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Abstract The problem of nonparametric estimation of the hazard rate function is
considered and the theory of sharp minimax estimation for two global and two local
Sobolev classes is developed. Several interesting outcomes are as follows: (i) Clas-
sical global and local function classes imply different sharp constants of the MISE
convergence. This is in contrary to the density estimation where sharp constants are
the same. (ii) Two global classes imply different sharp constants and correspondingly
require using different linear estimates. (iii) Two local classes imply the same sharp
constant, and nonetheless require different linear estimates to attain this constant. (iv)
A sharp-minimax data-driven estimator is proposed that adapts to the smoothness of
the hazard rate and to an unknown underlying function class, and it is tested for small
samples via a numerical study.

Keywords Asymptotic · Coefficient of difficulty · Global and local minimax ·
MISE · Small sample

1 Introduction

Let X be a nonnegative continuous random variable. It can be a lifetime, or the time
to an event of interest (which can be the time of failure of a device, or the time of an
illness relapse, or the time of repairing a strain break in DNK), or an insurance loss,
or a commodity price. In all these cases, it is of interest to assess the risk associated
with X via the so-called hazard rate function
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26 S. Efromovich

h(x) := lim
v→0

Pr(x ≤ X ≤ x + v|X ≥ x)

v
= p(x)

G(x)
, G(x) > 0, x ≥ 0, (1)

where p(x) is the probability density of X and G(x) := ∫∞
x p(u)du is the survivor

function. If one thinks about X as a time to an event-of-interest, then h(x)dx represents
the instantaneous likelihood that the event occurs within the interval (x, x +dx) given
that the event has not occurred at time x . The hazard rate quantifies the trajectory
of imminent risk, and it may be referred to by other names in different sciences, for
instance as the failure rate in reliability theory and the force of mortality in sociology.

Let us remember some classical properties and examples of the hazard rate that
will be used in the paper. The hazard rate, similarly to the probability density or the
survivor function, characterizes the random variable X . Namely, if the hazard rate is
known, then the corresponding probability density is

p(x) = h(x)e− ∫ x0 h(v)dv, (2)

and the survivor function is
G(x) = e− ∫ x0 h(v)dv. (3)

The preceding identity follows from integrating both sides of h(x) = −[dG(x)/dx]/
G(x) and then usingG(0) = 1, and (2) follows from (1) and the verified (3). A familiar
example is the constant hazard rate of an exponential random variable (the rate is equal
to the reciprocal of the mean), and inverse is also valid—a constant hazard rate implies
exponential distribution. A constant hazard rate has coined the name memoryless for
exponential distribution. Another interesting example is Weibull distribution where,
depending on the shape parameter, the hazard rate can decrease or increase. One of
the important properties of the hazard rate is that hazard rate of the minimum of two
independent random variables is equal to the sum of their hazard rates. As a result,
we can conclude that there is no bona fide restriction on the shape of a hazard rate
function. On the other hand, similarly to the probability density, the hazard rate is
nonnegative and has the same smoothness as the corresponding density. The last but
not the least remark is that all these examples and properties can be rephrased and
correspondingly referred to when one is interested in the study of a hazard rate over
some interval, say [a, a + 1] with a ≥ 0 and G(a) > 0. Indeed, for x ∈ [a, a + 1]
identity (3) yields G(x) = G(a)e− ∫ xa h(v)dv , and this explains the remark made. For
instance, if h(x) = C is constant on [a, a+1] then p(a+z) = CG(a)e−Cz , z ∈ [0, 1]
and we may refer to the distribution (random variable) as memoryless on the interval.
Because the hazard rate is not integrable on its support, that is a hazard rate must
satisfy

∫∞
0 h(x)dx = ∞, it is natural to study hazard rate estimation over a finite

interval, which without loss of generality can be [a, a + 1], a ≥ 0.
Now we are in a position to formulate the aim of this paper. Based on a sample

X1, X2, . . . , Xn of size n from the random variable of interest X , we would like to:
(i) Estimate hazard rate h(x) of X over an interval [a, a + 1], a ≥ 0 under a minimax
mean integrated squared error (MISE) criterion; (ii) Find sharp lower bounds for a
minimax MISE; (iii) Propose a data-driven estimate that attains lower bounds—a
so-called adaptive and efficient estimate.
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Minimax theory of nonparametric hazard rate estimation 27

Nonparametric estimation of the hazard rate is a familiar topic in the literature.
Different types of estimators, including kernel, classical orthogonal series and mod-
ern wavelet methods, have been proposed. A number of adaptive, to smoothness of an
underlying hazard rate function, procedures motivated by known ones for the proba-
bility density have been developed. The interested reader can find a relevant discussion
and thorough reviews in a number of classical and more recent publications including
Watson and Leadbetter (1964), Rice and Rosenblatt (1976), Prakasa Rao (1983), Cox
and Oakes (1984), Silverman (1986), Patil (1993, 1997), Gonzalez-Manteiga et al.
(1996), Dögler and Rüschendorf (2002), Wu and Wells (2003), Huber and MacGib-
bon (2004), Wang (2005), Müller andWang (2007). Interesting results, including both
estimation and testing, have been obtained for the case of known restrictions on the
shape of hazard rate, see a discussion in Jankowski and Wellner (2009).

The literature review shows that, despite the interest in developing the theory of
nonparametric hazard rate estimation, so far all publications havebeendevoted to either
consistent or rate-minimax estimation of the hazard rate with no results about sharp
minimax estimation when the best rate and constant are studied simultaneously. Why?
This is a good question because theory of a closely related problem of sharp minimax
estimation of the probability density has been known for almost 30years. Namely, a
sharp minimax lower bound for estimation of differentiable densities under the MISE
criterion was obtained in Efromovich and Pinsker (1982) for a global Sobolev function
class. Furthermore, Pinsker (1980)’s estimator, proposed for the filtering model and
based on a known underlying Sobolev class, has happened to be also sharp minimax
for the density. A bit later Efromovich (1985) suggested a data-driven estimator that
attained the sharp constant. Because the estimator used data to adjust its performance
to unknown smoothness of an underlying density, it was called adaptive. Golubev
(1991) made an important addition to those results by showing that even if a global
Sobolev class is replaced by a local one, where all considered densities are near (in
L∞-norm) a given pivotal density, the sharp minimax lower bound remains the same.
A practical significance of his result is that the pivot does not affect the sharp constant
and known sharp estimators are still optimal under the local minimax.

Knowing these theoretical results for the density, together with the fact that the
hazard rate is the density divided by the survivor function (which is smoother than the
density and can be estimated with the parametric rate), it is reasonable to hope that
creating a sharp minimax theory for the hazard rate is a straightforward undertaking.
The paper shows that this is not the case. The main issue arises when one wants to
follow the approach of Efromovich and Pinsker (1982) for obtaining a lower bound
for the minimax MISE. The approach yields a bound which is too low for all known
estimators, and then either the lower bound should be increased or a new estimator is
proposed. The paper shows that the former is the way to solve the issue. Remember
that a minimax lower bound is obtained via replacing aminimax risk by an appropriate
Bayes one, and the prior distribution used in the density case has happened to be too
simplistic for the hazard rate due to the presence of the “nuisance” survivor function.
Furthermore, that relatively smooth and related to the estimand nuisance function
(the survival function) creates several interesting phenomena unknown in the density
estimation literature. To warm up the reader, let us present some. (i) Sharp constants
are different for the Pinsker’s global and Golubev’s local function classes while they
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are the same for the probability density (as well as regression and spectral density)
setting. In other words, the pivot affects the sharp constant and then requires using
special shrinkage coefficients in the Pinsker’s estimator. Let us stress that no longer the
same Pinsker’s estimator is sharp minimax for these two classes. (ii) Different sharp
constants are obtained for two global Sobolev classes that are often used interchange-
ably when the minimax rate is of interest. This shows that sharp-minimax estimation
of the hazard rate is sensitive to minor changes in an underlying functional class. (iii)
Two local Sobolev classes imply the same sharp minimax constant but require using
different estimates to attain the constant. Furthermore, for one local class, the Pinsker
estimator is not even rateminimax. This is the first known example when this estimator
fails to deliver a minimax convergence. Other interesting findings will be presented
shortly.

As it is clear from the above-mentioned results, to create a feasible minimax theory
for the hazard rate, it is prudent to consider an array of functional classes with the
same smoothness, here the same number α ∈ {1, 2, . . .} of derivatives. Specifically,
two global and two local function classes, defined in Sect. 2, will be considered.
Furthermore, let us explain how a game theory can help us to understand a minimax
approach applied to an array of functional classes. Rules of the correspondingminimax
game are as follows. There are three players: the dealer, nature and the statistician. The
game is defined by: (a) An array {S i (P), P ∈ Pi , i = 1, 2, . . .} of function classes Si ;
(b) The set of assumptions (rules) Pi about possible parameters P for each class; (c)
The risk used to measure results of the game. This information is known to all players.
The game begins with the dealer dealing a particular function class and its parameters,
satisfying rules of the game, to nature. Then for each n nature chooses a hazard rate h
from the dealt class and generates a sample of size n from this hazard rate. The dealer
and the statistician, using the sample, estimate h. The dealer knows everything apart
of an underlying hazard rate h chosen by nature, the statistician knows the sample
and all rules of the game. Nature tries to select the most difficult hazard rate h for
estimation, and the dealer and the statistician try to estimate it with the smallest risk.

Now let us complement this definition of the minimax game by several comments.

Remark 1 The dealer has an advantage of knowing the dealt class and its parameters
and, therefore, the dealer’s risk may serve as a lower bound (benchmark) for the
statistician. All known in the literature minimax nonparametric lower bounds are
bounds for dealer-estimators, that is, estimators proposed by the dealer. A lower bound
is called minimax (more precisely asymptotically rate- or sharp-minimax depending
on either only rate or both rate and constant are studied) if it is attained, as the sample
size n increases, by a dealer-estimate. A familiar example is the rate-minimax bound
n−2α/(2α+1) for the MISE convergence of α-fold differentiable functions, with the
most traditional assumption being the twice-differentiability (α = 2 and the rate is
n−4/5); see Efromovich (1999) and, for the hazard rate case, a review inWang (2005).
The literature may refer to those procedures as estimates, but in our terminology
they should be referred to as dealer-estimates. If the statistician can suggest its own
estimate (that is a data-driven estimate)which attains the dealer’s lower bound, then the
estimate is called rate- or sharp-minimax adaptive, and in the case of sharp-minimaxity
the estimate can be also referred to as efficient. Of course, the art of obtaining a
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Minimax theory of nonparametric hazard rate estimation 29

meaningful lower bound is to propose a dealer whose performance can be matched by
the statistician. We shall continue this discussion shortly in Remark 2.

Remark 2 Let us make two more comments. Under a minimax approach, a feasible
choice of an array of functional classes is important. One of the familiar criticisms of
the minimax methodology is that it cares only about the best strategy of nature (here
the worst hazard rate for estimation); see Lehmann (1983). To overcome this drawback
and to make a minimax methodology more practical, in parametric inference it has
been proposed to consider both a global minimax over a large set of parameters and
a local minimax over a sequence of classes converging (in some norm) to a pivotal
parameter; see a discussion in Ibragimov and Khasminskii (1981). In what follows we
will use this approach and expand it upon the nonparametric inference. The second
comment is about the notion of adaptivity. As it has been explained in Remark 1, this
notion is traditionally used for an estimator that adapts its performace toward unknown
parameters of an underlying function class (like the smoothness of an estimated curve).
So far there has been no need to consider a broader notion of adaptation because for
density and regression settings, dealer’s lower bounds for global and local minimax
approaches have coincided. As we shall see shortly in Sect. 2, this is not the case for
hazard rate estimation. As a result, a data-driven hazard rate estimator should adapt to
an unknown underlying function class (the new task) and unknown parameters of that
class (the traditional task). One of the ways to solve the problem is via aggregation of
minimax procedures for all considered classes, but the paper proposes a much simpler
approach.

Remark 3 If a spectator is allowed to observe a minimax game and to know both the
dealt function class and the hazard rate chosen by nature, then the spectator has an
advantage over the dealer. In the nonparametric literature, thanks toDavidDonoho and
Ian Johnstone, a spectator is called an oracle, and oracle’s estimates may inspire con-
struction of a good data-driven estimator. As we shall see shortly, the oracle approach
becomes handy when a data-driven estimator should adapt to an array of function
classes.

The paper is organized as follows. Section 2 is devoted to lower bounds for four
function classes motivated by the same Sobolev smoothness. Section 3 is devoted to
upper bounds. Section 4 is devoted to a numerical study. Section 5 presents discussion
of obtained results. Proofs are deferred to Sect. 6.

2 Lower minimax bounds

Lowerminimaxbounds are calculated for twoglobal and two local Sobolev classes.All
these classes have the same Sobolev’s order α of smoothness (here and in what follows
α is a positive integer and the considered functions are α-fold differentiable), and this
will allow us to analyze the effect of a functional class on sharp-minimax estimation.
The studied risk is the MISE over the unit interval [a, a + 1], a ≥ 0 (remember
our discussion in the Introduction). Remember that for α-fold differentiable functions
the familiar minimax rate n−2α/(2α+1) of the MISE convergence is well known for

123



30 S. Efromovich

different statisticalmodels includinghazard rate, density and regression; see Ibragimov
and Khasminskii (1981), Silverman (1986), Efromovich (1999), Zhao (2000), Wang
(2005), and Johnstone (2011).

In what follows ϕ0(x) = 1 and ϕ j (x) = 21/2 cos(π j (x−a)), j > 0 are elements of
the classical cosine basis on the interval ([a, a+1]),α is a positive integer number, θ j =
∫ a+1
a ϕ j (x)h(x)dx are Fourier coefficients of h(x) on [a, a + 1]. Eh{·} denotes the
expectation given a hazard rate function h (remember that the hazard rate characterizes
a random variable), and os(1) are generic sequences that are vanishing as s → ∞.

The first function class is a classical global Sobolev class of order α,

S1(α, Q0, Q,G(a))

=
⎧
⎨

⎩
h : h(x) =

∞∑

j=0

θ jϕ j (x), x ∈ [a, a + 1]; h(x) ≥ 0, x ≥ 0;

e− ∫ a0 h(x)dx = G(a);
∞∑

j=1

(π j)2αθ2j ≤ Q < ∞, 0 < θ0 ≤ Q0 < ∞
⎫
⎬

⎭
. (4)

Note that G(a) is the value of the survivor function at the left end of the studied unit
interval, and if a = 0 then G(0) = 1. In what follows G−k(x) := [G(x)]−k .

Theorem 1 (Global Minimax I) The following lower bound for the minimax MISE of
dealer-estimators is valid:

inf
ȟ∗

sup
h∈S1(α,Q0,Q,G(a))

Eh

{∫ a+1

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, Q)([G−1(a)(eQ0 − 1)]n−1)2α/(2α+1)(1 + on(1)), (5)

where the infimum is taken over all possible dealer-estimators ȟ∗, based on a
sample X1, . . . , Xn from a distribution with the hazard rate h and parameters
(α, Q0, Q,G(a)), and

P(u, v) := v1/(2u+1)(2u + 1)1/(2u+1)
[

u

π(u + 1)

]2u/(2u+1)

. (6)

Following the terminology of Efromovich (1999), P(u, v) is referred to as the
Pinsker function, and factor G−1(a)(eQ0 − 1) is called the coefficient of difficulty of
estimation of the hazard rate over the interval [a, a + 1] for the global Sobolev class.

Now let us introduce a second global functional class which is also well known in
the literature:
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S2(α, c1, c2, Q,G(a))

=
⎧
⎨

⎩
h : h(x) =

∞∑

j=0

θ jϕ j (x), x ∈ [a, a + 1]; e− ∫ a0 h(x)dx = G(a), 0 < G0(a)

≤ 1, h(x) ≥ 0, x ≥ 0;
∞∑

j=0

[c1 + c2(π j)2α]θ2j ≤ Q < ∞, c1 > 0, c2 > 0

⎫
⎬

⎭
.

(7)

The difference between the two global Sobolev classes is that the latter treats θ0 (the
average value of the hazard rate over [a, a+1]) similarly to other Fourier coefficients.

Set Q∗
0 to be a positive root of the equation g(z) = Q where g(z) := c1z(z−α−1+

α−1ez). Function g(z) is strictly increasing in z > 0 and, therefore, Q∗
0 is unique and

well defined.

Theorem 2 (Global Minimax II) The following lower bound for the minimax MISE
of dealer-estimators is valid:

inf
ȟ∗

sup
h∈S2(α,c1,c2,Q,G(a))

Eh

{∫ a+1

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, [Q − c1(Q
∗
0)

2]/c2)([G−1(a)(eQ
∗
0 − 1)]n−1)2α/(2α+1)(1 + on(1)), (8)

where the infimum is taken over all possible dealer-estimators ȟ∗ based on a
sample X1, . . . , Xn from a distribution with the hazard rate h(x) and parameters
(α, c1, c2, Q,G(a)), and function P(u, v) is defined in (2.3).

Note the interesting structure of the sharp constant in (8). To the best of the author’s
knowledge, this is the first known sharp result for the global Sobolev class (7).

Now let us consider two local classes where estimated functions are not far from
a pivotal one. We begin with a local Sobolev class whose motivation goes back to
Golubev (1991) where the density estimation has been considered. For our setting let
h0(x) denote the pivot chosen by the dealer, and define a Golubev’s local Sobolev
class as

S3(α, Q, h0, ρ, β)

:=
⎧
⎨

⎩
h : h(x) = h0(x) +

∞∑

j=1

θ jϕ j (x)I (x ∈ [a, a + 1]) ;

∞∑

j=1

(π j)2αθ2j ≤ Q < ∞, sup
x∈[a,a+1]

∣
∣
∣
∣
∣
∣

∞∑

j=1

θ jϕ j (x)

∣
∣
∣
∣
∣
∣
< ρ; e−

∫ a
0 h0(v)dv

=: G0(a), 0 < G(a) ≤ 1 ;

inf
x∈[a,a+1] h0(x) ≥ ρ > 0;

∞∑

j=1

j2α+β

[∫ a+1

a
h0(x)ϕ j (x)dx

]2

< ∞, β > 0

⎫
⎬

⎭
. (9)
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The underlying idea of this class is that all considered functions are not farther than
ρ in L∞([a, a + 1])-norm from the pivot. This is why the class is called local. The
last line in (9) indicates that the pivot should be smoother than a “regular” function
from the class. Golubev (1991) shows that the pivot does not affect the sharp constant
in the probability density, regression and spectral density estimation problems. Next
theorem shows that the pivot does affect the constant in the hazard rate case.

Theorem 3 (Golubev’s Local Minimax) The following lower bound for the Golubev
local minimax MISE holds:

inf
ȟ∗

sup
h∈S3(α,Q,h0,ρ,β)

Eh

{∫ a+1

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, Q)([G−1
0 (a)(e

∫ a+1
a h0(u)du − 1)]n−1)2α/(2α+1)(1 + on(1)), (10)

where the infimum is taken over all possible dealer-estimators ȟ∗ based on a
sample X1, . . . , Xn from a distribution with the hazard rate h(x) and parameters
(α, Q, h0, ρ, β), and P(α, Q) is defined in (6).

There are several issues, related to the classical Golubev’s local minimax, that we
would like to explore further. First, we are still far from the ideal (remember Remark 2)
case of a single underlying hazard rate function. What will be if a low-frequency part
of the pivot is also the low-frequency part of an underlying hazard rate? Also, in (9)
the parameter ρ, controlling how close a hazard rate must be to the pivot, may be as
small as desired, but can it vanish as sample size increases? Also, can the pivot be less
smooth than a regular function from a local class? A weakly restricted local Sobolev
class, defined below, takes into account these issues. Set

S4(α, Q, h0, ρn , Mn)

:=
⎧
⎨

⎩
h : h(x) = h0(x)I (x /∈ [a, a + 1]) +

⎡

⎣
Mn−1∑

j=0

∫ a+1

a
h0(u)ϕ j (u)duϕ j (x)

+
∑

j≥Mn

θ jϕ j (x)

⎤

⎦ I (x ∈ [a, a + 1]), h(x) ≥ 0 ;

×
∑

j≥Mn

(π j)2αθ2j ≤ Q < ∞, sup
x∈[a,a+1]

∣
∣
∣
∣
∣
∣

∑

j≥Mn

θ jϕ j (x)

∣
∣
∣
∣
∣
∣
< ρn ;

× e−
∫ a
0 h0(v)dv =: G0(a) > 0,

∞∑

j=0

∣
∣
∣
∣
∣

∫ a+1

a
ϕ j (x)h0(x)dx

∣
∣
∣
∣
∣
< ∞, min

x∈[a,a+1] h0(x) > 0 ;

× ρn = on(1), ρn ≥ ln(n)n−α/(2α+1); M−1
n = on(1), 1 ≤ Mn ≤ n1/(2α+1)/ ln2(n)

⎫
⎬

⎭
.

(11)

Let us comment on the weakly restricted local class. Low-frequency (in Fourier
frequency domain) parts of all functions from this class are equal to the low-frequency
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part of the pivot and, therefore, known to the dealer. The cardinality of known low-
frequency Fourier coefficients is Mn and it increases to infinity as n → ∞. Note that
Mn may increase as fast as n1/(2α+1)/ ln2(n). Further, all functions from the class are
not farther than ρ′

n := ρn + 21/2
∑∞

j=Mn
| ∫ a+1

a ϕ j (v)h0(v)dv|, in L∞([a, a + 1])-
norm, from the pivot. According to the third and fourth lines in (11), ρ′

n = on(1), and
thus the class shrinks toward the pivot. Finally, the third line in (11) imposes a rather
mild restriction on smoothness of the pivot, in particular any Lipschitz function of
order 1/2 + ρ, ρ > 0 satisfies the restriction.

Theorem 4 (Weakly Restricted Local Minimax) The following lower bound for the
weakly restricted local minimax MISE holds:

inf
ȟ∗

sup
h∈S4(α,Q,h0,ρn ,Mn)

Eh

{∫ a+1

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, Q)([G−1
0 (a)(e

∫ a+1
a h0(u)du − 1)]n−1)2α/(2α+1)(1 + on(1)), (12)

where the infimum is taken over all possible dealer-estimators ȟ∗ based on a
sample X1, . . . , Xn from a distribution with the hazard rate h and parameters
(α, Q, h0, ρn, Mn), and P(α, Q) is defined in (6).

The important outcome of this theorem is that despite the fact that the weakly
restricted local Sobolev class shrinks toward the pivot, all its functions have the same
low-frequency component known to the dealer, and the pivot may be rougher than
a typical function from the class, the sharp minimax constant is the same as for the
Golubev’s local class. This answers the above-raised questions about the Golubev’s
class, but then is this function class of any interest on its own? As we shall see shortly,
the answer is “yes” because for the weakly restricted class the dealer no longer can
use a Pinsker’s estimate to attain the sharp constant.

3 Efficient and adaptive estimation

The aim of this section is twofold. First, we are verifying that lower bounds for the
MISE of dealer-estimators, presented in Sect. 2, are sharp, that is, they are attainable
by dealer-estimators. Second, a data-driven estimator is proposed which adapts to both
the smoothness of an underlying hazard rate and an underlying functional class. That
estimator will be constructed using an oracle approach and the blockwise-shrinkage
methodology.

We begin with verification that all four lower bounds of Sect. 2 are sharp and attain-
able by dealer-estimators. Following the methodology of Efromovich and Pinsker
(1982), introduce a family of Pinsker’s dealer-estimators of an underlying hazard rate
h(x) for x ∈ [a, a + 1],

ȟ(x, J (n), α, {θ̂ j }) :=
J (n)∑

j=0

[1 − ( j/J (n))α]θ̂ jϕ j (x), J (n) ∈ {0, 1, . . . , n}. (13)
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34 S. Efromovich

Here ϕ0(x) = 1, ϕ j (x) = √
2 cos(π j (x−a)), j = 1, 2, . . . are elements of the cosine

basis on [a, a + 1],

θ̂ j :=
n∑

l=1

ϕ j (Xl)η
−1
l I (Xl ∈ [a, a + 1]) (14)

are estimates of Fourier coefficients θ j := ∫ a+1
a h(x)ϕ j (x)dx = Eh{ϕ j (X)G−1(X)I

(X ∈ [a, a + 1])} of an underlying hazard rate motivated by the plug-in sample mean
estimator,

ηl :=
n∑

s=1

I (Xs ≥ Xl) (15)

is the antirank of Xl (note that it is at least 1 and, therefore, its reciprocal always exists,
and ηl/n is a feasible estimate of G(Xl)), and I (·) is the indicator. To get a particular
Pinsker’s estimator, the dealer should specify J (n). Let us stress that so far for all
settings, involving the probability density, regression and spectral density, a Pinsker’s
dealer-estimator (13) has implied sharp-minimax estimation whenever θ̂ j was chosen
correctly. Set

bn := [n(2α + 1)(α + 1)/(απ2α)]1/(2α+1), (16)

remember that 
z� denotes the largest integer smaller than z, Q∗
0 is defined in the

paragraph above Theorem 2, and define specific dealer-estimators for four functional
classes Si , i = 1, . . . , 4 considered in Sect. 2,

ȟ1(x) := ȟ(x, J1, α, {θ̂ j }) where J1 := 
[QG(a))/(eQ0 − 1)]1/(2α+1)bn�, (17)

ȟ2(x) := ȟ(x, J2, α, {θ̂ j }) where J2 := 
[(Q − c1(Q
∗
0)

2)c−1
2 G(a)/(eQ

∗
0

−1)]1/(2α+1)bn�, (18)

ȟ3(x) := ȟ(x, J3, α, {θ̂ j }) where J3 := 
[QG0(a)/(e
∫ a+1
a h0(v)dv

−1)]1/(2α+1)bn�, (19)

ȟ4(x) :=
Mn−1∑

j=0

θ̂ jϕ j (x) +
J3∑

j=Mn

(1 − ( j/J3)
α)θ̂ jϕ j (x). (20)

Note that, despite the fact that sharp constants are the same for the two local function
classes S3 and S4, the dealer-estimator (20), proposed for the weakly restricted local
classS4, is different from the Pinsker’s estimator (19) proposed for theGolubev’s local
class, and furthermore it is not even a Pinsker’s estimator. On the other hand, it has
several features of the dealer-estimator ȟ3, namely the same cutoff J3 and the same
shrinkage coefficients on high frequencies. As we shall see below, a modification of
Pinsker’s estimator for class S4 is necessary.

Theorem 5 (Sharpness of Lower Minimax Bounds of Sect. 2) Consider settings of
Theorems i , i = 1, 2, 3, 4 and denote considered in these theorems function classes
and presented lower bounds for minimax MISEs as Si and Ri , respectively. Then,
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the dealer-estimators ȟi , defined in (17)–(20), are sharp-minimax for corresponding
function classes Si , that is,

sup
h∈Si

Eh

{∫ a+1

a
(ȟi (x) − h(x))2dx

}

= Ri (1 + on(1)), i ∈ {1, 2, 3, 4}. (21)

Furthermore, a Pinsker’s dealer-estimator (13) is not rate-minimax (its MISE con-
verges slower than n−2α/(2α+1)) for a weakly restricted local Sobolev class S4 =
S4(α, Q, h0, ρn, Mn) whenever the pivot h0(x) is not Sobolev of order α on the inter-
val [a, a + 1]. That is, if

∞∑

j=1

j2α
[∫ a+1

a
h0(x)ϕ j (x)dx

]2
= ∞, (22)

then

n2α/(2α+1) min sup
h∈S4(α,Q,h0,ρn ,Mn)

Eh

{∫ a+1

a
(ȟ(x, J (n), α, {θ̂ j }) − h(x))2dx

}

→ ∞ as n → ∞, (23)

where the minimum is taken over J (n) ∈ {0, 1, . . . , n}.
Weconclude that the four lower bounds of Sect. 2 are sharp and attainable by dealer-

estimates, and the weakly restricted local Sobolev class requires a dealer-estimator
which is different from a classical Pinsker’s one.

Remark 4 A series estimate may take on negative values. Then, an L2-projection on
a class of nonnegative functions makes the estimate bona fide and reduces the MISE.
The interested reader can find the projection algorithm in Efromovich (1999, p. 63).

Now let us present an oracle-estimator motivated by the blockwise-shrinkage
methodology developed in Efromovich (1985) for the case of probability density
estimation. Let {Bk, k = 1, 2, . . .} be a partition of nonnegative integers (frequencies
of the cosine basis {ϕ j (x), j = 0, 1, . . .} into non-overlapping blocks of cardinality
(length) Lk such that max( j : j ∈ Bk) < min( j : j ∈ Bk+1). Only to be specific,
set Lk = 1 for k = 1, 2, . . . , 
ln(n)� and Lk = 
(1 + ln−1(n)/ ln(ln(n)))k� + 1 for
k > ln(n), and also introduce a sequence of integers Kn such that Kn is the smallest
positive integer satisfying

∑Kn
k=1 Lk > n1/3 ln(ln(n)). Note that the largest length LKn

is of order n1/3/ ln(n), Kn is of order ln2(n) ln(ln(n)), and the total number of esti-
mated Fourier coefficients is of order n1/3 ln(ln(n)). The latter is due to the assumed
restriction α ≥ 1 which implies that the effect of not estimated Fourier coefficients on
the MISE is of order [n1/3 ln(ln(n))]−2α = on(1)n−2α/(2α+1).

Now we can define the oracle-estimator [remember that the statistic θ̂ j is defined
in (14)]

h̃∗(x, h) :=
Kn∑

k=1

	k

	k + d∗n−1

∑

j∈Bk
θ̂ jϕ j (x), (24)
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where

	k := 	k(h) := L−1
k

∑

j∈Bk

[∫ a+1

a
h(v)ϕ j (v)dv

]2
(25)

and

d∗ := d∗(h) :=
∫ a+1

a
h(v)G−1(v)dv. (26)

Note that 	k , k = 1, 2, . . . and d∗ may be referred to as Sobolev’s functionals and a
coefficient of difficulty.

Theorem 6 The oracle-estimator h̃∗(x, h), defined in (24), is sharp-minimax for the
four functional classes Si considered in Sect. 2, that is, using notation of Theorem 5,

sup
h∈Si

Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

≤ Ri (1 + on(1)), i ∈ {1, 2, 3, 4}. (27)

It is an attractive idea to mimic the oracle-estimator by a data-driven estimator
which uses estimates of unknown functionals 	k and d∗. Set

ĥ(x) :=
Kn∑

k=1

[

1 − d̂n−1

L−1
k

∑
j∈Bk θ̂2j

]

I

⎛

⎝L−1
k

∑

j∈Bk
θ̂2j

> (d̂ + 1/ ln(n))n−1

⎞

⎠
∑

j∈Bk
θ̂ jϕ j (x), (28)

where θ̂ j is defined in (14) and (remember that the antirank ηl is defined in (15) and
ηl ≥ 1)

d̂ := n
n∑

l=1

η−2
l I (Xl ∈ [a, a + 1]). (29)

Theorem 7 Data-driven estimator ĥ(x), defined in (28), is sharp-minimax for the
four function classes considered in Sect. 2, that is, using notation of Theorem 5,

sup
h∈Si

Eh

{∫ a+1

a
(ĥ(x) − h(x))2dx

}

= Ri (1 + on(1)), i ∈ {1, 2, 3, 4}. (30)

In Sect. 6, the interested reader can find an oracle inequality (150) for the proposed
estimator.

4 Numerical study

Plug-in estimation is the classical method used in nonparametric statistics for estima-
tion of the hazard rate. It is based on definition (1) and the fact that estimations of
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the probability density and survivor function are two classical and oldest problems in
nonparametric statistics. The plug-in estimation procedure goes back to Watson and
Leadbetter (1964) when appropriate estimates p̃ for the density and G̃ for the survivor
function are plugged in (1) to get the estimate

h̃(x) = p̃(x)

G̃(x)
. (31)

Let us note that some authors refer to this estimate as external, see Nielsen and Linton
(1995). Because the survivor function is estimated with the parametric accuracy, the
asymptotic MISE of plug-in estimator (31) is defined by the term E{∫ a+1

a ( p̃(x) −
p(x))2G−2(x)dx}. As a result, given G(a + 1) is separated from zero, the plug-in
(external) estimator inherits minimax rates of the density estimator.

The aim of the numerical study is to compare a good plug-in estimator with the
proposed one. Following Silverman (1986, s.6.5.1), we are using p̃ which is a kernel
estimator with Gaussian kernel K (x). The optimal variable bandwidth w(x) for the
density kernel estimator is chosen according to the golden rule

w(x) = w(x, p, K ) = [p(x) ∫∞
−∞ K 2(t)dt]1/5

[p(2)(x)
∫∞
−∞ t2K (t)dt]2/5 n

−1/5. (32)

In our numerical study, an underlying density is known, and it will be used by the
kernel estimator to calculate (32). As a result, we can refer to the plug-in estimator
as an oracle-estimator. Furthermore, to avoid boundary issues that are critical for a
kernel estimator, we will study estimation over an interval [a, b] with a > 0. Finally,
the empirical survivor function is used in the denominator of (31).

The used underlying hazard rate functions are from Weibull distribution,

h(x) = αλ−1xα−1 I (x > 0). (33)

Here α is the shape and λ is the scale of the Weibull distribution. Note that if α = 1
then this distribution becomes exponential (memoryless).

We are conducting 48 experiments with different shapes and scales of Weibull
distribution, different intervals [a, b] on which the MISE is evaluated, and differ-
ent sample sizes. For each experiment, 500 simulations are generated, and for each
sample the empirical integrated squared errors of the plug-in oracle (ISEO) and the
proposed estimate (ISEE) are calculated. Then, the median ratio (over 500 simula-
tions) of ISEO/ISEE is shown in Table 1. Also, for each experiment, the table contains
the expected number of observations fallen within the studied interval [a, b].

As we see, the proposed estimator performs well with respect to the oracle-
estimator. Furthermore, please look at the average number of observations fallenwithin
a studied interval [a, b]. These numbers are relatively small with respect to n, and they
shed light on complexity of the studied problem.
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Table 1 Results of Monte Carlo simulations for Weibull hazard rate with parameters α (shape) and λ

(scale)

α λ a b n

100 200 300 400 500 1000

1 2 1 3 1.18/38 1.11/77 0.99/115 1.07/153 1.12/191 1.35/383

1 2 1 4 1.30/47 1.46/94 1.49/141 1.51/188 1.81/236 1.84/471

1 4 1 4 0.98/41 1.12/82 1.13/123 1.21/164 1.22/205 1.24/411

1 4 2 7 1.23/43 1.32/87 1.40/130 1.42/173 1.49/216 1.50/433

0.7 2 0.8 6 1.16/48 1.08/95 1.01/142 1.07/190 1.15/237 1.18/475

0.7 4 0.8 6 0.91/46 0.92/92 0.97/137 0.99/183 1.08/229 1.23/458

1.2 2 1 4 1.24/54 1.13/109 1.07/164 1.08/218 1.07/273 1.05/546

1.5 0.5 4 3 1.12/82 1.14/165 1.18/247 1.17/329 1.18/412 1.15/824

For each experiment, which is defined by the two parameters of the distribution, sample size n, and the
interval of estimation [a, b], 500 samples are generated and then for each sample the plug-in-oracle estimate
and the proposed estimate are calculated and then the corresponding integrated squared errors over [a, b]
are calculated and denoted as ISEO and ISEE, respectively. Each entry in the table is written as A/B where
A is the median of 500 ratios ISEO/ISEE and B is the average number of observations fallen within the
considered interval [a, b]

5 Discussion

Hazard rate estimation The problem of nonparametric estimation of the hazard rate
function, which by definition is the probability density divided by the survivor func-
tion, has been always in the shadow of nonparametric density estimation because the
survivor function is estimated with the parametric rate. As a result, a good density esti-
mate, divided by the empirical survivor function, should produce a correspondingly
good hazard rate estimate. This natural approach works perfectly well if the rate of a
risk convergence is of interest. Does it work out if the sharp constant is of interest?
The paper shows that in this case a special estimator is needed to attain the sharp
constant. The proposed data-driven estimator is simultaneously sharp minimax for a
number of underlying functional classes and it adapts to unknown smoothness of an
underlying hazard rate. Furthermore, the study of local functional classes has allowed
us to understand how an underlying hazard rate affects the accuracy of estimation.
The numerical study confirms theoretical conclusions and the proposed estimator can
be recommended for small sample sizes.
Minimax theory A nonparametric estimation problem is traditionally studied via con-
sidering a single function class. In the case of a sharp minimax estimation under the
MISE criteria, that class is typically either the Pinsker (1980)’s global Sobolev class
[here it is the class (4)] or the Golubev (1991)’s local Sobolev class [here it is the class
(9)]. The difference between the classes is that the local one studies functions that are
close in L∞-norm to a pivot. Golubev (1991) proved that for the probability density,
regression and spectral density models the local and global approaches imply the same
sharp constant and then the same Pinsker’s estimate is sharp minimax for global and
local function classes. The outcome changes for the hazard rate problem where global
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and local approaches yield different sharp constants. This outcome can be explained
by the fact that the hazard rate is the ratio of the density and the survivor function,
and in that ratio both the numerator and the denominator depend on the pivot. To shed
a new light on this result, two additional Sobolev classes (one global and one local)
with the same smoothness are considered. The two global classes imply different sharp
constants, and then different shrinkage coefficients should be used by corresponding
Pinsker’s estimators. On the contrary, two local classes imply the same sharp constant
and then different dealer-estimators are required to attain the constant. Furthermore,
for one of the local functional class the Pinsker’s estimator is no longer even rate min-
imax. This is the first known case in the minimax theory when the Pinsker’s estimator
is not minimax. The practical conclusion of the theory is that a data-driven hazard rate
estimator should adapt to smoothness of the hazard rate and an underlying functional
class.
Minimax game To reflect upon and take into account the fact that an array of functional
classes is considered, it is useful to modify traditional explanation of the minimax
approach as a game between nature and the statistician where nature chooses a least
favorable function, generates a corresponding sample and then the statistician uses
the sample to estimate that function. If several function classes are considered, then
someone else should choose an underlying class and deal it to nature. Remember that
in some card games the dealer deals cards and, therefore, it is natural, in addition
to nature and the statistician, to introduce the dealer who deals a functional class to
nature. There is an extra benefit from considering the trio of players. Namely, when
we say that a minimax lower bound indicates a specific rate, then whose rate is it? It
is definitely not the rate for nature who knows the estimand, and it is also not the rate
for the statistician because any lower bound is deduced for a pseudo-estimator that
knows parameters of an underlying class. The correct answer is that all known lower
bounds are lower bounds for dealer-estimators.
Adaptive data-driven estimation Typically adaptive estimation is considered as a sep-
arate problem from establishing sharp-minimax lower bounds. Here, due to the new
requirement of adaptation to an underlying functional class, it becomes a part of the
minimax theory. It is shown that a single data-driven estimator, based on the blockwise-
shrinkagemethodology ofEfromovich (1985), is sharpminimax for the four functional
classes and it can be used in place of specific dealer-estimators for each function class.
Least favorable hazard rate It is shown in Sect. 6 that in the minimax game nature
always chooses a hazard rate corresponding to a random variable X which is the
minimum of two independent random variables: one is memoryless and another has
a vanishing hazard rate. Distributions of the two random variables are defined by an
underlying functional class in the minimax game. This outcome allows us to conclude
that, even for the case of a global functional class, nature uses a local approach.
Proofs of lower bounds indicate the following difference between the least favorable
distributions for the density and hazard rate estimation. For the density setting, nature
randomly chooses a density by assigning aGaussian distribution to Fourier coefficients
with respect to a basis on the interval of interest [a, a + 1]. For the hazard rate,
nature performs a more sophisticated play. Nature divides [a, a + 1] into a number of
subintervals (this number increases as the sample size increases), then nature spreads
the Sobolev’s power among those subintervals according to a special algorithm, and
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only then for each subinterval nature uses an approach similar to the density case. This
remark sheds light on the dramatic difference between nature’s plays for the hazard
rate and density settings.
Nuisance function One of the interesting topics in the nonparametric statistics is the
effect of nuisance functions on estimation. Traditional nuisance functions, like the
scale function in nonparametric regression, do not depend on the estimand and the
main issue is the possibility to estimate a nuisance function with sufficient accuracy.
In the dual settings of density and hazard rate estimation, the survivor function may
be looked at as the nuisance function. There is clearly no issue with smoothness of
the survivor function, but the paper shows that it makes a significant difference in
the theory of sharp minimax estimation due to its affect on sharp constants and sharp
dealer-estimators for different functional classes. The observed phenomenon can be
explained by the fact that each of the three functions—probability density, hazard rate
and survivor function—uniquely defines an underlying distribution of the data.
Practical implications There is an interesting relationship between the asymptotic
theory and its practical feasibility for small samples. The presented numerical study,
as well as known results of Efromovich (1999) for other models, indicates that for
sample sizes up to several hundreds only a low-frequency part of the underlying haz-
ard rate should be estimated. As a result, approaches of the global minimax and the
local minimax are appropriate for these samples. For moderate and large sample sizes,
a weakly restricted local minimax is more appropriate because these sample sizes
allow us to look at higher frequencies. Furthermore, for large sample sizes knowing
or not knowing a low-frequency part of the hazard rate has no significant effect on the
estimation. We may conclude that each minimax setting has its own applied merits.
Another important remark is that, as the coefficient of difficulty indicates, the haz-
ard rate estimation may be dramatically more complicated problem than the density
estimation. A practitioner should always pay attention to this fact.
Future topics Let us mention five related topics to be explored in the future. The first
one is hazard rate estimation under a shape restriction. There is a vast literature devoted
to this topic (see a review in Jankowski andWellner 2009) where either consistency or
rates of a risk convergence are studied.Here localminimax approaches look reasonable
and will allow us to establish sharp minimax lower bounds for bona fide estimators.
The second topic is a classical one and it is hazard rate estimation with censored data,
see a discussion in Antoniadis et al. (1999) and Brunel and Comte (2005). In the first
paper, wavelet methodology is explored and in the second a finite sample adaptation of
estimators without a priori assumption on the regularity of an underlying hazard rate is
considered. This is the setting where a sharp minimax approach should shine because
the theory will allow us to understand how an underlying hazard rate, together with
censoring mechanism, affects the sharp constant and coefficient of difficulty. The third
topic, which is a new one, is hazard rate estimation with missing data. The fourth topic
is estimation of the conditional hazard rate, and an interesting discussion and examples
can be found in Spierdijk (2008), where a kernel estimator with plug-in bandwidth
based on a reference distribution is proposed, and a data-drive adaptive procedure
is given in Comte et al. (2011). Let us stress that so far no result about efficient
and adaptive estimation for these four topics is known. Finally, in some applications
the cumulative hazard �(x) := ∫ x0 h(v)dv is of interest, see a review in Spierdijk
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(2008). The author conjectures that the proposed minimax methodology may be used
to develop the theory of second-order efficient estimation of the cumulative hazard.

6 Proofs

Remember that ϕ0(x) = 1, ϕ j (x) = √
2 cos(π j (x − a)), j ≥ 1 is the classical

cosine basis on the unit interval [a, a + 1], on(1) and Cs denote generic vanishing
sequences and positive constants. We also use notation o∗

n(1) and C∗ to stress the
fact that these generic vanishing sequences and positive constants do not depend on
all other parameters considered in a proof. 
x� denotes the smallest positive integer
larger than x . In what follows it is assumed that n ≥ 30 so all sequences in n are well
defined.

We begin with the proof of Theorem 1, which is also used to verify other lower
bounds. This explains its rather general approach.

Proof of Theorem 1 Remember that we are establishing a lower bound for a dealer-
estimate that knows all parameters of an underlying function class. In particular, the
dealer knows a pivotal hazard rate. For now, let h0(x) be a known pivotal hazard rate
function such that inf x∈[a,a+1] h0(x) > 0,

∫ a+1
a h20(x)dx < ∞ and e− ∫ a0 h0(u)du =

G(a). This function will be specified later for each particular underlying function
class.

On first glance, it looks reasonable to verify the lower bound for the hazard rate
following the known proof for the density in Efromovich and Pinsker (1982). To follow
that proof, we should verify that in a minimax game nature chooses a least favorable
hazard rate among functions h(x) = h0(x)+[∑Jn

j=1 θ jϕ j (x)]I (x ∈ [a, a+1])where
{θ j , j = 1, 2, . . .} satisfy some specific restrictions. A direct calculation shows that
this approach produces a lower bound which is too small. In other words, presence of
the “nuisance” survival function G(x) = G(x, h) allows nature to choose a smarter
way to choose a least favorable hazard rate. Namely, as we shall see shortly, nature
divides [a, a + 1] into s = sn → ∞, n → ∞ subintervals and then defines its own
Sobolev’s class on each subinterval. The main challenge of the proof is to understand
how nature spreads the power of an underlying Sobolev class over the subintervals,
and this nature’s strategy makes the proof more complicated and challenging than in
the density case considered in Efromovich and Pinsker (1982).

The proof requires intensive notation presented and commented on in the next
paragraph.

Notation Set s := sn := 1 + 
ln(ln(n))�, and this will be the total num-
ber of subintervals used by nature. For k = 0, 1, . . . , s set Isk := [h0(a +
k/s)e

∫ a+k/s
0 h0(v)dv]−1, Is := [∑s−1

k=0 I−1
sk ]−1, Qsk := (1 − 1/s)IsI−1

sk Q, J :=

[n(2α+1)(α+1)s−2α(απ2α)−1(1−s−1)QIs]1/(2α+1)�, J∗ = 
J/ ln(n)�,ϕsk j (x) =
(2s)1/2 cos(π j[s(x−a)−k]). Letφ(n, v), v ∈ (−∞,∞) be a sequence of flattop non-
negative kernels defined on a real line such that for a given n the kernel φ(n, v) is zero
beyond (0, 1), it is α-fold continuously differentiable on (−∞,∞), 0 ≤ φ(n, v) ≤ 1,
φ(n, v) = 1 for 2(ln(n))−2 ≤ v ≤ 1 − 2(ln(n))−2, and |φ(α)(n, v)| ≤ C(ln(n))2α .
For instance, such a kernel may be constructed using the so-called mollifiers dis-
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cussed in Efromovich (1999, ch.7). Then set φsk(x) := φ(n, s(x − a) − k), and
note this kernel is zero beyond (a + k/s, a + (k + 1)/s) and it is equal to 1 on
[a+k/s+2[s ln2(n)]−1, a+ (k+1)/s−2[s ln2(n)]−1] except of two boundary inter-
vals of the total length 4[s ln2(n)]−1. This special kernel is used to “sew” functions
defined on adjoint subintervals [a + k/s, a + (k + 1)/s], so over interval [a, a + 1]
considered functions are sufficiently smooth. Now let us introduce several parametric
function classes. For a k ∈ {0, 1, . . . , s} set �νsk := {νsk J∗ , . . . , νsk J } and define a
parametric function class

Hsk :=
⎧
⎨

⎩
fsk : fsk(x |�νsk) :=

J∑

j=J∗
νsk jϕsk j (x) ,

×
J∑

j=J∗
(π j)2αν2sk j ≤ s−2αQsk, | fsk(x |�νsk)|

≤ [s4 ln(n)]1/2n−α/(2α+1), x ≥ 0

⎫
⎬

⎭
. (34)

“Sewing” these classes together with the help of flattop kernels φsk(x), we may define
a parametric class

Hs := {h : h(x |�νs) = h0(x) +
s−1∑

k=0

fsk(x |�νsk)φsk(x), fsk ∈ Hsk, h(x) ≥ 0, x ≥ 0},
(35)

where �νs = (�νs0, . . . , �νs(s−1)). Note that a function from this class is defined
by a vector-parameter �νs , and it is convenient to introduce sets of parame-
ters corresponding to the above-defined function classes. For each functional
class Hsk , the corresponding set of vector-parameters �νsk is Vsk := V̇sk ∩ V̈sk
where V̇sk := {�νsk : ∑J

j=J∗(π j)2αν2sk j ≤ s−2αQsk} and V̈sk := {�νsk :
maxx∈[a,a+1] |∑J

j=J∗ νsk jϕsk j (x)| ≤ [s4 ln(n)]1/2n−α/(2α+1)}. For Hs , the corre-

sponding set of parameters is Vs :=∏s−1
k=0 Vsk := Vs0× . . .×Vs(s−1). In what follows

we may also use negative subscripts to indicate that a specific part of a vector or a set
is skipped, like in V−sr := ∏k∈{0,...,s−1}\r Vsk , or �ν−s1 := (�νs0, �νs2, . . . , �νs(s−1)).

With this understanding of negative subscripts in mind, set f−sk j (x |�ν−sk j ) :=∑
r∈{J∗,...,J }\{ j} νsk jϕsk j (x) where �ν−sk j denotes vector �νsk with its j th component

being skipped. Further, set

Vsk j :=
{

�v−sk j : max
x∈[a,a+1] | f−sk j (x |�v−sk j )| ≤ (1/2)[s4 ln(n)]1/2n−α/(2α+1)

}

×{vsk j : |vsk j | < s2n−1/2}
=: V−sk j × {vsk j : |vsk j | < s2n−1/2}.
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Denote by �v−sk j,0 a vector �vs with its element vsk j being replaced by zero. A dealer-
estimate is denoted as ĥ, and note that it may depend on the pivot h0 which is known
to the dealer. As a result, the dealer also knows function f̂ (x) := ĥ(x) − h0(x).
Furthermore, in a similar way we can write for h ∈ Hs ,

h(x) =: h(x |�νs) = h0(x) +
s−1∑

k=0

J∑

j=J∗
νsk jϕsk j (x)φsk(x) = h0(x)

+
⎡

⎣

⎡

⎣
∑

k∈{0,...,s−1}\r

J∑

j=J∗
νsk jϕsk j (x)φsk(x)

⎤

⎦

+
⎡

⎣
∑

j∈{J∗(k),...,J (k)}\i
νsr jϕsr j (x)φsr (x)

⎤

⎦+ νsriϕsri (x)φsr (x)

⎤

⎦

=: h0(x) + ḟs(x |�νs) =: h0(x) + [ ḟ−sr (x |�ν−sr ) + ḟ−sri (x |�ν−sri )φsr (x)

+ νsriϕsri (x)φsr (x)], �νs ∈ Vs . (36)

Note that in ḟ the dot above the function indicates that the function is “sewed”
(smoothed) by the flattop kernel. Finally, q > 3 and b > 3 are constants, o∗

t (1) denote
generic sequences in t whichvanish as t → ∞uniformlyover all other parameters con-
sidered in the proof, ḟ (l)(x |�ν) := ∂α ḟ (x |�ν)/∂xα , g(v|σ) := (2πσ 2)−1/2e−v2/(2σ 2)

denotes the normal densitywith zeromean and standard deviationσ , and g(�vsk |�τsk) :=∏J
j=J∗ g(vsk j |τsk j ), where τsk j := [n−1(1 − 3q−1)I−1

sk max(q−1,min(q, (J/j)α −
1))]1/2.

The proof of the lower bound consists of several steps. Step 1 is to check that for all
sufficiently large n (note that all assertions are verified for sufficiently large n) Hs is
a subset of an underlying Sobolev class. This is the place where we are considering a
specific Sobolev space and define a corresponding pivot h0 on the interval of interest
[a, a + 1], and beyond this interval h0(x) is any hazard rate satisfying restrictions of
an underlying function class. In Theorem 1, we are using h0(x) := Q0(1− 1/s2) for
x ∈ [a, a + 1], and the only other restriction on the pivot is that e− ∫ a0 h0(v)dv = G(a).
For other Sobolev classes, the pivot will be defined in their own proofs. We need to
check that Hs ⊂ S1(α, Q0, Q,G(a)) which will follow from (remember notation
ḟs(x |�νs) := h(x |�νs) − h0(x) introduced in (36))

sup
�νs∈Vs

∞∑

j=1

(π j)2α
[∫ a+1

a
(h(x) − h0(x))ϕ j (x)dx

]2

= sup
�νs∈Vs

∞∑

j=1

(π j)2α
[∫ a+1

a
ḟs(x |�νs)ϕ j (x)dx

]2
≤ Q. (37)

To verify (37), we note that ḟ and its α derivatives are periodic on [a, a + 1] due to
the used flattop kernels. Then, it is verified via integration by parts (or see Efromovich
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1999) that the following Parseval identity for ḟ (α)
s holds:

∞∑

j=1

(π j)2α
[∫ a+1

a
ḟs(x |�νs)ϕ j (x)dx

]2
=
∫ a+1

a

[
ḟ (α)
s (x |�νs)

]2
dx . (38)

As a result, to check (37) it suffices to evaluate the integral in the right side of (38).
Write

∫ a+1

a
[ ḟ (α)

s (x |�νs)]2dx =
s−1∑

k=0

∫ a+(k+1)/s

a+k/s
[( fsk(x |�νsk)φsk(x))

(α)]2dx, �νs ∈ Vs .

(39)
Using Leibnitz’s rule, together with the Cauchy inequality [a1 + a2]2 ≤ a21(1+ γ ) +
a22(1+ γ −1), γ > 0 and notation Cα

l := α!/((α − l)!l!), we can write for any positive
γ ,

∫ a+(k+1)/s

a+k/s
[( fsk(x |�νsk)φsk(x))

(α)]2dx

=
∫ a+(k+1)/s

a+k/s

[
α∑

l=0

Cα
l f (α−l)

sk (x |�νsk)φ(l)
sk (x)

]2

dx

=
∫ a+(k+1)/s

a+k/s
[ f (α)

sk (x |�νsk)φsk(x)]2dx(1 + γ )

+
∫ a+(k+1)/s

a+k/s

[
α∑

l=1

Cα
l f (α−l)

sk (x |�νsk)φ(l)
sk (x)

]2

dx(1 + γ −1)

=: Ask + Bsk . (40)

Using definition of kernels φsk(x) we get

max
0≤l≤α

∫ a+(k+1)/s

a+k/s
(φ

(l)
sk (x))2dx < C∗(s(ln(n))2)2α, (41)

and for 0 < l ≤ α, �νsk ∈ Vsk and x ∈ [a + k/s, a + (k + 1)/s] we can write using
Cauchy–Schwarz inequality,

| f (α−l)
sk (x |�νsk)|2 =

∣
∣
∣
∣
∣
∣

J∑

j=J∗
νsk jϕ

(α−l)
sk j (x)

∣
∣
∣
∣
∣
∣

2

≤ Cs2(α−l)+1

⎛

⎝
J∑

j=J∗
j2αν2sk j

⎞

⎠

⎛

⎝
J (k)∑

j=J∗(k)
j−2l

⎞

⎠

≤ C∗ J−2l+1[ln(n)]2l .

123
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Theobtained inequality, togetherwith definition of J , implies that the term Bsk , defined
in (40), can be evaluated as

Bsk = (1 + γ −1)o∗
n(1)n

−1/[2(2α+1)]. (42)

Further, using |φsk(x)| ≤ 1 we get

∫ a+(k+1)/s

a+k/s
[ f (α)

sk (x |�νsk)φsk(x)]2dx≤
∫ a+(k+1)/s

a+k/s
( f (α)

sk (x |�νsk))2dx≤Qsk, �νsk ∈ Vsk .

(43)
Now set γ = 1/ ln(n), and using (40), (42), (43) and

∑s−1
k=0 Qsk = Q(1 − s−1) we

get

sup
�vs∈Vs

∫ a+1

a
[ ḟ (α)

s (x |�νs)]2dx ≤
s−1∑

k=0

Qsk + o∗
n(1)s

−1 = Q − s−1[Q + o∗
n(1)].

This result, together with (38) and (39), proves (37) for all sufficiently large n.
Second step is to convert the studiedMISE of dealer-estimate f̂ (x) = ĥ(x)−h0(x)

into the sumofMSEsof correspondingFourier coefficients ν̂sk j = ∫ a+(k+1)/s
a+k/s f̂ (x)ϕsk j

(x)dx . Using a Cauchy-type inequality (c+ d)2 ≥ (1− s−1)c2 − sd2, as well as def-
inition of the kernel φsk(x), definition of the set V̈s ⊂ Vsk , and the Bessel inequality,
we can write for �vs ∈ Vs ,

∫ a+(k+1)/s

a+k/s
( f̂ (x |�νsk) − fsk(x |�νsk)φsk(x))

2dx

≥
∫ a+(k+1)/s

a+k/s

[
(1 − s−1)( f̂ (x) − fsk(x |�νsk))2

−s f 2s (x |�νsk)(1 − φsk(x))
2
]
dx ≥ (1 − s−1)

J∑

j=J∗
(ν̂sk j − νsk j )

2

−s4 ln(n)n−2α/(2α+1)[4(ln2(n)s)−1]. (44)

In the last inequality, we used the definition of V̈sk and that on [a+k/s, a+ (k+1)/s]
function 1 − φsk(x) is zero apart of two subintervals of the total length 4(ln2(n)s)−1

where it is nonnegative and less than 1.
In step 3, we combine results of the first two steps and get

inf
ĥ

sup
h∈S1(α,Q0,Q,G(a))

Eh

{∫ a+1

a
(ĥ(x) − h(x |�νs))2dx

}

≥ (1 − s−1) inf
�̂νs

sup
�νs∈Vs

s−1∑

k=0

J∑

j=J∗
E�νs
{
(ν̂sk j − νsk j )

2
}

+ on(1)n
−2α/(2α+1) =: (1 − s−1)Rs + on(1)n

−2α/(2α+1). (45)
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Note that in the second expectation, we used subscript �νs in place of h because for
the dealer (remember that we are establishing a lower bound for the dealer’s MISE)
knowing �νs is equivalent to knowing h(x |�νs).

Step 4 is to bound from below the supremum over hazard rates by an integral with
a Gaussian probability measure for the parameters defining considered hazard rates.
Write

Rs ≥ inf
�̂νs

∫

Vs
E�vs

⎧
⎨

⎩

s−1∑

k=0

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭

[
s−1∏

r=0

g(�vsr |�τsr )
]

d�vs

= inf
�̂νs

s−1∑

k=0

∫

V−sk

⎡

⎣
∫

Vsk

⎡

⎣E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j

−vsk j )
2
}
g(�vsk |�τsk)d�vsk

⎤

⎦

⎡

⎣
∏

r∈{0,...,s−1}\k
g(�vsr |�τsr )

⎤

⎦

⎤

⎦ d�v−sk

≥
s−1∑

k=0

∫

V−sk

⎡

⎣inf
�̂νsk

∫

Vsk

⎡

⎣E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j

−vsk j )
2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk

⎤

⎦
∏

r∈{0,...,s−1}\k
g(�vsr )
⎤

⎦ d�v−sk

≥
s−1∑

k=0

∫

V−sk

⎡

⎣ inf
�̂νsk∈Vsk

∫

Vsk

⎡

⎣E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j

−vsk j )
2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk

⎤

⎦
∏

r∈{0,...,s−1}\k
g(�vsr )
⎤

⎦ d�v−sk

=:
s−1∑

k=0

∫

V−sk

Rsk(�v−sk)

⎡

⎣
∏

r∈{0,...,s−1}\k
g(�vsr |�τsr )

⎤

⎦ d�v−sk . (46)

Note that in the fourth line of (46), the infimum over all possible estimates �̂νsk can be
replaced by the infimum over �̂νsk ∈ Vsk because the estimand �vsk belongs to the set
Vsk .

Step 5 is to replace in Rsk the integration over Vsk by integration over a larger set
V̈sk because this simplifies analysis of the term. Using Vsk = V̈sk\(V̈sk ∩ V̇ c

sk) (here
V̇ c
sk denotes a set complementary to V̇sk), we write

Rsk(�v−sk) ≥ inf
�̂νsk∈Vsk

∫

V̈sk
E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk
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− sup
�̂νsk∈Vsk

∫

V̇ c
sk

E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk . (47)

Let us show that the second term in (47) is of order o∗
n(1)n

−2α/(2α+1). By the
Cauchy inequality

∑J
j=J∗(ν̂sk j − vsk j )

2 ≤ 2
∑J

j=J∗ ν̂2sk j + 2
∑J

j=J∗ v2sk j , and for

�̂νsk ∈ Vsk we have
∑J

j=J∗ ν̂2sk j ≤ s−2α[ln(n)]2α J−2αQsk . Using these relations and
Cauchy-Schwarz inequality, we can write

sup
�̂νsk∈Vsk

∫

V̇ c
sk

E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk

≤ 2s−2α[ln(n)]2α J−2αQsk

∫

V̇ c
sk

g(�vsk |�τsk)d�vsk

+2

⎡

⎢
⎣

∫

V̇ c
sk

⎡

⎣
J∑

j=J∗
v2sk j

⎤

⎦

2

g(�vsk |�τsk)d �vsk

⎤

⎥
⎦

1/2 [∫

V̇ c
sk

g(�vsk |�τsk)d �vsk
]1/2

. (48)

Remember that g(�vsk |�τsk) = ∏J
j=J∗ g(vsk j |τsk j ). Then using [∑J

j=J∗ v2sk j ]2 ≤
(J − J∗ + 1)

∑J
j=J∗ v4sk j , we get

∫

V̇ c
sk

⎡

⎣
J∑

j=J∗
v2sk j

⎤

⎦

2

g(�vsk |�τsk)d�vsk ≤ (J − J∗ + 1)
J∑

j=J∗

∫ ∞

−∞
v4sk j g(vsk j |τsk j )dvsk j

= 3(J − J∗ + 1)
J∑

j=J∗
τ 4sk j ≤ 3q2I−2

sk J 2n−2. (49)

Now we are evaluating integral
∫
V̇ c
sk
g(�vsk |�τsk)d �vsk . To make some elementary calcu-

lations, we will use the following relation:

K−1∑

r=k

ψ(r) ≤
∫ K

k
ψ(x)dx ≤

K∑

r=k+1

ψ(r), (50)

which holds for any nonnegative and not decreasing function ψ(x) and any pair of
integers k and K such that k < K − 1. Using

J∑

j=J∗
(π j)2ατ 2sk j = π2αI−1

sk n−1(1 − 3q−1)

J∑

j=J∗
j2α max(q−1,min(q, (J/j)α − 1)),

(51)
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and (50) we can write for all sufficiently large n (large uniformly over k),

J∑

j=J∗
j2α max(q−1,min(q, (J/j)α − 1)) ≤ q−1

∑

J (1+q−1)−1/α< j≤J

j2α

+
J∑

j=J∗
[Jα jα − j2α]

≤ q−1(2α + 1)−1 J 2α+1[1 − (1 + q−1)−(2α+1)/α

+ (1 + α)−1 Jα[Jα+1 − (J∗ − 1)α+1] − (2α + 1)−1[(J − 1)2α+1 − J 2α+1∗ ]
≤ J 2α+1α

(α + 1)(2α + 1)
+ q−1(2α + 1)−1 J 2α+1 ≤ ns−2απ−2αIs Q[1 + 3q−1].

(52)

Using (52) in (51), we conclude that for all sufficiently large n

J∑

j=J∗
(π j)2ατ 2sk j ≤ (1−s−1)(1−3q−1)(1+3q−1)s−2α I−1

sk Is Q ≤ (1−9q−2)s−2αQsk .

(53)
Let Zsk j be independent normal randomvariables with zeromean and variance τ 2sk j ,

that is, g(z|τ 2sk j ) is the probability density of Zsk j . Then, the integral of interest can
be written as a corresponding probability, and then (53) and the Chebyshev inequality
can be used to evaluate the probability. Following these steps, we write

∫

V̇ c
sk

g(�vsk |�τsk)d �vsk = Pr

⎛

⎝
J∑

j=J∗
(π j)2αZ2

sk j ≥ s−2αQsk

⎞

⎠

≤ Pr

⎛

⎝
J∑

j=J∗
(π j)2α(Z2

sk j − τ 2sk j ) ≥ 9q−2s−2αQsk

⎞

⎠

<

∑J
j=J∗(π j)4ατ 4sk j

[q−2s−2αQsk]2 <
π4α(4α + 1)−1 J 4α+1q2n−2I−2

sk

[q−2s−2αQsk]2
= o∗

n(1)q
6s4α+2n−1/(2α+1). (54)

Let us stress that in (54) the sequence o∗
n(1) vanishes uniformly over k ∈ {0, 1, . . . , s−

1}. Using (54), together with (49), in (48), we get

sup
�̂νsk∈Vsk

∫

V̇ c
sk

E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk

= o∗
n(1)s

−1n−2α/(2α+1), q ∈ (3, ln(n)). (55)
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In the last line, it is stressed that the result is established for q satisfying that specific
restriction.

Step 6 is the beginning of evaluation of the first term in the right side of (47), which
is the main term in the lower bound. We would like to convert evaluation of the term
into evaluation of the risk for a particular parameter vsk j . To do this, we use notation
(36), definition of the sets V̈sk , V−sk j and Vsk j := V−sk j × {vsk j : |vsk j | < s2n−1/2},
presented in the Notation, and write

inf
�̂νsk∈Vsk

∫

V̈sk
E�vs

⎧
⎨

⎩

J∑

j=J∗
(ν̂sk j − vsk j )

2

⎫
⎬

⎭
g(�vsk |�τsk)d�vsk

≥
J∑

j=J∗
inf

�̂νsk∈Vsk

∫

V̈sk
E�vs {(ν̂sk j − vsk j )

2}g(�vsk |�τsk)d�vsk

≥
J∑

j=J∗
inf

�̂νsk∈Vsk

∫

�vsk∈Vsk j
E�vs {(ν̂sk j − vsk j )

2}g(�vsk |�τsk)d�vsk

=:
J∑

j=J∗
Rsk j (�v−sk), �v−sk ∈ V−sk . (56)

Now we are making a number of steps to evaluate Rsk j (�v−sk) for �v−sk ∈ V−sk .
Note that the expectation in (56) is taken with respect to the joint probability density

p(xn|�vs) =
n∏

l=1

h(xl |�vs)e− ∫ xl0 h(y|�vs )dy, (57)

where xn = (x1, . . . , xn) and h(x |�vs) is defined in (36). Let us also remember notation
�v−sk j,0 for a vector �vs with its element vsk j replaced by zero, andUsk := V−sk×V−sk j .

Step 7 is to replace in Rsk j (�v−sk) the expectation based on density p(�x |�vs) by the
expectation based on density p(�x |�v−sk j,0). Write

E�vs {(ν̂sk j − vsk j )
2} = E�v−sk j,0

{
p(Xn|�vs)

p(Xn|�v−sk j,0)
(ν̂sk j − vsk j )

2
}

, �vs ∈ Usk . (58)

Step 8 is to find for all �vs ∈ Usk the limiting distribution of the likelihood ratio
p(Xn|�vs)/p(Xn|�v−sk j,0). We would like to show that uniformly over all considered
parameters

p(xn|�vs)
p(xn|�v−sk j,0)

= euζsk j−(1/2)u2(1+μsk j ) where ζsk j
D→ N (0, 1), μsk j

P→ 0,

u = (Iskn)1/2vsk j . (59)

Note that in (59), we are dealing with convergence of a series of underlying dis-
tributions (they change with n) and a distribution depends on the parameters. As a
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result, it is a tedious path to prove (39) directly. Instead we are using handy Theorem
3.1′ and Remark 3.2 in Ibragimov and Khasminskii (1981) which establish (39) if the
following conditions hold for all �vs ∈ Usk , all considered k and j , and all sufficiently
large n: (a) The probability density p(x |�vs) is continuous in vsk j and

√
p(x |�vs) is

differentiable with respect to vsk j ; (b) The following relations hold uniformly over
considered k, j and �vs :

E�v−sk j,0{[p′(X |�v−sk j,0)/p(X |�v−sk j,0)]2} = Isk(1 + o∗
n(1)), (60)

where p′(x |�vs) := ∂p(x |�vs)/∂vsk j ,

| ln(Isk)| ≤ C∗ < ∞, (61)

and ∫ ∞

0
[∂2√p(x |�vs)/∂v2sk j ]2dx = o∗

n(1)n. (62)

We begin verification of the conditions with part (a). Let us calculate derivative of the
square root of the density. Write using (36) and (57) for �vs ∈ Usk

∂
√
p(x |�vs)/∂vsk j = ϕsk j (x)φsk(x)e− ∫ x0 h(y|�vs)dy

2
√
p(x |�vs)

− (1/2)
∫ x

0
h′(y|�vs)dy

√
p(x |�vs),

(63)
where h′(y|�vs) := ∂h(y|�vs)/∂vsk j = ϕsk j (y)φsk(y). Note that, for the studied �vs ∈
Usk , the density p(x |�vs) is uniformly bounded below from zero at the interval [a +
k/s, a + (k + 1)/s] which is the support for φsk(x), and this verifies part (a).

Now let us verify part (b), and we begin with (60). Set h′(x |�vs) := ∂h(x |�vs)/∂vsk j
and write

∫ ∞

0

[p′(x |�v−sk j,0)]2
p(x |�v−sk j,0)

dx =
∫ ∞

0

[
h′(x |�v−sk j,0)

h(x |�v−sk j,0)

−
∫ x

0
h′(y|�v−sk j,0)dy

]2
h(x |�v−sk j , 0)e

− ∫ x0 h(y|�v−sk j,0)dydx

=
∫ ∞

0
[h′(x |�v−sk j,0)]2h−1(x |�v−sk j,0)e

− ∫ x0 h(y|�v−sk j,0)dydx

−2
∫ ∞

0
h′(x |�v−sk j,0)

[∫ x

0
h′(y|�v−sk j,0)dy

]

×e− ∫ x0 h(y|�v−sk j,0)dydx

+
∫ ∞

0

[∫ x

0
h′(y|�v−sk j,0)dy

]2
h(x |�v−sk j,0)e

− ∫ x0 h(y|�v−sk j,0)dydx

=: A1 + A2 + A3. (64)
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Let us evaluate the three terms in (64). Remember that we are considering �vs ∈ Usk

and write for A1,

A1 =
∫ ∞

0
[ϕsk j (x)φsk(x)]2h−1(x |�v−sk j,0)e

− ∫ x0 h(y|�v−sk j,0)dydx

= [h−1
0 (a + k/s)e− ∫ a+k/s

0 h0(y)dy + o∗
n(1)]
∫ a+(k+1)/s

a+k/s
[ϕsk j (x)φsk(x)]2dx .

(65)

In the last equality, we used continuity of the pivot on [a, a + 1], which is the case
for all four theorems, and the fact that the flattop kernel φsk(x) vanishes beyond
[a+k/s, a+(k+1)/s], and thath(x |�v−sk j,0)−h0(x) = o∗

n(1)uniformlyover �vs ∈ Usk .
For the second factor in the right side of (65), we canwrite using definition of the flattop
kernel φsk(x) and that ϕsk j are elements of the cosine basis on [a+k/s, a+(k+1)/s],

∫ a+(k+1)/s

a+k/s
[ϕsk j (x)φsk(x)]2dx = 1

+
∫ a+(k+1)/s

a+k/s
ϕ2
sk j (x)(φ

2
sk(x) − 1)dx = 1 + o∗

n(1)/ ln(n). (66)

Using (66) in (65), we conclude that

A1 = Isk(1 + o∗
n(1)). (67)

To estimate A2, remember that h′(y|�v−sk j,0) = ϕsk j (y)φsk(y), φsk(y) = 0 and
dφsk(y)/dy = 0 beyond the interval [a + k/s, a + (k + 1)/s]. Also, using integration
by parts and that j ≥ J∗ > C∗n1/(2α+1)/(s ln(n)), C∗ > 0, we can write

∫ x

0
h′(y|�vs)dy

=
∫ x

a+k/s
ϕsk j (y)φsk(y)dy = (πs j)−1(2s)1/2 [sin(π j[s(x − a) − k])φsk(x)

−
∫ x

a+k/s
sin(π j[s(y − a) − k])[dφsk(y)/dy]dy

]

= o∗
n(1)n

−1/(2α+2), x > a + k/s. (68)

We conclude that A2 = o∗
n(1). For A3, we can write using (57) and (68) that

A3 =
∫ ∞

0

[∫ x

0
ϕsk j (y)φsk(y)dy

]2
p(x |�v−sk j,0)dx = o∗

n(1). (69)

Relation (60) is verified. Now let us remember that by its definition Isk = h0(a +
k/s)e

∫ a+k/s
0 h0(y)dy , and then (61) is the property of a pivot h0(x) which is valid for
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the considered memoryless pivot (as well as for pivots considered in other theorems
of Sect. 2).

Finally, let us check (62). Using (63), we can write for any �vs ∈ Usk ,

2∂2
√
p(x |�vs)/∂v2sk j = ϕsk j (x)φsk(x)e

− ∫ x0 h(y|�vs)dy
[

−
∫ x

0
h′(y|�vs)dy

√
p(x |�vs) − ∂

√
p(x |�vs)/∂vsk j ]p−1(x |�vs)

−
∫ x

0
ϕsk j (y)φsk(y)dy[∂

√
p(x |�vs)/∂vsk j

]

. (70)

Then using (68), h′(x |�vs) = ϕsk j (x)φsk(x), p(x |�vs) > C∗ > 0 for x ∈ [a + k/s, a +
(k + 1)/s] and �vs ∈ Usk , and

∫∞
0 p(x |�vs)dx = 1, we conclude that (62) holds. We

checked that all conditions required for the validity of (59) hold.
Step 9 is to evaluate Rsk j (�v−sk) defined in (56) using (58), (59) and Fatou’s lemma.

Write

Rsk j (�v−sk) ≥
∫

V−sk j

g(�v−sk j |�τ−sk j )

[

inf
�̂νsk j

∫

|vsk j |<s2n−1/2
E�vs
{
(ν̂sk j

−vsk j )
2
}
g(vsk j |τsk j )dvsk j

]

d�v−sk j

=:
∫

V−sk j

g(�v−sk j |�τ−sk j )Ṙsk j (�v−sk j , �v−sk)d�v−sk j . (71)

Now we are evaluating term Ṙsk j (�v−sk j ) in right side of (71) using (59), definition of
the Gaussian density g(vsk j |τsk j ) and making change of variable u = [Iskn]1/2vsk j .
Write

Ṙsk j (�v−sk j , �v−sk)

= inf
�̂νsk j

∫

|u|≤s2 I 1/2sk

[2πτ 2sk jIskn]−1/2E�v−sk j,0{euζsk j−(1/2)u2[1+μsk j+(τ 2sk j Iskn)−1][ν̂sk j

−u(Iskn)−1/2]2}du. (72)

Introduce a constant b ∈ (3, (1/2)s2 I 1/2sk ), which exists for all sufficiently large n,
and set t := τ 2sk jIskn. Continue (72),

Ṙsk j (�v−sk j , �v−sk) ≥ [2πτ 2sk jI3
skn

3]−1/2E�v−sk j,0

{

inf
ν̂sk j

∫ 2b

−2b
euζsk j−(1/2)u2(1+t−1)

×min(b1/2, (u − (Iskn)1/2ν̂sk j )
2)e−(1/2)u2μsk j I (|ζsk j |(1 + t−1)−1 < b)

}

du.

(73)
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Now we change the variable of integration from u to y = u − ζsk j (1 + t−1)−1.
We also use the known uniform convergence of μsk j to zero, and a familiar inequality

infr∈(−∞,∞)

∫ b
−b e

−λu2 min(C, (u − r)2)du = ∫ b−b e
−λu2 min(C, u2)dy which holds

for any λ > 0 and C > 0. We continue (73),

Ṙsk j (�v−sk j , �v−sk) ≥ [2π t]−1/2(Iskn)−1E�v−sk j,0

{

inf
ν̂sk j

[∫ b

−b
e−y2(1+t−1)−1/2

× min(b1/2, [y + ζsk j (1 + t−1)−1 − (Iskn)1/2ν̂sk j ]2dy
]

eζ 2sk j (1+t−1)/2 I (|ζsk j |

< (1 + t−1)b))

}

(1 + o∗
n(1))

≥ [2π t]−1/2(Iskn)−1
∫ b

−b
e−y2(1+t−1)/2 min(b1/2, y2)dy

× E�ν−sk j,0{eζ 2sk j (1+t−1)−1/2 I (|ζsk j | < (1 + t−1)b)}(1 + o∗
n(1)). (74)

Here, o∗
n(1) → 0, n → ∞ uniformly over all considered parameters. Remember that

t = τ 2sk jIskn = (1 − 3q−1)max(q−1,min(q, (J/j)α − 1)). (75)

Also,

[2π(1 + t−1)−1]−1/2
∫ b

−b
e−y2(1+t−1)/2 min(b1/2, y2)dy

≥ (1 + t−1)−1 − [2π(1 + t−1)−1]−1/2b
∫

|y|>b1/4
e−y2(1+t−1)/2dy

= (1 + t−1)−1 − o∗
b(1),

where o∗
b(1) → 0, b → ∞ uniformly over all considered parameters. Further, using

Fatou’s lemma and (59), we get

E�v−sk j,0{eζ 2sk j (1+t−1)−1/2 I (|ζsk j | < (1 + t−1)b)}
≥
∫ ∞

−∞
(2π)−1/2e−(1/2)z2[1−(1+t−1)−1]dz − |o∗

b(1)| = (1 + t)1/2(1 + o∗
b(1)),

where in the last relation we used 1 − (1 + t−1)−1 = t−1(1 + t−1)−1 = (1 + t)−1.

Using these results, together with (75), in (74) we get

Ṙsk j (�v−sk j , �v−sk) ≥ (Iskn)−1[(1 + t−1)t]−1/2(1 + t−1)−1(1 + t)1/2(1 + o∗
b(1)

+o∗
n(1))

= (Iskn)−1[t/(1 + t)](1 + o∗
b(1) + o∗

n(1)) = (Iskn)−1τ 2sk j

(Iskn)−1 + τ 2sk j
(1 + o∗

b(1)
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+o∗
n(1)). (76)

To finish step 9, we plug (76) in (71) and get for b ∈ (3, (1/2)s2Isk) and all
sufficiently large n

Rsk j (�v−sk) ≥
[∫

V−sk j

g(�v−sk j |�τ−sk j )d �v−sk j

]
(Iskn)−1τ 2sk j

(Iskn)−1 + τ 2sk j
(1

+ o∗
b(1) + o∗

n(1))I (b ∈ (3, (1/2)s2Isk)). (77)

Step 10 is to evaluate the integral in (77). Using notation Z1, Z2, . . . for independent
standard normal random variables, and remembering definitions of J and τsk j , we can
write the integral as the probability of the corresponding event, and then we can use
Theorem 6.2 in Kahane (1985) to evaluate that probability. Write

∫

V−sk j

g(�v−sk j |�τ−sk j )d �v−sk j

= Pr

⎛

⎝ max
x∈[a,a+1]

∣
∣
∣
∣
∣
∣

∑

j∈{J∗,...,J }\ j
τsk j Z jϕsk j (x)

∣
∣
∣
∣
∣
∣
≤ (1/2)[s4 ln(n)]1/2n−α/(2α+1)

⎞

⎠

≥ Pr

⎛

⎝

∣
∣
∣
∣
∣
∣

J∑

j=J∗
Z jϕsk j (x)

∣
∣
∣
∣
∣
∣
≤ C∗n1/2q−1/2[s4 ln(n)]1/2n−α/(2α+1)

⎞

⎠

≥ [1 − o∗
n(1)n

−2/(2α+1)]I (q ∈ (3, s)). (78)

Note that absolutely similarly we establish inequality

∫

V̈sk
g(�vsk |�τsk)d �vsk ≥ [1 − o∗

n(1)n
−2/(2α+1)]I (q ∈ (3, s)). (79)

Remember that s → ∞ as n → ∞, so for all sufficiently large n and all k ∈
{0, 1, . . . , s − 1} we have (3, s) ⊂ (3, (1/2)s2Isk). Keeping this in mind, together
with using (78) in (77) we conclude that for all sufficiently large n, b ∈ (3, s) and
q ∈ (3, s), the following relation holds:

Rsk j (�v−sk) ≥ (Iskn)−1τ 2sk j

(Iskn)−1 + τ 2sk j
[1 + o∗

n(1) + o∗
q(1) + o∗

b(1)]. (80)

Now we plug (80) in (56) and get

J∑

j=J∗
Rsk j (�v−sk) ≥

⎡

⎣
J∑

j=J∗

(Iskn)−1τ 2sk j

(Iskn)−1 + τ 2sk j

⎤

⎦ (1 + o∗
n(1) + o∗

q(1) + o∗
b(1)). (81)
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Step 11 is to evaluate the sum in the right side of (81). Remember defini-
tions of J (see Notation), P(α, Q) [see line (2.3)], and that τ 2sk j = n−1I−1

sk (1 −
3q−1)max(q−1,min(q, (J/j)α − 1)). Write for q ∈ (3, s),

J∑

j=J∗

(Iskn)−1τ 2sk j

(Iskn)−1 + τ 2sk j

= (Iskn)−1
J∑

j=J∗

(1 − 3q−1)max(q−1,min(q, (J/j)α − 1))

1 + (1 − 3q−1)max(q−1,min(q, (J/j)α − 1))

≥ (Iskn)−1
J∑

j=J∗
[1 − ( j/J )α][1 + o∗

q(1) + o∗
n(1)]

= (Iskn)−1 J (1 − (1 + α)−1)[1 + o∗
q(1) + o∗

n(1)]
= I−1

sk (s−2αIs)1/(2α+1)n−2α/(2α+1)P(α, Q)[1 + o∗
q(1) + o∗

n(1)]. (82)

Now we use (82) in (81) and then the result in (56). The obtained inequality, together
with (55), yields the following lower bound for the right side of (47), which holds for
any b ∈ (3, s) and q ∈ (3, s),

Rsk(�v−sk) ≥ I−1
sk (s−2αIs)1/(2α+1)n−2α/(2α+1)P(α, Q)[1 + o∗

n(1) + o∗
q(1) + o∗

b(1)].
(83)

Step 12 is to plug (83) in (46). Before doing this, let us note that using inequalities
(54), (79) and the classical probability inequality P(A∩ B) ≥ P(A) + P(B) − 1, we
can write for any b ∈ (3, s) and q ∈ (3, s),

∫

V−sk

⎡

⎣
∏

r∈{0,1,...,s−1}\k
g(�vsr |�τsr )

⎤

⎦ d�v−sk

≥ (1 − C∗q6n−1/(2α+2))s−1 = 1 − o∗
n(1) ln

−1(n). (84)

Also, a direct calculation, based on definition of Is and Isk , shows that
s−1∑

k=0

I−1
sk (s−2α Is)

1/(2α+1)

= s−2α/(2α+1)I1/(2α+1)
s

s−1∑

k=0

I−1
sk =
[

s−1
s−1∑

k=0

I−1
sk

]2α/(2α+1)

=
[

s−1
s−1∑

k=0

h0(a + k/s)e
∫ a+k/s
0 h0(v)dv

]2α/(2α+1)

=
[∫ a+1

a
h0(x)e

∫ x
0 h0(v)dvdx

]2α/(2α+1)

(1 + o∗
n(1)), (85)
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where the last equality is valid for anyRiemann integrable on [a, a+1] function h0(x).
Remember that we consider a particular h0(x) = Q0(1 − 1/s2), x ∈ [a, a + 1]. This
yields that

∫ a+1
a h0(x)e

∫ x
0 h0(v)dvdx = G−1(a)(eQ0 − 1)(1 + on(1)). Now, we can

finish step 12 by utilizing the last relation in (85), then using the obtained inequality
in the right side of (83), and then using the obtained inequality and (84) in (46). As a
result, we get

Rs ≥ P(α, Q)([G−1(a)(eQ0 − 1)]n−1)2α/(2α+1)[1 + o∗
n(1) + o∗

b(1)

+ o∗
q(1)]I (b ∈ (3, s))I (q ∈ (3, s)). (86)

Finally, we note that according to (86) constants b and q can be chosen as large as
desired for sufficiently large n. ��
Proof of Theorem 2 There are two changes in the proof. The first one is in using
a different pivot on the interval [a, a + 1]. Here, we use h0(x) = Q∗

0(1 − s−2),
x ∈ [a, a+1]. Note that this pivot is plainly Riemann integrable, bounded below from
zero and continuous on that interval. The second change is in replacing parameter Q
on [Q − c1(Q∗

0)
2]/c2. Then, following along lines of the previous proof we verify

assertion of Theorem 2. ��
Proof of Theorem 3 This proof follows along lines of the proof of Theorem 1 if the
specified in the theorem pivot is used. ��
Proof of Theorem 4 This proof also follows along lines of the proof ofTheorem1, only
here a new classHs is used to satisfy restrictions of the class S4. Namely, hazard rates
from S4 have fixed Fourier coefficients (for the cosine series expansion on [a, a + 1])
on lower frequencies and this is reflected in the new classHs . Set

Hs =
⎧
⎨

⎩
h : h(x) = h0(x)I (x /∈ [a, a + 1]) +

⎡

⎣
Mn−1∑

j=0

∫ a+1

a
h0(u)ϕ j (u)duϕ j (x)

+
s−1∑

k=0

fsk(x)φsk(x)

⎤

⎦ I (a ≤ x ≤ a + 1), fsk ∈ Hsk, h(x) ≥ 0, x ≥ 0

⎫
⎬

⎭
.

Let us also note that Mn = o∗
n(1)J∗. Also, because Fourier coefficients of the pivot

h0(x), with respect to cosine basis on [a, a+1], are absolutely summable, the pivot is
continuous and Riemann integrable on [a, a + 1]. Remember that it is also assumed
that the pivot is bounded below from zero on that interval. Keeping these remarks in
mind, we can follow the proof of Theorem 1 and verify assertion of Theorem 4. ��

In what follows S1–S4 denote four classes of hazard rates studied in Theorems 1–4,
respectively (we may skip parameters of a class to simplify notation), and Cs are
generic positive constants that do not depend on an underlying h or an underlying
function class.
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Proof of Theorem 5 We begin with establishing several properties of statistic θ̂ j

defined in (14). Write

θ̂ j = n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])
G(Xl)

+ n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]
G2(Xl)

+ n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]2
G2(Xl)ηl/n

. (87)

Now we are evaluating the expectation of θ̂ j by considering 3 terms in (87) in turn.
For expectation of the first term, we can write

Eh

{

n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])
G(Xl)

}

=
∫ a+1

a

h(x)G(x)ϕ j (x)

G(x)
dx = θ j . (88)

Evaluation of expectation of the second term in (87), we begin with a conditional
expectation,

Eh{(G(Xl) − ηl/n)|Xl = x}

= Eh

⎧
⎨

⎩
G(x) − n−1

n∑

s �=l,s=1

I (Xs ≥ x) − n−1

⎫
⎬

⎭

= G(x) − (n − 1)n−1G(x) − n−1 = n−1(G(x) − 1). (89)

Now let us show that
min

i∈{1,...,4} inf
h∈Si

G(a + 1) > 0. (90)

Using Cauchy–Schwarz inequality, we can write

G(a + 1) = G(a)e− ∫ a+1
a h(x)dx ≥ G(a)e−[∫ a+1

a h2(x)dx]1/2 .

Now remember that for all four studied function classesSi it is assumed thatG(a) > 0
and maxi∈{1,...,4} suph∈Si

∫ a+1
a h2(x)dx < C < ∞. This verifies (90).

Using (89) and (90) allows us to evaluate expectation of the second term in (87).
Write

Eh

{

n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]
G2(Xl)

}

= Eh

{

Eh

{

n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]
G2(Xl)

|Xl

}}
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= n−1Eh

{
ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − 1]

G2(Xl)

}

= n−1
∫ a+1

a
[h(x)(1 − G−1(x))]ϕ j (x)dx =: n−1κ j , (91)

where due to the Parseval identity and (90) we have the following relation for Fourier
coefficients κ j ,

max
i∈{1,...,4} suph∈Si

∞∑

j=0

κ2
j = max

i∈{1,...,4} suph∈Si

∫ a+1

a
[h(x)(1−G−1(x))]2dx < C < ∞. (92)

Now let us evaluate the expectation of the third term in (87). We begin with the
following conditional expectation:

Eh{(G(Xl) − ηl/n)2|Xl = x}

= Eh

⎧
⎪⎨

⎪⎩

⎡

⎣n−1
∑

s∈{1,...,n}\{l}
(I (Xs ≥ x) − G(x)) + n−1(1 − G(x))

⎤

⎦

2
⎫
⎪⎬

⎪⎭

≤ n−1G(x)(1 − G(x)) + n−2(1 − G(x))2. (93)

The familiar Hoeffding inequality (see Petrov 1975) states that if V1, V2, . . . , Vm
are independent mean zero random variables with bounded ranges, that is, Pr(Vi ∈
[ai , bi ]) = 1, −∞ < ai < bi < ∞, i = 1, 2, . . . ,m then for each ε > 0

Pr

(
m∑

i=1

Vi ≥ ε

)

≤ e−2ε2/
∑m

i=1(bi−ai )2 . (94)

Note that for Bernoulli random variables we have bi −ai = 1. Consider some positive
ε such that ε − n−1 > (1/2)ε[(n − 1)/n]1/2. Then using (94), we get

Prh(|G(Xl) − ηl/n| > ε|Xl = x)

= Prh(|n−1
∑

s∈{1,...,n}\{l}
[G(x) − I (Xs ≥ x)] − n−1(1 − G(x))| > ε)

≤ Prh(|n−1
n∑

s �=l,s=1

[G(x) − I (Xs ≥ x)]|

> (ε − n−1(1 − G(x)))) ≤ 2e−nε2/2. (95)

In its turn, (95) implies the following probability inequality,

n∑

l=1

Prh({|G(Xl) − ηl/n| > ε}) ≤ 2ne−nε2/2. (96)
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Note that for x ∈ [a, a + 1], we have G(x) ≥ G(a + 1) > 0, and then we have the
following chain of relations for events,

{
I (Xl ∈ [a, a + 1])

ηl/n
>

2

G(a + 1)

}

=
{

ηl

n
<

G(a + 1)

2
, Xl ∈ [a, a + 1]

}

⊂ {G(Xl) − ηl/n > G(a + 1)/2, Xl ∈ [a, a + 1]}
⊂ {|G(Xl) − ηl/n| > G(a + 1)/2}.

This together with (96) yields

max
i∈{1,...,4} suph∈Si

n∑

l=1

Prh

(
I (Xl ∈ [a, a + 1])

ηl/n
> 2/G(a + 1)

)

≤ 2ne−nG2(a+1)/8.

(97)
Now we can evaluate the third term in (87). Note that ηl ≥ 1, |G(Xl) − ηl/n| ≤ 1

and then with the help of (93) and (97) we can write for any h from the four considered
function classes,

Eh

{∣∣
∣
∣
∣
n−1

n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]2
G2(Xl)ηl/n

∣
∣
∣
∣
∣

}

≤ CEh

{

I

(
I (Xl ∈ [a, a + 1])

ηl/n
≤ 2

G(a + 1)

)

× (G(Xl) − ηl/n)2
}

+CnEh

{

I

(
I (Xl ∈ [a, a + 1])

ηl/n
>

2

G(a + 1)

)}

≤ Cn−1, (98)

where all Cs are uniformly bounded over h from the four functional classes.
Using (88), (91) and (98) in the right side of (87), we get

|Eh{θ̂ j } − θ j | ≤ Cn−1. (99)

Now we are evaluating the mean squared error of θ̂ j . Using (87), we can write

Eh{(θ̂ j − θ j )
2} = Eh

{[

n−1
n∑

l=1

(
ϕ j (Xl)I (Xl ∈ [a, a + 1])

G(Xl)
− θ j

)

+ n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]
G2(Xl)

+ n−1
n∑

l=1

ϕ j (Xl)I (Xl ∈ [a, a + 1])[G(Xl) − ηl/n]2
G2(Xl)ηl/n

]2
⎫
⎬

⎭
.

(100)
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It is convenient to consider the three sums in (100) in turn. Using (88) and ϕ2
j (x) =

1 + 2−1/2ϕ2 j (x), we get

Eh

⎧
⎨

⎩

[

n−1
n∑

l=1

(
ϕ j (Xl)I (Xl ∈ [a, a + 1])

G(Xl)
− θ j

)]2
⎫
⎬

⎭

= n−1

[

Eh

{(
ϕ j (Xl)I (Xl ∈ [a, a + 1])

G(Xl)

)2}

− θ2j

]

= n−1
[∫ a+1

a
h(x)G−1(x)dx + ν j − θ2j

]

,

ν j := 2−1/2
∫ a+1

a
h(x)G−1(x)ϕ2 j (x)dx, (101)

where according to the Bessel inequality

max
i=1,...,5

sup
h∈Si

∞∑

j=0

ν2j ≤ max
i=1,...,5

sup
h∈Si

∫ a+1

a
h2(x)G−2(x)dx < C < ∞. (102)

Before proceeding to the analysis of other two sums, let us establish the following
useful inequality. For any positive integer k

Eh{[G(Xl) − ηl/n]2k} ≤ Ckn
−k, Ck < ∞, (103)

where Ck depends only on k. Indeed, similarly to (93), we can write

Eh{[G(Xl) − ηl/n]2k}
= Eh{Eh{[n−1

∑

s∈{1,...,n}\{l}
(I (Xs ≥ Xl) − G(Xl)) + n−1(1 − G(Xl))]2k |Xl}}.

Then (103) is verified via applying two familiar inequalities (see Petrov 1975): (i) For
independent and mean zero random variables V1, . . . , Vm

E

{

|m−1
m∑

i=1

Vi |p
}

≤ C∗
pm

−p/2−1
m∑

i=1

E{|Vi |p}, p ≥ 2, (104)

where C∗
p is a finite absolute constant depending only on p; (ii) For any two constants

a and b
|a + b|p ≤ 2p−1(|a|p + |b|p), p ≥ 1. (105)

Now we can continue evaluation of Eh{(θ̂ j − θ j )
2}. We explore the second sum in

(100),
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Eh

⎧
⎨

⎩

[

n−1
n∑

l=1

ϕ j (Xl )I (Xl ∈ [a, a + 1])[G(Xl ) − ηl/n]
G2(Xl )

]2
⎫
⎬

⎭

= Eh

⎧
⎨

⎩
n−2

n∑

l,k=1

ϕ j (Xl )ϕ j (Xk)I (Xl , Xk ∈ [a, a + 1]2)[G(Xl ) − ηl/n][G(Xk) − ηk/n]
G2(Xl )G2(Xk)

⎫
⎬

⎭
.

(106)

To continue the evaluation, we are considering the conditional expectation of a par-
ticular factor in (106). For any pair (x, y) ∈ [a, a + 1]2 and k �= l, we can write

Eh{[G(Xl ) − ηl/n][G(Xk) − ηk/n]|Xl = x, Xk = y}

= Eh

⎧
⎨

⎩

⎡

⎣n−1
∑

s∈{1,...,n}\{k,l}
(I (Xs ≥ x) − G(x)) + n−1(1 + I (y ≥ x) − 2G(x))

⎤

⎦

×
⎡

⎣n−1
∑

s∈{1,...,n}\{k,l}
(I (Xs ≥ y) − G(y)) + n−1(1 + I (x ≥ y) − 2G(y))

⎤

⎦

⎫
⎬

⎭

= n−2(1 + I (y ≥ x) − 2G(x))

×(1 + I (x ≥ y) − 2G(y)) + (n − 2)n−2[Eh{I (X ≥ x)I (X ≥ y)} − G(x)G(y)].
(107)

The last expectation in (107) can be simplified via using the following equality,

Eh{I (X ≥ x)I (X ≥ y)} = Prh(X ≥ max(x, y)) = G(max(x, y)).

Using this equality in (107) and then the obtained result in (106) we get with the help
of (103)
∣
∣
∣
∣
∣
∣
∣
Eh

⎧
⎪⎨

⎪⎩

⎡

⎣n−1
n∑

l=1

ϕ j (Xl )I (Xl ∈ [a, a + 1])[G(Xl ) − ηl/n]
G2(Xl )

⎤

⎦

2
⎫
⎪⎬

⎪⎭

∣
∣
∣
∣
∣
∣
∣

≤ Cn−2 + n − 2

n4

n∑

l=1

∑

k∈{1,...,n}\{l}
Eh

{
ϕ j (Xl )ϕ j (Xk)I ((Xl , Xk) ∈ [a, a + 1]2)

G2(Xl )G2(Xk)

×[G(max(Xl , Xk)) − G(Xl )G(Xk)]
}

= Cn−2 + (n − 1)(n − 2)

n3

×Eh

{
ϕ j (X1)ϕ j (X2)I ((X1, X2) ∈ [a, a + 1]2)[G(max(X1, X2)) − G(X1)G(X2)]

G2(X1)G2(X2)

}

≤ Cn−1[b′
j + n−1], where max

i∈{1,...,4} sup
h∈Si

∞∑

j=0

[b′
j ]2 < C < ∞, (108)
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and

b′
j := Eh{ϕ j (X1)ϕ j (X2)I ((X1, X2) ∈ [a, a + 1]2)[G(max(X1, X2))

−G(X1)G(X2)]G−2(X1)G
−2(X2)}.

Note that b′
j are particular Fourier coefficients in the tensor-product cosine basis

ϕi (x)ϕ j (y) on [a, a+1]2 and, therefore, according to theBessel inequality and (90)we
have
∑∞

j=0(b
′
j )
2 ≤ C[∫ a+1

a h2(x)dx]1/2, and this verifies the last inequality in (108).
Finally, inequality (103) allows us to conclude that the expectation of the squared third
term in (100) is at most Cn−2. Combining the obtained results in (100), together with
the Cauchy inequality (c + d)2 ≤ (1 + ρ)c2 + (1 + ρ−1)d2, which is valid for any
ρ > 0, we conclude that

Eh{(θ̂ j − θ j )
2} = n−1

∫ a+1

a
h(x)G−1(x)dx[1 + o∗

j (1) + o∗
n(1)], (109)

where o∗
j (1) and o∗

n(1) are bounded and vanish (as j and n increase) uniformly over
h ∈ Si , i = 1, . . . , 4.

We need one more preliminary result. Let 0 ≤ J∗ < J ∗ be two deterministic
integer sequences in n and γ ≥ 0 is a constant. These 3 parameters may depend on
information known to the dealer. Introduce a dealer-estimator

h̃(x, γ, J∗, J ∗) =
J∗∑

j=0

θ̂ jϕ j (x) +
J∗
∑

j=J∗+1

[1 − ( j/J ∗)γ ]θ̂ jϕ j (x), x ∈ [a, a + 1].
(110)

Note that our four estimates ȟi , considered in (21), are particular cases of the above-
defined h̃. This will allow us to study that estimator and then verify (21) as a corollary.
Let us calculate the MISE of this estimator. Parseval’s identity yields

Eh

{∫ a+1

a
(h̃(x, γ, J∗, J ∗) − h(x))2dx

}

=
J∗∑

j=0

Eh{(θ̂ j − θ j )
2} +

J∗
∑

j=J∗+1

Eh{[(1 − ( j/J ∗)γ )(θ̂ j − θ j )

−( j/J ∗)γ θ j ]2} +
∑

j>J∗
θ2j

=
J∗∑

j=0

Eh{(θ̂ j − θ j )
2} +

J∗
∑

j=J∗+1

(1 − ( j/J ∗)γ )2Eh{(θ̂ j − θ j )
2}

−2
J∗
∑

j=J∗+1

(1 − ( j/J ∗)γ )( j/J ∗)γ Eh{θ̂ j − θ j }θ j +
J∗
∑

j=J∗+1

( j/J ∗)2γ θ2j +
∑

j>J∗
θ2j .

(111)
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Note that we may write

J∗
∑

j=J∗+1

( j/J ∗)2γ θ2j +
∑

j>J∗
θ2j

= (π J ∗)−2γ
∑

j>J∗
(π j)2γ θ2j − (J ∗)−2γ

∑

j>J∗
[ j2γ − (J ∗)2γ ]θ2j .

Using this, (99) and (109) in (111), we get

∣
∣
∣
∣Eh

{∫ a+1

a
(h̃(x, γ, J∗, J ∗) − h(x))2dx

}

−
⎡

⎣

⎡

⎣n−1(J∗ + 1) + n−1
J∗
∑

j=J∗+1

(1 − ( j/J ∗)γ )2

⎤

⎦
∫ a+1

a
h(x)G−1(x)dx

+ (π J ∗)−2γ
∑

j>J∗
(π j)2γ θ2j

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ C∗n−1

⎡

⎣
J∗
∑

j=0

[o∗
j (1) + o∗

n(1)] +
J∗
∑

j=J∗+1

( j/J ∗)γ (1 − ( j/J ∗)γ )|θ j |

+(J ∗)−2γ
∑

j>J∗
[ j2γ − (J ∗)2γ ]θ2j

⎤

⎦ . (112)

Note that in (112) the constant C∗ and sequences o∗
j (1) and o∗

n(1) do not depend on
h. We have established all needed preliminary results to prove Theorem 4.

Now we are considering cases of the four function classes Si in turn, and begin
with S1 = S1(α, Q0, Q,G(a)). Set γ = α, J∗ = 0 and J ∗ = J1 as defined in (17).
Note that with these parameters the estimator (110) is the Pinsker’s dealer-estimator.
First, let us verify the following inequality

sup
h∈S1(α,Q0,Q,G(a))

∫ a+1

a
h(x)G−1(x)dx ≤ G−1(a)(eQ0 − 1) =: D1, (113)

and note that J1 = 
(Q/D1)
1/(2α+1)bn�. To verify (113) we use two identities which

hold for any x ≥ a. The former is de
∫ x
a h(v)dv/dx = h(x)e

∫ x
a h(v)dv and the latter is

G−1(x) = G−1(a)e
∫ x
a h(v)dv . Using them we can write

∫ a+1

a
h(x)G−1(x)dx

= G−1(a)

∫ a+1

a
h(x)e

∫ x
a h(v)dvdx
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= G−1(a)
[
e
∫ a+1
a h(v)dv − e

∫ a
a h(v)dv

]
= G−1(a)

[
e
∫ a+1
a h(v)dv − 1

]
. (114)

For h ∈ S1(α, Q0, Q,G(a))we have e
∫ a+1
a h(v)dv ≤ eQ0 , and this, together with (114),

verifies (113).
Using (113) in (112), together with the Cauchy–Schwarz inequality

∞∑

j=0

|θ j | ≤ |θ0| +
⎡

⎣
∞∑

j=1

j−2α

⎤

⎦

1/2 ⎡

⎣
∞∑

j=1

j2αθ2j

⎤

⎦

1/2

, (115)

implies (also remember that D1 is defined in (113) and Cs are generic positive con-
stants)

sup
h∈S1(α,Q0,Q,G(a))

Eh

{∫ a+1

a
(h̃(x, α, 0, J ∗) − h(x))2

}

≤
⎡

⎣n−1D1

J∗
∑

j=0

(1 − ( j/J ∗)α)2 + (π J ∗)−2αQ

⎤

⎦+ Cn−1 J ∗on(1). (116)

Let us simplify the first term in (116),

n−1D1

J∗
∑

j=0

(1 − ( j/J ∗)α)2 + (π J ∗)−2αQ

= n−1D1

⎡

⎣(J ∗ + 1) − 2(J ∗)−α
J∗
∑

j=0

jα + (J ∗)−2α
J∗
∑

j=0

j2α

⎤

⎦

+ (π J ∗)−2αQ = n−1D1 J
∗[1 − 2(α + 1)−1 + (2α + 1)−1 + on(1)]

+ (π J ∗)−2αQ

= n−1D1 J
∗ 2α2

(2α + 1)(α + 1)
+ Q

(π J ∗)2α
+ on(1)n

−2α/(2α+1). (117)

Now plug in J ∗ = J1, using the expression for J1 given below line (113), bn defined
in (16), and remember formula (6) for P(α, Q). We continue (117),

n−1D1

J∗
∑

j=0

(1 − ( j/J ∗)α)2 + (π J ∗)−2αQ

= n−1D1(Q/D1)
1/(2α+1)

[
n(2α + 1)(α + 1)

απ2α

]1/(2α+1) 2α2

(2α + 1)(α + 1)

+π−2α(Q/D1)
−2α/(2α+1)

[
n(2α+1)(α+1)

απ2α

]−2α/(2α+1)

Q+on(1)n
−2α/(2α+1)
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= (n−1D1)
2α/(2α+1)Q1/(2α+1)[(α + 1)(2α + 1)π ]−2α/(2α+1)[2α2α−1/(2α+1)

+α2α/(2α+1)]
+on(1)n

−2α/(2α+1) = P(α, Q)(D1n
−1)2α/(2α+1)(1 + on(1)). (118)

Using (118) in (116) verifies Theorem 5 for the global Sobolev class S1.
Now we are considering class S2 = S2(α, c1, c2, Q,G(a)). Consider a partic-

ular h ∈ S2 and set θ := ∫ a+1
a h(x)dx , γ = α, J∗ := 0, Jθ := 
[(Q −

c1θ2)/(c2dθ )]1/(2α+1)bn� where dθ := G−1(a)(eθ − 1). Note that Jθ and dθ depend
on h(x), x ∈ [a, a + 1] only via θ , and this is what the subscript stresses. Repeating
steps leading to (116), we get

Eh

{∫ a+1

a
(h̃(x, α, 0, Jθ ) − h(x))2dx

}

≤ n−1dθ

Jθ∑

j=0

(1 − ( j/Jθ )
α)2 + (π Jθ )

−2α
∑

j>Jθ

(π j)2αθ2j + on(1)n
−2α/(2α+1).

(119)

Note that on(1) → 0 as n → ∞ uniformly over θ ∈ (0,
√
Q/c1). For h ∈ S2

we have
∑

j>Jθ (c1 + c2(π j)2α)θ2j ≤ Q − c1θ2, and this implies the inequality
∑

j>Jθ (π j)2αθ2j ≤ (Q − c1θ2)/c2. Using this we can continue (119)

Eh

{∫ a+1

a
(h̃(x, α, 0, Jθ ) − h(x))2dx

}

≤ n−1dθ

Jθ∑

j=0

(1 − ( j/Jθ )
α)2 + (π Jθ )

−2α[(Q − c1θ
2)/c2] + on(1)n

−2α/(2α+1).

(120)

To simplify the right side of (120) we are using (118). Note that relation (118) holds
for an arbitrary pair (D1, Q) as long as D1 and Q are positive constants, and here we
will use (118) with (D1, Q) = (dθ , (Q − c1θ2)/c2). We are continuing evaluation of
(120),

Eh

{∫ a+1

a
(h̃(x, α, 0, Jθ ) − h(x))2dx

}

≤ P(α, (Q − c1θ
2)/c2)(dθn

−1)2α/(2α+1)(1 + on(1))

= P(α, 1/c2)(G(a))−2α/(2α+1)[(Q − c1θ
2)1/(2α+1)(eθ

−1)2α/(2α+1)]n−2α/(2α+1)(1 + on(1)). (121)

In the right side of (121), the only factor that depends on θ (that is on h) is the
one in the square brackets. Let us show that this factor takes on its maximum when
θ = Q∗

0, that is,
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[(Q − c1θ
2)1/(2α+1)(eθ − 1)2α/(2α+1)]

≤ [(Q − c1(Q
∗
0)

2)1/(2α+1)(eQ
∗
0 − 1)2α/(2α+1)], θ ≥ 0, (122)

where Q∗
0, defined in Sect. 2, is the positive solution of c1(z

2 −α−1z+α−1zez) = Q.
To check (122), setψ(z) := (Q−c1z2)(ez −1)2α , z ≥ 0. Then, the derivative ofψ(z)
isψ ′(z) = −2c1z(ez −1)2α + (Q− c1z2)2α(ez −1)2α−1. We equate the derivative to
zero and get equation g(z) = Q, z ≥ 0, whose roots are extreme points ofψ(z), where
g(z) := c1(z2 − α−1z + α−1zez). As we can see, g(z) is increasing for nonnegative
z and this yields that the extreme point is unique. We have the extreme point as Q∗

0,
and furthermore this is the point of maximum of ψ(z). This verifies (122).

Using (122), we set θ = Q∗
0, note that this particular θ does not depend on an

underlying h ∈ S2, and conclude with the help of (121) that

sup
h∈S2

Eh

{∫ a+1

a
(h̃(x, α, 0, JQ∗

0
) − h(x))2dx

}

≤ P(α, (Q − c1(Q
∗
0)

2)/c2)(dQ∗
0
n−1)2α/(2α+1)(1 + on(1)). (123)

This result proves (21) for the class S2.
Estimate h̃(x, α, J∗, J ∗), with J∗ = 0 and J ∗ = J3 attains the right side of the

lower bound of Theorem 3. This assertion is verified identically to (113)–(118). This
proves (21) for the Golubev’s class S3.

For the weakly restricted local class S4, we use estimate h̃(x, α, J∗, J ∗) with J∗ =
Mn−1 and J ∗ = J3. TheMISE of this estimate attains the lower bound of Theorem 4,
and this again is verified following (113)–(118). Relation (21) is verified for all four
function classes.

Now let us verify (23) given (22). The MISE of a Pinsker’s dealer-estimator is
given in (111) where we should set J∗ = 0 and J ∗ := Jn := J (n). Remember that
Jn , used by a dealer-estimator, may depend on the class S4. There are five sums in
(111). The first one is of order n−1 according to (109). Further, only the third sum
may take on negative values, and according to (99) and relation suph∈S4

∑∞
j=0 |θ j | ≤

suph∈S4

∑Mn−1
j=0 |θ j | + suph∈S4

∑∞
j=Mn

|θ j | < ∞, the third term is of order n−1. As

a result, the first and third terms are negligibly small with respect to n−2α/(2α+1). We
are left with the analysis of three positive sums in (111). Suppose that (23) is incorrect.
Then, there exists Jn ∈ {0, 1, . . . , n} such that

max

⎛

⎝ sup
h∈S4

Jn∑

j=1

[1 − ( j/Jn)
α]2Eh{(θ̂ j − θ j )

2}, sup
h∈S4

Jn∑

j=1

( j/Jn)
2αθ2j , sup

h∈S4

∑

j>Jn

θ2j

⎞

⎠

≤ Cn−2α/(2α+1). (124)

The third sum in (124) is decreasing in Jn , and this yields that Jn > Cn1/(2α+1)

(remember that Cs denote generic positive constants that may be different even in the
same line). Using (124), (109) and (50) we get for the first sum that
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Cn−2α/(2α+1) ≥ sup
h∈S4

Jn∑

j=1

[1− ( j/Jn)
α]2Eh{(θ̂ j − θ j )

2} > Cn−1 Jn
2α2

(2α + 1)(α + 1)
.

(125)
This yields that Jn < Cn1/(2α+1), and as a result we conclude that Jn should be of
order n1/(2α+1). Then for the second sum in (124) we get Mn = on(1)Jn and write for
all large n,

Cn−2α/(2α+1) ≥ sup
h∈S4

Jn∑

j=1

( j/Jn)
2αθ2j > J−2α

n

Mn−1∑

j=1

j2α
[∫ a+1

a
h0(x)ϕ j (x)dx

]2
.

(126)
Nownote that J−2α

n ≥ Cn−2α/(2α+1) and according to (22)
∑Mn−1

j=1 j2α[∫ a+1
a h0(x)ϕ j

(x)dx]2 → ∞ as n → ∞. This contradiction in (126) establishes validity of (23). ��
Proof of Theorem 6 Consider the mean squared error of a shrinkage estimator λ j θ̂ j

of Fourier coefficients θ j := ∫ a+1
a h(x)ϕ j (x)dx where λ0 = 1, λ j ∈ [0, 1] for j ≥ 1,

∑J∗
j=0 λ2j → ∞ as n → ∞, and J ∗ :=∑Kn

k=1 Lk . Note that J ∗ is of order n1/3 ln ln(n)

due to definition of Kn . Write

Eh{(λ j θ̂ j − θ j )
2} = λ2j Eh{(θ̂ j − θ j )

2} + (1− λ j )
2θ2j − 2(1− λ j )λ j Eh{θ̂ j − θ j }θ j .

(127)
Using (99) and (109), we continue (127),

Eh{(λ j θ̂ j − θ j )
2} = [λ2j n−1d∗ + (1 − λ j )

2θ2j ] + n−1ρ j (h, n, λ j ), (128)

where |ρ j (h, n, λ j )| ≤ C∗[λ2j (o∗
j (1) + o∗

n(1)) + |θ j |] and d∗ = ∫ a+1
a h(x)G−1(x)dx

(remember that d∗ is defined in (26)). Introduce an estimator of h(x) for x ∈ [a, a+1],

h̄(x, {λ j }) :=
J∗
∑

j=0

λ j θ̂ jϕ j (x). (129)

Our next step is to show that the oracle-estimator asymptotically dominates a class of
such estimators. Using (128) and the Parseval identity, we can evaluate the MISE of
estimator (129),

Eh

{∫ a+1

a
(h̄(x, {λ j }) − h(x))2dx

}

=
J∗
∑

j=0

[n−1d∗λ2j + (1 − λ j )
2θ2j ] +

∑

j>J∗
θ2j + n−1

J∗
∑

j=0

ρ j (h, n, λ j )

≤
J∗
∑

j=0

[n−1d∗λ2j + (1 − λ j )
2θ2j ] +

∑

j>J∗
θ2j +
⎡

⎣o∗
n(1)n

−1
J∗
∑

j=0

λ2j
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+C∗n−1 I

⎛

⎝
J∗
∑

j=0

λ2j < ln ln(n)

⎞

⎠

⎤

⎦ , (130)

where o∗
n(1) → 0 as n → ∞ uniformly over hazard rates h from the four functional

classes Si . Note that the inequality in (130) is due to the upper bound for the third
sum in the right part of the equality in the top line of (130). Also, the term with the
indicator in (130) is used to make the inequality valid for the case when

∑J∗
j=0 λ2j does

not increase to infinity as n increases. We do assume that the latter does not occur,
but the general inequality (130) holds for all cases and this will allow us to use it
later for any sequence λ j . We will be reminded about this remark later in the proof of
Theorem 7.

Remember our notation for blocks, introduced above line (24), and write for the
first term in (130),

J∗
∑

j=0

[n−1d∗λ2j + (1 − λ j )
2θ2j ] =

Kn∑

k=1

∑

j∈Bk
[n−1d∗λ2j + (1 − λ j )

2θ2j ]

=
Kn∑

k=1

Lk[n−1d∗μ2
k + (1 − μk)

2	k] +
⎡

⎣n−1d∗
Kn∑

k=1

∑

j∈Bk
(λ2j − μ2

k)

+
Kn∑

k=1

∑

j∈Bk
(2 − μk − λ j )(μk − λ j )θ

2
j

⎤

⎦

=: A + B, where μk := max
j∈Bk

λ j , (131)

and remember that	k = L−1
k

∑
j∈Bk θ2j . Let us find lower bounds for the two terms in

(131). To evaluate A, we note that the minimum of ψ(z) := L[n−1d∗z2 + (1− z)2	]
over z ∈ [0, 1] is attained at z∗ = 	/[	 + n−1d∗], and then ψ(z∗) = n−1dLz∗ =
n−1d∗L	/[	 + n−1d∗]. Using this fact, we conclude that

A ≥ n−1d∗
Kn∑

k=1

Lk	k[	k + n−1d∗]−1. (132)

To evaluate term B in (131) from below we note that in B the second sum is nonneg-
ative. To evaluate the first sum, which is nonpositive, let us in addition to that made
in the beginning of the proof assumptions about {λ j } assume that

μk+1 ≤ min
j∈Bk

λ j , k = 1, . . . , Kn − 1. (133)

Note that (133), as well as the earlier made assumptions about {λ j }, holds for the
shrinkage coefficients used by the four dealer-estimators. Then, we can write

123



Minimax theory of nonparametric hazard rate estimation 69

Kn∑

k=1

Lkμ
2
k ≤ L1 +

Kn∑

k=2

Lkμ
2
k ≤ L1 +

Kn∑

k=2

[Lk/Lk−1]
∑

j∈Bk−1

λ2j

= L1 +
Kn−1∑

k=1

[Lk+1/Lk]
∑

j∈Bk
λ2j

≤ C∗ ln(n) + [1 + 1/(ln(n) ln(ln(n)))]
ln(n)�+1 + 1

[1 + 1/(ln(n) ln(ln(n)))]
ln(n)�
Kn−1∑

k=
ln(n)�+2

∑

j∈Bk
λ2j

≤ (1 + o∗
n(1))

J∗
∑

j=0

λ2j + C∗ ln(n). (134)

Using this result, we conclude that given (133) the term B in (131) can be bounded
from below as follows:

B ≥ −|o∗
n(1)|n−1d∗

J∗
∑

j=0

λ2j − C∗n−1 ln(n). (135)

Using (132) and (135) in (131), and then using the obtained inequality in (130) we
conclude that given (133) the following inequality holds:

n−1d∗
Kn∑

k=1

Lk
	k

	k + d∗n−1 ≤ (1 + o∗
n(1))Eh

{∫ a+1

a
(h̄(x, {λ j })

−h(x))2dx

}

+ C∗n−1 ln(n). (136)

Next step is to evaluate the MISE of the oracle-estimator (24). Set λ j = 	k[	k +
d∗n−1]−1 for j ∈ Bk , k ∈ {1, 2, . . . , Kn}. It is sufficient to consider the case
∑J∗

j=0 λ2j → ∞ as n → ∞ because otherwise the hazard rate on [a, a + 1] is
parametric and it is estimated by the oracle-estimator with the MISE proportional to
n−1. Using (130), together with the remark made below that line, we can write

∣
∣
∣
∣
∣
∣
Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

−
⎡

⎣n−1d∗
Kn∑

k=1

Lk	k

	k + d∗n−1 +
∑

j>J∗
θ2j

⎤

⎦

∣
∣
∣
∣
∣
∣

≤ o∗
n(1)n

−1d∗
Kn∑

k=1

Lk

[
	k

	k + d∗n−1

]2

+Cn−1 I

( Kn∑

k=1

Lk

[
	k

	k + d∗n−1

]2
< ln(ln(n))

)

. (137)
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Now we note that smoothing coefficients of the four dealer-estimators ȟi (x) satisfy
the relation (133) and the assumptions made in the beginning of the proof, we also
have maxi∈{1,2,3} Ji < J ∗, and then with the help of (136) and (137) we conclude that
for all four considered dealer-estimators ȟi (x) we can write

Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

≤ (1 + o∗
n(1)) min

i∈{1,2,3,4} Eh

{∫ a+1

a
(ȟi (x) − h(x))2dx

}

+ C∗n−1 ln(n), (138)

where o∗
n(1) → 0, n → ∞ uniformly over h from the four classes Si . ��

Proof of Theorem 7 Using theCauchy inequality,we canbound the estimator’sMISE,

Eh

{∫ a+1

a
(ĥ(x) − h(x))2dx

}

≤ Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

(1 + ρ)

+Eh

{∫ a+1

a
(h̃∗(x, h) − ĥ(x))2dx

}

(1 + ρ−1), ρ > 0. (139)

The MISE of oracle-estimator h̃∗(x, h) is evaluated in Theorem 6, and we are consid-
ering the second expectation in (139) using the Parseval identity,

Eh

{∫ a+1

a
(h̃∗(x, h) − ĥ(x))2dx

}

= Eh

⎧
⎨

⎩

Kn∑

k=1

⎡

⎣ 	k

	k + d∗n−1 − L−1
k

∑
j∈Bk θ̂2j − d̂n−1

L−1
k

∑
j∈Bk θ̂2j

I

⎛

⎝L−1
k

∑

j∈Bk
θ̂2j > (d̂

+1/ ln(n))n−1

⎞

⎠

⎤

⎦

2
∑

j∈Bk
θ̂2j

⎫
⎪⎬

⎪⎭
. (140)

Let us consider a particular k ∈ {1, . . . , Kn} in the sum, set 	̂k := L−1
k

∑
j∈Bk θ̂2j −

d∗n−1, where d∗ is defined in (3.14), and write

⎡

⎣ 	k

	k + d∗n−1 − L−1
k

∑
j∈Bk θ̂2j − d̂n−1

L−1
k

∑
j∈Bk θ̂2j

I

⎛

⎝L−1
k

∑

j∈Bk
θ̂2j > (d̂

+1/ ln(n))n−1

⎞

⎠

⎤

⎦

2
∑

j∈Bk
θ̂2j
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= n−2Lk[d∗(	k − 	̂k) + (d̂ − d∗)(	k + d∗n−1)]2
(	k + d∗n−1)2(	̂k + d∗n−1)

I (	̂k

> (d̂ − d∗ + 1/ ln(n))n−1)

+	2
k Lk(	̂k + d∗n−1)

(	k + d∗n−1)2
I (	̂k ≤ (d̂ − d∗ + 1/ ln(n))n−1) := Ak1 + Ak2.

(141)

We begin with the analysis of Ak1. Using the Cauchy inequality, we get

Ak1 ≤ 2n−2Lk[(d∗(	̂k − 	k))
2 + (d̂ − d∗)2(	k + d∗n−1)2]

(	k + d∗n−1)2(	̂k + d∗n−1)
× I (	̂k

> (d̂ − d∗ + 1/ ln(n))n−1). (142)

Now we need two directly verified inequalities which are established similarly to (93)
and (99),

Eh{(d̂−d∗)2} ≤ Cn−1, E{(	̂k −	k)
2} ≤ CL−1

k n−1(	k +n−1), k ∈ {1, . . . , Kn},
(143)

where here and in what follows generic constants Cs are uniformly bounded for all
considered hazard rates h and n. Also note that by its definition d̂ > 0, and that
[	̂k + d∗n−1]−1 I (	̂k > (d̂ − d∗ + 1/ ln(n))n−1) < ln(n)n. Using these results, we
establish that

E

{
n−2Lk(d∗)2(	̂k − 	k)

2

(	k + d∗n−1)2(	̂k + d∗n−1)
I (	̂k > (d̂ − d∗ + 1/ ln(n))n−1)

}

≤ C ln(n)n−1,

and

E

{
n−2Lk(d̂ − d∗)2

(	̂k + d∗n−1)
I (	̂k > (d̂ − d∗ + 1/ ln(n))n−1)

}

≤ C ln(n)n−2Lk .

Using these inequalities in (142), we conclude that for k ∈ {1, . . . , Kn}

E{Ak1} ≤ C ln(n)n−1. (144)

Now let us evaluate Eh{Ak2}. Write

Eh{Ak2} = Lk	
2
k

(	k + d∗n−1)2
Eh{(	̂k + d∗n−1)I (	̂k ≤ (d̂ − d∗ + 1/ ln(n))n−1)}

=: Lk	
2
k

(	k + d∗n−1)2
Bk . (145)
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To evaluate Bk , we can write

Bk = Eh{(	̂k + d∗n−1)I (	̂k ≤ (d̂ − d∗ + 1/ ln(n))n−1)}
= Eh{(	̂k + d∗n−1)[I (|d̂ − d∗| < 1/ ln(n)) + I (|d̂ − d∗| ≥ 1/ ln(n))]I (	̂k

≤ (d̂ − d∗ + 1/ ln(n))n−1)}.

Using (143) and the Chebyshev inequality, we can continue

Bk ≤ Cn−1Eh{I (	̂k ≤ 2n−1/ ln(n))} + Eh{(|d̂ − d∗|
+1/ ln(n) + d∗)n−1 I (|d̂ − d∗| ≥ 1/ ln(n))}

≤ Cn−1Eh{I (	̂k ≤ 2n−1/ ln(n))}[I (	k < 4n−1/ ln(n))

+I (	k ≥ 4n−1/ ln(n))] + Cn−2 ln2(n).

Note that

I (	k ≥ 4n−1 ln(n))I (	̂k ≤ 2n−1/ ln(n)) ≤ I (	k − 	̂k

≥ 	k/2)I (	k ≥ 4n−1/ ln(n)).

Using this, with the help of (143) and theChebyshev inequality, we continue evaluation
of Bk ,

Bk ≤ Cn−1 I (	k < 4n−1/ ln(n)) + Cn−1L−1/2
k n−1/2(	k + n−1)1/2	−1

k I (	k

≥ 4n−1/ ln(n)) + Cn−2 ln2(n).

Using the last inequality in (145), we get

Eh{Ak2} ≤ CLk	kn−1

	k + d∗n−1

[
	k

	k + d∗n−1 I (	k < 4n−1/ ln(n))

+	k L
−1/2
k n−1/2(	k + n−1)1/2

(	k + d∗n−1)	k
I (	k ≥ 4n−1/ ln(n)) + Cn−1 ln2(n)

]

≤ CLk	kn−1

	k + d∗n−1

[
ln−1(n)I (	k < 4n−1/ ln(n))

+L−1/2
k I (	k > 4n−1/ ln(n)) + Cn−1 ln2(n)

]
. (146)

In the square brackets one term depends on L−1/2
k ; we know that this sequence

vanishes as k increases but we need to understand how small a corresponding sum is.
Set t := 
3 ln(n)(ln ln(n))2�, note that for all large n we have ln(n) < t < Kn , and
write

n−1
Kn∑

k=1

Lk	k L
−1/2
k I (	k > 4n−1/ ln(n))

	k + d∗n−1
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≤ n−1
t∑

k=1

Lk + L−1/2
t n−1

Kn∑

k=t+1

Lk	k I (	k > 4n−1/ ln(n))

	k + d∗n−1 .

For the first sum, we have

t∑

k=1

Lk ≤ t +
t∑

k=
ln(n)�+1

[1 + 1/(ln(n) ln(ln(n)))]k ≤ C ln(n)[ln(ln(n))]e3 ln(ln(n))

≤ C ln9/2(n).

Furthermore, Lt > [1+ ln−1(n)/ ln(ln(n))]t > Ce3 ln(ln(n)) = C ln3(n). We conclude
that

n−1
Kn∑

k=1

Lk	k L
−1/2
k I (	k > 4n−1/ ln(n))

	k + d∗n−1

≤ n−1C ln9/2(n) + C ln−3/2(n)[n−1
Kn∑

k=1

Lk	k

	k + d∗n−1 I (	k > 4n−1/ ln(n)].

(147)

Using (147) and (146), we get

E

{ Kn∑

k=1

Ak2

}

≤ C
Kn∑

k=1

Lkn−1	k

	k + d∗n−1 ln
−1(n) + Cn−1 ln9/2(n). (148)

Now we can return to (139). With the help of (144), (148), (141) and (140), we
conclude that

Eh

{∫ a+1

a
(ĥ(x) − h(x))2dx

}

≤ Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

(1 + ρ)

+
[

C
Kn∑

k=1

Lkn−1	k

	k + d∗n−1 ln
−1(n) + Cn−1 ln9/2(n)

]

(1 + ρ−1). (149)

Set ρ = ln−1/2(n), use (137) and continue (149)

Eh

{∫ a+1

a
(ĥ(x) − h(x))2dx

}

≤ Eh

{∫ a+1

a
(h̃∗(x, h) − h(x))2dx

}

[1 + C ln−1/2(n)]
+Cn−1 ln5(n). (150)
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What we see in (150) is the so-called oracle-inequality which relates the MISEs of the
estimator and the oracle-estimator.

Now remember that constants Cs do not depend on h and n, and then Theorem 6,
together with (50), proves Theorem 7. ��
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