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Abstract This paper first reviews some basic properties of the (noncircular) complex
multinormal distribution and presents a few characterizations of it. The distribution of
linear combinations of complex normally distributed random vectors is then obtained,
as well as the behavior of quadratic forms in complex multinormal random vectors.
We look into the problem of estimating the complex parameters of the complex normal
distribution andgive their asymptotic distribution.We then propose a virtually omnibus
goodness-of-fit test for the complex normal distribution with unknown parameters,
based on the empirical characteristic function. Monte Carlo simulation results show
that our test behaves well against various alternative distributions. The test is then
applied to an fMRI data set and we show how it can be used to “validate” the usual
hypothesis of normality of the outside-brain signal. An R package that contains the
functions to perform the test is available from the authors.
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1 Introduction

Data in the complex domain are increasingly encountered in many fields, in partic-
ular those related to signal processing (see references in Adali et al. 2011), medical
imaging (Calhoun et al. 2002; Rowe and Logan 2004; Bernard et al. 2006) and pattern
recognition (González-Jiménez andAlba-Castro 2007). However, despitemuch recent
developments on probability models adapted to such data, statistical procedures for
analyzing complex data are still trailing in number and scope.

Up to the year 1995, most works on complex random vectors (c.r.v.) pertained to
so-called circular, or proper, probability models. In the important case of the complex
normal distribution (Goodman 1963), this means that the real and imaginary data are
independent real normal random variables with the same variance, so that there was
not much need for specific statistical methods. However, since the introduction of the
noncircular, or improper, complex normal distribution (van den Bos 1995) and some
of its generalizations (Novey et al. 2010), it has emerged that complex data present a
challenge of their own and require adapted statistical methods, much as the analysis of
directional data requires specific approaches that take into account their particularities.

To this day, the literature on statistics and complex data has mainly focused on
exploratory methods and simple modeling techniques where the complex normal dis-
tribution has played a prominent role. Inferential procedures (estimation and testing)
for complex data are still nascent and there is a paucity of results in the field of complex
mathematical statistics.

The goal of this paper is to develop some statistical results for c.r.v., which are
then applied to the construction of a virtually omnibus goodness-of-fit test for the
noncircular complex normal distributionwith unknownparameters. As a consequence,
these results are presented with a less utilitarian view than we would have taken if our
interest resided only in the goodness-of-fit test.

In Sect. 2 we gather for convenience several basic properties of the complex normal
and multinormal distribution as well as a few characterizations. These results remind
some well-known facts about real random variables (r.v.) and vectors. A detailed pre-
sentation of the distribution of linear combinations of complex normally distributed
random vectors is given, as this is a building block of our goodness-of-fit procedure.
In Sect. 3, we show that the matrix in a quadratic form in complex random vectors
must have a particular form to be statistically useful and prove a general theorem
giving its asymptotic behavior. In Sect. 4, we estimate the parameters of the com-
plex normal distribution (which are themselves complex quantities) and obtain their
asymptotic distribution. In Sect. 5, we build the goodness-of-fit test for the complex
normal distribution. The test is based on the empirical characteristic function, itself a
complex quantity. The main reason for this choice is that goodness-of-fit tests based
on this function have been recognized as very good for testing the real multinormal
distribution, both from theoretical arguments, as in Henze (2002), and from Monte
Carlo power studies, as inMecklin andMundfrom (2005). First, some properties of the
complex empirical characteristic process are reviewed and the general behavior of a
test statistic is derived from the results of the previous sections. This is then specialized
to the case of the complex normal with known parameters. It is then shown how these
results can be adapted to the important case where the parameters of the distribution
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Omnibus goodness-of-fit test for the complex normal distribution 79

are unknown and must be estimated. In Sect. 6, a simulation study shows that the test
behaves rather well. In Sect. 7, we investigate an example where the assumption of
complex normality is important for the modeling process and where our test proves
useful in assessing the validity of this assumption. Section 8 concludes the paper. All
proofs are provided in the Appendix.

2 Complex normal vectors

2.1 Definitions and general properties

A complex random vector (c.r.v.) Z of C
d is constructed from a pair X = (XT

1 , XT
2 )T

(where T denotes transposition) of real random vectors (r.v.), each in R
d , as

Z = X1 + j X2,

where j = √−1. Thus, Re(Z) = X1, Im(Z) = X2. We define the 2d × 2d matrices

M = 1

2

(
Id Id

−j Id j Id

)
and M−1 =

(
Id j Id
Id −j Id

)
= 2MH,

where Id is the identity matrix of order d and whose determinant is |M | = jd2−d .
Throughout the paper, for a vector ν ∈ C

d , ν∗ will denote its conjugate and νH =
(ν∗)T its transpose conjugate. This notation extends to matrices, e.g., VH for the
conjugate transpose of matrix V . The notation ν˜ will stand for (νT, νH)T and will
be referred to as the augmented complex vector associated with ν. In particular, Z˜ =
(ZT, ZH)T is the augmented complex random vector (a.c.r.v.) associated with Z . We
have the relationships

X = MZ˜, Z˜ = M−1X = 2MHX . (1)

Thus, the basic probabilistic properties of a c.r.v. Z derive from those of the cor-
responding real X . For example, if fX (x) is the density of X (with respect to the
Lebesgue measure on R

2d ), A is a measurable subset of C
d and B = {x = (xT1 , xT2 )T ∈

R
2d; z = x1 + j x2 ∈ A}, then

P[Z ∈ A] =
∫
B
fX (x)dx .

Also, if the required moments of X exist, then the expectation of Z is

μ = E(Z) = E(X1) + jE(X2),

and its covariance matrix is defined by

Γ = Cov(Z) = E

[
(Z − μ)(Z − μ)H

]
.
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The d × d matrix Γ is complex, hermitian (Γ = Γ H) and non-negative definite.
Another quantity arises in relation with c.r.v., the relation matrix

P = E

[
(Z − μ)(Z − μ)T

]
,

which is needed to fully characterize the second-order moments of Z. The matrix P
is complex and symmetric. Note that in early statistical analyses of complex data, this
latter matrix was omitted. The main reason for this can be traced back to the introduc-
tion of c.r.v. in Wooding (1956) where, from the motivating example he considered,
this matrix was implicitly null, which corresponds to what Picinbono (1996) calls
(second-order) circularity. But in general applications, this is inadequate and a proper
modeling of c.r.v. requires taking into consideration this matrix P .

The Γ and P matrices are related to the covariance matrix ΣX of X through the
so-called covariance-relation matrix

ΓP =
(

Γ P
PH Γ ∗

)
=
(

Γ P
P∗ Γ ∗

)
, (2)

by the following relations:

ΣX = MΓPM
H , ΓP = M−1ΣX (MH)−1 = 4MHΣX M, (3)

and, when they exist, Σ−1
X = (MH)−1Γ −1

P M−1 and Γ −1
P = MHΣ−1

X M .

2.2 Some basic facts about the complex multinormal distribution

The particular case of the complex normal distribution with P = 0 was introduced by
Wooding (1956). The case P �= 0 was first explored by van den Bos (1995) with ΓP

positive definite. In this subsection, we regroup some known properties of this more
general complex multinormal distribution and state some new results.

Suppose X ∼ N2d(μX ,ΣX ) is the 2d-dimensional (real) normal distribution. By
the standard characterization property (Mardia et al. 1979, p. 60), we define this as
meaning that all linear combinations of the components ofX are normally distributed.
In the particular case where ΣX is positive definite, X has density

fX (x) = 1

(2π)d |ΣX |1/2 exp

{
−1

2
(x − μX )TΣ−1

X (x − μX )

}
.

In view of this, a constructive first definition of the complex normal is given below.

Definition 1 Let X ∼ N2d(μX ,ΣX ). Then Z = X1 + j X2 has the d-dimensional
complex normal distribution.

We can write down the density of Z (with respect to the Lebesgue mesure on C
d )

when ΣX is positive definite. Because of (1), the density of Z, at each point z ∈ C
d ,
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satisfies fZ (z) = fX (x), where x = Mz˜. Using (3), this leads to

fZ (z)

= 1

(2π)d |ΣX |1/2 exp

{
−1

2

(
(zH, zT)−(M−1μX )H

)
Γ −1
P

((
z
z∗
)

−M−1μX
)}

.

In view of |ΣX | = |M | |ΓP | ∣∣MH∣∣ = 2−2d |ΓP |, and upon writing μ = E(Z) with
μ˜ = M−1μX = (μT, μH)T, we get

fZ (z) = 1

πd |ΓP |1/2 exp

{
−1

2
(z˜− μ˜)HΓ −1

P (z˜− μ˜)

}
. (4)

Hence, we have a second definition of the complex multinormal distribution, which
holds when ΓP is positive definite.

Definition 2 The c.r.v. Z ∈ C
d is said to have a d-dimensional complex multinormal

distribution if its density function, with respect to the Lebesgue measure on C
d , has

the form (4), where μ ∈ C
d , Γ is d × d hermitian, P is d × d symmetric and ΓP is

positive definite. This will be noted Z ∼ CNd(μ, Γ, P).

We remark that, when P = 0, (4) reduces to

fZ (z) = 1

πd |Γ | exp
{
−(z − μ)HΓ −1 (z − μ)

}
, (5)

which is the circular density of Wooding (1956); see also Picinbono (1996).
We now recall that the characteristic function of a d-dimensional c.r.v. Z is (Ander-

sen et al. 1995, Definitions 1.10 and 1.20), for ν in C
d ,

ϕZ (ν) = E

(
exp(j Re(νHZ))

)
= E

(
exp

(
1

2
jν˜HZ˜

))
= ϕZ˜(ν˜). (6)

WhenX ∼ N2d(μX ,ΣX ), its characteristic function is (Mardia et al. 1979, p. 61)

ϕX (t) = exp

{
j tTμX − 1

2
tTΣX t

}
,

where t = (tT(1), t
T
(2))

T ∈ R
2d .

Because each point ν ∈ C
d corresponds uniquely to a point t ∈ R

2d via t = Mν˜,the characteristic function of Z is given through ϕZ (ν) = ϕX (t). Now, from (2.1), (3)
and (2)

ϕZ (ν) = exp

{
j
1

2
ν˜HM−1μX − 1

2
ν˜HMHΣX Mν˜

}

= exp

{
j Re(νHμ) − 1

4

(
νHΓ ν + Re(νHPν∗)

)}
, (7)
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because Γ is hermitian. This leads to a third definition.

Definition 3 Z ∼ CNd(μ, Γ, P) if its characteristic function ϕZ (·) is given by (7).
This holds even if ΓP is positive semidefinite.

2.3 Linear combinations of complex normal random vectors

Now, let A be a q × d matrix whose components are complex and consider the c.r.v.
Y = AZ . Then, from (7),

ϕY (w) = ϕZ (AHw)

= exp

{
j Re(wHAμ) − 1

4

(
wHAΓ AHw + Re(wHAPATw∗)

)}
,

from which we conclude from Definition 3 that Y ∼ CNq(Aμ, AΓ AH, APAT).
From this follows the fact that any complex linear combination of a CN is also CN.

Inversely, with Z ∈ C
d , suppose that for any � ∈ C

d\{0}, �HZ ∼ CN1(�
Hμ,

�HΓ �, �HP�∗). Then, the characteristic function of �HZ at v ∈ C is

ϕ�HZ (v) = exp

{
j Re(vH�Hμ) − 1

4

(
vH�HΓ �v + Re(vH�HP�∗v∗)

)}
.

Hence,

ϕ�HZ (1) = exp

{
j Re(�Hμ) − 1

4

(
�HΓ � + Re(�HP�∗)

)}
= ϕZ (�),

showing that Z ∼ CNd(μ, Γ, P). This leads to a fourth definition of the complex
multinormal distribution, which also holds when ΓP is positive semidefinite.

Definition 4 A d-dimensional c.r.v. Z is said to have a complex multinormal distri-
bution if every complex linear combination of the components of Z has a complex
normal distribution. We again write this as Z ∼ CNd(μ, Γ, P), letting the context
make precise whether the corresponding ΓP is positive definite or positive semidefi-
nite.

Now, using (6), (3) and (7), write

ϕZ˜(ν˜) = exp

{
j
1

2
ν˜Hμ˜− 1

8
ν˜HΓPν˜

}
, (8)

and let A and B be two q × d complex matrices. Consider

AB Z˜ =
(

A B
B∗ A∗

)
Z˜ =

(
AZ + BZ∗

(AZ + BZ∗)∗
)

= Y˜,
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thus forming the c.r.v. Y = AZ + BZ∗ and the associated a.c.r.v. Y˜. Then,
ϕY˜(w˜) = ϕZ˜(AH

B w˜) = exp

{
j
1

2
w˜H(ABμ˜) − 1

8
w˜HABΓP A

H
B w˜

}
, (9)

from which we conclude that Y follows a complex multinormal distribution whose
covariance-relation matrix is given by ΓP,Y = ABΓP AH

B . This suggests extending
complex normality to the a.c.r.v. Z˜. From now on the notation Z ∼ CNd(μ, Γ, P) is
equivalent to Z˜ ∼ CN

˜
d(μ˜, ΓP ), whose characteristic function is given in (8). This

last notation is convenient to establish in a compact form which parallels with results
about real random vectors. For example, (9) shows that

AB Z˜ ∼ CN
˜

q(ABμ˜, ABΓP A
H
B ). (10)

Also, if Z˜ ∼ CN
˜

d(μ˜, ΓP ) and ΓP is invertible, setting AB = Γ
−1/2
P , where Γ

−1/2
P

is a square root of Γ −1
P , gives

Γ
−1/2
P (Z˜− μ˜) ∼ CN

˜
d(0˜, I2d).

We refer to the CNd(0, Id , 0) or the CN
˜

d(0˜, I2d) as the standard complex multi-
normal distribution. The above shows how to reduce a general complex multinormal
to its standard form.

We close this section by giving necessary and sufficient conditions ensuring that
some components of Z ∼ CNd(μ, Γ, P) are independent.

Theorem 1 Let Z = (Z1, . . . , Zd)
T ∼ CNd(μ, Γ, P). The components Z1, . . . , Zd

are independent if and only if Γ and P are diagonal.

Corollary 1 Let Z ∼ CNd1+d2(μ, Γ, P). Partition Z as (ZT
1 , ZT

2 )T where Z1 is

d1 × 1, and likewise μ into (μ1, μ2), Γ in

(
Γ1 Γ12

Γ H
12 Γ2

)
and similarly for P. Then, Z1

and Z2 are independent if and only if Γ12 = P12 = 0.

3 Quadratic forms

We give the stochastic behavior of quadratic forms in the augmented vector Z˜,
Q = Z˜HRZ˜, (11)

where R is a 2d×2d complex matrix and Z ∼ CN
˜

d(μ˜, ΓP ). This behavior is another
building block of our test procedure in Sect. 5. Because this behavior has an interest
of its own, we present the result in some generality.

For proper use in statistical procedures, we require Q in (11) to be a real non-
negative random variable. This forces R to be an hermitian matrix. Indeed, in view of
(1),

Z˜HRZ˜ = X T(M−1)HRM−1X = 2X TSX (12)
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84 G. R. Ducharme et al.

where S = MRM−1 is real and must be a symmetric positive semidefinite matrix.

Writing S =
(
S11 S12
ST12 S22

)
using d × d blocks, we have

R = M−1SM

= 1

2

(
S11 + S22 + j (ST12 − S12) S11 − S22 + j (S12 + ST12)
S11 − S22 − j (S12 + ST12) S11 + S22 − j (ST12 − S12)

)
=
(
R11 R12
R21 R22

)
.

The symmetry of S forces R11 = R∗
22 and R21 = RH

12. Hence, R must be of the
form

R =
(

G K
KH G∗

)
, (13)

where G is d × d hermitian positive semidefinite and K is d × d symmetric complex
(i.e., KH = K ∗). Therefore, R is hermitian. The form (13) is also encountered in
Eriksson (2010).

Note that previous works on hermitian quadratic forms, starting with Turin (1960),
consider expressions of the form ZHGZ , where Z ∼ CNd(0, Γ, 0) andG is hermitian
positive semidefinite. To relate this to (11), note that

Z˜H
(
G 0
0 G∗

)
Z˜ = 2ZHGZ .

Therefore, former works on hermitian quadratic forms can be seen as a particular case
of the more general expression (11).

Theorem 2 Let Z˜ ∼ CN
˜

d(μ˜, ΓP ) and R be as in (13). Then,

Z˜HRZ˜ ∼
q∑

k=1

αkχ
2
1

(
δ2k

)
+

2d∑
k=q+1

2τ 2k ,

where the χ2
1 (δ2k ) are independent noncentral χ

2
1 random variables with noncentrality

parameters δ2k = 2τ 2k
αk

, τk = 1
2 x

H
k Rμ˜, with αk and xk being respectively the sorted (in

decreasing order) nonzero eigenvalues and eigenvectors of the 2d × 2d matrix ΓP R
of rank q. When μ˜ = 0˜, τk = δk = 0 for all k.

Finally, we show how to build a quadratic form whose distribution will be χ2.

Theorem 3 Let Z˜ ∼ CN
˜

d(0˜, ΓP ) and Γ +
P be the Moore–Penrose pseudo-inverse of

ΓP . Then, Q = Z˜HΓ +
P Z˜ ∼ χ2

q , where q = rank(ΓP ). When ΓP is of full rank,

Q = Z˜HΓ −1
P Z˜ ∼ χ2

2d .
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Omnibus goodness-of-fit test for the complex normal distribution 85

4 Estimation in the complex multinormal distribution

Let Z1, . . . , Zn be independent copies of Z , a c.r.v. in C
d with expectation μ, covari-

ance matrix Γ and relation matrix P .
First, for completeness, we state a central limit theorem (C.L.T.) for c.r.v.. See

also Ollila and Koivunen (2010, p.106). The symbol � represents convergence in
distribution.

Theorem 4 Let Z̄n = n−1∑n
i=1 Zi . Then,

√
n(Z̄˜n − μ˜) � CN

˜
d(0˜, ΓP ).

We also give a simple form of Slutsky’s Theorem for c.r.v. useful to prove the
corollary below.

Proposition 1 Let X (resp. {Xn}) be some (resp. a sequence of) c.r.v. in C
d and A be

an m × d complex matrix. If Xn � X, then AXn � AX. This is also true for a.c.r.v.

Corollary 2 Let A and B be m × d matrices, AB =
(

A B
B∗ A∗

)
and Z̄n =

n−1∑n
i=1 Zi . Then,

√
nAB

(
Z̄˜n − μ˜

)
� CN

˜
d(0˜, ABΓP A

H
B ).

Now, we consider the estimation of the parameters of a complex multinormal dis-
tribution.

Proposition 2 Let Z1, . . . , Zn be independent copies of Z ∼ CNd(μ, Γ, P). The
method of moments and the maximum likelihood estimators (m.l.e.) of the three para-
meters coincide. They are given respectively by:

μ̂ = Z̄n,

Γ̂ = 1

n

n∑
k=1

(Zk − Z̄n)(Zk − Z̄n)
H,

P̂ = 1

n

n∑
k=1

(Zk − Z̄n)(Zk − Z̄n)
T.

Wewill need the asymptotic behavior of the m.l.e. For brevity, we consider the case
d = 1. Write these estimators μ̂, γ̂ and p̂ as obtained from a sample Z1, . . . , Zn of
independent copies of Z ∼ CN1(μ, γ, p).

Because X = MZ˜ ∼ N2(μX ,ΣX ) with

μX =
(

μ1
μ2

)
, ΣX =

(
σ 2
1 σ12

σ12 σ 2
2

)
,
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it is immediate that

⎛
⎜⎜⎜⎜⎝

μ

γ

p
μ∗
p∗

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 j 0 0 0
0 0 1 1 0
0 0 1 −1 2j
1 −j 0 0 0
0 0 1 −1 −2j

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

μ1
μ2

σ 2
1

σ 2
2

σ12

⎞
⎟⎟⎟⎟⎠ . (14)

Therefore the m.l.e. of μ, γ, p are linear functions of μ̂1, μ̂2, σ̂
2
1 , σ̂ 2

2 , σ̂12, the stan-
dard m.l.e. of the N2(μX ,ΣX ). Applying the results of Bilodeau and Brenner (1999,
Section 13.3.1 and Example 6.4 p. 80), we obtain

√
n

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

μ̂1
μ̂2

σ̂ 2
1

σ̂ 2
2

σ̂12

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

μ1
μ2

σ 2
1

σ 2
2

σ12

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ � N5(0,W ), (15)

with

W =

⎛
⎜⎜⎜⎜⎝

σ 2
1 σ12 0 0 0

σ12 σ 2
2 0 0 0

0 0 2σ 4
1 2σ 2

12 2σ 2
1 σ12

0 0 2σ 2
12 2σ 4

2 2σ 2
2 σ12

0 0 2σ 2
1 σ12 2σ 2

2 σ12 σ 2
1 σ 2

2 + σ 2
12

⎞
⎟⎟⎟⎟⎠ .

Now, from (14), (15) and Proposition 1 applied using a 3× 5 diagonal (of 1’s) matrix,

√
n

⎛
⎝μ̂ − μ

γ̂ − γ

p̂ − p

⎞
⎠ � CN3(0, Γψ, Pψ),

where ψ = (μ, γ, p)T and the elements of Γψ, Pψ are extracted from W and the
matrix in (14) to give

Γψ =
⎛
⎝γ 0 0
0 γ 2 + |p|2 2p∗γ
0 2pγ 2γ 2

⎞
⎠ and Pψ =

⎛
⎝p 0 0
0 γ 2 + |p|2 2pγ
0 2pγ 2p2

⎞
⎠ .

Finally, in Sect. 5, we will need the following. Let

θR = (Re(μ), Im(μ), γ,Re(p), Im(p))T,

θ̂R = (Re(μ̂), Im(μ̂), γ̂ ,Re( p̂), Im( p̂))T. (16)
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Through (14),

θR =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 1 −1 0
0 0 0 0 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

μ1
μ2

σ 2
1

σ 2
2

σ12

⎞
⎟⎟⎟⎟⎠ .

From this and (15),
√
n(θ̂R − θR) � N5(0,G), with

G =

⎛
⎜⎜⎜⎜⎝

1
2 (γ + Re(p)) 1

2 (Im(p)) 0 0 0
1
2 (Im(p)) 1

2 (γ − Re(p)) 0 0 0
0 0 γ 2 + |p|2 2γ Re(p) 2γ Im(p)
0 0 2γ Re(p) γ 2 + Re(p2) Im(p2)
0 0 2γ Im(p) Im(p2) γ 2 − Re(p2)

⎞
⎟⎟⎟⎟⎠ .

(17)

5 Goodness-of-fit tests

In this section, we use the results of the paper to build a goodness-of-fit test for the
complex normal distribution. We focus on the important case d = 1. As stated in
Sect. 1, for real data, tests of normality based on the empirical characteristic function
have been recognized as having good power over broad classes of alternatives. Con-
sequently, we will base our test of complex normality on the empirical characteristic
function.

5.1 Goodness-of-fit test based on the characteristic function

Here, we sketch the basic framework that will be adapted to our goodness-of-fit prob-
lem. Let X1, . . . , Xn be a sample of real random variables with probability law P

and characteristic function ϕX (·) . The problem is to test H0 : P = P0 for some
P0. If ϕ0(·) is the characteristic function of P0, this problem is equivalent to testing
H0 : ϕX (·) = ϕ0(·). Consider the empirical characteristic process

Un(·) = √
n(ϕ̂n(·) − ϕ0(·)),

where ϕ̂n(·) is the empirical characteristic function

ϕ̂n(t) = 1

n

n∑
i=1

ej t Xi .

Let t1, . . . , tm be a collection of points in R and let Un = (Un(t1), . . . ,Un(tm))T. If
ΓP,U denotes the covariance-relationmatrix ofUn , the test statistic ξn = Un˜

HΓ +
P,UUn˜
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converges in distribution to aχ2
rank(ΓP ) fromTheorems 4, 3 and the continuousmapping

theorem.

5.2 Goodness-of-fit test for the complex normal distribution: the simple hypothesis
case

We adapt the above reasoning to the case where P0 is the complex normal distribu-
tion. Let Z1, . . . , Zn be a sample of c.r.v. with characteristic function ϕZ (·). Under
H0 : Zi ∼ CN1(μ, γ, p), where μ ∈ C, γ ∈ R and p ∈ C with |p| < γ , are
known constants. Here, ϕ0(·) is the characteristic function of a CN1(μ, γ, p), whose
expression is given in (7).

The empirical characteristic function is [see (6)],

ϕ̂n(ν) = 1

n

n∑
i=1

exp(j Re(νHZi )). (18)

Because ϕX (t1, t2) = ϕZ (t1 + j t2), it follows from Csörgő (1981) that, on every
bounded subset S ⊂ C

d , supν∈S |ϕ̂n(ν) − ϕZ (ν)| → 0 a.s.. Thus, a test based on
the complex empirical processUn(·) = √

n(ϕ̂n(·) − ϕ0(·)) can in principle detect any
departures from H0.

From Csörgő (1981), the covariance function of Un(·) is

C(s, ν) = E(Un(s)Un(ν)∗) = ϕ0(s − ν) − ϕ0(s)ϕ0(ν)∗

and its relation function is

P(s, ν) = E(Un(s)Un(ν)) = ϕ0(s + ν) − ϕ0(s)ϕ0(ν).

Choose m points ν1, . . . , νm in C and consider the complex random vectors Un =
(Un(ν1), . . . ,Un(νm))T. Because under H0, E(ϕ̂n(ν)) = ϕ0(ν), Theorem 4 yields
under H0, Un � U ∼ CNm(0, ΓU , PU ), where

ΓU = E(UUH) = (C(νk, νk′))k,k′=1,...,m, (19)

and
PU = E(UUT) = (P(νk, νk′))k,k′=1,...,m . (20)

Therefore, in the same manner as in Subsect. 5.1,

ξn = Un˜
HΓ +

P,UUn˜ � χ2
rank(ΓP,U ),

where ΓP,U =
(

ΓU PU
PH
U Γ ∗

U

)
.
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Note that when H0 is false and if at the point νk, ϕZ (νk)−ϕ0(νk) = μk �= 0, then,
from Theorem 4, for some γZ (νk), pZ (νk),

Un(νk) = CN1(0, γZ (νk), pZ (νk)) + √
nμk + op(1) → ∞,

so that the test based on ξn is consistent for such a νk . When H0 is false, there exists
some points for which ϕZ (νk) �= ϕ0(νk) and, thus, our test becomes virtually omnibus
asm increases. A variant where ϕZ (νk)−ϕ0(νk) = n−1/2μk (contiguous alternatives)
could be developed, but because it is of a theoretical interest only, this will not be
pursued here.

5.3 Goodness-of-fit test for the complex normal distribution: the composite case

In most practical applications, the parameters of the complex normal distribution are
unknown. The problem becomes that of testing the composite hypothesis H0 : P ∈
{CN1(μ, γ, p) ; μ ∈ C, γ ∈ R, p ∈ C with |p| < γ }.

With Z1, . . . , Zn being independent copies of Z , define Y˜k = γ
−1/2
p (Z˜k − μ˜),

where

γp =
(

γ p
p∗ γ

)
,

and Ŷ˜k = γ̂
−1/2
p (Z˜k − μ̂˜), using the m.l.e. of Proposition 2. Again, let ν1, . . . , νm

be given points in C and consider Ûn = (Ûn(ν1), . . . , Ûn(νm))T, where Ûn(ν) =√
n(ϕn,Ŷ (ν) − ϕ0(ν)), ϕ0(·) is the characteristic function of a CN1(0, 1, 0) c.r.v. and

ϕn,Ŷ (ν) is the empirical characteristic function given in (18) computed from the Ŷk =
(1, 0)Ŷ˜k . Thus, here θR = (0, 0, 1, 0, 0)T.

The Taylor expansion of ϕn,Ŷ (ν) as a function of θ̂R about θR gives

√
n(ϕn,Ŷ (ν) − ϕn,Y (ν)) = (∇θRϕn,Y (ν))T

√
n(θ̂R − θR) + op(1),

where ∇θR =
(

∂
∂ Re(μ)

, ∂
∂ Im(μ)

, ∂
∂γ

, ∂
∂ Re(p) ,

∂
∂ Im(p)

)T
is the gradient operator evalu-

ated at θR . The law of large numbers implies that ∇θRϕn,Y (ν) converges in proba-
bility to a certain point J (ν) that will be exhibited below. It follows that Ûn(ν) =
Un(ν) + J (ν)TΘ̂n + op(1), where Θ̂n = √

n(θ̂R − θR). Thus,

Ûn = (
Im , JTν

) (Un

Θ̂n

)
+ op(1),

where Jν = (
J (ν1), . . . , J (νm)

)
. Classical results in m.l.e. theory ensure that Θ̂n =

1√
n

∑n
k=1 l(Zk) + op(1), where l(Zk) = G(∇θR (log( f0(Zk, θR))). Here, f0(z, θR)
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denotes the density of the complex normal distribution given in (4) parametrized with
θR , and G is given in (17). Straightforward algebra yields

l(Zk)=

⎛
⎜⎜⎝

Re(Zk ) − Re(μ)

Im(Zk ) − Im(μ)

−γ + (Re(Zk ) − Re(μ))2 + (Im(Zk ) − Im(μ))2

−Re(p) + (Re(Zk ) + Im(Zk ) − Re(μ) − Im(μ))(Re(Zk ) − Im(Zk ) − Re(μ) + Im(μ))

− Im(p) + 2(Re(Zk ) − Re(μ))(Im(Zk ) − Im(μ))

⎞
⎟⎟⎠.

We now obtain the asymptotic distribution of Ûn under H0.

Theorem 5 Let Z1, . . . , Zn be independent copies of Z ∼ CN1(μ, γ, p). Let
ν1, . . . , νm ∈ C. Then,

(
Un

Θ̂n

)
� CNm+5

(
0,

(
ΓU Cν

CH
ν G

)
,

(
PU Cν

CT
ν G

))
,

where ΓU , PU are given in (19), (20), G is given in (17) and Cν is a complex matrix
that will be detailed below. As a result,

Ûn � CNm(0, Γ (ν), P(ν)), (21)

with

Γ (ν) = ΓU + Cν J
∗
ν + JTν C

H
ν + JTν G J ∗

ν , (22)

P(ν) = PU + Cν Jν + JTν C
T
ν + JTν G Jν . (23)

Proof Consider the real random vector

⎛
⎝Re(Un)

Θ̂n

Im(Un)

⎞
⎠ = √

n

⎛
⎝1

n

⎛
⎝Re(ϕn) − E(Re(ϕn))∑n

k=1 l(Zk)

Im(ϕn) − E(Im(ϕn))

⎞
⎠
⎞
⎠+ op(1), (24)

where ϕn = (ϕn,Y (ν1), . . . , ϕn,Y (νm))T. The C.L.T. ensures that (24) converges to
a normal random vector. Therefore, Uθ,n = (Re(Un), Θ̂n, Im(Un), 05×1)

T also con-
verges to a (degenerate) normal random vector. Because

M−1Uθ,n =
(
Un

Θ̂n

)

˜

,

where M−1 is the 2(m + 5) × 2(m + 5) matrix given in (2.1), it follows that

(
Un

Θ̂n

)
� CNm+5

(
0,

(
ΓU Cν

CH
ν G

)
,

(
PU Cν

CT
ν G

))
,
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in which Cν = E(UnΘ̂n
T
) = (C(ν1), . . . ,C(νm))T, with

C(ν) = E

(
Un(ν) × 1√

n

n∑
k=1

l(Zk)

)
.

The asymptotic behavior of Ûn follows from (10). �
The test statistic for H0 : Z ∼ CN1(μ, γ, p), μ, γ, p unknown, is

ξ̂n(ν) = Û˜
H
n Γ +

P (ν)Û˜n, (25)

where ΓP (ν) is the covariance-relation matrix of Ûn whose components are given in
(22) and (23). Under H0, by Theorem 3, ξ̂n(ν) � χ2

rank(ΓP (ν)). When H0 is false and

at least one point νk is such that ϕZ (νk) �= ϕ0(νk), then ξ̂n(ν) → ∞ and the test is
consistent.

It turns out that the components of ΓP (ν) do not depend on unknown parameters
that would then need to be estimated. This interesting property follows from the fact
that ΓP (ν) is evaluated at parameter space point θR = (0, 0, 1, 0, 0)T. Then,

G =

⎛
⎜⎜⎜⎜⎝

1/2 0 0 0 0
0 1/2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

and, for each point νk ,

C(νk) = 1

4

⎛
⎜⎜⎜⎜⎝

2j Re(νk)
2j Im(νk)

−|νk |2
−Re(νk)2 + Im(νk)

2

−2Re(νk) Im(νk)

⎞
⎟⎟⎟⎟⎠× ϕ0(νk)

and

J (νk) =

⎛
⎜⎜⎜⎜⎝

−j Re(νk)
−j Im(νk)

1
4 |νk |2

1
4 (Re(νk)

2 − Im(νk)
2)

1
2 Re(νk) Im(νk)

⎞
⎟⎟⎟⎟⎠× ϕ0(νk).

6 Simulations

To investigate the behavior of our test statistic (25), a simulation study is conducted
to assess its level and power under various settings of n and (ν1, . . . , νm). The first
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part of our simulation explores the actual levels of ξ̂n(ν) to determine whether the
asymptotic χ2 distribution provides a good approximation in moderate samples. The
number of points in ν ranges from m = 1 to 6 and we test two different patterns :
points located either on a circle or on a line in C. In all cases, we choose points neither
too close (because Un(0) ≡ 1) nor too far from the origin (because the convergence
of ϕn(·) occurs on bounded sets in C). Finally, for ease of computations, the points
are taken such that Γ +

P (ν) = Γ −1
P (ν). This leads to the following sets of points :

– m = 1 : ν1,1 = 0.50 + 0.50j
– m = 1 : ν1,2 = 5ν1,1
– m = 2, circular pattern:

ν2,1 = (0.25 + 0.433j,−0.129 + 0.483j)T

– m = 2, circular pattern:

ν2,2 = 5ν2,1

– m = 2, linear pattern:

ν2,3 = (0.79 + 0.13j, 0.02 + 0.33j)T,

– m = 3, circular pattern:

ν3,1 = (0.935 − 1.173j, 0.935 + 1.173j,−1.351 + 0.650j)T,

– m = 3, linear pattern:

ν3,2 = (0.5 + 0.5j, 1 + 1j, 1.5 + 1.5j)T

– m = 4, circular pattern:

ν4 = 1.5(exp(j), exp(2j), exp(3j), exp(4j))T

– m = 5, circular pattern:

ν5 = 1.5(exp(j), exp(2j), exp(3j), exp(4j), exp(5j))T

– m = 6, circular pattern:

ν6 = 1.5(exp(j), exp(2j), exp(3j), exp(4j), exp(5j), exp(6j))T

Table 1 gives the levels of ξ̂n(ν) for n = 50, 100, 250 and 500 and for the above
choices of points. It appears that the test using the asymptotic approximation holds its
level. In general, for the above sample sizes we may recommend, level-wise, the use
of a circular pattern with m = 3 or 4.
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Table 1 Percentage points for the observed distribution of ξ̂n(ν) based on 100,000 repetitions for
ν1,1, ν1,2, ν2,1, ν2,2 and ν2,3

n ν1,1 ν1,2 ν2,1 ν2,2 ν2,3 ν3,1 ν3,2 ν4 ν5 ν6

level 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 %

50 0.039 0.051 0.048 0.046 0.046 0.048 0.032 0.050 0.055 0.062

100 0.042 0.051 0.052 0.047 0.050 0.049 0.038 0.051 0.055 0.062

250 0.045 0.050 0.053 0.049 0.052 0.050 0.046 0.052 0.055 0.060

500 0.047 0.050 0.053 0.050 0.051 0.050 0.050 0.050 0.052 0.056

The second part of our simulation pertains to the power of our test procedure. We
apply our test to data generated from a number of alternative distributions, listed below
that cover some interesting departures from the CN distribution.

– Khintchine distributions Kh(a): let W = X + jY where X,Y are drawn from a
U [0, 1] distribution. Let G ∼ Gamma(1.5, 1). A datum from a complex Khint-
chine distribution with parameter a is generated through

√
3Γ (1.5)

Γ (1.5 + 2a)
Ga(2W − 1 − 1j).

We consider the cases a = 0.5 and a = 0.3989, for which the distribution has
almost normal marginals on its real and imaginary parts, but the level curves of
the density are rectangular in C.

– Mixture distributions: let W ∼ CN1(0, 2, 0), Y ∼ CN1(3 + 3j, 2, 0) and X ∼
CN1(0, 10, 1.8j). We consider the following mixture models, pW + (1 − p)Y
(location mixture) with p = 0.5, 0.7 and 0.9 and qW + (1− q)X (scale mixture)
with q = 0.5 and q = 0.9.

– Complex Student distribution Ct (d): let Z ∼ CN1(0, 2, 0), Y ∼ χ2
d and R =√

d/Y . We say that X = RZ follows a complex Student distribution. We consider
the cases d = 3, d = 10 and d = 15.

– Complex B–P logistic CBPL: let G ∼ Gamma(1, 1), Y1 ∼ Exp(1) and Y2 ∼
Exp(1) be independent. Let U1 =

(
1 + Y1

G

)−1
, U2 =

(
1 + Y2

G

)−1
and Φ−1(·)

be the quantile function of an N (0, 1). Then, Z = Φ−1(U1)+jΦ−1(U2) is said to
follow a complex B–P logistic distribution, whose density tends to have triangular
levels in C.

– Complex Pearson type II distribution CP2(r): let U ∼ U [0, 2π ], Y = cos(U ) +
j sin(U ) and B ∼ β(1, 1+ r) ; thenW = BY is said to follow a complex Pearson
type II distribution. The density of this distribution is supported in the unit circle
inC and becomes sharper at the origin as r increases. We consider the cases r = 5
and r = 10.

– Laplace-type distributions: let U,W,W ∼ Exp(1) be independent. Then X =
V −U , Y = W −U and Z = X + jY .

– Independent exponential: let X,Y ∼ Exp(1) be independent. Then, Z = X + jY .
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Table 2 Power of ξ̂n(ν3,1),
based on 100,000 Monte Carlo
repetitions and using the
empirical critical points

n 50 100 250 500

significance level 5 % 5 % 5 % 5 %

Kh(0.5) 0.269 0.459 0.829 0.988

Kh(0.3989) 0.270 0.459 0.828 0.988

Location mixture 1 0.163 0.822 1.000 1.000

Location mixture 2 0.356 0.942 1.000 1.000

Location mixture 3 0.860 0.996 1.000 1.000

Scale mixture 1 0.484 0.756 0.986 1.000

Scale mixture 2 0.508 0.742 0.960 0.998

Ct(3) 0.862 0.985 1.000 1.000

Ct(10) 0.273 0.420 0.698 0.915

Ct(15) 0.173 0.255 0.422 0.636

CBPL 0.258 0.536 0.947 1.000

CP2(5) 0.855 0.990 1.000 1.000

CP2(10) 0.923 0.998 1.000 1.000

Lap 0.922 0.998 1.000 1.000

Exp 0.999 1.000 1.000 1.000

Lognorm 0.808 0.991 1.000 1.000

χ2 0.751 0.980 1.000 1.000

– Complex log-normal (0.5): let U, V,W ∼ LogNormal(0, 0.25) be independent.
Then, X = UV, Y = UW and Z = X + jY .

– Complex χ2(8): let U, V,W ∼ Gamma(2, 0.5) be independent. Then X = U +
V, Y = U + W and Z = X + jY .

Our simulation study is conducted using the points ν3,1, ν3,2 and ν4 which yields
consistent tests. To give a proper reflection of the power of our test, we use the empirical
quantiles obtained from the first part of our simulation. The results are summarized in
Tables 2, 3 and 4, associated with ν3,1, ν3,2 and ν4, respectively. The test has rather
good power against all alternatives.

Note that ν3,1, a circular pattern, yields globally the most powerful test and as
default values we may recommend using these points. With ν4, another circular pat-
tern, the power is globally slightly weaker but better than with ν3,2, a linear pattern.
Complementary power studies (not shown) have established that the behavior of ξ̂n(ν)

is rather stable among the circular patterns (fromm = 3 tom = 6), and that the power
of the tests is lower if m = 1 or 2. This is intuitively easy to understand.

7 Example

Functional magnetic resonance imaging (fMRI) is a neuro imaging procedure that
measures brain activity in real time. Data are acquired as natively complex (Calhoun
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Table 3 Power of ξ̂n(ν3,2),
based on 100,000 Monte Carlo
repetitions and using the
empirical critical points

n 50 100 250 500

significance level 5 % 5 % 5 % 5 %

Kh(0.5) 0.249 0.381 0.669 0.919

Kh(0.3989) 0.248 0.378 0.671 0.919

Location mixture 1 0.917 1.000 1.000 1.000

Location mixture 2 0.944 1.000 1.000 1.000

Location mixture 3 0.937 0.999 1.000 1.000

Scale mixture 1 0.393 0.627 0.937 0.999

Scale mixture 2 0.411 0.642 0.910 0.991

Ct(3) 0.650 0.888 0.997 1.000

Ct(10) 0.184 0.282 0.484 0.700

Ct(15) 0.127 0.185 0.297 0.439

CBPL 0.107 0.161 0.323 0.616

CP2(5) 0.696 0.930 1.000 1.000

CP2(10) 0.782 0.968 1.000 1.000

Lap 0.538 0.792 0.987 1.000

Exp 0.775 0.989 1.000 1.000

Lognorm 0.430 0.744 0.992 1.000

χ2 0.454 0.774 0.996 1.000

Table 4 Power of ξ̂n(ν4), based
on 100,000 Monte Carlo
repetitions and using the
empirical critical points

n 50 100 250 500

significance level 5 % 5 % 5 % 5 %

Kh(0.5) 0.221 0.381 0.748 0.969

Kh(0.3989) 0.223 0.381 0.748 0.969

Location mixture 1 0.085 0.637 1.000 1.000

Location mixture 2 0.246 0.873 1.000 1.000

Location mixture 3 0.849 0.996 1.000 1.000

Scale mixture 1 0.522 0.797 0.993 1.000

Scale mixture 2 0.537 0.767 0.968 0.999

Ct(3) 0.881 0.989 1.000 1.000

Ct(10) 0.289 0.444 0.728 0.935

Ct(15) 0.183 0.271 0.445 0.673

CBPL 0.211 0.474 0.928 0.999

CP2(5) 0.887 0.995 1.000 1.000

CP2(10) 0.944 0.999 1.000 1.000

Lap 0.928 0.999 1.000 1.000

Exp 0.999 1.000 1.000 1.000

Lognorm 0.785 0.986 1.000 1.000

χ2 0.711 0.969 1.000 1.000
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Fig. 1 Heat map of the fMRI dataset, first with respect to the values of ξ̂n(ν3,1) (left), then versus the
95 %-percentile of the χ2

6 distribution (right)

and Adali 2012), but for various reasons only the so-called magnitude (given by Z Z∗)
part of the data is typically used in the ensuing analysis. Over the past few years, inter-
est in exploiting the full information has been growing and newmethods for modeling
and processing the whole data have been developed. In particular, Rowe and Logan
(2004) present an activation model for complex fMRI data. Their dataset is structured
as a 128×128 array of volume elements (called voxels) representing spatial positions
in a given slice of the brain. In each of these voxels, 269 complex fMRI observations
are collected over time, while the subject performs a finger-tapping task. Each obser-
vation can be viewed as a (indirect) measure of the neuronal activity in this small
voxel region and at a given time. However, some of these voxels are located outside
the brain tissue and, in their model, Rowe and Logan (2004) make the assumption
that the corresponding 269 data points follow a complex normal distribution, while
data pertaining to voxels lying in brain tissue behave differently. Their model uses
this difference to allow discriminating between the different spatial positions of the
voxels.

Lacking a formal way to validate this complex normality assumption, they resort to
showing histograms of the real and imaginary part of the data which seem to corrob-
orate complex normality. However, note that even if such histograms are consonant
with normal distributions for each of the parts, this is not sufficient to get complex nor-
mality : there exists complex probability distributions (e.g., the complex Khintchine
distribution), whose marginal distributions, in the real and imaginary part, are indeed
almost normal while the joint distribution is not.

To assess the complex normality assumption of Rowe and Logan (2004), we have
applied ξ̂n(ν3,1) to the datasets in each voxel and obtained a 128 × 128 array where
each component is the value of ξ̂n(ν3,1). We set aside considerations regarding this
multiple testing situation and concentrate on the individual tests.

The left panel of Fig. 1 shows the values of ξ̂n(ν3,1), represented by a heat map.
It is remarkable to see the image of the brain tissue emerging very clearly and

corresponding to high values of our test statistic, while voxels located outside the
brain yields small values of the test statistic. Note that this panel is very similar to
their Fig. 1c, representing the magnitude image of their raw data. The right panel of
Fig. 1 represents the results of applying our test at level 0.05; white pixels correspond
to significant tests. Besides the fact that the brain structure is still well apparent from
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this two-colormap, this panel offers a validation of the complex normality assumptions
in Rowe and Logan (2004).

Thus, our test gives strong arguments in favor of Rowe and Logan (2004)’s complex
normal noise hypothesis which is an important assumption in their modeling of fMRI
images. Thus, the present test contributes to the validation of their fMRI activation
model and the conclusions they derive.

8 Conclusion

Complex data are becoming common in applications and, in response, statistical mod-
els have been proposed to analyze such data while taking into account their structural
characteristics. In these models, and in analogy with real data, the assumption of com-
plex normality plays a central role. But there is a lack of procedures to assess this
distributional assumption. Extensive work with real data has shown that goodness-
of-fit tests of (real) normality based on the empirical characteristic function are very
powerful in a variety of situations. Thus, the present work proposes a goodness-of-fit
test for the complex normal distribution based on its empirical characteristic function.
The results of a simulation study show that the levels of the test, which are based on an
asymptotic approximation, are close to nominal for moderate sample sizes. Moreover,
the power of the test is rather good, being close to 1 against almost all alternatives we
have considered when n = 250.

The derivation of our test requires information about (a) the behavior of linear
combinations in complex normal vectors, (b) the statistical behavior of quadratic
forms in complex normal vectors and (c) the problem of estimating the parameters
in the distribution along with their asymptotic distribution. A few results appear in
the literature on each of these points, but not at the level we require. Thus, they are
developed here in some detail, as they may have an interest of their own, e.g., as
building blocks for other statistical procedures for complex data. For example, they
may serve in extending our goodness-of-fit test procedure to the case of the complex
multinormal, as well as for other distributional models for complex multidimensional
data.

Appendix

Proof of Theorem 1. From Mardia et al. (1979, p. 33), Z1, . . . , Zd are independent if
and only if

ϕ(Z1,...,Zd )(v1, . . . , vd) =
d∏

k=1

ϕZk
(vk). (26)

We proceed by induction starting with d = 2. Let Z = (Z1, Z2)
T ∼ CN2(μ, Γ, P).

If μ = (μ1, μ2)
T, v = (v1, v2)

T and Γ = diag(γ11, γ22), P = diag(p11, p22), then,
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from (7),

ϕ(Z1,Z2)(v) = exp
{
j Re

(
v∗
1μ1

)+ j Re
(
v∗
2μ2

)

− 1

4

[
|v1|2γ11 + |v2|2γ22 + Re

(
(v∗

1)
2 p11 + (v∗

2)
2 p22

)]}

= ϕZ1(v1)ϕZ2(v2).

Inversely, assume Z1, Z2 are independent so that (26) is verified. LettingΓ = (γi j )

and P = (pi j ), we have for all v = (v1, v2)
T ∈ C

2

−4 ln(ϕ(Z1,Z2)(v)) = −4 ln(ϕZ1(v1)ϕZ2(v2)),

so that

− 4j Re(vHμ) + vHΓ v + Re(vHPv∗) = −4j (Re(v∗
1μ1) + Re(v∗

2μ2))

+ |v1|2γ11 + |v2|2γ22 + Re
(
(v∗

1)
2 p11 + (v∗

2)
2 p22

)
,

which shows that
Re(v∗

1v2γ12) + Re((v1v2)
∗ p12) = 0.

With v∗
1 = a1 − jb1 and v2 = a2 + jb2, simple algebra leads to the equivalent

equation:

(a1a2 + b1b2)Re(γ12) + (a1a2 − b1b2)Re(p12)

−(a1b2 − b1a2) Im(γ12) + (b1a2 + a1b2) Im(p12) = 0, (27)

which must hold for all a1, a2, b1, b2. In particular, they must hold for the following
cases:

a1 = a2 = b1 = b2 = λ

a1 = a2 = b1 = −b2 = λ

b1 = b2 = 0, a1 = a2 = λ

a2 = b1 = 0, a1 = b2 = λ

for some λ ∈ R\{0}. This leads to the linear system λ2AX = 0 with
X = (Re(γ12),Re(p12), Im(γ12)), Im(p12)))T and

A =

⎛
⎜⎜⎝
2 0 0 2
0 2 2 0
1 1 0 0
0 0 −1 1

⎞
⎟⎟⎠ .

Since det(A) �= 0, the only solution is Re(γ21) = Re(p12) = Im(γ21) = Im(p12) =
0, which proves that Γ and P must be diagonal.
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Now, for a given d > 2, let

Z(d+1) = (Z1, . . . , Zd , Zd+1)
T ∼ CNd+1(μd+1, Γd+1, Pd+1),

where Z1, . . . , Zd are independent, which, by the induction hypothesis, implies Γd =
diag(γ11, . . . , γdd) and Pd = diag(p11, . . . , pdd). Let

Γd+1 =

⎛
⎜⎜⎝ Γd Γ(·,d+1)

Γ(d+1,·) γd+1,d+1

⎞
⎟⎟⎠ ,

with

Γ(·,d+1) =
⎛
⎜⎝

γ1,d+1
...

γd,d+1

⎞
⎟⎠ = Γ H

(d+1,·),

and similarly

Pd+1 =

⎛
⎜⎜⎝ Pd P(·,d+1)

P(d+1,·) pd+1,d+1

⎞
⎟⎟⎠ ,

with

P(·,d+1) =
⎛
⎜⎝
p1,d+1

...

pd,d+1

⎞
⎟⎠ = PT

(d+1,·).

The proof is that

ϕ(Z1,··· ,Zd+1)
T((ν1, · · · , νd+1)) =

d+1∏
k=1

ϕZk (νk)

when Γ(.,d+1) = 0 and P(.,d+1) = 0 is straightforward. We focus on the converse.
Consider the equality

−4 ln
(
ϕ(Z1,...,Zd+1)(v1, . . . , vd+1)

) = −4 ln

(
d+1∏
k=1

ϕZk (vk)

)
,
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which should hold for any values of v1, . . . , vd+1. It is easy to see that the right hand
side of this equation is

− 4j Re(vH(d+1)μd+1) +
d+1∑
k=1

|vk |2γkk + Re

(
d+1∑
k=1

(v∗
k )

2 pkk

)
, (28)

with v(d+1) = (v1, . . . , vd+1)
T. As for the left hand side, we have from (7)

−4 ln(ϕZ(d+1) (v(d+1))) = −4j Re(vH(d+1)μd+1) + vH(d+1)Γd+1v(d+1)

+Re(vH(d+1)Pd+1v
∗
(d+1))

= −4j Re(vH(d+1)μd+1) +
d+1∑
k=1

(
|vk |2γkk

)

+Re

(
d+1∑
k=1

(v∗
k )

2 pkk

)

+2Re

(
d∑

k=1

v∗
k vd+1γk,d+1 + (vd+1vk)

∗ pk,d+1

)
.

Comparing this with (28) shows that we must have:

Re

(
d+1∑
k=1

v∗
k vd+1γk,d+1 + (vd+1vk)

∗ pk,d+1

)
= 0.

Now, if there is only one nonzero v j among {v1, . . . , vd} while vd+1 �= 0, then

Re(v∗
j vd+1γ j,d+1) + Re((v jvd+1)

∗ p j,d+1) = 0.

The argument used in the case d = 2 shows that γ j,d+1 = p j,d+1 = 0. Because j
is arbitrary, Γ(·,d+1) = P(·,d+1) = 0 and, thus, Γ(d+1) and P(d+1) are diagonal. This
concludes the proof. �

Proof of Corollary 1. Without loss of generality, assume μ1 = μ2 = 0. The proof
that Z1 and Z2 are independent when Γ12 = P12 = 0 follows from noticing that this
entails ϕZ (ν1, ν2) = ϕZ1(ν1)ϕZ2(ν2).

Inversely, let Z1,k ∼ CN1(0, γk,k, pk,k) be the k-th component of Z1 and Z2,� ∼
CN1(0, γ�,�, p�,�) the �-th component of Z2.

Assuming that Z1, Z2 are independent, Z1,k and Z2,� are independent and
Theorem 1 ensures that the (k, �) coefficients in Γ12 and P12 are equal to zero.

Because k, � are abitrary, the proof follows. �

Proof of Theorem 2. From (12), Z˜HRZ˜ = 2X TSX where X ∼ N2d(μX ,ΣX ).
Let S1/2 be a real 2d × 2d matrix such that (S1/2)TS1/2 = S. Using an eigenvalue
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decomposition, we have S1/2ΣX (S1/2)T = O�OT where � is the diagonal matrix
of the real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2d ≥ 0 and O is orthogonal. Hence,
OTS1/2X ∼ N2d(OTS1/2μX ,�). This entails that

Z˜HRZ˜ = 2(OTS1/2X )T(OTS1/2X ) = 2
q∑

k=1

λk

(
Nk + τk√

λk

)2

+ 2
2d∑

k=q+1

τ 2k ,

where q is the number of nonzero eigenvalues λk , the Nk are independent N (0, 1)
random variables and τk is the k-th component of OTS1/2μX .

Taking S1/2 = MR1/2M−1, we get OTS1/2μX = OTMR1/2μ˜, so that τk =
eTk O

TMR1/2μ˜ where ek is the k-th vector in the canonical basis for R
2d . We then

have

Z˜HRZ˜ ∼ 2
q∑

k=1

λkχ
2
1 (δ2k ) + 2

2d∑
k=q+1

τ 2k ,

where δ2k = τ 2k
λk

(1 ≤ k ≤ q), which vanishes if μ = 0.
Now, if xk is the kth eigenvector of ΓP R corresponding to the eigenvalue αk , we

have ΓP Rxk = αk xk . This gives

ΓPM
−1SMxk = αk xk,

S1/2MΓPM
−1(S1/2)TS1/2Mxk = αk S

1/2Mxk .

which, from (3) and after taking the conjugate, gives

S1/2ΣX (S1/2)T(S1/2M∗x∗
k ) = αk

2
(S1/2M∗x∗

k ).

We thus have S1/2M∗x∗
k = Oek and αk/2 = λk . We finally obtain

τk = eTk O
TMR1/2μ˜= xHk MH(S1/2)TMM−1S1/2Mμ˜= xHk MHMRM−1Mμ˜

= 1

2
xHk Rμ˜. �

Proof of Theorem 3. First, we recall the following property of the Moore–Penrose
pseudo-inverse (Penrose 1955). Let A be m × n complex and B be n × p complex,
if AAH = Im or BHB = Ip, then the Moore–Penrose pseudo-inverse (AB)+ of AB
satisfies (AB)+ = B+A+.
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From (1) and equation above (1), Q = 2X TMΓ +
P M−1X , whereX ∼ N2d(0,ΣX ).

From (3) and the above property,

Γ +
P =

(
M−1ΣX (MH)−1

)+ = 1

2
M−1Σ+

X M.

Therefore, Q = X TΣ+
XX . Now, from (Searle 1971, Corollary 2s.2, p.69), Q ∼

χ2
tr(Σ+

XΣX )
and (Rao 1973, Proposition (ii)b p. 25) ensures that tr(Σ+

XΣX ) =
rank(ΣX ) = rank(ΓP ). When ΓP is of full rank, Γ +

P = Γ −1
P and rank(ΓP ) = 2d.

�

Proof of Theorem 4. Because we were not able to find a proof of this theorem in the
literature, we provide one here.

In view of (1), we have
√
n(Z̄n˜ − μ˜) = M−1n−1/2∑n

i=1(Xi − μX ). Hence,

ϕ√
n(Z̄n˜−μ)˜

(ν˜) = ϕn−1/2
∑n

i=1(Xi−μX )
(t) −→

n→∞ ϕN2d (0,ΣX )(t)

using a result in Feldman (1965) and the standard C.L.T. for real r.v. But

ϕN2d (0,ΣX )(t) = exp

(
−1

2
tTΣX t

)
= exp

(
−1

2
ν˜HMHΣX Mν˜

)
= ϕCN˜d (0˜,ΓP )(ν˜),

from (8). �

Proof of Proposition 1. From (6), for all ν, ϕAXn (ν) = ϕXn (A
Hν) −→

n→∞ ϕX (AHν) =
ϕAX (ν). �

Proof of Corollary 2. The result follows from Theorem 4, Proposition 1 and (10). �

Proof of Proposition 2. The result is obvious regarding the method of moments esti-
mators. As for the m.l.e., the likelihood function can we written from (4) as

L(μ, ΓP ) = 1

πnd |ΓP |n/2 exp

{
−1

2

n∑
k=1

(
Zk˜ − μ˜

)H
Γ −1
P (Zk˜ − μ˜)

}

= 1

πnd |ΓP |n/2 exp

{
−1

2
tr
(
Γ −1
P (Z˜− μ˜e

T)(Z˜− μ˜e
T)H

)}

where Z˜ =
(
Z1˜, . . . , Zn˜

)
is a 2d × n matrix of a.c.r.v. and e = (

1, . . . , 1
)T is

n-dimensional. With Z̄˜ = n−1∑n
k=1 Zk˜, we notice that Z˜e = nZ̄˜. Moreover,

(Z˜− μ˜e
T)(Z˜− μ˜e

T)H = nΓ̂P + n(Z̄˜− μ˜)(Z̄˜− μ˜)H,
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where nΓ̂P = Z˜Z˜H − nZ̄˜Z̄˜
H
. Thus,

L(μ, ΓP ) = 1

πnd |ΓP |n/2 exp
{
−n

2
tr
[
Γ −1
P Γ̂P

]}

exp
{
−n

2
tr
[
Γ −1
P

(
(Z̄˜− μ˜)(Z̄˜− μ˜)H

)]}
.

Obviously, L(μ, ΓP ) is maximized in μ when μ˜ = Z̄˜. Moreover,

L(μ̂, ΓP ) = 1

πnd |ΓP |n/2 exp
{
−n

2
tr
(
Γ −1
P Γ̂P

)}

≤ 1

πnd
∣∣∣Γ̂P

∣∣∣n/2 exp {−dn}

= L(μ̂, Γ̂P ),

where the inequality holds in view of Srivastava and Khatri (1979, Theorem 1.10.4).
This gives the m.l.e. for ΓP . We recover the corresponding estimators for Γ and P by
extracting the corresponding terms in Γ̂P . �
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