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Proof of Theorem 2.

The proof differs from that of Theorem 1 only in proving convergence (14) of the main
paper. As shown in [1], using Theorem 2 of [2], and condition (26) of the main paper, we

have
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Then from (20) or (23) of the main paper (depending on the case),
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and therefore, from (1) we have
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Also, from (3) and (20) or (23) of the main paper,
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It now follows from (2), (5) and (6) that

e P, (e, p

max 202D, (00) (@) —0
and (1 = Pal@)es]
W,y — p(O))€,| p
D) O
which imply (14).
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Proof of Theorem 4.
The proof differs from that of the result stated in Remark 2 only in proving that &, % 0

where &, = maxq |E,(a)| and
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As nL, (o) = 26%D,(0) + €, P, (a)e, > 262D, (a), the result follows from (7) and (8). O

Proof of the Result Stated in Remark 3.
Consider the ‘model true’ case when M,, = My and each candidate model is assigned
equal probability. It was noted, while proving Theorem 5, that in this case
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Noting that a, = g,/(1 +g,), simple algebra shows that
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Noting that 0 < (€, (I, — P,(a))e,) /(X (vi —¥)?) < 1 with probability 1, it is immediate
that last summation is larger than
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with probability 1. When p, =n?, 0 < b < 1 and g, = kn" for k > 0, r > 0 then the quantity
is bounded away from zero asymptotically if » < 2b. It can go to zero if r > 2b. O

Proof of the Result Stated in Remark 4.

By assumption (A.1), (I — Py(Q))un/n < M for some M > 0. We show that when M, =
My then P(My,|y,) does not converge to 1 in probability if g, = D"/P» where D > 1+ M /c>
and p, = n®. Recalling (29) and noting that 4; is a null set in this case, it suffices to show

that for such a choice of g, ¥ oc 2, Mo (¥n)/Ma. (yn) does not converge to zero in probability.
We recall from (49) that
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where C, and U, are as in (50) and (51) respectively. Using (54) and (55) it follows that
Una. = 0p(1) uniformly in o as n — oo since p,/n — 0. Using these along with the facts that



(I — Py(a))un/n <M, a,—1,C, LN (vide (52)), ane),P,(a)e,/nC, = 0,(1), one concludes
that givenany 0 <e < 1,
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with probability tending to 1 as n — . The expression on the right hand side above can

be greater than
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which, in turn, equals
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Now suppose p, =n”, 0 < b < 1. Then the above expression cannot converge to zero if
gn = D'/Pr where D > (1+M/c?). This completes the proof. O
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