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Abstract Mean marks form a versatile toolbox in the analysis of marked point
processes (MPPs). For ergodic processes, their definition is straightforward and prac-
tical application is well established. In the stationary non-ergodic case, though, dif-
ferent definitions of mark averages are possible and might be practically relevant. In
this paper, the classical definition of mean marks is compared to a set of new char-
acteristics for non-ergodic MPPs, which stand out due to the weighting of ergodicity
classes. Another weighting can be introduced on the single-point level via weights
given by the marks themselves. These intrinsically given weights and the weighting of
ergodicity classes are closely related to each other meaning that for suitable choices
of weights, a mean mark characteristic can be expressed in either way. Estimators
for the different definitions of mean marks are discussed and their consistency and
asymptotic normality are shown under certain conditions.

Keywords Ergodic decomposition · Hierarchical modeling · Mark-location
interaction · Moment measure · Non-ergodicity · Weighted mark mean

1 Introduction

Marked point processes (MPPs) provide an adequate framework for modeling irreg-
ularly scattered events in space or time in that they incorporate the joint distri-
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2 A. Malinowski et al.

bution of the observed values and the corresponding locations (e.g., Karr 1991;
Møller,Waagepetersen 2003; Schlather et al. 2004; Myllymäki and Penttinen 2009;
Daley and Vere-Jones 2008; Diggle et al. 2010). Due to the variety of possible forms
of dependence between marks and locations, already the notion of the mark mean,
which is usually considered as being the simplest summary statistic, involves delicate
questions. Additionally, the points of a MPP may carry information, e.g., in terms of a
second mark component, which naturally lead to a weighting of points when consider-
ing averages. These intrinsically given weights may further complicate the situation.

For an introductory example, let us consider the trading process in financialmarkets.
Transactions are irregularly spaced in time and can thus be regarded as a point process.
They are typically characterized by the two quantities price and volume, which form
themarks in theMPP context. A benchmark quantity is the so-called volume-weighted
average price (VWAP, e.g., Madhavan 2002; Bialkowski et al. 2008), which is defined
as pVWAP = ∑k

i=1(pivi )/
∑

vi for prices pi and traded volumes vi , i = 1, . . . , k.
Here, the weights vi/

∑
vi and the prices clearly depend on each other. Since the

dynamics of the trading process usually differ between different trading periods (e.g.,
volatile vs. calm periods, fast trading vs. slow trading periods), non-ergodicity appears
naturally. Each day of trading, for instance,might represent a different ergodicity class.

This example can be embedded in a broader family of mark means of MPPs: Let,
for simplicity,

� = {(ti , yi , zi ) : i ∈ N}

be a stationaryMPP onR
d , where ti ∈ R

d is the point location, yi ∈ R is the first mark
and zi ∈ [0,∞) is a second mark of the i th point of �. Let �g = {t : (t, y, z) ∈ �}
denote the ground process of point locations of � and let the marks at location t ∈ �g
be denoted by y(t) and z(t). Assume that the z-component is normalized such that its
mean value is 1. Then, using an intuitive notation, a weighted mean for a measurable
transformation of the first mark component, f (y(t)), is given by

μ
(1)
f = E[z(t) f (y(t)) | t ∈ �g]. (1)

The conditioning on “t ∈ �g” is understood in the sense of the Palmmark distribution
and due to the stationarity assumption, the quantity in (1) does not depend on t . Since
the weights z(t) are provided by the MPP itself and may depend on both the marks
y(t) and the point locations t ∈ �g, we refer to μ

(1)
f as intrinsically weighted mark

mean of�. The formal definition ofμ(1)
f and related quantities will be given in Sect. 2.

When a system of randomly distributed objects is described by an MPP, different
choices of intrinsic weights z(t)make sense, leading to different weightedmarkmeans
that are relevant for different statistical questions:

– Average height of trees: Consider n forest areas of about equal size, say 1 hectare
each, which, together, form the forest of interest. For simplicity, it is assumed that
the trees in all of the forest areas are so dense such that the whole ground surface
is covered by tree canopy. The n forest areas might represent up to n different
ergodicity classes with different properties concerning size, shape, species and
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Intrinsically weighted means and non-ergodic marked point processes 3

distribution of trees. The unweighted average of the height of all trees in all forest
areas is relevant for forest inventory applications and amounts to z(t) = 1 in (1),
where y(t) is the height of a tree at t and f = id is the identity function. By way
of contrast, the average height of the canopy of a typical forest area should be
understood as a quantity that does not depend on the densities of the trees within
the ergodicity classes. Then, to define a suitable quantity for the average height of
a typical forest area, the weight z(t) will be inverse-proportional to the density of
trees in the neighborhood of t . Intuitively speaking, individual trees are aggregated
to forest areas in such a way that each forest area (and not each tree) receives the
same total weight in (1).

– Sampling of regionalized variables: Measurements of continuous-space or
continuous-time processes at random locations usually aim at estimating the under-
lying process, e.g., the spatial or temporal mean over the whole domain of the
process. Sincemeasurement locations are not necessarily independent of the under-
lying process, knowledge of the pattern of point locations might already provide
information about the values of the process. Such a situation is commonly referred
to as biased or preferential sampling and different weighting approaches exist to
correct for this form of biases (e.g., Isaaks and Srivastava 1989). Then z(t) usu-
ally depends on the pattern of point locations around t . The issue of dependence
between measurement locations and the underlying process is particularly rele-
vant when the sampling area is composed of realizations that belong to different
ergodicity classes.

While ergodicity of an MPP allows for a straightforward interpretation of the mark
distribution as the distribution of the mark of a typical point, non-ergodicity implies
that different realizations can have different stochastic behavior. Then, the dependence
between marks and point locations can be rather subtle: For a MPP that results from
sampling a regionalized variable, the pattern of point locations can be independent
of the underlying process for each of its ergodic subclasses, although there might be
a strong dependence between the pattern of measurement locations and the process
if multiple realizations are considered. For a simple example, consider a Gaussian
random field {Y (t), t ∈ R} with a random mean combined with a stationary Poisson
point process of measurement locations whose intensity is a function of {Y (t), t ∈ R},
e.g., a log-Gaussian Cox process (Møller et al. 1998).

To treat non-ergodic MPPs adequately, this paper proposes intrinsically weighted
mark means as a special case of (1), in which the weights z(t) are constant within
each ergodicity class but allow for compensating for differences between the different
ergodicity classes.

The remainder of the article is organized as follows: In Sect. 2 moment-based
characteristics forMPPs are recalled andgeneralized.Their behavior and interpretation
for non-ergodic processes are studied, and, following the idea of the above examples,
alternative definitions of moment-based summary statistics are proposed in Sect. 3.
Different estimators for the above characteristics and their asymptotic properties are
discussed in Sect. 4; in the conclusion, also a comment on the relation to inference in
geostatistical applications is given. The Appendix contains basic results from ergodic
theory and some of the proofs of Sect. 4.
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4 A. Malinowski et al.

2 MPP moment-measures and measurement of interaction effects

Throughout the paper, � = {(ti , yi , zi ) : i ∈ N} is a stationary and simple marked
point process on R

d with marks (y(ti ), z(ti )) = (yi , zi ) ∈ R × [0,∞), and �g =
{t : (t, y, z) ∈ �} is its ground process of point locations. For the general theory of
point processes, the reader is referred to Stoyan et al. (1995) and Daley and Vere-Jones
(2003, 2008), for example.

The classical formal definition of μ
(1)
f in (1) is

μ
(1)
f = E

∑
(t,y,z)∈� z f (y)1B(t)

E
∑

(t,y,z)∈� z1B(t)
(2)

for any Borel set B ⊂ R
d with ν(B) > 0, where ν is the Lebesgue measure (Daley

and Vere-Jones 2008, Chap. 13). The numerator and denominator are denoted by
α

(1)
f (B) and α(1)(B), respectively. Due to the stationarity of �, the definition in (2)

does not depend on the choice of B. The most relevant example of f in practical
application is f (y) = ym for m = 1, 2, . . . Then, if z(t) ≡ 1, μ

(1)
f simply repre-

sents the m-th moment of the (Palm) mark distribution. Similarly, dependency struc-
tures within MPPs (cf. Stoyan and Stoyan 1994, Chap. 14) can be investigated by
mark means, conditioned on the existence of another point at a certain distance, e.g.,
E[ f (y(t1)) | t1, t2 ∈ �g, t1 �= t2] (cf. Schlather 2001).

The superscripts (1) and (2) are used to indicate whether first- or second-order
measures are meant.

Definition 1 For any non-negative function f onR×R, aσ -finitemeasure onR
d×R

d

is defined by

α
(2)
f (C) = E

∑�=

(t1,y1,z1),(t2,y2,z2)∈�

z1 f (y1, y2)1C ((t1, t2)), C ∈ B(Rd × R
d), (3)

which we call weighted second moment measure. Here, “�=” indicates that the sum
runs over all pairs of points with (t1, y1, z1) �= (t2, y2, z2).

A related but simpler measure than (3) can be defined by introducing the following
sets in B(Rd × R

d): For B ∈ B(Rd), I ∈ B(R) and t = (t1, . . . , td) ∈ [0,∞)d let

C(B, I ) =
{{

(t1, t2) : t1 ∈ B, t2 ∈ t1 + I
}
, d = 1,

{
(t1, t2) : t1 ∈ B, t2 ∈ t1 + {x ∈ R

d : ‖x‖ ∈ I }}, d > 1,

C(t, I ) = C([0, t], I ),
C(I ) = C([0, 1], I ).

Here, [0, t] = [0, t1] × · · · × [0, td ] and 1 denotes the vector (1, . . . , 1) ∈ R
d . Then

α
(2)
f (C(I )), I ∈ B(R),
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Intrinsically weighted means and non-ergodic marked point processes 5

defines a σ -finite measure on R, which represents a typical pair of points whose
distance is contained in I . This interpretation becomes clearer for I being a small
interval in R

+. Note that the distinction between d = 1 and d > 1 in the definition
of the set C(B, I ) allows to capture a possibly non-symmetric behavior of α

(2)
f in the

one-dimensional case. In particular,

α
(2)
f (C(I )) =

{
E
∑ �=

(t1,y1,z1),(t2,y2,z2)∈�, t1∈[0, 1] z1 f (y1, y2)1t2−t1∈I , d = 1,

E
∑ �=

(t1,y1,z1),(t2,y2,z2)∈�, t1∈[0, 1] z1 f (y1, y2)1‖t2−t1‖∈I , d > 1.

For notational convenience, it is assumed that the density of α
(2)
f (C(·)) w.r.t. the one-

dimensional Lebesguemeasure exists, which is then denoted by ρ f . In the case f ≡ 1,
the index f is dropped.

Definition 2 For a measurable non-negative function f on R × R, the (weighted)
second-order mark mean is defined as

μ
(2)
f (I ) = α

(2)
f (C(I ))

α(2)(C(I ))
, I ∈ B(R), (4)

if α(2)(C(I )) > 0.

Obviously, α
(2)
f (C(·)) is dominated by α(2)(C(·)), and, according to Radon–

Nikodym, the density of α
(2)
f (C(·)) exists and can be expressed as

μ
(2)
f (r) = ρ f (r)

ρ(r)
, (5)

for r �= 0.With a slight abuse of notation, the terms in (4) and (5) are both referred to as
μ

(2)
f . For r �= 0 and f only depending on its first argument, μ(2)

f (r) can be interpreted
as the (weighted) expectation of the mark at location t subject to the conditioning that
� has a point at location t and at some point on the sphere with radius r around t , i.e.,

μ
(2)
f (r) = E

[
z(t) f (y(t))

∣
∣
∣ t ∈ �g, #

({s : ‖s − t‖ = r} ∩ �g
) = 1

]
.

Remark 1 (a) The extension to moment measures of higher order is straightforward
and allows to condition on arbitrary point constellations. In practice, however,
mostly first- and second-order statistics are considered.

(b) The non-negativity condition on f can be weakened by considering the restriction
of μ

(2)
f (·) to some bounded set J ∈ B(R). Then it suffices that α(2)

h (C(J )) < ∞
for h = f+ = max{ f, 0} or for h = f− = −min{ f, 0}.

Well-known examples of second-order mark characteristics for stationary and
isotropic MPPs are Cressie’s mark variogram and covariance function (Cressie 1993),
Stoyan’s kmm-function (Stoyan 1984), the mark correlation function (Isham 1985),
the J-function (Lieshout 2006) and the E- and V-function (Schlather 2001), which can
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6 A. Malinowski et al.

all be expressed in terms of (5) with a constant z-component. Here, only the functions
f (y1, y2) = y1y2, f (y1, y2) = y1 and f (y1, y2) = y21 are used. For the purpose of
model diagnostics, Adelfio and Schoenberg (2009) introduce weighted second-order
statistics in which each point is weighted by the inverse of the conditional intensity of
points.

3 Moment measures for non-ergodic MPPs

Ergodicity makes spatial averages over suitably increasing observation windows of a
single realization converge to the corresponding expectation over the state space:

ν(W )−1
∫

W
X (Tx�) ν(dx)

a.s.−→ E(X (�)), for ν(W ) → ∞ suitably,

for any integrable function X on the space of all locally finite counting measures.
Here, Tx denotes the shift operator, i.e., if � = {(ti , yi , zi ) : i ∈ N}, then Tx� =
{(ti + x, yi , zi ) : i ∈ N}. In essence, ergodicity enables consistent estimation of MPP
moment measures by observing a single realization on a suitably increasing domain.
In this section, though, the opposite situation is considered, namely where � is a
non-ergodic process.

A non-ergodicMPP can be seen as a hierarchical or doubly stochasticmodel, which,
in a first step, draws an ergodic class out of which the final realization is drawn in a
second step. In some cases, the set of ergodic classes is finite but, in general, can be
infinite.

Proposition 1 Let � be a non-ergodic MPP with probability law P, let M0 andM0
denote the space of all locally finite counting measures on R

d × R × [0,∞) and the
usual σ -algebra, respectively. (See Appendix A for more details.) Then, for B ∈ B(Rd)

and I ∈ B(R), with α(1)(B) > 0 and α(2)(C(I )) > 0,

μ
(1)
f =

EQ

[
μ

(1)
f,�|Q · α

(1)
�|Q(B)

]

α(1)(B)
=
∫

μ
(1)
f,�|Q=q

α
(1)
�|Q=q (B)

α(1)(B)
λ(dq), (6)

μ
(2)
f (I ) =

EQ

[
μ

(2)
f,�|Q(I )α(2)

�|Q(C(I ))
∣
∣
∣α

(2)
�|Q(C(I )) > 0

]

α(2)(C(I ))
λ
({

α
(2)
�|Q(C(I )) > 0

})
.

(7)

Here, Q is a random variable with values in the set Perg of all ergodic MPP
probability laws, distributed according to some probability measure λ such that
P(M) = ∫Perg

q(M)λ(dq), M ∈ M0.

Further, if λ-almost all Lebesgue densities ρ�|Q(r) of α(2)
�|Q(C(·)) exist, for r �= 0

with ρ(r) > 0, it is

μ
(2)
f (r) =

EQ

[
μ

(2)
f,�|Q(r) · ρ�|Q(r)

∣
∣
∣ ρ�|Q(r) > 0

]

ρ(r)
× λ

({
ρ�|Q(r) > 0

})
. (8)
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Intrinsically weighted means and non-ergodic marked point processes 7

Proof Theergodic decomposition theorem (cf. Theorem3 in theAppendix) guarantees
the existence of a unique decomposition P(·) = ∫Perg

q(·)λ(dq) and a corresponding

mixing random variable Q ∼ λ. Conditioning � on Q, the moment measures α
(i)
f can

be decomposed.
In the first-order case (cf. (2)), since [�|Q] is stationary by definition, α(1)

�|Q(B) is

positive λ-a.s. if and only if α(1)(B) is so. Thus, μ(1)
f,�|Q is well-defined and

μ
(1)
f =

EQ

[
α

(1)
f,�|Q(B)

]

α(1)(B)
=

EQ

[
μ

(1)
f,�|Q × α

(1)
�|Q(B)

]

α(1)(B)
.

In the second-order case (cf. Definition 2), α(2)
�|Q(C(I )) can take the value 0 with

positive probability even though α(2)(C(I )) is positive. For those realizations of Q
for which α

(2)
�|Q(C(I )) > 0 holds, α

(2)
f,�|Q(C(I )) can be replaced by μ

(2)
f,�|Q(I ) ·

α
(2)
�|Q(C(I )), which yields (7). Equation (8) is obtained similarly. ��
The decomposition of non-ergodic MPPs given in Proposition 1 is illustrated by

the following examples. For notational convenience, the intrinsic weights, i.e., the
z-components of the marks, are assumed to be constant and can thus be omitted.

In the most elementary form of non-ergodicity only two “ergodic regimes” exist.
Then, intuitively speaking, prior to each realization, a coin is tossed and depending on
the result, the realization is generated according to a certain set of parameters.

Example 1 Let p1, p2 > 0 be chosen such that p1 + p2 = 1. With probability p1
let � be a stationary Poisson point process on R with intensity λ1 and independent
marks with mean m1. With probability p2, let the process be constructed in the same
way but with parameters λ2 and m2 instead of λ1 and m1, with m1 �= m2. Let the
two ergodicity classes be denoted by q1 and q2. Due to the Poisson property and
independence of the marks in this example, there is no interaction between the points
of the process. Therefore, only the first-order mark mean μ

(1)
f needs to be considered.

Then, for i = 1, 2,

α
(1)
�|Q=qi

(B) = λi × ν(B),

μ
(1)
f,�|Q=qi

= f (mi ).

The latter equality is due to independence between point locations and marks. Thus,

μ
(1)
f = p1λ1ν(B) f (m1) + p2λ2ν(B) f (m2)

α(1)(B)
.

Since also the denominator can be decomposed into α(1)(B) = EQα
(1)
�|Q(B), it is

μ
(1)
f = p1λ1 f (m1) + p2λ2 f (m2)

p1λ1 + p2λ2
. (9)
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8 A. Malinowski et al.

Obviously, the mark mean in its classical definition corresponds to a weighted
average over the different ergodicity classes, where the weights not only depend on
the probabilities associated with the ergodicity classes, p1 and p2, but also on the
intensity of points within each of the classes, λ1 and λ2.

Although the decomposition in (9) is instructive from a theoretical point of view, it
is less relevant for estimation problems since in most practical applications, not only
p1, p2, λ1 and λ2 are unknown, but also the ergodicity class of a given realization
would have to be estimated. Let us still mention that the components on the right-hand
side of (9) could be approached by hierarchical Bayesian modeling. Our example is a
special case of the common latent process model in Diggle et al. (2010). To be explicit,
let p1, λ1, λ2, m1 and m2 be random variables with density functions gp,1, gl,1, gl,2,
gm,1 and gm,2, respectively, such that gl,1 and gl,2 as well as gm,1 and gm,2 have distinct
support. For i = 1, 2, let hμ,i be a family of density functions for the marks of the
ergodic class i , parametrized by their mean μ. Provided that the hyperparameters are
known and that the j-th realization belongs to the ergodic class i , the log likelihood

for the j-th realization with n j points
{
(t ( j)1 , y( j)

1 ), . . . , (t ( j)n j , y( j)
n j )
}
is

u j (i) = n j log(λi ) − λiν(B) +
n j∑

k=1

log hmi ,i

(
y( j)
k

)
.

Let ξ ( j) ∈ {1, 2} be the random variable indicating the ergodic class of sample j ,
j = 1, . . . , n. Then the overall log likelihood equals

n∑

j=1

[
u j (ξ j ) + (2 − ξ ( j)) log(p1) + (ξ ( j) − 1) log(p2)

]

+ log(gp,1(p1)) + log(gl,1(λ1)) + log(gl,2(λ2))

+ log(gm,1(m1)) + log(gm,2(m2))

and has to be maximized with respect to all the parameters, including the ξ ( j).
The following example is a straightforward generalization of Example 1. It has an

(uncountably) infinite number of ergodicity classes:

Example 2 Let (	, M) be a (R+ × R)-valued random vector and, conditionally on
that, let� be a stationary Poisson point process onRwith intensity	 andwith random
marks with mean M that are independent of the point locations. Then,

μ
(1)
f = E[	 f (M)]

E	
.

Here, in principle, a hierarchical Bayesian approach might be still feasible, but addi-
tional strong assumptions will be necessary. Instead, non-parametric estimators for
μ

(1)
f and μ

(2)
f are discussed in Sect. 4.
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Intrinsically weighted means and non-ergodic marked point processes 9

Example 3 A common model for point processes with clusters is the log-Gaussian
Cox process (Møller et al. 1998). Amongst others, Diggle et al. (2010) andMyllymäki
and Penttinen (2009) use log-Gaussian Cox processes, combined with an intensity-
dependent marking, as parametric models for preferential sampling applications. The
log-Gaussian Cox process is based on a Gaussian random field Y = {Y (t) : t ∈ R

d}:
Conditionally on Y , the points are given by a Poisson point process with intensity
measure 
(B) = ∫

B exp(Y (t))dt , B ∈ B(Rd). It is known that a log-Gaussian Cox
process with an underlying stationary Gaussian field Y is ergodic if and only if Y is
so. A sufficient condition for Y being ergodic is that the covariance function decays
to zero (Adler and Taylor 2007).

Now, let 	 be a real-valued random variable with a positive variance and, condi-
tionally on 	, let {Y (t) : t ∈ R} be a stationary Gaussian random field with mean
	. Consider a generalized log-Gaussian Cox process � on R with intensity measure

(B) = ∫

B exp(Y (t))dt and with marks y(t) = Y (t) for t ∈ �g. Then � is a non-
ergodic MPP. For each ergodicity class (which is in this example determined by the
realization of	), the second-order mark meanμ

(2)
f |	(·) is a non-constant function and,

in general, so is the overall second-order mark meanμ
(2)
f (·). In particular, by applying

some basics of MPP Palm theory, one obtains

μ
(2)
f (r) = ρ f (r)

ρ(r)
= E

[
f (Y (0),Y (t)) exp(Y (0) + Y (r))

]

E exp(Y (0) + Y (r))
.

Since the random mean 	 is the mixing variable and since μ
(2)
f,�|	(r) · ρ�|	(r) =

ρ f,�|	(r), the decomposition of μ
(2)
f (r) according to Proposition 1 is given by

μ
(2)
f (r) =

E	

[
μ

(2)
f,�|	(r) × EY |	 exp(Y (0) + Y (r))

]

E exp(Y (0) + Y (r))
.

For the first-order mark mean, analogously, it is

μ
(1)
f = E

[
f (Y (0)) exp(Y (0))

]

E exp(Y (0))
= E	

[
μ

(1)
f,�|	 × EY |	 exp(Y (0))

]

E exp(Y (0))
.

Note that Example 2 with the choice 	 = exp(M) and M normally distributed is
obtained as a special case of Example 3 when the correlation function of the Gaussian
field Y is chosen to be 1 everywhere, i.e., the field is realization-wise constant.

Proposition 1 and the subsequent examples show that, in case of non-ergodicity,
μ

(i)
f is an average of its counterparts of the ergodic subclasses, in which each class q

is implicitly weighted by the respective intensity α
(i)
�|Q=q (in addition to the weighting

according to the probabilitymeasure ofQ). If all ergodic subprocesses [�|Q = q]have
the same intensity measure, the additional weights cancel out and μ

(i)
f = EQμ

(i)
f,�|Q .

In the general case, however, these weights do not cancel out and a single ergodicity
class with low probability may exhibit an immense value of α(i)

�|Q=q and thus drive the
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10 A. Malinowski et al.

value of μ
(i)
f . This rises the demand for a new characteristic μ̃

(i)
f that summarizes the

properties of all ergodicity classes, irrespectively of how the processes of point loca-
tions differ between the ergodicity classes. These requirements are met by a definition
that excludes the implicit weighting proportional to the i th-order intensities:

Definition 3 Let λ and Q be the ergodic decomposition mixture measure and mixture
variable, respectively, of �, and let EQ

∣
∣μ

(i)
f,�|Q

∣
∣ < ∞. Then we call

μ̃
(i)
f = EQμ

(i)
f,�|Q =

∫

Perg

μ
(i)
f,�|Q=q λ(dq) (10)

the (equally-weighted) average ith-order mark mean of �.

Relating to the introductory forest example, the classical definition of the mark
mean in (2) corresponds to the average height of all trees, irrespective of different tree
densities in the different forest areas, while the new definition in (10) refers to the
average height of a typical forest (mean of a typical realization).

Example 4 (Continuation of Examples 1, 2 and 3) For the MPP defined in Example
1,

μ̃
(1)
f = p1 f (m1) + p2 f (m2).

Both μ̃
(1)
f and μ

(1)
f are convex combinations of f (m1) and f (m2). Whilst μ̃

(1)
f only

depends on p, the classical average μ
(1)
f additionally depends on the values of λ1 and

λ2.
For the MPP defined in Example 2,

μ̃
(1)
f = E f (M).

Under the assumptions of Example 3 it is

μ̃
(1)
f = E	

[
EY |	

[
f (Y (0)) exp(Y (0))

]

EY |	 exp(Y (0))

]

,

μ̃
(2)
f (r) = E	

[
EY |	

[
f (Y (0),Y (t)) exp(Y (0) + Y (r))

]

EY |	 exp(Y (0) + Y (r))

]

.

Clearly, an ergodic decomposition as in Definition 3 can be applied to any
expectation-based functional of an MPP including the Palm mark distribution itself.

The following remark is obvious:

Remark 2 The quantity μ̃
(i)
f coincides with μ

(i)
f if α

(i)
�|Q is λ-a.s. constant, i.e., if all

ergodicity classes exhibit the same intensity measure. This is the case when � is
ergodic.
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Intrinsically weighted means and non-ergodic marked point processes 11

4 Estimators and properties

First note that, due to lim I→R μ
(2)
f (I ) = μ

(1)
f̃

for f (y1, y2) = f̃ (y1), it suffices

to consider the second-order statistics based on μ
(2)
f . For readability reasons, the

superscript (2) is dropped in all the estimators of μ
(2)
f .

4.1 The ergodic case

For ergodic processes �, the pointwise ergodic theorem for MPPs (Proposition 3 in
the Appendix) yields that

E

⎡

⎣
�=∑

(t1,y1,z1),(t2,y2,z2)∈�

z1 f (y1, y2)1(t1,t2)∈C(I )

⎤

⎦

= lim
n→∞

⎡

⎣n−d
�=∑

(t1,y1,z1),(t2,y2,z2)∈ϕ

z1 f (y1, y2)1(t1,t2)∈C(n1,I )

⎤

⎦

for almost all realizations ϕ of �, which builds the basis for the estimators being
discussed in this section.

Applying the standard estimator for MPP moment measures (e.g., Baddeley 1999)
to a realization of � observed on the set [0,T], T ∈ (0,∞)d , gives

μ̂ f (I,�,T) = α̂ f (I,�,T)

α̂1(I,�,T)
, (11)

where α̂ f (I,�,T) =∑ �=
(t1,y1,z1),(t2,y2,z2)∈� z1 f (y1, y2)1(t1,t2)∈C(T,I ).

Lemma 1 If � is ergodic, μ̂ f (I,�,T) is consistent for μ
(2)
f (I ) as T → ∞ compo-

nentwise. If � is non-ergodic, μ̂ f (I,�,T) is consistent if and only if μ(2)
f,�|Q=q(I ) is

constant w.r.t. q.

Proof By Proposition 3, the vector consisting of the numerator and the denomina-
tor of (11), each normalized by the volume of [0,T], converges a.s. to the vector
(
α

(2)
f (C(I )), α(2)(C(I ))

)
if � is ergodic. The first assertion thus follows from the

continuous mapping theorem. In the non-ergodic case, clearly only μ
(2)
f,�|Q=q(I )

can be estimated consistently for q being the respective ergodicity class. Though,
if μ

(2)
f,�|Q=q(I ) is constant w.r.t. q it is μ

(2)
f (I ) = μ

(2)
f,�|Q=q(I ) for any q ∈ Perg. ��

To establish asymptotic normality of μ̂ f (I,�,T), for technical reasons, onlyMPPs
on R are considered. While the following CLT-like result remains valid also under
weakermixing conditions, our assumption of a certain form ofmemorylessness allows
for a fairly simple proof. The following property is to ensure that the limiting Gaussian
distribution has a non-zero variance.
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12 A. Malinowski et al.

Property 1 Let � be a stationary MPP on R and let L > 0 and m ∈ N. For j ∈ Z,
define X j as X j = α̂ f ([( j−1)L , j L])−μ

(2)
f (I )α̂1([( j−1)L , j L]), where α̂ f ([a, b])

is short notation for α̂ f (I,�, b)−α̂ f (I,�, a). Then (X j ) j∈Z is a stationary time series
with autocovariance function C( j) = Cov(X0, X j ), j ∈ Z. We call the process �

non-degenerate for L and m if
∑m

j=−m C( j) > 0.

Theorem 1 Let � be an ergodic MPP on R with the property that there exists a
constant L0 > 0 such that 0 < Var α̂ f (I,�, L0) < ∞ and the restrictions of �,

� ∩ {(−∞, 0) × R × [0,∞)
}

and � ∩ {(L0,∞) × R × [0,∞)
}
,

are stochastically independent of each other. Then, for T → ∞,

√
α̂1(I,�, T )

{
α̂ f (I,�, T )

α̂1(I,�, T )
− μ

(2)
f (I )

}
d−→ N (0, s), (12)

where

s = lim
T→∞

Var
[
α̂ f (I,�, T ) − μ

(2)
f (I )α̂1(I,�, T )

]

Tα(2)(C(I ))
∈ [0,∞).

If � satisfies Property 1 for L0 and m0 = min
{
m ∈ N : m ≥ L0+max{|x |:x∈I }

L0

}
, then

0 < s < ∞.

Note that, to the authors knowledge, only pathological examples violate Property
1. The independence assumption in Theorem 1 is satisfied, for instance, for a Poisson
Point process with marks y(t) only depending on the point pattern within a radius of
L0 around t .

Proof In the following, I is a fixed interval, and a single realization of � is consid-
ered. With regard to (11), the short notation α̂ f (T ) = α̂ f (I,�, T ), for T > 0, and
α̂ f ([a, b]) = α̂ f (b) − α̂ f (a), for b > a > 0, is used. Then, for T = nL0, n ∈ N,
decompose [0, T ] into sub-intervals of length L0, which gives

√
α̂1(nL0)

{
α̂ f (nL0)

α̂1(nL0)
− μ

(2)
f (I )

}

=
∑n

i=1

{
α̂ f ([(i−1)L0, i L0])−μ

(2)
f (I )α̂1([(i−1)L0, i L0])

}

√
nL0α(2)(C(I ))

√
nL0α(2)(C(I ))

α̂1(nL0)
.

(13)

The latter factor of the RHS of (13) converges to 1 in probability. The summands
in (13) have zero mean. The sequence of summands is m0-dependent with m0 =
min

{
m ∈ N : m ≥ L0+max{|x |:x∈I }

L0

}
, and the classical CLT form-dependent variables
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Intrinsically weighted means and non-ergodic marked point processes 13

yields that the first factor of (13) converges to a centered Gaussian distribution with
variance

s = lim
n→∞

1

nL0α(2)(C(I ))
Var

(
α̂ f (nL0) − μ

(2)
f (I )α̂1(nL0)

)
.

It remains to show that 0 < s < ∞. It is

s = lim
n→∞

1

nL0α(2)(C(I ))

× Var

[
n∑

i=1

{
α̂ f ([(i − 1)L0, i L0]) − μ

(2)
f (I )α̂1([(i − 1)L0, i L0])

}
]

= lim
n→∞

1

nL0α(2)(C(I ))

×
⎧
⎨

⎩

n−m0∑

i=m0+1

i+m0∑

j=i−m0

Cov
(
α̂ f ([(i − 1)L0, i L0]) − μ

(2)
f (I )α̂1([(i − 1)L0, i L0]),

α̂ f ([( j − 1)L0, j L0]) − μ
(2)
f (I )α̂1([( j − 1)L0, j L0])

)
⎫
⎬

⎭

= 1

L0α(2)(C(I ))

×
⎧
⎨

⎩

m0∑

j=−m0

Cov
(
α̂ f ([0, L0]) − μ

(2)
f (I )α̂1([0, L0]),

α̂ f ([( j − 1)L0, j L0]) − μ
(2)
f (I )α̂1([( j − 1)L0, j L0])

)
⎫
⎬

⎭
.

The latter sum is finite and, if Property 1 is fulfilled, also non-zero. ��

4.2 The non-ergodic case

If � ∼ P is non-ergodic, drawing iid realizations �1, . . . , �n of � corresponds to
drawing ergodicity classes according to the mixture measure λ. Consistent estimation
in this case clearly requires the number n of realizations tend to infinity. Then, by the
law of large numbers,

μ̂n
f (I ) := 1

n

n∑

i=1

μ̂ f (I,�i ,T) −→ Eμ̂ f (I,�,T) = E
α̂ f (I,�,T)

α̂1(I,�,T)
. (14)

However, asμ
(i)
f is defined as a ratio ofmoments (e.g.,μ(2)

f (I ) = Eα̂ f (I,�,T)

Eα̂1(I,�,T)
), the RHS

of (14) is not equal to μ
(2)
f (I ). We need additionally that T → ∞. Further, while in
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14 A. Malinowski et al.

(14) all realizations receive the weight 1
n , here, more general weights are included. Let

w = (w1, . . . , wn) denote a vector of weight functionswi : M0×[0,∞)d → [0,∞),
which might also depend on I . It is assumed that for λ-almost all ergodic MPP laws q
there exist constants w∗

i (q) ≥ 0 with
∑n

i=1 w∗
i (q) > 0 to which the weights converge

stochastically within the respective ergodicity class, i.e.,

P�|Q=q
(|wi (�,T) − w∗

i (q)| > ε
) −→ 0 (T → ∞) (15)

for all ε > 0. Then we consider estimators of the form

μ̂
n,wght
f (I,w) = μ̂

n,wght
f (I,w, (�1, . . . , �n),T)

=
(∑

wi (�i ,T)
)−1 n∑

i=1

wi (�i ,T)μ̂ f (I,�i ,T). (16)

In order to estimate μ
(2)
f (I ) consistently, according to the decomposition in (7), the

weights have essentially to be chosen as

wi (�i ,T) = α̂(2)(C(T, I ),�i )/vT =
�=∑

t1,t2∈�i,g

1(t1,t2)∈C(T,I )/vT, (17)

where vT is the volume of the cube [0,T]. By Proposition 3, the fraction
α̂(2)(C(T, I ),�i )/vT converges to α

(2)
�|Q=Qi

(C(I )) a.s. as T → ∞, where Qi is
the realized ergodicity class of �i . With w being the vector of weights from (17), we
define

μ̂α
f (I, (�1, . . . , �n),T) = μ̂

n,wght
f (I,w, (�1, . . . , �n),T), (18)

which, in a sense, represents the family of all pairs of points with a distance contained
in I from all realizations. This choice of weights satisfies the above stochastic conver-
gence condition (15) and is sufficient, but not necessary, for consistency. The following
theorem gives a weaker set of conditions that is still sufficient for consistency.

Theorem 2 Let �i , i ∈ N, be iid copies of a possibly non-ergodic MPP � and
let Qi denote the respective ergodicity classes. For weight functions w̃i : M0 ×
[0,∞)d → [0,∞), i ∈ N, and iid random factors Wi > 0 with EW1 < ∞, let
wi (�i ,T) = Wi · w̃i (�i ,T) and w = (w1(�1,T), . . . , wn(�n,T)). Let T = T(n)

and limn→∞ T(n) = ∞ at an arbitrary rate. Then, μ̂
n,wght
f (I,w) is consistent for

123



Intrinsically weighted means and non-ergodic marked point processes 15

μ
(2)
f (I ) if the following conditions hold:

Var w̃i (�i ,T) ≤ c1 for some c1 > 0, (19)

1
nE
∑n

i=1 w̃i (�i ,T) ≥ c2 > 0 ∀n ≥ n0 for some n0 ∈ N, (20)

E[Wi · Y ] = EWi · EY for Y = α̂(2)(C(T, I ),�i ) (21)

and Y = α̂(2)(C(T, I ),�i ) μ
(2)
f,�|Q=Qi

(I ) (22)

nP

{∣
∣
∣
∣
∣

w̃i (�i ,T)
∑n

j=1 α̂(2)(C(T, I ),� j )

α̂(2)(C(T, I ),�i )
∑n

j=1 w̃ j (� j ,T)
− 1

∣
∣
∣
∣
∣
> ε

}
n→∞−→ 0 ∀ε > 0. (23)

The proof is given in Appendix B. Note that if w̃i = w̃ for all i ∈ N for some weight
function w̃ with E|w̃(�,T)| < ∞, the w̃i (�i ,T) are iid and conditions (19) and (20)
become obsolete.

As regards estimation of μ̃
(2)
f (I ), the equally weighted estimator μ̂n

f (I ), defined in
(14), is consistent by the law of large numbers (cf. (14) and Definition 3). When I is
thought of as a small interval around r > 0, the value of μ̂n

f (I ) reflects an average pair
of points with distance r within a randomly chosen ergodicity class. This contrasts the
idea of μ̂α

f (I ), in which each ergodicity class is additionally weighted by the intensity

of points. Analogously to Theorem 2, for consistent estimation of μ̃
(2)
f (I ), also other

choices of weights are feasible, apart from the choice wi (�i ,T) = 1:

Corollary 1 Under the assumptions of Theorem 2 with α̂(2)(C(T, I ),�i ) being
replaced by the constant 1, μ̂n,wght

f (I,w) is consistent for μ̃
(2)
f (I ).

Remark 3 If� is ergodic, μ̂n,wght
f (I,w) is consistent for μ

(2)
f (I ) (as T → ∞) for any

choice ofweightsw that satisfies (15).Note that in this case, consistency is independent
of n, which can be fixed to any finite value.

The weak convergence result of Theorem 1 directly extends to the non-ergodic
case:

Corollary 2 Let the assumptions of Theorem 1 be satisfied for λ-almost all ergodicity
classes. Let wi (�i , T ), i = 1, 2, . . ., be iid weights satisfying condition (15). Let
T = T (n) → ∞ fast enough such that

√
n × E

[
wi (�i , T )

√
α̂1(I,�i , T )

(
μ̂ f (I,�i , T ) − μ

(2)
f,�|Q=Qi

(I )
)]

→ 0 (24)

as n → ∞. Then,

∑n
i=1 wi (�i , T )

√
α̂1(I,�i , T )

(
μ̂ f (I,�i , T ) − μ

(2)
f,�|Q=Qi

(I )
)

√∑n
i=1 wi (�i , T )

d−→ N (0, s),
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16 A. Malinowski et al.

where

s = E
[
w∗(Q)2

]

E [w∗(Q)]
× E

⎧
⎨

⎩
lim

T→∞
Var

[
α̂ f (I,�, T ) − μ

(2)
f,�|Q(I )α̂1(I,�, T )

∣
∣
∣Q
]

Tα
(2)
�|Q(C(I ))

⎫
⎬

⎭
.

Let us remark that, if the marks are independent of the process of point locations
and also of the weights w(�, T ), then the convergence in (24) is satisfied even for
constant T .

4.3 Minimal variance approach

Here, another estimator for μ̃
(2)
f (I ) is defined via a special choice of weights in the

generic estimator μ̂
n,wght
f (I,w), given in (16). LetA∗

n denote the σ -algebra generated
by the unmarked ground processes �1,g, . . . , �n,g, i.e.,A∗

n = σ({{ω : �i,g(ω)(B) =
k} : k ∈ N, B ∈ B, i = 1, . . . , n}). With

wi (�i ,T) = Var
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]−1

and w being the vector composed of these weights, define

μ̂
n,Var
f (I ) = μ̂

n,wght
f (I,w). (25)

Proposition 2 Under the assumptions that E[μ̂ f (I,�i ,T) |A∗
n] is a.s. constant,

the estimator μ̂
n,Var
f (I ) uniquely minimizes the variance amongst all estimators of

the form μ̂
n,wght
f (I,w) with A∗

n-measurable weights. If the conditional variance

Var
[
μ̂ f (I,�,T)

∣
∣A∗

n

]
is independent of the random ergodicity class Q, the estimator

μ̂
n,Var
f (I ) is consistent for μ̃

(2)
f (I ).

Proof For general A∗
n-measurable weights wi (�i ,T), i = 1, . . . , n, it is

Var
[
μ̂
n,wght
f (I,w, (�1, . . . , �n),T)

]

= E

[
1

(∑
wi (�i ,T)

)2

n∑

i=1

wi (�i ,T)2 Var
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]
]

+ Var

[
1

∑
wi (�i ,T)

n∑

i=1

wi (�i ,T)E
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]
]

= E

[
n∑

i=1

wrel
i (�i ,T)2 Var

[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]
]

+ 0 (26)

with wrel
i (�i ,T) = wi (�i ,T)/

∑n
i=1 wi (�i ,T). The variance term in (26) vanishes

because of the assumption on E
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]
. Since any weighted average
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Intrinsically weighted means and non-ergodic marked point processes 17

∑
v2i xi with xi > 0 and

∑
vi = 1 is uniquely minimized by vi = x−1

i /
∑

x−1
i

(Lagrange multiplier), the unconditional variance (26) is minimized by choosing

wi (�i ,T) = Var
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]−1
.

The wi (�i ,T) are A∗
n-measurable by definition of the conditional variance. If

Var
[
μ̂ f (I,�,T)

∣
∣A∗

n

]
is independent of the random ergodicity class Q, the weights

satisfy (19)–(23) with Wi ≡ 1 and wi (�i ,T) = Var
[
μ̂ f (I,�i ,T)

∣
∣A∗

n

]−1 and
α̂(2)(C(T, I ),�i ) being replaced by 1. ��

Note that an analog variance minimizing procedure could be included into the
estimator μ̂α

f of μ
(2)
f (I ) as well. The result can also be generalized to arbitrary sub-σ -

algebrasB∗
n for whichE[μ̂ f (I,�i ,T) |B∗

n] is a.s. constant andVar
[
μ̂ f (I,�,T)

∣
∣B∗

n

]

is independent of the random ergodicity class Q. However, the above choice of A∗
n

might be most relevant, particularly for models in which the marks are suitably inde-
pendent of the point locations.

If there exist interaction effects in the MPP that are of higher than second order, the
assumption onE[μ̂ f (I,�i ,T) |A∗

n]might not be satisfied anymore, and the estimator
μ̂
n,Var
f (I ) should be appliedwith care.Clusters of point locationswhich tend to increase

the conditional variance of μ̂ f given the ground process, can additionally influence the

mean of other marks in excess of the bivariate interaction measured by μ
(2)
f (I ). Then,

a bias will be introduced using the above random weights. More generally, the more is
known about the relation between μ̂ f (I,�,T) and the ground process �g, the more
can be gained from using different (random) weights while preserving consistency
of the estimator. Without any assumption, only independent weights are feasible and
then wi (�i ,T) = 1 is naturally the best choice, i.e., the use of μ̂n

f (I ).
In the following example, themarks are assumed to be independent of the locations:

Example 5 Let �̃ be a one-dimensional, stationary unmarked point process and {Y (t) :
t ∈ R} a stationary process, independent of �̃, such that { f (Y (t)) : t ∈ R} has finite
second moments. We consider the MPP � = {(t,Y (t), 1) : t ∈ �̃}. Then

Var
[
μ̂ f (I,�, T )

∣
∣A∗

n

]

=
∑

t1∈�g∩[0, T ]
∑

s1∈�g∩[0, T ] Cov
[
f (Y (t1)), f (Y (s1))

]
n(t1,�g, I )n(s1,�g, I )

[∑
t1∈�g∩[0, T ] n(t1,�g, I )

]2 ,

where n(t1,�g, I ) =∑t2∈�g\{t1} 1t2−t1∈I .

The proof is given in Appendix B.

5 Conclusion

The MPP summary statistics considered in this paper are (weighted) mark means.
Formally,wedistinguish between two layers ofweighting, namely the intrinsicweights
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18 A. Malinowski et al.

zi in � = {(ti , yi , zi ) : i ∈ N} by which single points are weighted, and the weights
w j (� j ,T) by which different realizations are weighted. In practical applications,
though, these two might become indistinct: revisiting the forest example from the
beginning, when a particular dataset of tree locations and marks is considered, this
can be either treated as one single realization of a random forest or it can be treated as
a collection of realizations, which may represent different forest areas with different
characteristics. Independently of ergodicity properties of the corresponding stochastic
process, the resulting estimators μ̂ f and μ̂

n,wght
f coincide, if the z-component in the

former interpretation is set to zi = w j (� j ,T) whenever the i th tree belongs to the
j th realization of the latter interpretation.
The practical choice of weights depends on the statistical question and, once non-

ergodicity is included into the model, on whether the classical moment measures μ
(i)
f

or the two-stage expectations μ̃
(i)
f are to be estimated. Using the latter quantity partic-

ularly allows to exclude effects on the mark average caused by systematic differences
in the pattern of point locations between the ergodicity classes.

An important family of MPP models, often used as null models, is obtained by
geostatistical marking, i.e., by measuring a regionalized variable at random and sto-
chastically independent locations (Illian et al. 2008). What might then be of interest is
the average of the latent process over the whole index space and the weights zi allow
to compensate for clustering of point locations, for instance.

Whenever the points represent physical objects that influence each other, the
assumption of a continuous-space background process becomes problematic. Trees
in a forest, for example, compete for resources and if another tree had been added at
some point, the measured characteristics of the surrounding trees would have likely
changed. With increasing distance, however, these interaction effects between single
objects of an MPP may become negligible and the latent process assumption can be
sensible on a larger scale. These considerations motivate combining classical mark
mean estimators for MPPs on the small scale (i.e., z being locally constant) with a
weighting procedure that accounts for the irregular distribution of points on the larger
scale. In some sense, this corresponds again to the non-ergodic approach with the
two-step expectation, applied to the data without z-component.

Appendix A: Ergodic theory

Ergodicity is a mixing property that can be defined in the very general context of
dynamical systems. A MPP on R

d together with the group of R
d -indexed shift oper-

ators is a special case of a dynamical system.
We denote by M0 the set of all locally finite counting measures on R

d × R, and by
M0 the smallestσ -algebra onM0 thatmakes allmappingsM0 → N0∪∞,ϕ �→ ϕ(S),
measurable. Formally, aMPP� is a measurable mapping from some probability space
(�,A, P) into (M0,M0) and we can identify (�,A) with (M0,M0) in the usual
way. Let T = {Tx : x ∈ R

d} with

(Txϕ)(B × L) = ϕ((B + x), L), B ∈ Bd , L ∈ R. (27)
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Intrinsically weighted means and non-ergodic marked point processes 19

Recall that � is said to be stationary if the induced probability measure P� is T-
invariant. Further, a stationary MPP � is called ergodic if P�(A) is either zero or one
for allT-invariant sets A ∈ M0. LetA0 ⊂ M0 be the sub-σ -algebra of allT-invariant
sets inM0, i.e., A = T−1A for all A ∈ A0 and T ∈ T.

For the basic results in ergodic theory, the reader is referred to (Daley and Vere-
Jones 2008, Chap. 12). The following Proposition provides an ergodic theorem for the
point process context. The proof is based on a simple sandwich argument, which can
also be used for other consistency statements. We include the proof here, because to
our knowledge, it is not available in this form in pertinent literature. A similar assertion
can be found in Daley and Vere-Jones (2008, Thm. 12.2.IV).

Proposition 3 Let (�,A, P) be a probability space and T = {Tx : x ∈ R
d} a group

of measure-preserving transformations acting on (�,A, P) such that the mapping
(Tx , ω) �→ Txω is jointlymeasurable, i.e., (B(T)⊗A,A)-measurable. (Multiplication
in T is given by TxTy = Tx+y .) Let {Wn}n∈N be a convex averaging sequence in R

d

and A0 the σ -algebra of T-invariant events. Let � be stationary and ergodic and let
f : R

d × R × M0 → R be a non-negative function that satisfies f (t − x, y, Txϕ) =
f (t, y, ϕ) for all t, x ∈ R

d , y ∈ R, and that is integrable w.r.t. to the marked Campbell
measureC(B×L×M) = E

[
�((B∩[0, 1]d)×L)1M (�)

]
, B ∈ Bd , L ∈ L, M ∈ M0.

We define random variables X, Xn : M0 → R by

X (ϕ) =
∑

(t,y)∈ϕ, t∈[0, 1]d
f (t, y, ϕ)

Xn(ϕ) = 1

nd
∑

(t,y)∈ϕ, t∈[0,n]d
f (t, y, ϕ).

Then Xn converges to EX almost surely if n → ∞.

Proof An extension of the classical Campbell theorem (e.g., Daley and Vere-Jones
2008, Lem. 13.1.II) guarantees that E|X | < ∞ if f is integrable w.r.t. the Campbell
measure. The Wn = [0, n]d obviously form an averaging sequence and

Xn(ϕ) = 1

ν(Wn)

∑

(t,y)∈ϕ, t∈Wn

f (t, y, ϕ)

∫

Rd
1[t, t+1](x) ν(dx)

= 1

ν(Wn)

∫

Rd

∑

(t,y)∈ϕ, t∈Wn∩[x−1, x]
f (t, y, ϕ) ν(dx), (28)

where x ± 1 for x ∈ R
d is defined component-wise. Note that the integrand on the

RHS equals 0 wheneverWn ∩ [x − 1, x] = ∅, which means that x is not contained in
Wn ⊕ [0, 1]d , which is, on its part, a subset of Wn+1. Thus, we can shrink the region
of integration to Wn+1 without changing the integral. If we then drop the condition
‘t ∈ Wn’ under the summation sign, we enlarge the whole expression since f is
non-negative, i.e.,
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Xn(ϕ) ≤ 1

ν(Wn)

∫

Wn+1

∑

(t,y)∈ϕ, t∈[x−1, x]
f (t, y, ϕ) ν(dx)

= 1

ν(Wn)

∫

Wn+1

∑

(t,y)∈Tx−1ϕ, t∈[0, 1]d
f (t, y, Tx−1ϕ) ν(dx)

= ν(Wn+1)

ν(Wn)

1

ν(Wn+1)

∫

Wn+1−1
X (Txϕ) ν(dx), (29)

where the second equation uses that f (t − x, y, Txϕ) = f (t, y, ϕ) and the last equa-
tion uses that ν is shift-invariant. Since the ratio ν(Wn+1)/ν(Wn) converges to 1, the
classical individual ergodic theorem (cf. Daley and Vere-Jones 2008, Prop. 12.2.II)
yields that the RHS of (29) converges to E(X |A0) for almost all ϕ ∈ M0. Since
� was assumed to be ergodic, this conditional expectation equals EX . Similarly, if
we restrict integration in (28) to the set Wn−1, we reduce the value of the integral.
Since Wn−1 ⊕ [−1, 0]d ⊂ Wn , we can again drop the condition ‘t ∈ Wn’ under the
summation sign and by the same argument as before, we have

Xn(ϕ) ≥ 1

ν(Wn)

∫

Wn−1

∑

(t,y)∈ϕ, t∈[x, x+1]
f (t, y, ϕ) ν(dx)

n→∞−→ EX

for almost all ϕ ∈ M0. Thus, we have a sandwich relation for Xn(ϕ) and can conclude
that Xn → EX a.s. ��

In case that � is not ergodic, the following results provide a representation of �

as a mixture of a set of ergodic MPPs. To this end, let P (Perg resp.) denote the
set of all probability measures on (M0,M0) induced by stationary (and ergodic)
MPPs and let �erg be the smallest σ -algebra making all mappings Perg → [0, 1],
P �→ P(A), measurable. We say that T fulfills the condition (LocCompGrp) if T is a
locally compact, second-countable Hausdorff group of jointly measurable, surjective
transformations. From Farrell (1962) we can extract a very general result:

Theorem 3 Let (�,A) be a measurable space with � a complete separable metric
space and A its Borel-σ -algebra. Let T be a set of measurable transformations of �
satisfying the condition (LocCompGrp) and let P ∈ P . Here, P (Perg resp.) is the
set of all T-invariant (and ergodic) probability measures on (�,A). Then there is a
unique probability measure λP on (Perg,�erg) and a Perg-valued random variable
QP s.t.

P(A) =
∫

Perg

Q(A) λP (dQ) =
∫

�

QP (ω)(A) P(dω) ∀A ∈ A,

i.e., λP is the distribution of QP.

In the context of MPPs on R
d , the group T of shifts, as defined in (27), obviously

fulfills the condition (LocCompGrp), and since M0 is a complete separable metric
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space andM0 its Borel-σ -algebra (e.g., Kallenberg 1986), Theorem 3 can directly be
applied, which yields a decomposition of the non-ergodic MPP � ∼ P:

P(M) =
∫

Perg

Q(M) λ(dQ) ∀M ∈ M0.

Note that each Q induces a new ergodic MPP �Q : � → M0 which is given
implicitly by P(�Q ∈ M) = Q(M), M ∈ M0. By the second representation in
Theorem 3, we can also consider Q as a random variable on (M0,M0, P) with
distribution λ = λP . Thus, � and Q� have a joint distribution and the conditional
distribution of � given Q is well-defined:

P(· | Q = q) = q(·).

Appendix B: Proofs of Sect. 4

Proof (of Theorem 2) We consider

∣
∣
∣
∣

∑n
i=1 wi (�i ,T)μ̂ f (I,�i ,T)

∑n
i=1 wi (�i ,T)

− μ
(2)
f (I )

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∑n
i=1 wi (�i ,T)

[
μ̂ f (I,�i ,T) − μ

(2)
f,�|Q=Qi

(I )
]

∑n
i=1 wi (�i ,T)

∣
∣
∣
∣
∣

(30)

+
∣
∣
∣
∣
∣

∑n
i=1 Wi w̃i (�i ,T)μ

(2)
f,�|Q=Qi

(I )
∑n

i=1 Wi w̃i (�i ,T)
− μ

(2)
f (I )

∣
∣
∣
∣
∣
. (31)

By Lemma 1, μ̂ f (I,�i ,T) is consistent (forT → ∞) within the respective ergodicity
class. Thus, (30) converges to 0 in probability if T → ∞. With the short notation
αi = α̂(2)(C(T, I ),�i ) and w̃i = w̃i (�i ,T), since αi , Wi and w̃i are non-negative,
we have

(31) =
∣
∣
∣
∣
∣

n∑

i=1

Wiαi
[
μ

(2)
f,�|Q=Qi

(I ) − μ
(2)
f (I )

]

∑n
j=1 Wjα j

× w̃i
∑n

j=1 α j

αi
∑n

j=1 w̃ j

∣
∣
∣
∣
∣

×
∑n

j=1 Wjα j
∑n

j=1 α j
×

∑n
j=1 w̃ j

∑n
j=1 Wj w̃ j

.

Since by assumption (20), (n−1
E
∑n

i=1 w̃i )n∈N is eventually bounded away from 0
and the variance of the w̃i is uniformly bounded by (19), the law of large numbers
yields that

∑n
j=1 w̃ j/E

∑n
j=1 w̃ j and

∑n
j=1 W̃ jw j/E

∑n
j=1 Wj w̃ j converge to 1 in

probability. Since theWi are assumed to be iid, eachWi is either independent of w̃i or
the functions w̃i (·, ·) are identical for those indices for which Wi is not independent

of w̃i . Then
E
∑n

j=1 w̃ j

E
∑n

j=1 Wj w̃ j
→ d1 for some d1 ∈ R and we get
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∑n
j=1 w̃ j

∑n
j=1 Wj w̃ j

=
∑n

j=1 w̃ j/E
∑n

j=1 w̃ j
∑n

j=1 Wj w̃ j/E
∑n

j=1 Wj w̃ j
× E

∑n
j=1 w̃ j

E
∑n

j=1 Wj w̃ j

p−→ d1

as n → ∞. Similarly, due to (21) and (22), we have

∑n
j=1 Wjα j
∑n

j=1 α j

p−→ EW1,

∑n
i=1 Wiαiμ

(2)
f,�|Q=Qi

(I )
∑n

i=1 Wiαi

p−→
E

[
α

(2)
�|Q=Qi

(C(I )) × μ
(2)
f,�|Q=Qi

(I )
]

E

[
α

(2)
�|Q=Qi

(C(I ))
] = μ

(2)
f (I ).

(32)

It remains to show that
∑n

i=1 Ai Bi
p→ 0, where

Ai = Wiαi
[
μ

(2)
f,�|Q=Qi

(I ) − μ
(2)
f (I )

]

∑n
j=1 Wjα j

, Bi = w̃i
∑n

j=1 α j

αi
∑n

j=1 w̃ j
.

Equation (32) now reads as
∑n

i=1 Ai
p→ 0 and with A+

i = max(Ai , 0) and A−
i =

−min(Ai , 0), we have
∑n

i=1 A
+
i

p→ d2 and
∑n

i=1 A
−
i

p→ d2 for some d2 ≥ 0. Since
the Bi are non-negative, the following inequalities hold:

n
min
i=1

Bi

n∑

i=1

A+
i − n

max
i=1

Bi

n∑

i=1

A−
i ≤

n∑

i=1

Ai Bi ≤ n
max
i=1

Bi

n∑

i=1

A+
i − n

min
i=1

Bi

n∑

i=1

A−
i .

(33)

Now

P(min Bi − 1 ≥ −ε) = (1 − P(B1 − 1 < −ε))n ≥ (1 − P(|B1 − 1| > ε))n (34)

P(max Bi − 1 ≤ ε) = (1 − P(B1 − 1 > ε))n ≥ (1 − P(|B1 − 1| > ε))n . (35)

By assumption (23), the RHS of (34) and (35) converge to 1, which means that

min Bi
p→ 1 and max Bi

p→ 1. Hence, both the upper bound and the lower bound of∑n
i=1 Ai Bi in (33) converge to 0 in probability which finishes the proof. ��

Proof (of Example 5) We have

E
[
α̂ f (I,�, T )/α̂1(I,�, T )

∣
∣A∗

n

]

= α̂1(I,�, T )−1 × E

[∑
(t1,y1,z1),(t2,y2,z2)∈�, t1∈[0, T ] z1 f (y1) × 1t2−t1∈I

∣
∣
∣A∗

n

]

= α̂1(I,�, T )−1 ×∑t1∈�g∩[0, T ] #{t2 ∈ �g : t2 − t1 ∈ I } × E
[
f (Y (t1))|A∗

n

]

= E f (Y (0)).
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and

E
[
α̂ f (I,�, T )2 |A∗

n

]

= E

[ ∑

t1,s1∈�g∩[0, T ]
f (Y (t1) f (Y (s1))

× #{t2 ∈ �g : t2 − t1 ∈ I } × #{s2 ∈ �g : s2 − s1 ∈ I }
∣
∣
∣A∗

n

]

=
∑

t1,s1∈�g∩[0, T ]
n(t1,�g, I )n(s1,�g, I )

× E
[
f (Y (t1) f (Y (s1)) |A∗

n

]

=
∑

t1,s1∈�g∩[0, T ]
n(t1,�g, I )n(s1,�g, I )

×
[
E
[
f (Y (0))|A∗

n

]2 + Cov
[
f (Y (t1), f (Y (s1)) |A∗

n

]]

=
∑

t1,s1∈�g∩[0, T ]
n(t1,�g, I )n(s1,�g, I ) × Cov

[
f (Y (t1), f (Y (s1))

]

+ (E f (Y (0)))2α̂1(I,�, T )2.

Hence,

Var
[
α̂ f (I,�, T )/α̂1(I,�, T ) |A∗

n

]

= E
[
(α̂ f (I,�, T )/α̂1(I,�, T )2 |A∗

n

]− (E[α̂ f (I,�, T )/α̂1(I,�, T ) |A∗
n]
)2

= α̂1(I,�, T )−2 × E
[
α̂ f (I,�, T )2 |A∗

n

]− (E f (Y (0)))2

= α̂1(I,�, T )−2
∑

t1,s1∈�g∩[0, T ]
n(t1,�g, I )n(s1,�g, I )

× Cov
[
f (Y (t1), f (Y (s1))

]
.
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