literature of functional data analysis, functional linear models have been applied
frequently to study the relationship between a scalar response and a functional predictor
as given in Cardot et al. (2003), Ramsay and Silverman (2005), Yao et al. (2005), Cai
and Hall (2006), Hall and Horowitz (2007), Li and Hsing (2007), among others. Let
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Y be a real random response and X (t) be a square-integrable random function defined
on some compact set T . A functional linear model (FLM) is given as

Y =
∫
T

β(t)X (t)dt + ε, (1)

where β(·) is a square-integrable unknown function defined on R and ε is the error
term satisfying E(ε|X (t)t ∈ T ) = 0. Two commonly used approaches for estimating
the slope function β(·) include the principal component regression (PCR) method
based on spectral decompositions of both the covariance of X and its estimator (see
Yao et al. 2005; Hall and Horowitz 2007) and the basis function expansions method
with both β(·) and X (·) approximated by basis functions such as B-spline functions in
Cardot et al. (2003) and Fourier basis functions in Li and Hsing (2007). Consequently,
convergence rates of the resulting estimators by both methods have been studied in
these papers.

To gain flexibility,Müller and Stadtmüller (2005) proposed a generalized functional
linear model (GFLM) in which the expected value of the response is related to the
linear predictor via a link function g(·) given as

Y = g

(∫
T

β(t)X (t)dt

)
+ ε. (2)

The proposed GFLM is useful when the linearity assumption is violated, and more-
over, it can be naturally applied to the logistic, binomial or Poisson regression with
a functional predictor. With multiple functional predictors, Gertheiss et al. (2013)
proposed a penalized likelihood method to achieve variable selection and model esti-
mation simultaneously. In a recent work of McLean et al. (2014), they proposed a
functional additive model to allow a nonlinear relationship between the response and
each functional predictor when multiple predictors present.

The generalized models studied in the above papers are apparently more flexible
than the linear model given in (1). However, with a pre-selected parametric form
for the link function g(·), the model may be misspecified. As extension, Chen et al.
(2011) re-visited the GFLM (2) with an unknown link function which is estimated
by nonparametric kernel smoothing. A global polynomial convergence rate for the
estimator of g(·) has been studied in Chen et al. (2011).

The model with an unknown link function studied in Chen et al. (2011) con-
tains only one functional predictor X (·). In real data applications, multiple predictors
X1(t), . . . , X p(t) may be involved. A motivating example is a diffusion tensor imag-
ing (DTI) study (Goldsmith et al. 2011, 2012) in which DTI brain scans are recorded
for many multiple-sclerosis (MS) patients to assess the effect of neurodegeneration on
disability. This data application contains a scalar outcome which is the paced auditory
serial addition test (PASAT) score and two functional predictors which are the mean
diffusivity profile of the corpus callosum tract (CCA) and the parallel diffusivity profile
of the right corticospinal tract (RCST). Let X(t) = {X1(t), . . . , X p(t)}T with Xk(t),
k = 1, . . . , p, defined on a compact interval T . To study the relationship between the
scalar response (PASAT score) and the functional predictors (CCA and RCST), we
consider the following functional single-index model (FSiM):
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Y = g

(∫
T

p∑
k=1

βk(t)Xk(t)dt

)
+ ε

= g

(∫
T

β(t)TX(t)dt

)
+ ε, (3)

where β(t) = {(β1(t), . . . , βp(t))}T are unknown smooth coefficient functions, and
g(·) is an unknown nonconstant smooth link function. With the functional predictors
observed at discrete points, we approximate the coefficient functions βk(·) and the
link function g(·) by two different sets of B-spline basis expansions (Boor 2001)
with increasing numbers of basis functions, and propose an iterative method based on
the least-squares criterion to estimate those nonparametric functions. With multiple
functions βk(·) involved, spline approximation is a more convenient way than kernel
smoothing used in Chen et al. (2011), since those functions can be approximated
by one-step linear combinations of spline basis functions. In contrast, it needs some
iterative methods such as backfitting with kernel smoothing, which may be neither
computationally efficient nor stable.

Moreover, we provide uniform convergence rates of the proposed spline estimators
of both βk(·) and g(·), which is technically challenging due to the involvement of
different spline basis expansions. We conclude that the rates are slightly slower than
the classical uniform nonparametric rate with a univariate nonparametric function.We
also derive pointwise asymptotic normality for the estimator of βk(t). The asymptotic
properties established provide a theoretical guidance for estimation in the FSiM (3)
with spline basis functions.

Another challenge is to conduct statistical inference for the slope functions βk(t)
in the FSiM (3). For the single-index model (SiM): Y = g(

∑p
k=1 βk Xk) + ε, where

β = (β1, . . . , βp)
T are unknown parameters, estimation of it has been studied substan-

tially in the literature. Given the asymptotic normality of the estimators (see Ichimura
1993 for the profile estimators; Carroll et al. 1997 for the backfitting estimators; Xia
et al. 2002 and Jiang and Wang 2011 for the minimum average variance estimation),
developing statistical inferential tools such as confidence intervals, Wald test, and
likelihood ratio test for the index parameters βk becomes straightforward. In the liter-
ature related to FLMs, many existing works focus on estimation of the slope functions
βk(t), and some of them, for example Müller and Stadtmüller (2005) and Yao et al.
(2005), provide pointwise asymptotic distributions for the functional estimators so
that pointwise confidence intervals can be constructed. However, for functions βk(t)
defined over a domain T instead of a single point, developing global inferential tools
may be more needed. It is, however, of greater technical difficulty in devising such
tools and establishing their theoretical properties. It is noteworthy that Goldsmith et al.
(2011) proposed a mixed model approach by penalized splines for GFLM (2), so that
confidence intervals and likelihood ratio tests can be obtained using standard mixed
effects software.

In this paper, we construct asymptotic simultaneous confidence band (SCB) for
βk(t) in the FSiM (3). SCBs provide a powerful tool for global inference of functions.
Existing works on SCBs in the functional data setting are very limited due to the
complex data nature, seeBunea et al. (2011) andMa et al. (2012) for SCBs for themean
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function and Crainiceanu et al. (2012) for a bootstrap method on the mean difference
between two correlated functional processes. In this paper, we derive asymptotic SCBs
for slope functions βk(t) of the functional predictors, which have not been investigated
in this context, based on the absolute maxima distribution of a Gaussian process and
strong approximation lemma.

The rest of this paper is organized as follows. Section 2 gives conditions for
the model identification. Section 3 introduces the estimation procedure and presents
asymptotic properties of the proposed estimators. In Sect. 4, we evaluate finite sample
properties of the proposed estimation and inference procedures via simulation stud-
ies. Section 5 illustrates the proposed method through the analysis of the diffusion
tensor imaging study. All technical details including detailed proofs are provided in
the “Appendix”.

2 Model identifiability

Suppose, we have a scalar response Y and functional predictors X1(t), . . . , X p(t),
defined on a compact interval T . Let (Y1,X1(t)), . . . , (Yn,Xn(t)), where Xi (t) =
{Xi,1(t), . . . , Xi,p(t)}T, be independent and identically distributed observations from
(Y,X(t)), where X(t) = {X1(t), . . . , X p(t)}T. We assume that

(C1) βk(t) and Xi,k(t) are square-integrable functions and random functions, which
can be written as βk(t) = ∑∞

l=1 δl,kϕl(t) and Xi,k(t) = ∑∞
l=1 ξil,kϕl(t), for

each k = 1, . . . , p and t ∈ T , and suitable coefficients δk = {δl,k} and
ξi,k = {ξil,k}, where ϕl(t), l = 1, 2, . . ., are an orthonormal basis of the func-
tion space L2(T ), δl,k are deterministic coefficients, and ξil,k are random coef-
ficients from iid copies of ξl,k with variance 1. For all 1 ≤ i ≤ n and 1 ≤ k ≤ p,
supt∈T |Xi,k(t)| < ∞.

To ensure identification of model (3), we assume the following condition:

(C2)
∑p

k=1

∫
T β2

k (t)dt = 1, β1(t) is nonconstant and monotone nondecreasing over
t ∈ T , or g(u) is monotone nondecreasing over u ∈ I.

Model (3) is identified under Condition (C2). To see this, let

g

(∫
T

p∑
k=1

βk(t)Xi,k(t)dt

)
= h

(∫
T

p∑
k=1

αk(t)Xi,k(t)dt

)
,

where βk(t) and αk(t) are coefficient functions satisfying Conditions (C1) and (C2),
and g(·) and h(·) are nonconstant link functions. By Condition (C1), we have βk(t) =∑∞

l=1 δl,kϕl(t) and αk(t) = ∑∞
l=1 γl,kϕl(t) for some coefficients δk = {δl,k} and

γk = {γl,k}, and thus g(
∑p

k=1 δTk ξi,k) = h(
∑p

k=1 γ T
k ξi,k). Let Ui = ∑p

k=1 δTk ξi,k .
Assume that g′(Ui ) �= 0 for some i . Thus,

(∂g/∂ξil,k)/(∂g/∂ξi1,1) = δl,k/δ1,1 = γl,k/γ1,1 = (∂h/∂ξil,k)/(∂h/∂ξi1,1).

Therefore, we have δ1,1 = γ1,1 or δ1,1 = −γ1,1 if
∑p

k=1

∑∞
l=1 δ2l,k = 1, and thus

δl,k = γl,k or δl,k = −γl,k , for all l and k, which leads to βk(t) = αk(t) or βk(t) =

123



Estimation and inference in functional single-index models 185

−αk(t) for all t ∈ T and k = 1, . . . , p. To this end, by assuming that β1(t) is
nonconstant and monotone nondecreasing over t ∈ T or the link function g(u) is
monotone nondecreasing over u ∈ I, model (3) is identified.

3 Estimation

In real data applications, the curve Xi,k(t) is discretized at dense time points
ti1, . . . , ti,mi+1 with mi → ∞ as n → ∞. We first represent the integral∫
T βk(t)Xi,k(t)dt by

∑mi
j=1(ti, j+1 − ti j )βk(ti j )Xi,k(ti j ) using Riemann integration,

and then approximate the coefficient functions βk(t) and the link function g(u) by
B-spline functions. The estimation procedure is described as follows. Suppose that
we have the qth order normalized B-spline basis functions B1(u) = {Bs,1(u), 1 ≤
s ≤ Jn,1}T with knot sequence {τs} satisfying τ1 = · · · = τq < τq+1 < · · · <

τJn,1 < τJn,1+1 = · · · = τJn,1+q , and the qth order normalized B-spline basis
functions B2(t) = {Br,2(t), 1 ≤ r ≤ Jn,2}T with knot sequence {υr } satisfying
υ1 = · · · = υq < υq+1 < · · · < υJn,2 < υJn,2+1 = · · · = υJn,2+q . The knot
sequences also satisfy

max
q≤s≤Jn,1

|τs+1 − τs |/ min
q≤s≤Jn,1

|τs+1 − τs | ≤ M1,

max
q≤r≤Jn,2

|υr+1 − υr |/ min
q≤r≤Jn,2

|υr+1 − υr | ≤ M2,

uniformly in n for some constants 0 < M1 < ∞ and 0 < M2 < ∞. The above
assumption on the distances between neighboring knots is typical in the polynomial
spline regression literature to study asymptotic properties of the spline estimators, see
Huang (2003). Then, g(·) and βk(·) can be well approximated by B-spline functions
such that

g(u) ≈ g0(u) =
Jn,1∑
r=1

λr Br,1(u) = B1(u)Tλ,

βk(t) ≈ β0
k (t) =

Jn,2∑
s=1

δs,k Bs,2(t) = B2(t)
Tδk,

where λ = (λ1, . . . , λJn,1)
T and δk = (δ1,k, . . . , δJn,2,k)

T. For simplicity, we use
the splines with the same order to estimate g(·) and βk(·). Our results can be easily
extended to the case with splines of different orders. By the B-spline property, the
derivative of β0

1 (t) is

β̇0
1 (t) = ∂β0

1 (t)/∂t =
Jn,2∑
s=1

δs,1 Ḃs,2(t) =
Jn,2∑
s=2

(q − 1)(δs,1 − δs−1,1)

υs+q−1 − υs
Bq−1
s,2 (t),

where {Bq−1
s,2 (t) : 2 ≤ s ≤ Jn,2} are B-spline functions with order q − 1. Thus, when

δ1,1 ≤ · · · ≤ δJn,2,1, the B-spline function β0
1 (t) is nondecreasing in t ∈ T .
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Let δ = (δT1 , . . . , δTp)
T and Wn = ∫

T B2(t)B2(t)Tdt . Denote

Φi,sk =
mi∑
j=1

(ti, j+1 − ti j )Bs,2(ti j )Xi,k(ti j ),Φi,k = (Φi,1k, . . . , Φi,Jn,2k)
T, (4)

and Φi = (ΦT
i,1, . . . , Φ

T
i,p)

T. For given β0
k (·), i.e., given δk , for 1 ≤ k ≤ p, we

obtain the least-squares estimator λ̂ = (̂λ1, . . . , λ̂Jn,1)
T of λ = (λ1, . . . , λJn,1)

T and
δ̂k = (̂δ1,k, . . . , δ̂Jn ,k)

T of δk = (δ1,k, . . . , δJn ,k)
T by minimizing

Ln(λ, δ) =
n∑

i=1

⎧⎨
⎩Yi −

Jn,1∑
s=1

λs Bs,1(Φ
T
i δ)

⎫⎬
⎭

2

. (5)

In practice, simultaneously estimatingλ and δ fromminimizing (5) cannot be achieved.
Thus, we apply an iterative estimation method as frequently used in the single-index
model literature given as below.

Step 0. (Initialization step). Obtain an initial value δ̂0 = (̂δ0T1 , . . . , δ̂0Tp )T

of δ by assuming a parametric form for the link function g(·), and set δ̂0 =
δ̂0/(

∑p
k=1 δ̂0Tk Wn δ̂

0
k )

1/2.

Step I. Let δ̂ be the estimate from the previous iteration. Find λ̂(̂δ) by minimizing

n∑
i=1

⎧⎨
⎩Yi −

Jn,1∑
s=1

λs Bs,1(Φ
T
i δ̂)

⎫⎬
⎭

2

,

and thus

λ̂(̂δ) = {̂λ1(̂δ), . . . , λ̂Jn,1 (̂δ)}T = {B(̂δ)TB(̂δ)}−1B(̂δ)TY, (6)

where B(̂δ) = [{B1(Φ
T
1 δ̂), . . . ,B1(Φ

T
n δ̂)}T]n×Jn,1 and Y =(Y1, . . . ,Yn)T.

Step II. Update δ̂ by minimizing

L̃n(δ) =
n∑

i=1

⎧⎨
⎩Yi −

Jn,1∑
s=1

λ̂s (̂δ)Bs,1(Φ
T
i δ)

⎫⎬
⎭

2

, (7)

with respect to δ, subject to δ1,1 ≤ · · · ≤ δJn,2,1 and let δ̂ = δ̂/(
∑p

k=1 δ̂Tk Wn δ̂k)
1/2.

This step is realized by nonlinear optimization with constraint δ1,1 ≤ · · · ≤ δJn,2,1.
We use the “constrOptim” package in R software to achieve this optimization. To use
the “constrOptim” algorithm, we set δ̂ from the previous iteration as the starting value,
and we also need to specify the gradient of the objective function L̃n(δ) in ( 7) given
as,

∂ L̃n(δ)/∂δ = −2
n∑

i=1

⎧⎨
⎩Yi −

Jn,1∑
s=1

λ̂s (̂δ)Bs,1(Φ
T
i δ)

⎫⎬
⎭̂̇g(ΦT

i δ; δ̂)Φi ,

where ̂̇g(u; δ̂) = Ḃ1(u)Tλ̂(̂δ), which is a spline estimator of ġ(u) = ∂g(u)/∂u.
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Step III. Repeat steps I and II until convergence.
The final estimators of βk(t) and g(u) are β̂k(t) = B2(t)Tδ̂k and ĝ(u; δ̂) =

B1(u)Tλ̂(̂δ), respectively. Let C (α)(X ) = {φ|φ(α) ∈ C(X )} be the space of the αth
smooth functions, and C0,1(X ) be the space of Lipschitz continuous function on X ,
i.e.,

C0,1(X ) =
{

φ : ‖φ‖0,1 = sup
w �=w′,w,w′∈X

|φ(w) − φ(w′)|
|w − w′| < ∞

}
.

Let mmin = min1≤i≤n(mi ) and mmax = max1≤i≤n(mi ). For establishing asymptotic
consistency of the estimators, we need the following assumptions.

(C3) For every 1 ≤ k ≤ p, βk(·) ∈ C (α)(T ) and g(·) ∈ C (α)(I), for some integer
α ≥ 2. For every 1 ≤ k ≤ p, Xk(·) ∈ C0,1(T ), and E(Xk(·)|U ) ∈ C0,1(T ),
where U = ∫

T β(t)TX(t)dt . The spline order satisfies q ≥ α.
(C4) For all 1 ≤ i ≤ n,

max
1≤ j≤mi

|ti, j+1 − ti j |/ min
1≤ j≤mi

|ti, j+1 − ti j | ≤ M3,

for some constant 0 < M3 < ∞.
(C5) Var{Y |X(t), t ∈ T } ≤ M4, for some constant 0 < M4 < ∞.

Condition (C3) gives smoothness conditions of the nonparametric functions which
are commonly assumed in the spline smoothing literature such as in Zhou et al. (1998).
Condition (C4) is the condition for distances between neighboring time points. Exam-
ples with equally spaced time points are a special case. Condition (C5) states bound-
edness of the conditional variance of the response, see Assumption (H.2) in Cardot
et al. (2003) for the same condition. To present the asymptotic results, we introduce
some notations as follows. For any matrix A, denote A⊗2 = AAT. For any vector
ζ = (ζ1, . . . , ζs)

T ∈ Rs , denote ‖ζ‖∞ = max1≤l≤s |ζl |. For any positive numbers
an and bn , let an � bn denote that an/bn = o(1) and let an  bn denote that
limn→∞an/bn = c, for a positive constant c.

According to the result on page 149 of Boor (2001), for g(·) and βk(·) satisfying
Condition (C3), there are spline functions

gn(u) =
Jn,1∑
s=1

λ0s,n Bs,1(u) = B1(u)Tλ0n

with λ0n ∈ RJn,1 and βk,n(t) = ∑Jn,2
s=1 δs,k,n Bs,2(t) = B2(t)Tδ0k,n with δ0k,n ∈ RJn,2

such that

supu∈I |gn(u) − g(u)| = O(J−α
n,1 ),

supt∈T |βk,n(t) − βk(t)| = O(J−α
n,2 ). (8)

Let δ0n = (δ0T1,n, . . . , δ
0T
p,n)

T. The proposition below gives the uniform convergence
rates of the spline estimators ĝ(u; δn) and ̂̇g(u; δn) for δn in a neighborhood of δ0n .
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Proposition 1 Under Conditions (C1)–(C5) in the “Appendix”, for J 3n,1/n = o(1),

Jn,1 J
−α
n,2 = o(1), Jn,1m

−1
min = o(1), and for an = o(J−1

n,1 ), we have (i)

sup‖δn−δ0n‖∞≤an supu∈I |̂g(u; δn) − g(u)|

= Op

(
an + J−α

n,1 + J−α
n,2 + m−1

min +
√
log(n)Jn,1n−1

)
;

and (ii)

sup‖δn−δ0n‖∞≤an supu∈I |̂ġ(u; δn) − ġ(u)|

= Op

(
Jn,1an + J 1−α

n,1 + Jn,1 J
−α
n,2 + Jn,1m

−1
min +

√
log(n)J 3n,1n

−1

)
.

To derive the uniform convergence rates of the final estimators β̂k(t) and
ĝ(u; δ̂), we need the initial value of δ denoted by δ̂0n to satisfy‖̂δ0n − δ0n‖∞ =
O{(log n)1/2 J 1/2n,2 n

−1/2}. In data analysis, the starting value δ̂0n is obtained by assum-
ing that g(·) is a linear function, which is commonly used in the single-index model
literature, see Carroll et al. (1997) and Xia et al. (2002). We next introduce some nota-
tions. DenoteUi = ∫

T β(t)TXi (t)dt , Ψi = ġ(Ui ){Φi − E(Φi |Ui )} and Var(εi |Ui ) =
σ 2(Ui ), for i = 1, . . . , n. Let �k = [(0Jn,2×Jn,2 , . . . , IJn,2×Jn,2 , . . . , 0Jn,2×Jn,2)]
Jn,2×pJn,2 be the Jn,2 × pJn,2 matrix consisting of p matrices of Jn,2 × Jn,2 dimension
with the identity matrix IJn,2×Jn,2 as the kth matrix and 0Jn,2×Jn,2 as other matrices.
Then, β̂k(t) = B2(t)T�k δ̂. For 1 ≤ k ≤ p, define

σ 2
n,k(t) = B2(t)

T�k

{
n∑

i=1

E(Ψ ⊗2
i )

}−1 [ n∑
i=1

E{σ 2(Ui )Ψ
⊗2
i }

]

×
{

n∑
i=1

E(Ψ ⊗2
i )

}−1

�T
kB2(t).

Let δ̂ be the minimizer of L̃n(δ) given in (7) subject to δ1,1 ≤ · · · ≤ δJn,2,1

satisfying‖̂δ−δ0n‖∞ ≤ an with probability approaching 1, so that we assume the min-
imizer happens in a consistent neighborhood of δ0n . The following theorems present
the uniform convergence rates of β̂k(t) = B2(t)Tδ̂k and ĝ(·; δ̂) = B1(u)Tλ̂(̂δ), and
asymptotic normality for the coefficient estimator β̂k(t).

Theorem 1 Under Conditions (C1)–(C5), n1/(2α+1) � Jn,2 � n1/3(log n)−1,

n1/(2α+3) � Jn,1 � Jn,2 � J 2n,1, and n1/2m−1
min J

−1/2
n,2 = o(1), we have for given

1 ≤ k ≤ p, (i) supt∈T |β̂k(t)−βk(t)| = Op(
√

(log n)Jn,2n−1); and (ii) for any t ∈ T ,
as n → ∞, σ−1

n,k (t){β̂k(t) − βk(t)} → N (0, 1).

Theorem 2 Under Conditions (C1)–(C5), n1/(2α+1) � Jn,2 � n1/3(log n)−1,

n1/(2α+3) � Jn,1 � Jn,2 � J 2n,1, and n1/2m−1
min J

−1/2
n,2 = o(1), we have supu∈I

|̂g(u; δ̂) − g(u)| = Op(J
−α
n,1 + (log n)1/2 J 1/2n,2 n

−1/2).
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Remark let Jn,1  n1/(2α+1) and Jn,2  n(2v+1)/(2α+1) for a small v > 0. Then, we
have

supt∈T |β̂k(t) − βk(t)| = Op

(√
(log n)n(v−α)/(2α+1)

)

and supu∈I |̂g(u; δ̂) − g(u)| = Op(
√

(log n)n(v−α)/(2α+1)). By assuming α = 2
such that βk(t) and g(u) are second smooth functions, the uniform convergence rate
would be Op(

√
(log n)n(v−2)/5) for both estimators, which is slighter slower than the

classical uniform nonparametric rate Op(
√

(log n)n−2/5).

For 1 ≤ k ≤ p, let ξk(t) be a Gaussian process with E{ξk(t)} ≡ 0, Var{ξk(t)} ≡ 1,
and covariance matrix

Cov(η0k (t), η
0
k (t

′)) = σ−1
n,k (t)σ

−1
n,k (t

′)B2(t)
T�k

{
n∑

i=1

E(Ψ ⊗2
i )

}−1

×
[

n∑
i=1

E{σ 2(Ui )Ψ
⊗2
i }

]{
n∑

i=1

E(Ψ ⊗2
i )

}−1

�T
kB2(t

′). (9)

Define the 100(1 − α)th percentile of the absolute maxima distribution of ξk(t) as
Qk(α) which satisfies

P{supt∈T |ξk(t)| ≤ Qk(α)} = 1 − α.

We now state the following theorem used to construct the asymptotic simultaneous
confidence bands (ASCB) for coefficient functions βk(t).

Theorem 3 Under Conditions (C1)–(C5), n1/(2α+1) � Jn,2 � n1/3(log n)−1,

n1/(2α+3) � Jn,1 � Jn,2, and n1/2m−1
min J

−1/2
n,2 = o(1), we have

lim
n→∞ P {supt∈T |σ−1

n,k (t){β̂k(t) − βk(t)}| ≤ Qk(α)} = 1 − α.

Remark Based on the results in Theorem (3), we can construct (1− α)100% ASCBs
for βk(t) given as

β̂k(t) ± Qk(α)σn,k(t). (10)

4 Simulation

In this section, we study the finite sample performance of the proposed method. The
predictor functions are generated as Xi,k(t) = t + ∑4

j=1 ξi j,kφ j,k(t), k = 1, 2,

i = 1, . . . , n, where ξi j,k are i.i.d N (0, σ 2
j ) with σ 2

j = 1/2( j−1), and φ1,k(t) =
(1/

√
2) sin(2π t), φ2,k(t) = (1/

√
2) cos(2π t), φ3,k(t) = (1/

√
2) sin(4π t),

φ4,k(t) = (1/
√
2) cos(4π t). Let n = 100, 200, 500, and each predictor func-

tion is sampled through m = 100 equally spaced measurements in [0, 1]. We let
β1(t) = cos(π t + π) and β2(t) = sin(π t) − 2/π , so β1(t) is monotone increasing
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in t . Let Ui = ∫
T
∑2

k=1 βk(t)Xi,k(t)dt . We generate continuous responses from the
FSiM Yi = g(Ui ) + εi with three different link functions which lead to three models
given as:

M1: Yi = 5Ui + εi (linear link function);
M2: Yi = 5 sin(π(Ui − Umin)/Udiff − π/2) + εi , where Udiff = Umax − Umin

(monotone increasing link function);
M3: Yi = 5 sin(π(Ui −Umin)/Udiff) + εi (non-monotone link function).

In the above models, the error term εi is simulated from i.i.d. normal distribution
with mean 0 and standard deviation SD(εi ) = 0.5SD(g(Ui )). We use cubic splines
with order q = 4 to approximate the nonparametric functions g(·) and βk(·). The
numbers of knots N1 and N2 for the B-spline bases B1(u) and B2(t) are selected by
minimizing the BIC criterion given as

n log

[
n−1

n∑
i=1

{Yi − B1(Φ
T
i δ̂)Tλ̂}2

]
+ log(n){N1 + q + p(N2 + q)}.

See Xue and Yang (2006) for the AIC and BIC for the number of knots selection in
spline regression. To evaluate the performance of the proposed estimation method, we
quantify the prediction error by average squared errors (ASE) given as

ASE = n−1
n∑

i=1

{Ŷi − g(Ui )}2,

where Ŷi = ĝ(
∫
T
∑2

k=1 β̂k(t)Xi,k(t)dt). We also quantify the errors of the estimated
coefficient functions by squared error given as

SE(β̂k) =
∫
T

{β̂k(t) − βk(t)}2dt.

When we treat the link function g(·) as a linear function, estimation in models M2
and M3 may encounter the misspecification problem. For illustration, we compare
the estimation results by the proposed method in the FSiM and results in the func-
tional linear model (FLM) with a linear link function. In the FLM, we estimate the
spline parameters δ = (δT1 , . . . , δTp)

T in the coefficient functions βk(t) = B2(t)Tδk by
minimizing

Ln(δ) =
n∑

i=1

(Yi − ΦT
i δ)2, (11)

and then let δ̂ = δ̂/(
∑p

k=1 δ̂Tk Wn δ̂k)
1/2. The number of knots is also selected by the

BIC criterion.
Table 1 reports the ASEs and SEs for the proposed estimator in the FSiM and

estimator obtained fromminimizing (11) in the FLMwith data generated frommodels
M1-M3, respectively. We also compare estimation results in the FSiM using different
starting values in the proposed iterative algorithm in Section 3. Column FSiM-C
shows the results, when the starting values δ̂0k are obtained by minimizing

∫
T {βk(t)−

B2(t)Tδk}2dt , so that δ̂0k is a consistent estimator. Clearly, this initial estimator is not
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Table 1 The ASEs and SEs for the proposed estimators in the FSiM and estimators from minimizing (11)
in the FLM with data generated from models M1, M2 and M3

Model n FSiM-C FSiM FLM

ASE SE(β̂1) SE(β̂2) ASE SE(β̂1) SE(β̂2) ASE SE(β̂1) SE(β̂2)

M1 100 0.0666 0.0564 0.0226 0.0732 0.0464 0.0393 0.0613 0.0619 0.0593

200 0.0306 0.0402 0.0140 0.0376 0.0423 0.0223 0.0302 0.0496 0.0300

500 0.0116 0.0325 0.0097 0.0143 0.0300 0.0118 0.0116 0.0422 0.0167

M2 100 0.1716 0.0587 0.0251 0.1911 0.0499 0.0381 0.2754 0.1541 0.0811

200 0.0693 0.0502 0.0159 0.0860 0.0325 0.0196 0.1590 0.1366 0.0599

500 0.0233 0.0336 0.0103 0.0279 0.0253 0.0108 0.0841 0.1167 0.0455

M3 100 0.0353 0.0479 0.0169 0.0507 0.0642 0.0332 1.2257 0.5839 0.1491

200 0.0123 0.0388 0.0109 0.0181 0.0539 0.0192 0.9508 0.5247 0.1105

500 0.0035 0.0367 0.0083 0.0062 0.0505 0.0143 0.6882 0.5215 0.0992

obtainable in real data analysis since the true slope functions βk(t) are unknown. We
use it for the purpose of comparing with the results in Column FSiM with the initial
estimate δ̂0k obtained by assuming a linear link function as used in real data applications.
We can see that with data generated from all of the three models M1–M3, the values of
ASEs and SEs shown in FSiM-C and FSiM are comparable. This result indicates that
we obtain reasonable estimates using different initial values. Moreover, we observe
that the ASE and SE values decrease as the sample size increases, which corroborates
with our consistency results established in Theorems 1 and 2 for β̂k(t) and ĝ(u; δ̂).
When data are generated from model M3 with a nonlinear and non-monotone link
function, using the FLM which is misspecified, it leads to large values of both ASEs
and SEs for the resulting estimators comparing to those values in FSiM-C and FSiM.
With data generated frommodel M2 with a nonlinear, but monotone link function, the
ASE andSEvalues in FLMdecrease, but they are still larger than those values in FSiM-
C and FSiM. For M1 that the FLM is the true model, the results in FSiM-C, FSiM and
FLM are comparable. This indicates that although the link function g(·) is linear, the
proposedmethod in the FSiMby estimating g(·) nonparametrically still performswell.

We next compare the performance of the proposed FSiM, the FLM method men-
tioned above and the PFR method in the “refund” R package for fitting the GFLM.
For the PFR method, we use the default value for the dimension of the B-spline basis,
and set the family as Gaussian. Table 2 presents the ASEs for the three methods with
data generated from the models M1, M2 and M3. We can clearly see that the FLM
and the PFR methods have very similar ASE values for all cases, and moreover for all
other cases except n = 500 andM3, the FLM has slightly smaller ASEs than the PFR.
This result demonstrates that the regression spline with the number of knots selected
by the BIC and the penalized spline with a penalty term controlling the roughness of
the fit have similar performance in this context. It also corroborates with the finding
in Claeskens et al. (2009) that the asymptotic properties of the penalized spline are
similar to those of the regression spline with less knots than data points. Again, when
data are generated from M2 and M3 with a nonlinear link function, both FLM and
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Table 2 TheASEs for the proposed FSiM, the FLMmethod and the PFRmethod in the “refund” R package
with data generated from models M1, M2 and M3

Model n = 100 n = 200 n = 500

FSiM FLM PFR FSiM FLM PFR FSiM FLM PFR

M1 0.0732 0.0613 0.0641 0.0376 0.0302 0.0346 0.0143 0.0116 0.0125

M2 0.1911 0.2754 0.2873 0.0860 0.1590 0.1684 0.0279 0.0841 0.0846

M3 0.0507 1.2257 1.3094 0.0181 0.9508 0.9747 0.0062 0.6882 0.6780

Table 3 The empirical coverage
rate that the true curve βk (·) is
covered by the simultaneous
confidence bands (10) and the
average bandwidth with data
generated from model M3

n Coverage rate Bandwidths

β1 β2 β1 β2

100 0.926 0.934 0.963 0.942

200 0.944 0.954 0.762 0.745

500 0.952 0.950 0.510 0.504

PFR have larger ASE values than the FSiM. The difference is more obvious for M3
which has a nonlinear and non-monotone link function. The results further illustrates
that the proposed FSiM is useful when there exists an unknown and nonlinear link
between the response and the functional predictors.

To evaluate the asymptotic standard deviation and confidence bandwidths estab-
lished in Theorem 3, we construct 95% asymptotic simultaneous confidence bands for
coefficient functions βk(t). Table 3 shows the empirical coverage rate and the average
bandwidth among 500 replications with data generated from model M3. We observe
that empirical coverage rates are close to the nominal confidence level for all cases
and the average bandwidth decreases as the sample size increases.

5 Application

In this section, we apply our proposed method to the diffusion tensor imaging (DTI)
study (Goldsmith et al. 2011, 2012). The data can be found from the “refund” pack-
age in R software. In this data application, DTI brain scans are recorded for many
multiple-sclerosis (MS) patients at several visits with the goal of assessing the effect
of neurodegeneration on disability. The scalar outcome is the paced auditory ser-
ial addition test (PASAT) score, which is commonly used examination of cognitive
function affected by MS with scores ranging between 0 and 60, and two functional
predictors are the mean diffusivity profile of the corpus callosum tract (CCA) and the
parallel diffusivity profile of the right corticospinal tract (RCST). We refer to Gold-
smith et al. (2011) and Goldsmith et al. (2012) for the detailed descriptions of this
data application. The dataset has 142 patients with several visits. After deleting miss-
ing data, we use the remaining 229 observations in our analysis. Then, a functional
single-index model is fitted as
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Yi = g

(∫
T

β1(t)Xi,1(t)dt +
∫
T

β2(t)Xi,2(t)dt

)
+ εi , i = 1, . . . , 229, (12)

where Yi is the PASAT score, and Xi,1(·) and Xi,2(·) are the two functional predictors,
CCA and RCST, respectively. Measurements of CCA and RCST are taken at 93 and
54 tract locations, respectively. For illustration, Fig. 1 shows 100 trajectories for the
two functional predictors CCA and RCST.

For data exploration, we first fit a functional linear model (FLM) for each predictor
such that Yi = ak

∫ 1
0 βk(t)Xi,k(t)dt + εi , k = 1, 2 with

∫
T β2

k (t)dt = 1. Figure 2
shows the plots of the estimated coefficient functions β̂1(t) and β̂2(t) by fitting the
FLM for the two predictors, CCA and RCST, respectively. We observe that for CCA,
β̂1(t) shows an increasing trend followed by a sudden drop in the end, and for RCST,
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Fig. 1 Plots of the trajectories for the two functional predictors CCA and RCST
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Fig. 2 Plots of the estimated functions β̂1(t) and β̂2(t) by fitting the FLM for the two predictors, CCA and
RCST, respectively
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β̂2(t) shows a wave pattern. The two plots corroborate with Figure 4 in Goldsmith et
al. (2012).

We next apply the proposed estimating procedure in Sect. 3. Same as the simu-
lation studies in Sect. 4, we use cubic splines with order q = 4 to approximate the
nonparametric functions, and use the BIC criterion to select the number of knots. As
a result, one interior knot is selected for both of the spline bases. A similar strategy
can be found in Huang et al. (2004), Xue and Yang (2006) and Xue et al. (2010). As
indicated in Xue et al. (2010), only a small number of knots are often needed. We
then obtain the estimated coefficient functions β̂1(t) and β̂2(t) and the estimated link
function ĝ(u) in model (12) by assuming that β1(t) is a monotone function. Figure 3
shows the estimated coefficient functions β̂1(t) and β̂2(t) and their 95% simultaneous
confidence bands, and the estimated link function ĝ(u). The last plot in Fig. 3 indicates
that ĝ(u) is a monotone nonlinear function. Thus, the functional linear model (FLM)
by assuming linearity of g(u) for this data application may encounter the problem of
misspecification. Based on this result, we refit model (12) by assuming that the link
function g(·) is monotone increasing. Figure 4 shows the estimated coefficient func-
tions β̂1(t) and β̂2(t) and their 95% simultaneous confidence bands, and the estimated
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Fig. 3 Plots of the estimated coefficient functions β̂1(t) and β̂2(t) and their 95% simultaneous confidence
bands, and the estimated link function ĝ(u) by assuming monotonicity of β1(t)

123



Estimation and inference in functional single-index models 195

0 20 40 60 80

-1
0

1
2

CCA

tract location
0 10 20 30 40 50

-6
-4

-2
0

2

RCST

tract location

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

20
25

30
35

40
45

50

index

lin
k 

fu
nc

tio
n

Fig. 4 Plots of the estimated coefficient functions β̂1(t) and β̂2(t) and their 95% simultaneous confidence
bands, and the estimated link function ĝ(u) by assuming monotonicity of g(u)

link function ĝ(u) by assuming monotonicity of g(u). We can observe a decreasing
pattern for β̂2(t). For model comparison, we obtain the coefficient of determination
R2 = 0.24, 0.26, 0.19 for the FSiM (12) by assuming monotonicity of β1(t) and g(u),
respectively, and the FLM by assuming that g(u) is linear. Apparently, the FSiM leads
to a better fit than the FLM, and the FSiM improves the model fitting by 26.3 and
36.8%, respectively, for the two methods, comparing to the FLM.

6 Discussion

In this paper, we propose a FSiM to study the link between a scalar response variable
and multiple functional predictors. We then use B-spline basis functions to estimate
the slope functions and the link function based on the least-squares criterion, and
propose an iterative estimating procedure. We select the number of the knots for the
B-spline basis by the BIC criterion. Moreover, we provide uniform convergence rates
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of the proposed spline estimators in the FSiM, and construct asymptotic simultaneous
confidence bands for the slope functions for inference. The proposedmethod is demon-
strated to provide a flexible tool to explore possible nonlinear relationships between
the response and the predictors. As pointed out by the referees, the penalized splines
can also be used to estimate the nonparametric functions with a penalty term in the
objective function to control the roughness of the fit. We will consider the penalized
spline method as a future work. The asymptotic properties of the resulting estimators,
however, still need us to further explore according to the techniques in Cardot et al.
(2003), Claeskens et al. (2009) and this paper. Moreover, we will extend the proposed
method to the case with a functional response. We will also consider variable selection
by penalization when the number of predictors is large.

Appendix

For any positive numbers an and bn , let an ∼ bn denote that limn→∞an/bn =
1. For any vector ζ = (ζ1, . . . , ζs)

T ∈ Rs , denote its Lr norm as ‖ζ‖r =
(|ζ1|r + · · · |ζs |r )1/r . For any symmetric matrix As×s , denote its Lr norm as
‖A‖r = maxζ∈s,ζ �=0 ‖Aζ‖r‖ζ‖−1

r . For any matrix A = (Ai j )
s,t
i=1, j=1, denote

‖A‖∞ = max1≤i≤s
∑t

j=1 |Ai j |. The estimator̂̇g(u; δn) can be rewritten aŝ̇g(u; δn) =
Bq−1
1 (u)TD1̂λ(δn), where

Bq−1
1 (u) = (Bq−1

r,1 (u) : 2 ≤ r ≤ Jn,1)
T

are B-spline functions with order q − 1, and

D1 = (q−1)

⎛
⎜⎜⎜⎜⎜⎝

−1
τq+1−τ2

1
τq+1−τ2

0 · · · 0

0 −1
τq+2−τ3

1
τq+2−τ3

· · · 0
...

...
. . .

. . .
...

0 0 · · · −1
τJn,1+q−1−τJn,1

1
τJn,1+q−1−τJn,1

⎞
⎟⎟⎟⎟⎟⎠

(Jn,1−1)×Jn,1

.

(13)

Proof of Proposition 1 By (6), λ̂(δn) can be decomposed as λ̂(δn) = λ̂ε(δn)+ λ̂g(δn),
where

λ̂ε(δn) = {B(δn)
TB(δn)}−1B(δn)

Tεn,

λ̂g(δn) = {B(δn)
TB(δn)}−1B(δn)

Tgn,

in which εn = (ε1, . . . , εn)
T and gn = {g(∫T β(t)TXi (t)dt), 1 ≤ i ≤ n}T. Cor-

respondingly, ĝ(u; δn) is decomposed into ĝ(u; δn) = ĝε(u; δn) + ĝg(u; δn), where
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ĝε(u; δn) = B1(u)Tλ̂ε(δn) and ĝg(u; δn) = B1(u)Tλ̂g(δn). Thus,

ĝg(u; δn) − gn(u) = B1(u)T (̂λg(δn) − λn)

= B1(u)T{B(δn)
TB(δn)}−1B(δn)

T{gn − B(δn)λn}
= Ψ1(u) + Ψ2(u) + Ψ3(u),

where

Ψ1(u) = B1(u)T{B(δn)
TB(δn)}−1B(δn)

T
[{

g

(∫
T

β(t)TXi (t)dt

)

− g

( mi∑
j=1

(ti, j+1 − ti j )β(ti j )
TXi (ti j )

)
, 1 ≤ i ≤ n

}T]
,

Ψ2(u) = B1(u)T{B(δn)
TB(δn)}−1B(δn)

T

×
{
g

( mi∑
j=1

(ti, j+1 − ti j )β(ti j )
TXi (ti j )

)
− g(ΦT

i δn), 1 ≤ i ≤ n

}T

,

Ψ3(u) = B1(u)T{B(δn)
TB(δn)}−1B(δn)

T

× [{g(ΦT
i δn), 1 ≤ i ≤ n}T − B(δn)λn].

(14)

By Conditions (C3) and (C4), we have that for all 1 ≤ i ≤ n, there exists a constant
0 < C < ∞ such that

∣∣∣∣g
(∫

T
β(t)TXi (t)dt

)
− g

( mi∑
j=1

(ti, j+1 − ti j )β(ti j )
TXi (ti j )

)∣∣∣∣ ≤ Cm−1
min, (15)

and by (8) there exist constants 0 < C ′,C ′′ < ∞ such that

∣∣∣∣g
( mi∑

j=1

(ti, j+1 − ti j )β(ti j )
TXi (ti j )

)
− g(ΦT

i δn)

∣∣∣∣

≤ C ′
∣∣∣∣

mi∑
j=1

(ti, j+1 − ti j )
p∑

k=1

{βk(ti j ) − B2(ti j )
Tδ̃k,n}Xik(ti j )

∣∣∣∣
≤ C ′′(an + J−α

n,2 ). (16)

Moreover, by (8) for all 1 ≤ i ≤ n, there exists a constant 0 < C ′′′ < ∞ such that

|g(ΦT
i δn) − B1(Φ

T
i δn)λn| ≤ C ′′′ J−α

n,1 . (17)

By Theorem 5.4.2 of DeVore and Lorentz (1993) and Berstein’s inequality in Boor
(2001), one has for large enough n, there are constants 0 < c1 < C1 < ∞, such that

c1 J
−1
n,1 ≤ ‖E{n−1B(δn)

TB(δn)}‖2 ≤ C1 J
−1
n,1 ,
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with probability approaching 1, for Jn,1 log(n)/n = o(1),

c1 J
−1
n,1 ≤ ‖{n−1B(δn)

TB(δn)}‖2 ≤ C1 J
−1
n,1 ,

and thus
C−1
1 Jn,1 ≤ ‖{n−1B(δn)

TB(δn)}−1‖2 ≤ c−1
1 Jn,1. (18)

By the above result andDemko (1986), it can be proved that with probability approach-
ing 1 and for large enough n,

‖{n−1B(δn)
TB(δn)}−1‖∞ ≤ C2 Jn,1, (19)

for some constant 0 < C2 < ∞. Therefore, by (14), (15), (16), (17) and (19), we have

supu∈I |Ψ1(u)|
≤ supu∈I ‖B1(u)‖∞‖{n−1B(δn)

TB(δn)}−1‖∞‖n−1B(δn)
T1n‖∞O(m−1

min)

= Op(Jn,1)Op(J
−1
n,1 )O(m−1

min) = Op(m
−1
min), supu∈I |Ψ2(u)|

≤ supu∈I ‖B1(u)‖∞‖{n−1B(δn)
TB(δn)}−1‖∞‖n−1B(δn)

T1n‖∞O(an + J−α
n,2 )

= Op(Jn,1)Op(J
−1
n,1 )O(an + J−α

n,2 ) = Op(an + J−α
n,2 )

supu∈I |Ψ3(u)|
≤ supu∈I ‖B1(u)‖∞‖{n−1B(δn)

TB(δn)}−1‖∞‖n−1B(δn)
T1n‖∞O(J−α

n,1 )

= Op(Jn,1)Op(J
−1
n,1 )O(J−α

n,1 ) = Op(J
−α
n,1 ).

Thus, we have

supu∈I |̂gg(u; δn) − gn(u)| = Op(an + J−α
n,1 + J−α

n,2 + m−1
min).

LetX =(X1, . . . ,Xn). By Condition (C5) and (18) for every u ∈ I, E{ĝε(u; δn)|X} =
0, and

E{ĝε(u; δn)|X}2  B1(u)T{B(δn)
TB(δn)}−1B1(u)  Jn,1n

−1.

Thus, it can beprovedbyBerstein’s inequality inBoor (2001) that supu∈I |̂gε(u; δn)| =
Op(

√
log(n)Jn,1n−1). Therefore, we have

supu∈I |̂g(u; δn) − gn(u)| = Op

(
an + J−α

n,1 + J−α
n,2 + m−1

min +
√
log(n)Jn,1n−1

)
.

Result (i) is proved by the above result and (8). It is easy to prove that ‖D1‖∞ =
O(Jn,1), where D1 is defined in (13). Following the similar reasoning as the proof for
ĝ(u; δn), the result in (ii) can be proved. ��
Lemma 1 Under Condition (C3), we have that there exists δ̃01,n = (̃δ0r1,n : 1 ≤ r ≤
Jn,2)

T ∈ RJn,2 with δ̃011,n ≤ · · · ≤ δ̃0Jn,21,n
such that supt∈T |β1(t) − β̃1,n(t)| =

O(J−α
n,2 ), where β̃1,n(t) = B2(t)Tδ̃01,n.
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Proof By choosing ε1 < · · · < εJn,2 , we define

β̃0
1,n(t) =

Jn,2∑
r=1

β1(εr )Br,2(t),

which is monotone nondecreasing function in t . By the fact that for t in [υr1, υr1+1),∑υr1
r=υr1+1−q Br,2(t) = 1, we have

β1(̃t) =
υr1∑

r=υr1+1−q

β1(̃t)Br,2(t)

for t̃ ∈ [υr1 , υr1+1), and thus

|β1(̃t) − β̃0
1,n (̃t)| ≤

υr1∑
r=υr1+1−q

|β1(̃t) − β1(εr )|Br,2(t)

≤ q max
υr1+1−q≤r≤υr1

|β1(̃t) − β1(εr )|.

Let h = maxq≤l≤Jn,2(υr+1 − υr ). Define

ω(β1; h) = max{|β1(t1) − β1(t2)| : |t1 − t2| ≤ h}.

Then, ω(β1; h) is a monotone and subadditivity function of h , that is, ω(β1; h) ≤
ω(β1; h1 + h2) ≤ ω(β1; h1) + ω(β1; h2) for h1 > 0 and h2 > 0. See Lemma 2.19
of Wu (2010) for the detailed proof. We choose εr = υ1 + (r − 1)(υq+1 − υq)/q for
r = 1, . . . , q and εr = υr for r = q + 1, . . . , Jn,2 to guarantee that εr+1 − εr > 0.
Then, we have |εr − υr | ≤ h for r = 1, . . . , Jn,2. Moreover, for t̃ ∈ [υr1, υr1+1) and
r1 − q ≤ r ≤ r1, |̃t − εr | ≤ (q + 1)h. Therefore, we have

sup
t

|β1(t) − β̃0
1,n(t)| ≤ qω(β1; (q + 1)h) ≤ (q + 1)qω(β1; h).

The last step follows from the subadditivity of ω(β1; h). Let

Gq = {B2(t)
Tδ1, δ1 ∈ RJn,2 , δ11 ≤ · · · ≤ δJn,21}.

Denote d(β1,Gq) as the distance of β1 from Gq . Following the reasoning as given in
Lemma 2.19 of Wu (2010), it can be shown that for any g ∈ Gq , we have

d(β1,Gq) ≤ ch‖∂(β1 − g)/∂t‖∞,

for some constant 0 < c < ∞, and thus

d(β1,Gq) ≤ chd(∂β1/∂t,Gq−1),
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where Gq−1,q = {∂g/∂t, g ∈ Gq}. Proceeding in this way, we can derive

d(β1,Gq) ≤ chα‖∂αg/∂tα‖∞.

Thus, the result in Lemma 1 follows from the above result and Condition (C3). ��
Lemma 2 Let δ̂ be the minimizer of L̃n(δ) given in (7 ) subject to δ1,1 ≤ · · · ≤
δJn,2,1 satisfying ‖̂δ − δ0n‖∞ ≤ an with probability approaching 1, where δ̃0n =
(̃δ0T1,n, . . . , δ

0T
p,n)

T, under the assumptions in Theorem 1, we have

‖̂δn − δ̃0n‖∞ = Op{(log n)1/2 J 1/2n,2 n
−1/2}. (20)

Proof Let δ̂n be the minimizer of L̃n(δ) and ‖̂δn −δ0n‖∞ ≤ an . By Taylor’s expansion,
we have

δ̂n − δ0n = {Ln (̃δ
0
n)/∂δ∂δT}−1{−Ln (̃δ

0
n)/∂δ}{1 + op(1)}.

Moreover,

−L̃n (̃δ
0
n)/∂δ

=
n∑

i=1

{Yi − ĝ(ΦT
i δ̃0n, δ̂)}[̂ġ(ΦT

i δ̃0n, δ̂)Φi + {̂λ(̂δ)T/∂δ}B1(Φ
T
i δ0n)]

= Θ1 + Θ2,

where

Θ1 =
n∑

i=1

{Yi − g(Ui )}Ψi ,

Θ2 =
n∑

i=1

{g(Ui ) − ĝ(ΦT
i δ̃0n, δ̂)}Ψi ,

and
Ψi = ̂̇g(ΦT

i δ̃0n, δ̂)Φi + {̂λ(̂δ)T/∂δ}B1(Φ
T
i δ0n).

By Berstein’s inequality Boor (2001), it can be proved that ‖Θ1‖∞ = Op((log n)
1/2n1/2 J−1/2

n,2 ). Next, we will show that ‖Θ2‖∞ = op(n1/2 J
−1/2
n,2 ). By Proposition 1

and the assumption in Theorem 1, we have

|g(Ui ) − ĝ(ΦT
i δ̃0n, δ̂)| = Op

(
an + J−α

n,1 + m−1
min +

√
log(n)Jn,1n−1

)
= op(1).

By the law of large numbers, we have
∑n

i=1 ‖Ψi‖∞ = Op(n1/2 J
−1/2
n,2 ). There-

fore, ‖Θ2‖∞ = op(n1/2 J
−1/2
n,2 ). Thus, we have ‖ − Ln (̃δ

0
n)/∂δ‖∞ = Op((log n)

1/2n1/2 J−1/2
n,2 ). Moreover,
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Ln(δ
0
n)/∂δ∂δT =

(
n∑

i=1

ΨiΨ
T
i

)
(1 + op(1))  nJ−1

n,2 .

Therefore, we have ‖̂δn − δ̃0n‖∞ = Op((log n)1/2n−1/2 J 1/2n,2 ). Since δ̃011,n ≤ · · · ≤
δ̃0Jn,21,n

, then with probability approaching 1, δ̂n = δ̂. �

Lemma 3 Under the assumptions in Theorem 1,

∥∥∥∥∥−L̃n (̃δ
0
n)/∂δ − 2

n∑
i=1

{Yi − g(Ui )}ġ(Ui ){Φi − E(Φi |Ui )}
∥∥∥∥∥

∞
= op(n

1/2 J−1/2
n,2 ).

Proof By (6), we have λ̂(δ) = {B(δ)TB(δ)}−1B(δ)TYn , where Yn = (Y1, . . . ,Yn)T.
Thus,

B1(Φ
T
i δ)T{∂λ̂(δ)/∂δT}

= B1(Φ
T
i δ)T{∂(̂λ(δ) − λ0n)/∂δT}

= B1(Φ
T
i δ)T∂[{B(δ)TB(δ)}−1B(δ)T(Yn − B(δ)λ0n)]/∂δT

= Ω1(δ) + Ω2(δ), (21)

where

Ω1(δ) = −B1(Φ
T
i δ)T{B(δ)TB(δ)}−1B(δ)T{ġn(ΦT

i δ)Φi , 1 ≤ i ≤ n}T,

Ω2(δ) = B1(Φ
T
i δ)T[∂[{B(δ)TB(δ)}−1B(δ)T]/∂δT]{Yn − B(δ)λ0n}.

Let
Ω̂1(δ) = −B1(Φ

T
i δ)T{B(δ)TB(δ)}−1B(δ)T{ġ(Ui )Φi , 1 ≤ i ≤ n}T.

Following similar reasoning as the proofs in Proposition 1, it can be shown that

‖Ω1(̃δ
0
n)

T − Ω̂1(̃δ
0
n)

T‖∞ = Op(J
1−α
n,1 + J−α

n,2 + m−1
min),

‖Yn − B(δ)λ0n‖∞ = Op(J
−α
n,1 + J−α

n,2 + m−1
min + (log n)1/2 J 1/2n,1 n

−1/2). (22)

Denote
A(δ) = {A1(δ), . . . , AJn,1(δ)}T = {B(δ)TB(δ)}−1B(δ)T1n .

By (19) and Berstein’s inequality in Boor (2001), we have

sup
1≤s≤Jn,1

|As (̃δ
0
n)| ≤ ‖{n−1B(̃δ0n)

TB(̃δ0n)}−1‖∞‖n−1B(̃δ0n)
T1n‖∞

= Op(Jn,1)Op(J
−1
n,1 ) = Op(1),

and thus with probability approaching 1, sup1≤s≤Jn,1
| Ȧs (̃δ

0
n)| ≤ C for some constant

0 < C < ∞ by the fact that Bs,1(u) and Ḃs,1(u) are functions with values bounded
between 0 and 1. Hence, with probability approaching 1,
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sup
1≤s≤Jn,1

‖∂As (̃δ
0
n)/∂δ‖∞ ≤ sup

1≤s≤Jn,1

‖ Ȧs (̃δ
0
n)‖∞ sup

1≤i≤n
‖Φi‖∞ ≤ C ′

for some constant 0 < C ′ < ∞. By B-spline properties, we have
∑

1≤s≤Jn,1

|Bs,1(Φ
T
i δ̃0n)| = O(1). Therefore,

‖Ω2(̃δ
0
n)

T‖∞ ≤
∑

1≤s≤Jn,1

|Bs,1(Φ
T
i δ̃0n)| sup

1≤s≤Jn,1

‖∂As (̃δ
0
n)/∂δ‖∞‖Yn − B(δ)λ0n‖∞

= O(1)Op(1)Op(J
−α
n,1 + J−α

n,2 + m−1
min + (log n)1/2 J 1/2n,1 n

−1/2)

= Op(J
−α
n,1 + J−α

n,2 + m−1
min + (log n)1/2 J 1/2n,1 n

−1/2). (23)

Moreover, by Condition (C3), for every ti j ∈ T , there exists ζn,k(ti j ) ∈ RJn,1 such
that |E{Xi,k(ti j )|Ui } − B1(Ui )

Tζn,k(ti j )| = O(J−1
n,1 ), and thus for every s and k,

∣∣∣∣∣∣E(ġ(Ui )Φi,sk |Ui ) − ġ(Ui )

mi∑
j=1

(ti, j+1 − ti j )Bs,2(ti j )B1(Ui )
Tζn,k(ti j )

∣∣∣∣∣∣
=

mi∑
j=1

(ti, j+1 − ti j )Bs,2(ti j )ġ(Ui )O(J−1
n,1 )

=
(∫

Bs,2(t)dt

)
ġ(Ui )O(J−1

n,1 + m−1
min)

= O{J−1
n,2 (J

−1
n,1 + m−1

min)}. (24)

Let

Ω̃1 = {Ω̃1,sk}
= −B1(Ui )

T(BTB)−1BT{ġ(Ui )Φi , 1 ≤ i ≤ n}T,

where B = [{B1(U1), . . . ,B1(Un)}T]n×Jn,1 . By (24) and Berstein’s inequality, we
have

sup
s,k

∣∣∣∣∣∣−Ω̃1,sk − ġ(Ui )

mi∑
j=1

(ti, j+1 − ti j )Bs,2(ti j )B1(Ui )
Tζn,k(ti j )

∣∣∣∣∣∣
= sup

s,k
|B1(Ui )

T(BTB)−1BT[ġ(Ui )Φi,sk − E(ġ(Ui )Φi,sk |Ui )

+O(J−1
n,2 J

−1
n,1 + J−1

n,2m
−1
min), 1 ≤ i ≤ n]|

= (J−1
n,2 + m−1

min)Op((log n)1/2 J 1/2n,1 n
−1/2) + O(J−1

n,2 J
−1
n,1 + J−1

n,2m
−1
min)

= Op((log n)1/2 J−1
n,2 J

1/2
n,1 n

−1/2+(log n)1/2m−1
min J

1/2
n,1 n

−1/2+ J−1
n,2 J

−1
n,1+ J−1

n,2m
−1
min),
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and thus

sup
s,k

| − Ω̃1,sk − E(ġ(Ui )Φi,sk |Ui )|

= Op((log n)1/2 J−1
n,2 J

1/2
n,1 n

−1/2+(log n)1/2m−1
min J

1/2
n,1 n

−1/2+ J−1
n,2 J

−1
n,1+ J−1

n,2m
−1
min).

Furthermore, it can be proved that ‖Ω̂1(̃δ
0
n)

T − Ω̃T
1 ‖∞ = O(J−α

n,2 +m−1
min). Therefore,

we have

‖Ω̂1(̃δ
0
n)

T + E(ġ(Ui )Φi |Ui )‖∞
= Op((log n)1/2 J−1

n,2 J
1/2
n,1 n

−1/2 + J−1
n,2 J

−1
n,1 + m−1

min + J−α
n,2 ). (25)

By (21), (22), (23) and (25), we have

‖{̂λ(̃δ0n)
T/∂δ}B1(Φ

T
i δ̃0n) + E(ġ(Ui )Φi |Ui )‖∞

= Op(J
−1
n,2 J

−1
n,1 + m−1

min + J−α
n,2 + J 1−α

n,1 + (log n)1/2 J 1/2n,1 n
−1/2).

Let

Δi = [̂ġ(ΦT
i δ̃0n, δ̃

0
n)Φi + {̂λ(̃δ0n)

T/∂δ}B1(Φ
T
i δ̃0n)] − [ġ(Ui )Φi − E(ġ(Ui )Φi |Ui )].

By the above result and Proposition (1), we have

‖Δi‖∞
= Op{(J 1−α

n,1 + Jn,1 J
−α
n,2 + Jn,1m

−1
min + (log n)1/2 J 3/2n,1 n

−1/2)(J−1
n,2 + m−1

min)}
+Op(J

−1
n,2 J

−1
n,1 + m−1

min + J−α
n,2 + J 1−α

n,1 + (log n)1/2 J 1/2n,1 n
−1/2)

= Op(J
−1
n,2 J

−1
n,1 + m−1

min + J−α
n,2 + J 1−α

n,1 + (log n)1/2 J 1/2n,1 n
−1/2

+Jn,1 J
−α−1
n,2 + Jn,1 J

−1
n,2m

−1
min + (log n)1/2 J 3/2n,1 J−1

n,2n
−1/2). (26)

∂ L̃n (̃δ
0
n)/∂δ

= −2
n∑

i=1

{Yi − ĝ(ΦT
i δ0n, δ

0
n)}

× [̂ġ(ΦT
i δ0n, δ

0
n)Φi + {̂λ(δ0n)

T/∂δn}B1(Φ
T
i δ0n)](1 + op(1))

= −2(Θ1 + Θ2 + Θ3 + Θ4 + Θ5)(1 + op(1))

where

Θ1 =
n∑

i=1

{Yi − g(Ui )}ġ(Ui ){Φi − E(Φi |Ui )},

Θ2 =
n∑

i=1

{g(Ui ) − ĝ(ΦT
i δ0n, δ

0
n)}ġ(Ui ){Φi − E(Φi |Ui )},
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Θ3 =
n∑

i=1

{Yi − g(Ui )}Δi ,

Θ4 =
n∑

i=1

{g(Ui ) − ĝ(ΦT
i δ0n, δ

0
n)}Δi . (27)

In the following, we will prove that ‖Θi‖∞ = op(n1/2 J
−1/2
n,2 ) for i = 2, 3, 4. By (8),

we have
|̂g(ΦT

i δ0n, δ
0
n) − ĝ(Ui )| = O(J−α

n,2 + m−1
min). Moreover, we have ‖Φi‖∞ = O(J−1

n,2 +
m−1

min). Thus,

‖Θ2 − Θ̃2‖∞ = O{n(J−α
n,2 + m−1

min)(J
−1
n,2 + m−1

min)},

where Θ̃2 = Θ̃12 + Θ̃22,

Θ̃12 =
n∑

i=1

{g(Ui ) − ĝg(Ui )}ġ(Ui ){Φi − E(Φi |Ui )},

Θ̃22 = −
n∑

i=1

ĝe(Ui )ġ(Ui ){Φi − E(Φi |Ui )},

in which ĝg(Ui ) = B1(Ui )
T(BTB)−1BTgn and ĝg(Ui ) = B1(Ui )

T(BTB)−1BTεn .

By law of large numbers and |g(Ui ) − ĝg(Ui )| = Op(J
−α
n,1 + J 1/2n,1 /n1/2), we have

‖Θ̃12‖∞ = op(n1/2 J
−1/2
n,2 ). Moreover,

‖Θ̃22‖∞ ≤ ‖
n∑

i=1

B1(Ui )ġ(Ui ){Φi − E(Φi |Ui )}‖∞‖(BTB)−1BTεn‖∞

= Op((log n)1/2 J−1/2
n,1 n1/2)Op((log n)1/2 J 1/2n,1 n

−1/2) = Op(log n).

Therefore, for n1/2 J−α−1/2
n,2 = o(1), n1/2m−1

min J
−1/2
n,2 = o(1) and n1/2m−2

min = o(1),

we have ‖Θ2‖∞ = op(n1/2 J
−1/2
n,2 ). Similarly, it can be proved that ‖Θ3‖∞ =

op(n1/2 J
−1/2
n,2 ). By Proposition 1 and (26), for n1/(2α+1) � Jn,2 � n1/3(log n)−1,

n1/(2α+3) � Jn,1 � Jn,2 � J 2n,1, and n1/2m−1
min J

−1/2
n,2 = o(1), we have

‖Θ4‖∞ = n × Op(J
−α
n,1 + J−α

n,2 + m−1
min + (log n)1/2 J 1/2n,1 n

−1/2)

×Op(J
−1
n,2 J

−1
n,1 + m−1

min + J−α
n,2 + J 1−α

n,1 + (log n)1/2 J 1/2n,1 n
−1/2

+Jn,1 J
−α−1
n,2 + Jn,1 J

−1
n,2m

−1
min + (log n)1/2 J 3/2n,1 J−1

n,2n
−1/2)

= op(n
1/2 J−1/2

n,2 ).
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Proof of Theorem 1 By (20), we have

sup
t∈T

|β̂k(t) − βk,n(t)|  ‖̂δ − δ̃0n‖∞ = Op{(log n)1/2 J 1/2n,2 n
−1/2},

and by (8) and n1/2 J−α−1/2
n,2 = o(1),

sup
t∈T

|β̂k(t) − βk(t)| ≤ sup
t∈T

|β̂k(t) − βk,n(t)| + sup
t∈T

|βk,n(t) − βk(t)|

= Op{(log n)1/2 J 1/2n,2 n
−1/2 + J−α

n,2 } = Op{(log n)1/2 J 1/2n,2 n
−1/2}.

Therefore, result (i) in Theorem 1 is proved. By (27), ∂ L̃n (̃δ
0
n)/∂δn = −2(Π1 +Θ3 +

Θ4)(1 + op(1)), where

Π1 =
n∑

i=1

{Yi − ĝ(ΦT
i δ0n, δ

0
n)}ġ(Ui ){Φi − E(Φi |Ui )}.

By (26),

∂Π1/∂δT = −
∑n

i=1
ġ(Ui )

2{Φi − E(Φi |Ui )}⊗2 + op(nJ
−1
n,2 ).

Therefore,

∂ L̃n (̃δ
0
n)/∂δ∂δT = 2

n∑
i=1

ġ(Ui )
2{Φi − E(Φi |Ui )}⊗2 + op(nJ

−1
n,2 ).

By Taylor expansion, Lemma 1, Berstein’s inequality in Boor (2001) and the above
result, we have

δ̂ − δ̃0n = −{∂Ln (̃δ
0
n)/∂δ∂δT}−1{∂ L̃n (̃δ

0
n)/∂δ}{1 + op(1)}

=
{

n∑
i=1

E(Ψ ⊗2
i )

}−1 n∑
i=1

εiΨi + op(J
1/2
n,2 n

−1/2). (28)

Result (ii) follows from Lindeberg–Feller Central Limit Theorem and Slutsky’s
Theorem. ��

Proof of Theorem 2 By (20), Proposition 1 and the conditions in Theorem 2, we have
supu∈I |̂g(u; δ̂) − g(u)| = Op{(log n)1/2 J 1/2n,2 n

−1/2 + J−α
n,1 }. ��

Proof of Theorem 3 Let Ξi = E(Ψ ⊗2
i ) and Πi = E(σ 2(Ui )Ψ

⊗2
i ). Let Z1, . . . ,Zn

be independent random variables from MVN(0, IpJn,2×pJn,2), where Zi = {Zi,sk}.
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Define

ηk(t) = σ−1
n,k (t)B2(t)

T�k

{
n−1

n∑
i=1

Ξi

}−1

n−1
n∑

i=1

εiΨi ,

η0k (t) = σ−1
n,k (t)B2(t)

T�k

{
n−1

n∑
i=1

Ξi

}−1

n−1
n∑

i=1

Π
1/2
i Zi .

By the fact that β̂k − βk,n = σ−1
n,k (t)B2(t)T�k (̂δ − δ̃0n), (8) and (28), we have

supt∈T |β̂k(t) − βk(t) − ηk(t)| = op(J
1/2
n,2 n

−1/2). (29)

It is apparent that η0k (t) is a Gaussian process with E{η0k (t)} ≡ 0, Var{η0k (t)} ≡ 1, and
covariance matrix given in (9). Therefore, we have

P{supt∈T |η0k (t)| ≤ Qk(α)} = 1 − α. (30)

Next, we will prove that supt∈T |ηk(t) − η0k (t)| = op(1). Let ei = {ei,sk} =
Π

−1/2
i εiΨi . Denote Π

1/2
i = {ξi,s′k′,sk}. There exists a constant 0 < C < ∞, such

that sup |ξi,s′k′,sk | ≤ C J−1/2
n,2 . Then, E(ei ) = 0 and Var(ei ) = IpJn,2×pJn,2 .There exist

s, s′, k, k′ such that

∥∥∥∥∥n−1
n∑

i=1

Π
1/2
i (ei − Zi )

∥∥∥∥∥
∞

≤ n−1 pJn,2

∣∣∣∣∣
n∑

i=1

ξi,s′k′,s,k(ei,sk − Zi,sk)

∣∣∣∣∣ .

For notation simplicity, let ξi = ξi,s′k′,s,k . Order all ξi , 1 ≤ i ≤ n, from the largest
to the smallest such that ξ(1) ≥ ξ(2) ≥ · · · ≥ ξ(n). Moreover, Zi,sk can be written
as Zi,sk = W (i) − W (i − 1), where {W (s), 0 ≤ s < ∞} is a Wiener process
that is a Borel function of Zi,sk . Let Si = ∑i

i ′=1 ei ′,sk and S0 = 0. Define Mn =
max1≤s≤n |Ss − W (s)|. By Theorem 2.6.2 in Csőrgő and Révész (1981), we have
Mn = Op(log n). Then, allowdisplaybreaks

∥∥∥∥∥n−1
n∑

i=1

Π
1/2
i (ei − Zi )

∥∥∥∥∥
∞

≤ n−1 pJn,2

{
|ξn(Sn − W (n))| +

∣∣∣∣∣
n−1∑
i=1

(ξi − ξi+1)(Si − W (i))

∣∣∣∣∣
}

≤ n−1 pJn,2Mn

(
C J−1/2

n,2 +
n−1∑
i=1

|ξi − ξi+1|
)

= n−1 pJn,2Mn(C J−1/2
n,2 + |ξ1 − ξn|)

≤ 3Cn−1 pJ 1/2n,2 Mn = Op(J
1/2
n,2 n

−1 log n).
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Therefore,

supt∈T |ηk(t) − η0k (t)|

≤ supt∈T

⎧⎨
⎩|σ−1

n,k (t)|
Jn,2∑
r=1

|Br,2(t)|
⎫⎬
⎭ ‖�k‖∞

×
∥∥∥∥∥∥
{
n−1

n∑
i=1

Ξi

}−1
∥∥∥∥∥∥∞

∥∥∥∥∥n−1
n∑

i=1

Π
1/2
i (ei − Zi )

∥∥∥∥∥
∞

= Op(n
1/2 J−1/2

n,2 )Op(Jn,2)Op(J
1/2
n,2 n

−1 log n)

= Op(Jn,2n
−1/2 log n) = op(1). (31)

Thus, Theorem follows from (29), (30) and (31). ��
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