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Proof of Theorem 2.
The proof differs from that of Theorem 1 only in proving convergence (14) of the main

paper. As shown in [1], using Theorem 2 of [2], and condition (26) of the main paper, we
have

max
α

∣

∣e
′
nPn(α)en −σ2Pn(α)

∣

∣

nRn(α)

p→ 0 (1)

and

max
α

|µ′n (In −Pn(α))en|
nRn(α)

p→ 0. (2)

Now, nLn(α) = 2σ2Dn(α)+ e
′
nPn(α)en and

nRn(α) = E (nLn(α)) = 2σ2Dn(α)+σ2pn(α). (3)

Then from (20) or (23) of the main paper (depending on the case),

max
α

∣

∣σ2 pn(α)
∣

∣

nRn(α)
→ 0 (4)

and therefore, from (1) we have

max
α

e
′
nPn(α)en

nRn(α)

p→ 0. (5)

Also, from (3) and (20) or (23) of the main paper,

max
α

∣

∣

∣

∣

nRn(α)

2σ2Dn(α)
−1

∣

∣

∣

∣

≤ pn

maxα 2Dn(α)
→ 0. (6)

It now follows from (2), (5) and (6) that

max
α

e
′
nPn(α)en

2σ2Dn(α)

p→ 0 (7)

and

max
α

|µ′n(In−Pn(α))en|
2σ2Dn(α)

p→ 0 (8)

which imply (14).
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Proof of Theorem 4.

The proof differs from that of the result stated in Remark 2 only in proving that ξn
p→ 0

where ξn = maxα |ξn(α)| and

ξn(α) =
2µ′n(In −Pn(α))en −2e

′
nPn(α)en

nLn(α)
.

As nLn(α) = 2σ2Dn(α)+ e
′
nPn(α)en > 2σ2Dn(α), the result follows from (7) and (8).

Proof of the Result Stated in Remark 3.
Consider the ‘model true’ case when Mαc

= MN and each candidate model is assigned
equal probability. It was noted, while proving Theorem 5, that in this case

mα(yn)

mαc
(yn)

=
1

(1+gn)
pn(α)/2

(

(1−an)∑n
i=1

(yi − ȳ)2 +ane
′
nen −ane

′
nPn(α)en

∑n
i=1

(yi − ȳ)2

)−(n−1)/2

.

Noting that an = gn/(1+gn), simple algebra shows that

∑
α∈A1

mα(yn)

mαc
(yn)

= ∑
α∈A

1

(1+gn)−(n−pn(α)−1)/2

(

1+gn
e
′
n (In −Pn(α))en

∑n
i=1

(yi − ȳ)2

)−(n−1)/2

.

Noting that 0 < (e′n (In −Pn(α))en)/(∑
n
i=1

(yi − ȳ)2) < 1 with probability 1, it is immediate
that last summation is larger than

∑
α∈A1

1

(1+gn)pn(α)/2
=

pn

∑
q=1

(

pn

q

)

(1+gn)
−q/2 =

(

1+
1√

1+gn

)pn

−1,

with probability 1. When pn = nb, 0 < b < 1 and gn = knr for k > 0, r > 0 then the quantity
is bounded away from zero asymptotically if r ≤ 2b. It can go to zero if r > 2b.

Proof of the Result Stated in Remark 4.
By assumption (A.1), µ′n(I−Pn(α))µn/n ≤ M for some M > 0. We show that when Mαc

=
MF then P(Mαc

|yn) does not converge to 1 in probability if gn = Dn/pn where D > 1+M/σ2

and pn = nb. Recalling (29) and noting that A1 is a null set in this case, it suffices to show
that for such a choice of gn, ∑α∈A2

mα(yn)/mαc
(yn) does not converge to zero in probability.

We recall from (49) that

mα(yn)

mαc
(yn)

= (1+gn)
(pn(αc)−pn(α))/2

[

1+anµ′n(In −Pn(α))µn/nCn +Unα

1−ane′nPn(αc)en/nCn

]−(n−1)/2

,

where Cn and Unα are as in (50) and (51) respectively. Using (54) and (55) it follows that
Unα = op(1) uniformly in α as n → ∞ since pn/n → 0. Using these along with the facts that
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µ′n(I−Pn(α))µn/n ≤ M, an → 1, Cn
p−→ σ2 (vide (52)), ane

′
nPn(α)en/nCn = op(1), one concludes

that given any 0 < ε < 1,

∑
α∈A2

mα(yn)

mαc
(yn)

> ∑
α∈A2

(1+gn)
(pn(αc)−pn(α))/2

(

1− ε

1− ε+M/σ2(1− ε)

)(n−1)/2

with probability tending to 1 as n → ∞. The expression on the right hand side above can
be greater than

(

1− ε

1− ε+M/σ2(1− ε)

)(n−1)/2
(

pn−1

∑
r=1

(1+gn)
r/2

(

pn −1

r

)

)

,

which, in turn, equals

(

1− ε

1− ε+M/σ2(1− ε)

)(n−1)/2
(

1+
√

1+gn

)pn−1

.

Now suppose pn = nb, 0 < b < 1. Then the above expression cannot converge to zero if
gn = Dn/pn where D >

(

1+M/σ2
)

. This completes the proof.
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