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Abstract Right-censored length-biased data are commonly encountered in many
applications such as cancer screening trials, prevalent cohort studies and labor eco-
nomics. Such data have a unique structure that is different from traditional survival
data. In this paper, we propose an estimator of the quantile residual lifetime (QRL)
with this kind of data based on the nonparametric maximum likelihood estimation
method. In addition, we develop two tests by taking difference and ratio of the QRL
from two independent samples. We also establish the asymptotic properties of the
proposed estimator and the test statistics. Simulation studies are performed to demon-
strate that the proposed estimator works well in finite-sample situations. We illustrate
its application using two data examples: one is the Oscars Award data, the other is the
Channing house data.
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1 Introduction

In many practical situations such as medical studies, we are often interested in the
residual life (or residual survival lifetime), which is defined as the remaining survival
time given an individual surviving to a known time point t (t ≥ 0), or more formally
T − t0| T ≥ t0. The residual lifetime distribution is a useful quantity in practice,
for example, an insurance company may be interested in how long a cancer patient
is expected to survive given that this patient has survived so far; a hospital may be
concerned about the percentage of patients who have cancer for three years will still
live for twomore years. Questions such as these can be formulated in terms of residual
life; also, when a new treatment is used for a patient after he/she has taken an old one
for a period of time, residual life can be applied to judge whether the new treatment is
better or not. It will be more straightforward to illustrate it as “Given another person
shares the similar genetic and environment with you, if you takes the drug, then your
life will be prolong 10 years on average” rather than simply explain it as “this drug
will reduce 25 % hazard”. When t = 0, then the residual life is actually the survival
time from disease onset to failure. As a result, estimate a survival function can be
considered as a special case of estimate a residual lifetime distribution by setting
t = 0.

Much work had been done on estimating the residual lifetime distribution, most
of which focused on the mean residual lifetime and the median residual lifetime
(see Chen et al. 1983; Berger et al. 1988; Oakes and Dasu 1990; Chen and Cheng
2005; Chen 2007; Sun and Zhang 2009; Chan et al. 2012 and Sun et al. 2012, among
others), which are defined as the mean andmedian of the residual life random variable,
respectively. The quantile residual lifetime, defined as the quantile of the residual life
variable, provided a more complete description of residual life than median residual
life; moreover, when the distribution is skewed or non-symmetric, the mean residual
life is sensitive to outliers (Jeong 2014), and it may not be calculated, in this situation,
the QRL still works. However, references on this topic is rare until recent, including
Jeong et al. (2008), Jeong and Fine (2009), Jung et al. (2009), Ma and Wei (2012) and
Lin et al. (2014). As far as we know, there has been no study on quantile residual life
under right-censored length-biased data. Our work fills this gap.

Length-biased data often arise in many practical situations such as prevalent cohort
studies, cancer screening, labor economics, and so on. It comes from length-biased
sampling where the observed failure times are not randomly selected from the distrib-
ution of interest, instead, they are chosen with probability proportional to its length of
the failure time interval. Under this sampling scheme, only the individuals who expe-
rience initial event (such as disease onset) and have not experienced terminal event
(such as failure) can be observed, thus the collected data are left truncated. Length-
biased data are a special case of left truncated data where the left truncation variable
is assumed to follow a uniform distribution. This assumption is called the stationarity
assumption in the literature (Addona 2005; Asgharian et al. 2002, 2006; Asgharian
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andWolfson 2005). In medical studies, the stationary assumption is equivalent to say-
ing that the disease incidence rate is a constant. In addition to length-bias, the patients
may die from causes not related to the disease or lost follow-up, thus the observed
data are often right-censored.

Our research is motivated by the need to properly analyze the Oscars Award data
(Redelmeier and Singh 2001). This dataset contains the survival information (date
of birth, nomination, death or censoring) of the nominees for Oscars Award from
1929 to 2001. The motivation of analyzing this dataset is to explore whether the
increased statue from winning an academy award is associated with a longer life
expectancy among actors and actresses. Those winning the Oscar Award must first
being nominated. Obviously, only those who have survived long enough to be nom-
inated can be recruited, thus these data are left truncated. Moreover, Addona and
Wolfson’s (2006) test shows that these data are length-biased. We denote the ini-
tial event as birth of the nominees, the terminal event as death, the age at nom-
ination as truncation time (Wolkewitz et al. 2010). Redelmeier and Singh (2001)
used the Kaplan–Meier curve to analyze these data and conclude that the win-
ners have a longer life expectancy than the nonwinning nominees, with a 25 %
relative reduction in death rates. However, this conclusion based on the Kaplan–
Meier estimator is questionable because the data are length-biased. Here, we will
use quantile residual lifetime to analyze these data taking into account the length-
bias. Compared with the classical mean approach (life expectancy), quantile approach
can be more informative. For instance, patients may be more concerned about the
90 and 75 % quantiles he/she will live rather than average residual time, because
the former means that they can survive to a time point with 90 or 75 % prob-
ability, while the median residual lifetime means they can survive to that point
with 50 % probability, and the mean residual life is less useful for a single per-
son.

In this paper, a quantile residual lifetime estimator is proposed based on an estimat-
ing equation for right-censored and length-biased data. The estimating equation is con-
structed using a nonparametric maximum likelihood estimation (NPMLE) approach
(Asgharian et al. 2002; Asgharian and Wolfson 2005; Vardi 1989). We establish the
asymptotic properties of the proposed estimator. Furthermore, we propose two tests
for two-sample comparisons. The asymptotic properties of the proposed test statistics
are studied. To the best of our knowledge, this is the first time quantile residual lifetime
being studied under right-censored length-biased data.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the
sampling model, propose an estimator for the quantile residual life function and state
the asymptotic results for the proposed estimator. In Sect. 3 we apply the proposed
method to two-sample comparison problems, two tests are proposed based on the
difference and the ratio of the QRL estimators, respectively. Simulation studies are
conducted in Sect. 4, which demonstrate that the proposedmethod has excellent finite-
sample performance. In Sect. 5 we apply the proposed method to two real data sets
to illustrate its application. Concluding remarks are given in Sect. 6. Proofs of the
theoretical results are given in the Appendix.
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2 Estimation method and main results

2.1 Notation and model

For the population being studied, T̃ is the full survival time variable, the support of
the distribution function F of T̃ is [0, τ ), let the distribution of length-biased variable
be G, and the corresponding density functions of F and G are f and g, respectively.
Let S(·) = 1 − F(·) be the survival function of the unbiased data.

In the following, we will denote the truncation variable by Ã, which obeys the
uniform distribution on [0, κ]. Suppose κ > τ so that the stationarity assumption is
satisfied. Suppose that Ã is independent of T̃ . Thus the truncation probability is P(T̃ ≥
Ã). We assume 0 < P(T̃ ≥ Ã) < 1. In the presence of length-biased sampling, an
individual can be observed if and only if T̃ ≥ Ã. Denote T , A as the observed failure
time and observed truncation time, thus the joint distribution of (T, A) is the same
as (T̃ , Ã)|T̃ ≥ Ã. Let R = T − A. Here R is called the residual lifetime (forward
recurrence time), and A is the current lifetime (backward recurrence time) (Zelen and
Feinleib 1969). Also, we denote A+C as the censoring time, where C is the time span
from recruitment to censoring. Following Asgharian and Wolfson (2005), we assume
that C and (A, R) are independent. Under the above mechanism, we observe the i.i.d.
triple (Yi , Ai , δi ), i = 1, . . . , n, where Yi = min(Ai +Ri , Ai +Ci ), δi = I (Ri ≤ Ci ).
Conditionally on T̃ ≥ Ã, g (the p.d.f. of length-biased variable T ) is related to f (the
p.d.f. of unbiased data T̃ ) by (Shen et al. 2009)

g(t) = t f (t)

μ
, μ =

∫ τ

0
u f (u)du, μ < ∞.

Due to the structure of the observed sample, the total censoring time A + C and
the failure time A + R are dependent because they share a common part A. Thus the
observed failure time T is subject to informative censoring (Asgharian and Wolfson
2005, pp. 2113). In the following, due to technical reason,weonly consider the estimate
in (γ, ψ) ⊂ (0, τ ), where γ is defined in Assumption 5 and stands for the lower
boundary for the support of S(t), ψ < τ is an arbitrary number close to τ .

For the unbiased population, the αth quantile residual life time function at time t
is defined as

θα(t) = quantile(T̃ − t |T̃ ≥ t). (1)

Obviously, θα(·) in (1) satisfies

P{T̃ − t ≥ θα(t)|T̃ ≥ t} = α,

which implies that

P{T̃ − t ≥ θα(t)} = αP(T̃ ≥ t).
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Thus given t and α, the quantile residual life function θα(t) satisfies

S(t + θα(t)) = αS(t), (2)

where γ ≤ t < t + θα(t) ≤ ψ .
To estimate θα(t), it is natural to estimate the function S(·) first. Then, the estimator

θ̂
(n)
α (t) is the solution to the estimating equation

M̂n(θα(t)) ≡ Ŝn(t + θα(t)) − α Ŝn(t) = 0, (3)

where Ŝn(·) is an estimator of S(·). Here, we choose

Ŝn(t) = 1 −
∫ t
0 s−1dĜn(s)∫ τ

0 s−1dĜn(s)
, (4)

which is proposed by Asgharian and Wolfson (2005). The nonparametric maximum
likelihood estimator Ĝn(·) in (4) is obtained by maximizing

L R(G) =
n∏

i=1

dG(Yi )
δi

{∫
s≥Yi

s−1dG(s)

}1−δi

(5)

with respect to G(·). However, Ĝn(·) does not have a closed-form expression, and an
EM algorithm is proposed by Vardi (1989) for computation.

A referee pointed out that an equivalent way is to define θ̂
(n)
α (t) as the αth quantile

of the estimated conditional distribution of T̃ − t given T̃ ≥ t . That is, θ̂
(n)
α (t) =

Ŝ−1
n (α Ŝn(t)) − t , where Ŝ−1

n (p) = inf{t > 0 : Ŝn(t) < p}. This is a solution to (3)
and more intuitive. We note that the solutions to (3) generally are not unique due to the
fact that Ŝn is not continuous. Here the reason we define θ̂

(n)
α (t) as a solution to (3) is

that it is easier to carry out the theoretical analysis. The main difficulty is to show that
Ŝn is stochastically equicontinous. Since Ŝn does not have a closed-form expression,
this is a highly nontrivial problem, see Theorem 2 and its proof given in the Appendix.

2.2 Main results

We now state the asymptotic properties of θ̂
(n)
α (t).

Theorem 1 Under the Assumptions 1–5 given in the Appendix, when n → ∞

θ̂ (n)
α (t)

a.s.−−→ θα(t)

uniformly for any γ ≤ t < t + θα(t) ≤ ψ < τ .
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Theorem 2 Under the Assumptions 1–5 given in the Appendix, for any γ ≤ t <

t + θα(t) ≤ ψ < τ , we have

√
n

[
θ̂ (n)
α (t) − θα(t)

]
D−→ [ f (t + θα(t))]−1μ

∫ τ

0

[
Lt+θα(t)(x) − αLt (x)

]
dU (x)

on D0[γ,ψ] (the space of cadlag functions on [γ,ψ]), where U (·) is the process
defined in Eq. (11) in the Appendix, Lt (x) = [I[t,∞)(x) − S(t)]/x, and the process
on the right-hand side has covariance function

r(y, z) = {[ f (t + θα(t))]−1}Tr1(y, z){[ f (t + θα(t))]−1}

and r1(y, z) is defined in Lemma 5 in the Appendix.

The proofs of these two theorems are given in the Appendix. These theorems state
that the proposed estimator is uniformly consistent and asymptotically normal. In
particular, Theorem 2 can be used to construct confidence intervals for θ̂

(n)
α (t). It can

also be used to study the distributions of the two-sample test statistics.

3 The two-sample problem

In practice, we are often interested in examining whether there is any difference
between the residual lifetimes under two different treatments. In this section we
develop two methods for two-sample comparison problems. For j th individual in
i th group, let Ti j be the observed failure time, let Ai j be the observed truncation
time, and let Ci j be the time span from recruitment to censoring. We observe the
triple (Yi j , Ai j , δi j ), where Yi j = min(Ai j + Ri j , Ai j + Ci j ), δi j = I (Ri j ≤ Ci j ),
j = 1, . . . , ni , i = 1, 2. Within the i th group, we assume that Ci j is independent
of (Ai j , Ri j ), Yi j s are i.i.d., the density functions of unbiased data and length-biased
data are fi and gi , the corresponding distribution functions are Fi and Gi , the survival
function of the unbiased data is Si (·), the support for unbiased and length-biased data
is [0, τi ], and Ai j obeys uniform distribution on [0, κi ], where κi ≥ τi . However, we
can only compare their quantile residual lifetimes in [0, ρ], where ρ = min(τ1, τ2).
Suppose n1/(n1 + n2) → q, where 0 < q < 1 is a constant. Let θi,α(t) be the
αth quantile residual lifetime at time t , the corresponding estimator is θ̂

(ni )
i,α (t). We

have gi (x) = x fi (x)/μi , μi = ∫ τi
0 t fi (t)dt , 0 < x < τi . The estimates of the

length-biased distribution and unbiased survival function are Ĝi,ni (·) and Ŝi,ni (·), and
F̂i,ni (·) = 1 − Ŝi,ni (·), i = 1, 2. The estimate quantile residual lifetimes θ̂

(ni )
i,α (t) are

the solutions to the equations

M̂i,ni (θi,α(t)) = Ŝi,ni (t + θi,α(t)) − α Ŝi,ni (t) = 0, i = 1, 2. (6)
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3.1 Ratio of quantile residual lifetimes

First we consider the ratio of the quantile residual lifetimes. Recall in the one sample
case, the quantile residual lifetime θα(t) satisfies the equation

S(t + θα(t)) = αS(t).

Thus

θα(t) = S−1(αS(t)) − t,

where S−1(q) = inf{t ≥ 0 : S(t) < q}. Consequently, the ratio of the two quantile
lifetimes τα(t) is

τα(t) = S−1
1 (αS1(t)) − t

S−1
2 (αS2(t)) − t

.

Where S−1
i (q) = inf{t ≥ 0 : Si (t) < q}, i = 1, 2. This can be rewritten as

τα(t) = 1 − S−1
1 (αS1(t)) − S−1

2 (αS2(t))

t − S−1
2 (αS2(t))

. (7)

Hence, a consistent estimator of τα(t) is

τ̂α(t) = 1 − Ŝ−1
1,n1

(α Ŝ1,n1(t)) − S−1
2,n2

(α Ŝ2,n2(t))

t − Ŝ−1
2,n2

(α Ŝ2,n2(t))
. (8)

where Ŝ−1
i,ni

(q) = inf{t ≥ 0 : Si,ni (t) < q}, i = 1, 2. To state the asymptotic

distributional results for τ̂α(t), we first introduce some notations. Let L i
y (x) =

[I[y,∞)(x) − Si (y)]/x . Define

r1,i (y, z) = μ2
i

∫ τi

0

∫ τi

0
ψi (s, t)dL i

y+θi,α(y)(t)dL
i
z+θi,α(z)(s)

− μ2
i α

∫ τi

0

∫ τi

0
ψi (s, t)dL i

y+θi,α(y)(t)dL
i
z (s)

− μ2
i α

∫ τi

0

∫ τi

0
ψi (s, t)dL i

y (t)dL i
z+θi,α(z)(s)

+ μ2
i α

2
∫ τi

0

∫ τi

0
ψi (s, t)dL i

y (t)dL i
z (s),

where ψi (s, t) = cov(Ui (t), Ui (s)), i = 1, 2.
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Theorem 3 Under the conditions in Theorem 2, we have

√
n1 + n2(τ̂α(t) − τα(t))
D−→ μ1√

q f1(t + θ1,α(t))θ1,α(t)

∫ τ1

0

[
L 1

t+θ1,α(t)(x) − αL 1
t (x)

]
dU1(x)

− μ2θ1,α(t)√
1 − q f2(t + θ2,α(t))[θ2,α(t)]2

∫ τ2

0

[
L 2

t+θ2,α(t)(x) − αL 2
t (x)

]
dU2(x),

where U1(x) and U2(x) are independent Gaussian processes, defined the same way
as Eq. (11) in the Appendix. And the covariance function of the right hand is

1

qθ1,α(y) f1(y + θ1,α(y))
r1,1(y, z)

1

θ1,α(z) f1(z + θ1,α(z))

+ θ1,α(y)

(1 − q)[θ2,α(y)]2 f2(y + θ2,α(y))
r1,2(y, z)

θ1,α(z)

[θ2,α(z)]2 f2(z + θ2,α(z))
.

The proof of this theorem is given in the Appendix.

3.2 Difference of quantile residual lifetimes

Let dα(t) = θ1,α(t)−θ2,α(t) be the difference between two quantile residual lifetimes.
We have

dα(t) = S−1
1 (αS1(t)) − S−1

2 (αS2(t)).

A natural estimator of dα(t) is

d̂α(t) = Ŝ−1
1,n1

(α Ŝ1,n1(t)) − Ŝ−1
2,n2

(α Ŝ2,n2(t)). (9)

We can also derive the asymptotic consistency and normality properties for this
estimator.

Theorem 4 Under the same assumptions as in Theorem 2, for given t and α, we have

√
n1 + n2(d̂α(t) − dα(t))
D−→ μ1√

q f1(t + θ1,α(t))

∫ τ1

0

[
L 1

t+θ1,α(t)(x) − αL 1
t (x)

]
dU1(x)

− μ2√
1 − q f2(t + θ2,α(t))

∫ τ2

0

[
L 2

t+θ2,α(t)(x) − αL 2
t (x)

]
dU2(x),

where U1(x) and U2(x) are independent Gaussian processes, defined the same way
as Eq. (11) in the Appendix. And the covariance function of the right hand is
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1

q f1(y + θ1,α(y))
r1,1(y, z)

1

f1(z + θ1,α(z))

+ 1

(1 − q) f2(y + θ2,α(y))
r1,2(y, z)

1

f2(z + θ2,α(z))
.

We defer the proof to the Appendix. The above theorems can be used to construct the
confidence intervals for the ratio and difference.

4 Simulation studies

In this section,we conduct simulation studies to evaluate thefinite-sample performance
of the proposed estimator, and also compare the performance of our methods based
on the ratio and difference of quantile residual lifetimes for two-sample problems.
We generate right-censored length-biased data in a way similar to that in Shen et al.
(2009). First we generate the independent pairs ( Ã, T̃ ), where T̃ obeys the truncated
standard exponential distribution from 0 to 5 (unbiased data), and Ã is generated from
the uniform distribution U (0, a) (a ≥ 5), we choose different a to obtain different
truncation probabilities. Then, we select n pairs that conform the condition T̃ ≥ Ã.
The resulting T̃i s are the length-biased samples, and we denote it as T = A + V . The
censoring variable C ∼ U (0, W ), where W is used to control censoring rate. So the
censoring indicator is I (Ai + Vi ≤ Ai + Ci ), where Ai + Ci is the total censoring
time.

In the simulation, we set sample size n = 100 and repeat 500 times to obtain
independent estimates, then the mean of the 500 estimates is used in the evaluation. To
calculate the standard deviation (SD), we use the bootstrap with bootstrap sample size
B = 100. When we estimate the quantile residual lifetime, we compute θ̂

(n)
α (t) each

time at a fixed timepoint t with quantilesα ranging from0.3 to 0.9with step 0.1.Table 1
displays the simulation results under different truncation and censoring probabilities.
TheSEandCov represent the standard error of the estimator and the empirical coverage
probability with the nominal level 95%, respectively. The simulation results in Table 1
show the proposed method works well. To be specific, the bias is small and reasonably
distributed around zero. In each case, SE and SD is very close.When the time point t is
fixed, the SD and SE decrease as quantile level α increase. Furthermore, the empirical
coverage probabilities are all close to the nominal coverage probability 95%. For fixed
t and α, when we fix the censoring rate, it seems that lower truncation probability will
lead to lower SD and SE as we expect.

To verify that ignoring length bias will cause problem, we conduct the second
simulation. The results are shown in Table 2. In this table, we ignore length bias and
treat the observed sample as standard right-censored data, then the popular Kaplan–
Meier estimator is employed to estimate the survival function, that is, in Eq. (3), we
set Ŝn(t) as Kaplan–Meier estimator, the resulting estimator of θα(t) is denoted as
θ̃

(n)
α (t). We can see that θ̃

(n)
α (t) are all much larger than the true value θα(t), which

means that ignoring length bias will lead to overestimation of the parameter, while the
proposed estimates θ̂

(n)
α (t) are still close to θα(t), i.e., unbiased. The results indicate

that if we ignore length bias, the estimator will be biased. In practical situation such
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Table 2 Simulation results when length bias is ignored

t α θα(t) Kaplan–Meier Length bias

θ̃
(n)
α (t) Bias SE θ̂

(n)
α (t) Bias SE

1.2 0.3 1.153 1.679 0.526 0.216 1.158 0.005 0.162

0.4 0.883 1.345 0.462 0.198 0.892 0.009 0.141

0.5 0.671 1.051 0.380 0.173 0.676 0.005 0.122

0.6 0.496 0.805 0.309 0.157 0.505 0.009 0.111

0.7 0.347 0.589 0.242 0.132 0.354 0.007 0.092

0.8 0.218 0.380 0.162 0.104 0.228 0.010 0.075

0.9 0.103 0.192 0.089 0.074 0.110 0.007 0.052

2.5 0.3 1.029 1.207 0.178 0.244 1.019 −0.010 0.212

0.4 0.800 0.962 0.162 0.209 0.805 0.005 0.189

0.5 0.614 0.754 0.140 0.187 0.622 0.008 0.170

0.6 0.458 0.580 0.122 0.169 0.476 0.018 0.146

0.7 0.322 0.428 0.106 0.139 0.343 0.021 0.126

0.8 0.202 0.281 0.079 0.115 0.230 0.028 0.109

0.9 0.096 0.148 0.052 0.087 0.122 0.026 0.079

Quantiles for a fix point when length bias is ignored.‘θ̃ (n)
α (t)’ means the estimate calculated from KM

estimator treating observed sample as normal right-censored data. bias estimate-true value, SE standard
error

as clinical studies, this will lead to overoptimistic about a bad disease and may cause
serious consequences.

To examine the performance of the proposed two-sample statistics, we perform the
third simulation. The first sample is generated same as in Table 1, T̃1 ∼ TEXP(0, 5),
Ã1 ∼ U (0, 5), C1 ∼ U (0, W1), with different censoring rate 0, 19, 48 %. In the
second sample, we generate unbiased data T̃2 from truncated Weibull distribution
with scale parameter 1 and shape parameter 0.5, the support is (0, 5]. We generate
Ã2 ∼ U (0, 5), C2 ∼ U (0, W2), and choose different censoring rates 0, 0 and 48 %.
We compare the quantile residual lifetime at the same fixed point t and the same
quantile α. The simulation results are reported in Table 3. From Table 3, we can see
that the bias for the ratio statistic is larger than for the difference statistic. For example,
when t = 1.62, for α = 0.5, . . . , 0.9, the biases for ratio are larger than 0.2, even
reach 0.3 when α = 0.6, while the biases for difference are smaller than 0.1. Also, the
confidence interval of ratio can contain negative values, see Table 3. We found that it
only happens in two situations: t is large or α is large. When t is large, the calculation
is limited in the right tail of the distribution. When α is large, Ŝn(t) and Ŝn(t + θ̂

(n)
α (t))

are too close to be distinguished in Eq. (3). In both situations, the sample is rare
and this leads to large standard deviation. However, to avoid negative value, we can
use the similar method in Peng and Fine (2007). We redefine the confidence interval
as [max{0, Lα(t)},min{Uα(t), ρ}], where [Lα(t), Uα(t)] is the original confidence
interval and ρ = τ1 ∧ τ2.

In the following, we will study the size and power of the proposed two tests. Jeong
(2014) proposed a two-sample test statistic for difference of two QRL estimators and
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Table 3 Two-sample case

t α Difference Ratio

dα(t) Bias CI for dα(t) τα(t) Bias CI for τα(t)

1.2 0.3 0.682 −0.004 (0.093, 1.271) 1.592 0.003 (1.036, 2.148)

0.4 0.541 0.004 (−0.007, 1.090) 1.613 0.009 (0.947, 2.279)

0.5 0.413 −0.005 (−0.114, 0.939) 1.615 −0.008 (0.815, 2.416)

0.6 0.301 0.011 (−0.183, 0.785) 1.607 0.017 (0.647, 2.566)

0.7 0.205 0.013 (−0.207, 0.618) 1.591 0.027 (0.417, 2.766)

0.8 0.124 0.010 (−0.198, 0.447) 1.571 0.026 (0.100, 3.042)

0.9 0.056 0.012 (−0.179, 0.292) 1.548 0.080 (−0.726, 3.823)

1.62 0.3 0.638 −0.058 (0.096, 1.179) 1.566 −0.075 (0.706, 2.426)

0.4 0.529 0.056 (−0.005, 1.062) 1.610 0.116 (0.668, 2.552)

0.5 0.419 0.095 (−0.065, 0.903) 1.635 0.266 (0.709, 2.561)

0.6 0.316 0.079 (−0.126, 0.758) 1.646 0.312 (0.654, 2.638)

0.7 0.222 0.052 (−0.179, 0.623) 1.649 0.285 (0.402, 2.897)

0.8 0.139 0.039 (−0.204, 0.482) 1.647 0.276 (−0.041, 3.334)

0.9 0.065 0.023 (−0.199, 0.329) 1.640 0.267 (−0.935, 4.215)

2.5 0.3 0.436 −0.020 (−0.293, 1.165) 1.424 −0.023 (0.437, 2.410)

0.4 0.391 −0.016 (−0.290, 1.072) 1.489 −0.036 (0.297, 2.680)

0.5 0.330 −0.022 (−0.301, 0.961) 1.537 −0.070 (0.138, 2.937)

0.6 0.263 −0.018 (−0.275, 0.801) 1.575 −0.093 (−0.013, 3.163)

0.7 0.194 −0.016 (−0.280, 0.668) 1.604 −0.129 (−0.344, 3.551)

0.8 0.127 −0.011 (−0.247, 0.501) 1.626 −0.164 (−0.987, 4.239)

0.9 0.062 −0.010 (−0.202, 0.326) 1.643 −0.287 (−2.411, 5.697)

Simulation results in comparing two residual lifetime distributions by difference and ratio, respectively.
‘dα(t)’ stands for the true value of the difference of two quantile residual lifetimes. ‘d̂α(t)’ stands for the
its estimate. ‘bias’ stands for the bias of the estimator, ‘CI for dα(t)’ stands for the 95 % confidence interval
for dα(t). The same meaning for ‘τα(t)’, ‘τ̂α(t)’ and ‘CI for τα(t)’

showed that the limiting distribution follows a standard normal distribution. Jeong et
al. (2008) proposed an inference procedure based on ratio of the median residual life
and proved that the limiting distribution is a χ2 distribution with degree of freedom
1. Unfortunately, we cannot directly use their results because the limiting distribution
for the QRL under right-censored length-biased data is complicated and the variance
does not have a closed form. Instead, we will use a simple bootstrap procedure to study
the size and power of the proposed two tests, the detail of the procedure is as follows:

Step 1 Assume that we observe the sample (X1, . . . , Xm) and (Y1, . . . , Yn), and the
test statistic is T (X1, X2, . . . , Xm; Y1, Y2, . . . , Yn). Mixed the two samples.

Step 2 Generate a random sample (bootstrap) with sample size (n + m) from
the mixed sample in Step 1, denote the bootstrapped sample as (Z∗

1 , . . . ,

Z∗
m; Z∗

m+1, . . . , Z∗
m+n), split the sample into two parts (Z∗

1 , . . . , Z∗
m) and

(Z∗
m+1, . . . , Z∗

m+n). (In our simulation we just set the first m sample as
Z∗
1 , . . . , Z∗

m .)
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Table 4 Size for the two tests

α

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Difference A 0.046 0.040 0.032 0.040 0.038 0.058 0.042

B 0.062 0.056 0.046 0.044 0.042 0.036 0.044

C 0.052 0.042 0.050 0.048 0.046 0.036 0.032

D 0.046 0.050 0.042 0.052 0.050 0.050 0.050

Ratio A 0.056 0.042 0.042 0.034 0.038 0.052 0.042

B 0.060 0.064 0.050 0.042 0.038 0.030 0.036

C 0.050 0.042 0.038 0.040 0.048 0.034 0.024

D 0.038 0.044 0.030 0.034 0.032 0.038 0.038

A: n1 = 100, n2 = 100, t = 1.62, censoring rate 19 %. B: n1 = 50, n2 = 100, t = 1.62, censoring rate
19 %. C: n1 = 100, n2 = 100, t = 2.5, censoring rate 48 %. D: n1 = 50, n2 = 100, t = 2.5, censoring
rate 48 %

Step 3 Calculate the statistic: T ∗ = T (Z∗
1 , . . . , Z∗

m; Z∗
m+1, . . . , Z∗

m+n).
Step 4 Repeat Steps 2 and 3 for B times to obtain T ∗

j , j = 1, . . . , B.
Step 5 Given the observed test statistic T (X1, X2, . . . , Xm; Y1, Y2, . . . , Yn), reject or

accept the null hypothesis based on the distribution of T ∗
j , j = 1, . . . , B.

We calculated the size of the two tests under 19 and 48% censoring rate with failure
time distribution following the truncated standard exponential distribution from 0 to
5. And we consider two circumstances: the first one with n1 = 100, n2 = 100 and the
second with n1 = 50, n2 = 100. The same as Table 1, we set t = 1.62 under 19 %
censoring rate, t = 2.5 under 48 % censoring rate, and the quantiles equal 0.3–0.9
with step size 0.1. The sizes are shown in Table 4. From the table, we can see that
under all the circumstances, the sizes are very close to the nominal level 0.05; this
means that the proposed two test procedures are all valid.

To study the power, we consider the local alternative, in our simulation, we consider
the test problem as

H0: The failure distribution follows a truncated standard exponential distribution
from 0 to 5.
H1: The distribution for the second sample follows a truncated exponential distri-
bution from 0 to 5, with the mean of the distribution 1/λ = 1/(1 + C/

√
n2).

We select four points in Table 4 to plot the power curve, the results are shown in
Fig. 1. From the figure, we can see that the ratio inference procedure is more sensitive
than the difference, though the confidence interval may contains negative value for
ratio way sometimes as we discussed before. One of the referees suggests that the ratio
differences are often preferred than the absolute differences in practical settings; our
results for the power support this viewpoint.
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Fig. 1 The power curve for difference and ratio inference procedure

5 Real data examples

In this section, we illustrate the proposed method on two datasets: the Oscard Award
data and the Channing House data.

5.1 The Oscars Award data

TheOscarsAward datawere analyzed byRedelmeier and Singh (2001), Sylvestre et al.
(2006) andHan et al. (2011). Their analyses suggest that the AcademyAward-winning
actors and actresses live longer than the less successful performers. Redelmeier and
Singh (2001) considered an interesting question whether winning an Oscar Award
(Academy Award) would cause the actors’/actress’ expected lifetime to increase
among Hollywood actors and actresses. They stated that life expectancy was 3.9 years
longer for Oscar Award winners than for other less recognized performers (those
only nominated without further received Oscar Award) and that this difference corre-
sponded to a 28 % mortality rate reduction for winners compared to less recognized
performers. Sylvestre et al. (2006) pointed out that this analysis suffers from immortal
time bias, that is, performers who live longer have more opportunities to win Oscar
Awards. They improved the methods of Redelmeier and Singh (2001) by eliminat-
ing immortal time bias and stated that winning an Oscar Award had a positive effect
on lifetime, but the estimated effect was not significant. However, a more reasonable
method is to consider this Academy Award dataset as length-biased data because of
immortal time bias (Wolkewitz et al. 2010).
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Table 5 Analysis results of Oscars Award data

t θ̂
(n)
0.05(t) θ̂

(n)
0.25(t) θ̂

(n)
0.5 (t) θ̂

(n)
0.75(t) θ̂

(n)
0.95(t)

25 67 (66, 68) 54 (52, 57) 35 (33, 37) 22 (20, 24) 7 (4, 9)

30 63 (61, 63) 50 (47, 52) 31 (30, 32) 19 (17, 21) 6 (4, 8)

35 58 (56, 59) 46 (43, 47) 27 (26, 29) 16 (14, 18) 4 (3, 6)

40 53 (51, 54) 42 (40, 43) 24 (22, 25) 14 (12, 15) 3 (3, 5)

45 48 (46, 49) 38 (37, 39) 20 (18, 22) 11 (10, 12) 2 (1, 4)

50 43 (42, 44) 34 (33, 36) 17 (16, 19) 9 (8, 11) 3 (2, 3)

55 39 (37, 39) 31 (29, 32) 20 (15, 22) 8 (7, 9) 2 (2, 3)

60 34 (33, 36) 27 (26, 28) 20 (17, 21) 6 (6, 7) 2 (1, 2)

63 31 (30, 33) 24 (24, 25) 19 (17, 20) 6 (5, 11) 1(1, 2)

65 29 (28, 33) 23 (22, 24) 18 (16, 19) 10 (5, 12) 1 (1, 2)

Calculated quantile residual lifetime for the nominees of Oscars Award data under quantiles 0.05, 0.25, 0.5,
0.75 and 0.95. ‘t’ stands for a pre-specified ‘t’ years to which those nominees survived. The pair numbers
in the square brackets stands for the calculated 95 % confidence interval for each quantile residual lifetimes
(in year)

This dataset contains 766 nominees from 1929 to 2000 (72 years), among the 766
nominees, only 238 win the award. The survival time is the time span from the date
of birth to death. The censoring rate is about 57.3 %. The time span from the date of
birth to nomination is the truncation time denoted by A; length bias occurs because
the actors must live long enough to get a nomination (Wolkewitz et al. 2010). Those
live longer have more opportunities to win the awards. First we calculate the quantile
residual lifetime by the proposed method; the results are given in Table 5.

Table 5 shows that for a fixed year t , the quantile residual lifetime θ̂
(n)
α (t) decreases

as α increases. And for the same α, as t increases, θ̂ (n)
α (t) decreases. Bandos (2007)

shows that theoretically t + θα(t) is always non-decreasing; in this table, we can see
that t+θ̂

(n)
α (t) is also increasing as t increases. As expected, these results are consistent

with the usual results based on survival analysis.
It is widely recognized that being nominated for anAcademyAward is due to talent,

however, winning one is due to luck (Redelmeier and Singh 2001). As a result, the
following analysis is based on the assumption that winner of each award is selected
randomly from nominees (Han et al. 2011). In the next, we will compare the quantile
residual lifetime between two groups: one is the group of nonwinning nominees, the
other is the group of winners. We use difference and ratio tests developed in Sect. 3,
and the results are shown in Table 6.

In Table 6, we denote those awarded as the first sample and nonwinning nominees
as the second sample, with sample sizes n1 = 238 and n2 = 528, respectively. We can
see that in most situations, the winners survive longer than nonwinning nominees, but
the result is not significant; our result is consistent with those obtained by Sylvestre
et al. (2006) and Han et al. (2011). The conclusion of insignificant difference is based
on the fact that all confidence intervals for difference include zero and all confidence
intervals for ratio include 1.
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Table 6 Comparing winners and nominees in the Oscar Award data

t α Difference Ratio

d̂α(t) CI for d̂α(t) SD1 τα(t) CI for τ̂α(t) SD2

35 0.05 2 (−3.312, 7.312) 2.710 1.035 (0.945, 1.125) 0.046

0.25 3 (−0.679, 6.679) 1.877 1.064 (0.990, 1.138) 0.038

0.50 5 (−4.155, 14.155) 4.671 1.200 (0.843, 1.557) 0.182

0.75 5 (−1.450, 11.450) 3.291 1.357 (0.943, 1.771) 0.211

40 0.05 2 (−3.974, 7.974) 3.048 1.039 (0.927, 1.151) 0.057

0.25 3 (−0.648, 6.648) 1.861 1.071 (0.987, 1.155) 0.043

0.50 −2 (−14.813, 10.813) 6.537 0.929 (0.455, 1.403) 0.242

0.75 3 (−2.204, 8.204) 2.655 1.250 (0.852, 1.648) 0.203

45 0.05 1 (−5.058, 7.058) 3.091 1.021 (0.898, 1.144) 0.063

0.25 3 (−0.644, 6.644) 1.859 1.079 (0.985, 1.173) 0.048

0.50 2 (−9.995, 13.995) 6.120 1.074 (0.653, 1.495) 0.215

0.75 3 (−2.845, 8.845) 2.982 1.300 (0.796, 1.804) 0.257

50 0.05 1 (−5.000, 7.000) 3.061 1.023 (0.886, 1.160) 0.070

0.25 1 (−2.610, 4.610) 1.842 1.029 (0.925, 1.133) 0.053

0.50 1 (−8.484, 10.484) 4.839 1.039 (0.686, 1.392) 0.180

0.75 2 (−4.721, 8.721) 3.429 1.222 (0.577, 1.867) 0.683

55 0.05 1 (−5.876, 7.876) 3.508 1.026 (0.848, 1.204) 0.091

0.25 0 (−3.552, 3.552) 1.812 1.000 (0.888, 1.112) 0.057

0.50 1 (−5.515, 7.515) 3.324 1.042 (0.777, 1.307) 0.135

0.75 0 (−9.853, 9.853) 5.027 1.000 (−0.096, 2.096) 0.559

60 0.05 0 (−9.968, 6.968) 3.555 1.000 (0.794, 1.206) 0.105

0.25 −1 (−4.695, 2.695) 1.885 0.964 (0.829, 1.099) 0.069

0.50 1 (−3.336, 5.336) 2.212 1.046 (0.817, 1.275) 0.117

0.75 −5 (−18.710, 8.710) 6.995 0.667 (−0.693, 2.027) 0.694

65 0.05 2 (−7.008, 11.008) 4.596 1.069 (0.773, 1.365) 0.151

0.25 0 (−6.198, 6.198) 3.162 1.000 (0.731, 1.269) 0.137

0.50 3 (−0.904, 6.904) 1.992 1.177 (0.959, 1.395) 0.111

0.75 3 (−3.991, 9.991) 3.567 1.273 (0.736, 1.810) 0.274

Two-sample comparison between winners and nonwinning nominees in the Oscar Awards data. ‘d̂α(t)’ and
‘τ̂α(t)’ stand for the estimated difference and ratio of the two quantile residual lifetimes, respectively. ‘CI
for d̂α(t)’ stands for the 95 % confidence interval for d̂α(t). ‘SD1’ stands for standard deviation of d̂α(t).
The same meaning for ‘CI for τ̂α(t)’ and ‘SD2’

5.2 The Channing house data

The second dataset is the well-known Channing House Data (Hyde 1980). The goal of
this study is to assess the impact of the Channing House medical program on survival.
This dataset contains 462 individuals, including 97 men and 365 women. Channing
House is a retirement center located in Palo Alto, California. The study began at the
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Table 7 Analysis results of Channing House Data

t θ̂
(n)
0.05(t) θ̂

(n)
0.25(t) θ̂

(n)
0.5 (t) θ̂

(n)
0.75(t) θ̂

(n)
0.95(t)

850 322 (289, 350) 230 (215, 238) 170 (162, 179) 94 (84, 102) 41 (23, 45)

900 272 (234, 300) 185 (171, 194) 131 (123, 141) 55 (48, 61) 14 (11, 26)

950 242 (197, 250) 147 (135, 164) 104 (93, 112) 63 (46, 70) 7 (5, 13)

1000 200 (172, 207) 114 (93, 132) 70 (57, 83) 37 (30, 44) 11 (8, 14)

1050 150 (122, 157) 89 (65, 103) 44 (35, 65) 21 (14, 33) 5 (3, 9)

1100 107 (92, 107) 86 (47, 100) 39 (28, 53) 18 (7, 31) 5 (2, 7)

1150 57 (42, 57) 50 (22, 57) 42 (22, 50) 22 (2, 50) 2 (2, 36)

Calculated quantile residual lifetime for Channing House Data under quantiles 0.05, 0.25, 0.5, 0.75 and
0.95. ‘t’ stands for a pre-specified ‘t’ months to which those nominees survived. The pair numbers in
the square brackets stand for the calculated 95 % confidence intervals for each quantile residual lifetime
(months)

opening of house in 1965 and ended on July 1, 1975. The residents are being recruited
and then they lived in the Channing House until the study ends or death, those being
recruited are charged a fixed fee every month; the fee covers any medical care they
require, except for physical therapy. Those died before 1965 cannot be recruited, thus
they are left truncated. Further study indicates that if we select those whose entry age
is larger than 786 months (totally 448 individuals, including 94 men and 354 women),
then the sub-sample is a length-biased datum (Chen and Zhou 2012).

In this dataset, the current lifetime is from birth to recruitment, and the residual
lifetime is from recruitment to death. A large number of participants remain alive at
the end of the study so they are right censored. The censoring rate is about 61.9 %.We
calculate the quantile residual lifetime using the proposed method, and the results are
in Table 7. In this table, we use month as the measurement unit. Just like the results
in Table 5, for a fixed t , the residual lifetime θ̂

(n)
α (t) decreases with the increase of α.

In addition, for the same α, as t increases, θ̂ (n)
α (t) decreases but the expected survival

time increases. This is probably due to the reason that those living longer are with
higher status, actually, a large number of the residents are retired professors or their
spouses, and this is a group with lower mortality (Hyde 1980).

We use the difference and ratio tests developed in Sect. 3 to studywhether there exist
differences in residual lifetime between men and women, with sample sizes n1 = 94
and n2 = 354, respectively. The results are summarized in Table 8. From Table 8,
we find that in early age (t = 900, 950), men will have chance to survive longer than
women. However, when t ≥ 1050, women survive much longer than men. Most of
the results are not significant, this is consistent with former results such as Chen and
Zhou (2012).

6 Concluding remarks

We proposed a nonparametric estimator of the quantile residual lifetime with right-
censored length-biased data and studied its asymptotic properties. We also applied
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Table 8 Comparing men and women in the Channing House data

t α Difference Ratio

d̂α(t) CI for d̂α(t) SD1 τ̂α(t) CI for τ̂α(t) SD2

900 0.05 −47 (−118.434, 24.434) 36.446 0.836 (0.562, 1.110) 0.140

0.25 17 (−43.905, 77.905) 31.074 1.101 (0.766, 1.436) 0.171

0.50 11 (−49.883, 71.883) 31.063 1.117 (0.535, 1.699) 0.297

0.75 5 (−34.225, 44.225) 20.013 1.093 (0.421, 1.765) 0.343

950 0.05 −39 (−101.679, 23.679) 31.979 0.839 (0.553, 1.125) 0.146

0.25 9 (−55.688, 73.688) 33.004 1.067 (0.671, 1.463) 0.202

0.50 34 (−31.491, 99.491) 33.414 1.567 (0.775, 2.359) 0.404

0.75 −1 (−45.533, 43.533) 22.721 0.971 (−0.336, 2.278) 0.667

1000 0.05 −47 (−99.514, 5.514) 26.793 0.765 (0.430, 1.100) 0.171

0.25 −4 (−69.501, 61.501) 33.419 0.967 (0.418, 1.516) 0.280

0.50 7 (−49.713, 63.713) 28.935 1.096 (0.373, 1.819) 0.369

0.75 9 (−51.147, 69.147) 30.687 1.257 (−0.254, 2.768) 0.771

1050 0.05 −17 (−69.689, 35.689) 26.882 0.687 (0.191, 1.183) 0.253

0.25 −24 (−99.776, 51.776) 38.661 0.765 (−0.109, 1.639) 0.446

0.50 −11 (−66.343, 44.343) 28.236 0.800 (−0.398, 1.998) 0.611

0.75 0 (−42.154, 42.154) 21.507 1.000 (−0.833, 2.833) 0.935

1100 0.05 −54 (−101.060, −6.940) 24.01 0.495 (−0.375, 1.365) 0.444

0.25 −53 (−111.888, 5.888) 30.045 0.424 (−0.879, 1.727) 0.665

0.50 −19 (−81.312, 43.312) 31.792 0.596 (−1.340, 2.532) 0.988

0.75 −12 (−59.203, 35.203) 24.083 0.368 (−5.872, 6.609) 3.184

Two-sample comparison between men and women in the Channing House data. ‘d̂α(t)’ and ‘τ̂α(t)’ stand
for the estimated difference and ratio of the two quantile residual lifetimes, respectively. ‘CI for d̂α(t)’
stands for the 95 % confidence interval for d̂α(t). ‘SD1’ stands for standard deviation of d̂α(t). The same
meaning for ‘CI for τ̂α(t)’ and ‘SD2’

the proposed estimator to two-sample comparison problems. Our simulation studies
indicate that the proposed estimator has good performance in finite-sample situations.

There are several problems that can be considered. The proposed estimator is based
on seeking the zero solution to (3). Since the nonparametric estimator is not smooth, the
numerical solutions to this equation may not be stable with small to moderate sample
sizes. A possible remedy is to first smooth the nonparametric estimator Ŝn(·) using the
kernelmethod and uses the smoothed estimator to substitute Ŝn(t) in (3). Another inter-
esting question in the two-sample comparison problems with right-censored length-
biased data is to consider a semiparametricmodel for the underlying population hazard
functions. Then, we can derive a score test statistic for testing whether the quantiles
of the residual lifetime distributions are equal.

The phenomenon of high status low mortality is commonly encountered in many
fields see for example, Smith et al. (1992), Syme and Balfour (1997) and Marmot
(2004), among others. In the original data of Oscars Award, data on non-nominees
are also collected with a matching procedure to receive a further ‘control group’, it
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QRL with right-censored and length-biased data 1017

is beyond the scope to analyze these data by the proposed method. In the future, we
intend to mine additional information contained in the Oscar Awards data.

The class of decreasing percentile residual life is denote asDPRL, a randomvariable
T̃ is said to have DPRL(α) if θα(t) is decreasing in t . Recently, Franco-Pereira et al.
(2012) and Franco-Pereira and de Uña-Álvarez (2013) considered the properties of
the class DPRL(α) and estimated the problem under this monotone restriction in
the presence of censoring. The simulation results suggest that under right censoring,
using the auxiliary information will lead to a more efficient estimator. By examining
the results in Tables 5 and 7, it appears reasonable to assume that they belong to
the DPRL(α) class. We can also use this information to construct a more efficient
estimator. We hope to study this problem in the future.

7 Appendix

In proving our results, we require several lemmas and assumptions. Let ψ < τ denote
an arbitrary positive number that is close to τ . We require the following assumptions.

Assumption 1 F(·) and G(·) are absolute continuous distribution functions.

Assumption 2 The operator F−1 is Lipschitz continuous.

Assumption 3 For 0 < t < τ , g(t) > 0, f (t) > 0, in addition, g(t) and f (t) are
continuous in [γ,ψ].

Assumption 4
{

2τ∫ τ
0 Sc(u)du

− 1
}

{1− Sc(τ )} < 1, where Sc(·) is the survival function
of the residual censoring time C .

Assumption 5 Suppose there exists some γ > 0 such that S(t) = 1 for t < γ and
μ = ∫ τ

0 u f (u)du < ∞.

Assumption 1 is a common condition to facilitate mathematical calculation when
integration and differentiation are involved. Assumption 2 is an unpleasant technical
condition. It would be interesting to weaken this condition. Assumption 3 is a reg-
ular condition to assure the consistency of the estimator. Assumption 4 essentially
requires that the support of censoring distribution contains the support of the failure
time distribution. Assumption 5 is a standard condition in studying the nonparametric
estimation with length-biased and right-censored data, see for example, Asgharian et
al. (2002).

Let

G∗(t) = P(A + R ≤ t |δ = 1),

F∗(t) = P(A + C ≤ t |δ = 0),

p = P(δ = 1) = P(R ≤ C).
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1018 P. Liu et al.

Let f ∗ and g∗ be the density function of F∗(·) and G∗(·), that is, f ∗(t) =
(d/dt)F∗(t), g∗(t) = (d/dt)G∗(t). Define the linear operator F

F(u)(t) = p
∫ t

0

g∗(x)

g(x)
du(x)

+ (1 − p)

∫ t

0
y

(∫
y≤z<∞

u(z)

z2
dz

)
d

{(
h(t)

h(y)
−1

)
f ∗(y)

h(y)

}
, (10)

where h(t) = ∫ τ

t z−1dG(z). Let m =
n∑

i=1
I (Ri ≤ Ci ) =

n∑
i=1

δi , k = n − m. Define

W (1)
m (t) = √

m

(
1

m

n∑
i=1

I (Ti ≤ t, δi = 1) − G∗(t)
)

,

W (2)
k (t) = √

k

(
1

k

n∑
i=1

I (Ti ≤ t, δi = 0) − F∗(t)
)

.

And

Vm,k(t) = p1/2W (1)
m (t) + (1 − p)1/2h(t)

∫
0<z≤t

W (2)
k (z)d

1

h(z)

+
(

p

1 − p

)
{G∗(t) − G(t)}√n( p̂ − p).

V (t) = p1/2B1(G
∗(t)) + (1 − p)1/2h(t)

∫
0<z≤t

B2(F∗(z))d 1

h(z)

+
(

p

1 − p

)
{G∗(t) − G(t)}Z

is the limiting process of Vm,k(t), where B1 and B2 are independent Browian bridge
processes, independent of Z ∼ N (0, 1). Furthermore, we define the process U as

U (·) = F−1(V )(·). (11)

Before prove the theorem, we present several lemmas.

Lemma 1 We have the following expansion

Ĝn(t) − G(t) = F−1
(

Vm,k(t)√
n

)
+ op(n

−1/2). (12)

Proof It is straightforward result of Asgharian and Wolfson (2005). 
�
We also need the following lemma, which is Lemma 2.17 in Pakes and Pollard

(1989).
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QRL with right-censored and length-biased data 1019

Lemma 2 If { f (·, θ) : θ ∈ �} is a Euclidean class with envelop F for which∫
F2dP < ∞, and if the parameterization is L 2(P) continuous at θ0, define

νn = √
n(Pn − P) as the empirical process, then, for each sequence of positive

numbers {δn} converging to zero,

sup
‖θ−θ0‖<δn

|νn f (·, θ) − νn f (·, θ0)| = op(1).

Proof Please see Lemma 2.17 in Pakes and Pollard (1989, pp. 1036). 
�
The lemma below is a variation of the Theorem 1 in Asgharian et al. (2002).

Lemma 3 Suppose Assumptions 4 and 5 hold. Define:

Ly(x) = I[y,∞)(x) − S(y)

x
.

Then

(1)

sup
γ≤t≤τ

|Ŝn(t) − S(t)| a.s.−−→ 0 as n → ∞.

(2)

√
n

{
Ŝn(t) − S(t)

}
D−→ μ

∫ τ

0
Lt (x)dU (x),

where U (·) is defined in Eq. (11) in the Appendix, γ ≤ t ≤ ψ , and the process on the
right side has covariance function:

rS(y, z) = μ2
∫ τ

0

∫ τ

0
ψ(s, t)dLy(t)dLz(s)

and

ψ(s, t) = cov(U (s), U (t)).

Proof Please see Theorem 1 in Asgharian et al. (2002, pp. 203). 
�
Lemma 4 Under Assumptions 1–4, for any θ̂α(t) satisfies |θ̂α(t) − θα(t)| ≤ δn,
where {δn} is a sequence of positive numbers that approaches to zero, define Gn(·) =√

n[Ĝn(·) − G(·)], Sn(·) = √
n[Ŝn(·) − S(·)], then

sup
t

sup
|θ̂α(t)−θα(t)|≤δn

|Gn(t + θ̂α(t)) − Gn(t + θα(t))| = op(1),
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for any 0 ≤ t < t +θα(t) ≤ ψ < τ . And under Assumption 5, the following expression
also holds

sup
t

sup
|θ̂α(t)−θα(t)|≤δn

|Sn(t + θ̂α(t)) − Sn(t + θα(t))| = op(1),

for γ ≤ t < t +θα(t) ≤ ψ < τ . That is, both
√

n[Ĝn(t)−G(t)] and
√

n[Ŝn(t)−S(t)]
are asymptotic equicontinuous uniformly on [0, ψ] and [γ,ψ], respectively.

Proof First, for the sake of convenient, for any known function b(·), we define

‖b(θ̂α(t)) − b(θα(t))‖ = sup
|θ̂α(t)−θα(t)|≤δn

|b(θ̂α(t)) − b(θα(t))|.

By Lemma 1 and Assumption 2 F−1 is Lipschitz continuous, for a fixed finite
positive number M , we have

∥∥∥√
n

{
[Ĝn(t + θ̂α(t)) − G(t + θ̂α(t))] − [Ĝn(t + θα(t)) − G(t + θα(t))]

}∥∥∥
=

∥∥∥F−1[Vm,k(t + θ̂α(t)) − Vm,k(t + θα(t))]
∥∥∥ + op(1)

≤ M
∥∥∥[Vm,k(t + θ̂α(t)) − Vm,k(t + θα(t))]

∥∥∥ + op(1).

As

Vm,k(t) = p1/2W (1)
m (t) + (1 − p)1/2h(t)

∫
0<z≤t

W (2)
k (z)d

1

h(z)

+
(

p

1 − p

)
{G∗(t) − G(t)}√n( p̂ − p).

So in the following we only need to prove that
∥∥∥[Vm,k(t+θ̂α(t))−Vm,k(t+θα(t))]

∥∥∥
= op(1). Notice that

∥∥∥[Vm,k(t + θ̂α(t)) − Vm,k(t + θα(t))]
∥∥∥

≤ p1/2
∥∥∥W (1)

m (t + θ̂α(t)) − W (1)
m (t + θα(t))

∥∥∥
+(1 − p)1/2

×
∥∥∥∥∥h(t+θ̂α(t))

∫ t+θ̂α(t)

0
W (2)

k (z)d
1

h(z)
−h(t+θα(t))

∫ t+θα(t)

0
W (2)

k (z)d
1

h(z)

∥∥∥∥∥
+

√
n p( p̂ − p)

1 − p

×
∥∥∥[G∗(t + θ̂α(t)) − G(t + θ̂α(t))] − [G∗(t + θα(t)) − G(t + θα(t))]

∥∥∥
� I (t) + I I (t) + I I I (t).
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From Pakes and Pollard (1989), a class of indicator functions is Euclidean, we can
know that for any t ∈ [0, τ ], I (t) = op(1). For I I I (t), since |θ̂α(t) − θα(t)| ≤ δn ,
and G(·), G∗(·) are absolute continuous, then

∥∥∥[G∗(t + θ̂α(t)) − G(t + θ̂α(t))] − [G∗(t + θα(t)) − G(t + θα(t))]
∥∥∥ = ζn

for any t ∈ [0, τ ], where ζn = O(δn). From Asgharian and Wolfson (2005),
p

1−p

√
n( p̂ − p)

P→ p
(

p
1−p

)1/2
Z , where Z ∼ N (0, 1). Then I I I (t) = op(1) uni-

formly on [0, τ ]. Thus to accomplish this proof, we only need to prove I I (t) = op(1).
To see this, notice that

I I (t) ≤ (1 − p)1/2

×
∥∥∥∥∥h(t + θ̂α(t))

[∫ t+θ̂α(t)

0
W (2)

k (z)d
1

h(z)
−

∫ t+θα(t)

0
W (2)

k (z)d
1

h(z)

]∥∥∥∥∥
+(1 − p)1/2

∥∥∥∥∥
[
h(t + θ̂α(t)) − h(t + θα(t))

] ∫ t+θα(t)

0
W (2)

k (z)d
1

h(z)

∥∥∥∥∥
� I I (1)(t) + I I (2)(t).

Since h(·) is absolute continuous, then
∥∥∥h(t + θ̂α(t)) − h(t + θα(t))

∥∥∥ = ηn , where

ηn = O(δn). And
∫ t+θα(t)
0 W (2)

k (z)d 1
h(z) is of order Op(1), then I I (2)(t) = op(1) for

any t ∈ [0, τ ]. For I I (1)(t), first since h(·) is a decreasing function, then

I I (1)(t) ≤ (1 − p)1/2h(0)

∥∥∥∥∥
∫ t+θ̂α(t)

0
W (2)

k (z)d
1

h(z)
−

∫ t+θα(t)

0
W (2)

k (z)d
1

h(z)

∥∥∥∥∥

= (1 − p)1/2h(0)

∥∥∥∥∥
∫ t+θ̂α(t)

t+θα(t)
W (2)

k (z)d
1

h(z)

∥∥∥∥∥
≤ (1 − p)1/2h(0)

×
∥∥∥∥W (2)

k (t + θ̂α(t))
1

h(t + θ̂α(t))
− W (2)

k (t + θα(t))
1

h(t + θα(t))

∥∥∥∥

+ (1 − p)1/2h(0)

∥∥∥∥∥
∫ t+θ̂α(t)

t+θα(t)

1

h(z)
dW (2)

k (z)

∥∥∥∥∥
� I I (1)′(t) + I I (1)′′(t).
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For t + θα(t) ∈ [0, ψ],

I I (1)′(t)

= (1 − p)1/2h(0)
∥∥∥W (2)

k (t + θ̂α(t)) − W (2)
k (t + θα(t))

∥∥∥ 1

h(t + θ̂α(t))

+ (1 − p)1/2h(0)

∥∥∥∥ 1

h(t + θ̂α(t))
− 1

h(t + θα(t))

∥∥∥∥
∥∥∥W (2)

k (t + θα(t))
∥∥∥

≤ (1 − p)1/2h(0)
∥∥∥W (2)

k (t + θ̂α(t)) − W (2)
k (t + θα(t))

∥∥∥ 1

h(ψ)

+ (1 − p)1/2h(0)

∥∥∥∥ 1

h(t + θ̂α(t))
− 1

h(t + θα(t))

∥∥∥∥
∥∥∥W (2)

k (t + θα(t))
∥∥∥ .

Since
∥∥∥W (2)

k (t + θ̂α(t)) − W (2)
k (t + θα(t))

∥∥∥ = op(1), ‖W (2)
k (t+θα(t))‖ = Op(1),

and
∥∥∥∥ 1

h(t + θ̂α(t))
− 1

h(t + θα(t))

∥∥∥∥ = φn,

where φn = O(δn). Then I I (1)′(t) = op(1). As for I I (1)′′(t), we need to employ
Lemma 2, here the class is { 1

h(z) , z ∈ [0, ψ]}, this class is Euclidean class and has

an envelope 1
h(ψ)

, obviously
∫ 1

h(ψ)2
dP < ∞, then the conditions in Lemma 2 is

satisfied. Thus I I (1)′′(t) = op(1) uniformly on [0, ψ].
From above, we have proved that

∥∥∥[Vm,k(t + θ̂α(t)) − Vm,k(t + θα(t))]
∥∥∥ = op(1),

thus for sequence δn ↓ 0, and for any 0 ≤ t < t + θ̂α(t) ≤ ψ , 0 ≤ t < t + θα(t) ≤ ψ ,
the following equation holds

sup
t

sup
|θ̂α(t)−θα(t)|≤δn

|Gn(t + θ̂α(t)) − Gn(t + θα(t))| = op(1).

Since S(t) = μ
∫ ∞

t z−1dG(z), Ŝn(t) = μ
∫ ∞

t z−1dĜn(z), for any γ ≤ t < t +
θ̂α(t) ≤ ψ , γ ≤ t < t + θα(t) ≤ ψ :

∥∥∥[Ŝn(t + θ̂α(t)) − S(t + θ̂α(t))] − [Ŝn(t + θα(t)) − S(t + θα(t))]
∥∥∥

= μ

∥∥∥∥∥
∫ t+θ̂α(t)

t+θα(t)

1

z
d

[
Ĝn(z) − G(z)

]∥∥∥∥∥
≤ μγ −1

∥∥∥[Ĝn(t + θ̂α(t)) − G(t + θ̂α(t))] − [Ĝn(t + θα(t)) − G(t + θα(t))]
∥∥∥

thus for sequence δn ↓ 0, the following equation holds

sup
t

sup
|θ̂α(t)−θα(t)|≤δn

|Sn(t + θ̂α(t)) − Sn(t + θα(t))| = op(1).
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Thus the proof is complete for Lemma 4. 
�
Lemma 5 Define:

Ly(x) = I[y,∞)(x) − S(y)

x
.

Suppose Assumptions 4 and 5 hold. θα(t) is solved from Eq. (2) in Sect. 2. Then, as
n → ∞, we have

(1)

sup
γ≤t≤τ

|[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)]| a.s.−−→ 0

(2)

√
n

{
[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)]

}

D−→ μ

∫ τ

0
[Lt+θα(t)(x) − αLt (x)]dU (x),

where U (·) is defined in Eq. (11) in the Appendix, γ ≤ t < t + θα(t) ≤ ψ , and the
process on the right side has covariance function:

r1(y, z)

= μ2
∫ τ

0

∫ τ

0
ψ(s, t)dLy+θα(y)(t)dLz+θα(z)(s)

− μ2α

∫ τ

0

∫ τ

0
ψ(s, t)dLy+θα(y)(t)dLz(s)

− μ2α

∫ τ

0

∫ τ

0
ψ(s, t)dLy(t)dLz+θα(z)(s)

+ μ2α2
∫ τ

0

∫ τ

0
ψ(s, t)dLy(t)dLz(s)

and

ψ(s, t) = cov(U (s), U (t)).

Proof (1) This lemma is an easy extension of Lemma 3, so we only give a sketch of
the proof, for the details, please refer to Asgharian et al. (2002). Since

sup
γ≤t≤τ

|[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)]|

≤ sup
γ≤t≤τ

|Ŝn(t + θα(t)) − S(t + θα(t))| + α sup
γ≤t≤τ

|Ŝn(t) − S(t)|

From Lemma 3, we can know that the results holds indeed.
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(2) As for the part 2, the proof is an analog of Asgharian et al. (2002), but in their
paper there was a minor error, and this can be fixed if we change the operator P(g) =∫ τ

γ
Ky(x)g(x)dx to Q(g) = −g(y)/y + ∫ τ

γ
Ky(x)g(x)dx , then

‖Q(g)‖ = sup
g

|Q(g)| ≤
∫ τ

γ

|g(x)|
x2

dx + |g(y)|
y

≤ −‖g‖∞
∫ τ

γ

d
1

x
+ 1

y
‖g(y)‖ = 2

γ
‖g‖∞.

Where ‖g‖∞ = supt |g(t)|. Consequently, the Q(g) is also a bounded linear oper-
ator. So we can also use the same method in Theorem 1 in Asgharian et al. (2002) to
obtain the results we desire, that is:

√
n

{
[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)]

}

D−→ μ

∫ τ

0
[Lt+θα(t)(x) − αLt (x)]dU (x).

Concerning the covariance calculation, notice the fact that integrand [Lt+θα(t)(x)−
αLt (x)] is a function unrelated with the process U, thus we can easily calculate the
r1(y, z) by directly using the results of Lemma 3. Consequently, we complete the
proof. 
�
Proof of Theorem 1: We know that

0 = M̂n(θ̂ (n)
α (t)) − M(θα(t))

= Ŝn(t + θ̂ (n)
α (t)) − Ŝn(t + θα(t)) + Ŝn(t + θα(t)) − S(t + θα(t))

− α[Ŝn(t) − S(t)] (13)

where θα(t) and θ̂
(n)
α (t) are solved fromEqs. (2) and (3) in Sect. 2, i.e. M̂n(θ̂

(n)
α (t)) = 0

and M(θα(t)) = 0, respectively. Because Ŝn(·) is uniformly consistent, so

Ŝn(t + θ̂ (n)
α (t)) = S(t + θ̂ (n)

α (t)) + op(1),

Ŝn(t + θα(t)) = S(t + θα(t)) + op(1)

uniformly holds for γ ≤ t < t + θα(t) ≤ ψ < τ . Substituting then into Eq. (13), we
have that

[S(t + θ̂ (n)
α (t))] − S(t + θα(t))] + [Ŝn(t + θα(t)) − S(t + θα(t))]

−α[Ŝn(t) − S(t)] = op(1) (14)

uniformly holds for γ ≤ t < t + θα(t) ≤ ψ < τ . In Assumption 1 we have assumed
that S(·) = 1 − F(·) is absolute continuous, from the mean value theorem in basic
mathematical analysis, and there exists a θ∗

α(t) between θα(t) and θ̂
(n)
α (t), such that
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S(t + θ̂ (n)
α (t)) − S(t + θα(t))

= − f (t + θ∗
α(t))(θ̂ (n)

α (t) − θα(t)). (15)

Substituting (15) into (14), we have

f (t + θ∗
α(t))(θ̂ (n)

α (t) − θα(t))

= [Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)] + op(1).

Thus

θ̂ (n)
α (t) − θα(t)

= 1

f (t + θ∗
α(t))

{
[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)] + op(1)

}
.

In Assumption 3 we assume f (t), g(t) > 0 in the interval (0, τ ), thus combined
with the consistency of Ŝn(t), the estimator θ̂

(n)
α (t) is pointwise a.s. convergence in

(0, τ ). Furthermore, if f (·) is continuous, then there exists a positive constant λ, such
that for all t ∈ [γ,ψ], we have f (t) > λ, so

sup
t

|θ̂ (n)
α (t) − θα(t)|

≤ 1

λ
sup

t

∣∣∣
{
[Ŝn(t + θα(t)) − S(t + θα(t))] − α[Ŝn(t) − S(t)] + op(1)

}∣∣∣ .

As a result, the pointwise a.s. convergence can be strengthened to uniformly a.s.
convergence on [γ,ψ]. 
�
Proof of Theorem 2: Since θ̂

(n)
α (t) is a uniformly consistency estimator of θα(t) in

[γ,ψ], it follows from Lemma 2 that

√
n

[
Ŝn(t + θ̂ (n)

α (t)) − Ŝn(t + θα(t)) − S(t + θ̂ (n)
α (t)) + S(t + θα(t))

]
= op(1)

and applying this formula, we have

√
n

[
M̂n(θ̂

(n)
α (t)) − M̂n(θα(t))

]

= √
n

[
Ŝn(t + θ̂ (n)

α (t)) − α Ŝn(t) − Ŝn(t + θα(t)) + α Ŝn(t)
]

= √
n

[
Ŝn(t + θ̂ (n)

α (t)) − Ŝn(t + θα(t)) − S(t + θ̂ (n)
α (t)) + S(t + θα(t))

]

+√
n

[
S(t + θ̂ (n)

α (t)) − S(t + θα(t))
]

= √
n

[
S(t + θ̂ (n)

α (t)) − S(t + θα(t))
]

+ op(1)

= f (t + θα(t)) × √
n

[
θ̂ (n)
α (t) − θα(t)

]
+ op(1)
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uniformly on [γ,ψ]. Divide the last equation by f (t + θα(t)) on the both sides, we
obtain

√
n

[
θ̂ (n)
α (t) − θα(t)

]

= 1

f (t + θα(t))
×

{√
n

[
M̂n(θ̂ (n)

α (t)) − M̂n(θα(t))
]

+ op(1)
}

.

Note that θα(t) and θ̂
(n)
α (t) are solved from Eqs. (2) and (3), then

M̂n(θ̂ (n)
α (t)) − M̂n(θα(t)) = M(θα(t)) − M̂n(θα(t)).

Therefore, we obtain that

= 1

f (t + θα(t))
×

{√
n

[
M(θα(t)) − M̂n(θα(t))

]
+ op(1)

}

= 1

f (t + θα(t))

×
{√

n
[
(Ŝn(t + θα(t)) − S(t + θα(t))) − α(Ŝn(t) − S(t))

]
+ op(1)

}
.

Then by direct use of functional delta method and Lemma 5, the proof is complete.

�

Proof of Theorems 3 and 4 Note that

√
n1 + n2(τ̂α(t) − τα(t))

= √
n1 + n2

{
Ŝ−1
1,n1

(α Ŝ1,n1(t)) − t

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t
− S−1

1 (αS1(t)) − t

S−1
2 (αS2(t)) − t

}

= √
n1 + n2

{
Ŝ−1
1,n1

(α Ŝ1,n1(t)) − S−1
1 (αS1(t))

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t

}

+ √
n1 + n2

{
S−1
1 (αS1(t)) − t

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t
− S−1

1 (αS1(t)) − t

S−1
2 (αS2(t)) − t

}

= √
n1 + n2

{
Ŝ−1
1,n1

(α Ŝ1,n1(t)) − S−1
1 (αS1(t))

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t

}

+ S−1
1 (αS1(t)) − t

S−1
2 (αS2(t)) − t

√
n1 + n2

{
S−1
2 (αS2(t)) − Ŝ−1

2,n2
(α Ŝ2,n2(t))

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t

}

= √
n1 + n2

Ŝ−1
1,n1

(α Ŝ1,n1(t)) − S−1
1 (αS1(t))

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t
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+ τ(t)
√

n1 + n2
S−1
2 (αS2(t)) − Ŝ−1

2,n2
(α Ŝ2,n2(t))

Ŝ−1
2,n2

(α Ŝ2,n2(t)) − t

= 1

θ̂
(n2)
2,α (t)

{√
n1 + n2[θ̂ (n1)

1,α (t) − θ1,α(t)] − τ(t)
√

n1 + n2[θ̂ (n2)
2,α (t) − θ2,α(t)]

}
.

Note that we have

Ŝ−1
i,ni

(α Ŝi,ni (t)) − t
P→ θi,α(t),

where i = 1, 2. By Theorem 2 and Slutsky Theorem,we can directly obtain the results.
Finally, since dα(·) = θ1,α(·) − θ2,α(·) and d̂α(·) = θ̂

(n1)
1,α (·) − θ̂

(n2)
2,α (·), and that the

two samples are independent, Theorem 4 follows directly from Theorem 2. 
�
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