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Abstract McWilliams (J Am Stat Assoc 85:1130–1133, 1990) introduced a non-
parametric procedure based on runs for the problem of testing univariate symmetry
about the origin (equivalently, about an arbitrary specified center). His procedure first
reorders the observations according to their absolute values, then rejects the null when
the number of runs in the resulting series of signs is too small. This test is univer-
sally consistent and enjoys good robustness properties, but is unfortunately limited
to the univariate setup. In this paper, we extend McWilliams’ procedure into tests of
bivariate central symmetry. The proposed tests first reorder the observations accord-
ing to their statistical depth in a symmetrized version of the sample, then reject the
null when an original concept of simplicial runs is too small. Our tests are affine
invariant and have good robustness properties. In particular, they do not require any
finite moment assumption.We derive their limiting null distribution, which establishes
their asymptotic distribution freeness. We study their finite-sample properties through
Monte Carlo experiments and conclude with some final comments.
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1 Introduction

Symmetry is an essential and ubiquitous notion in statistics, and particularly so in
multivariate nonparametric statistics. In bivariate location problems, for instance, all
nonparametric tests do require some concept of symmetry, which may be either spher-

ical symmetry [X − μμμ
d= O(X − μμμ) for all orthogonal 2 × 2 matrices O], elliptical

symmetry (X d= AZ+μμμ, whereZ is spherically symmetric about the origin ofR2 andA

is an arbitrary 2×2 matrix), or central symmetry [X−μμμ
d= −(X−μμμ)]. Consequently,

it is crucial to dispose of good tests for—spherical, elliptical and central—symmetry,
which can serve as important preliminaries before applying the corresponding location
tests.

In this paper, we focus on testing for bivariate central symmetry, which, in practice,
maybemore important than testing for spherical or elliptical symmetry—non-rejection
of the null of central symmetry indeed justifies resorting to location tests that require
a weaker symmetry assumption (central symmetry), and hence are more robust than
their spherical or elliptical counterparts. Unfortunately, there are much less tests for
central symmetry than for spherical or elliptical symmetry; we refer to Serfling (2006)
for an extensive review onmultivariate symmetry concepts andmultivariate symmetry
testing.

Now, the tests for central symmetry available in the literature—e.g., those from
Blough (1989), Ghosh and Ruymgaart (1992), Heathcote et al. (1995), Neuhaus and
Zhu (1998) or Henze et al. (2003)—are hardly satisfactory: they either do not meet
fundamental properties, such as affine invariance or (asymptotic) distribution freeness
under the null, or do require stringent moment assumptions. As an illustration, among
the precited tests, only the procedures from Henze et al. (2003) are affine invariant,
but unfortunately they need finite fourth-order moments and are not (not even asymp-
totically) distribution free.

We intend to improve on that by proposing tests for bivariate central symmetry
that are affine invariant, asymptotically distribution free under the null, and that do
not require any moment assumption—more generally, that exhibit good robustness
properties. We will achieve this by extending to the bivariate setup the celebrated
McWilliams (1990) test. This test, which aims at testing the null that the common
distribution of the (i.i.d.) observations Xi , i = 1, . . . , n, is symmetric about the origin
(also throughout the bivariate case, we will test for central symmetry about the origin,
which is clearly without any loss of generality, since testing symmetry about any other
fixed value μμμ0 ∈ R

2 would just be achieved by applying the proposed origin-based
tests to the centered observations Xi − μμμ0, i = 1, . . . , n), proceeds in two steps:

(i) the sample is reordered into XA1 , XA2 , . . . , XAn according to |XA1 | ≤ |XA2 | ≤
· · · ≤ |XAn |, an ordering that is uniquely defined with probability one under
absolute continuity (the Ai s are sometimes called the anti-ranks of the |Xi |s);
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Depth-based runs tests 919

(ii) the number of runs—R(n), say—in the sequence of signs Sign(XA1), . . . ,Sign
(XAn ) is recorded (the term run refers to a maximal sequence of consecutive ones
or minus ones) and the null hypothesis is rejected for small values of R(n).

What makes it natural to try and turn this test into a test for bivariate central sym-
metry is its many good properties. The test enjoys strong invariance properties (see
Sect. 2.3), yielding exact distribution freeness under the null. It is fairly robust to
outliers and does not require any moment assumption.

More importantly, it has been shown to be consistent against any asymmetric alter-
native associated with an a.e. continuous density f (Henze 1993) and to be very com-
petitive compared to other universally consistent tests (McWilliams 1990). Finally, it
is extremely simple to implement: the test statistic R(n) is computationally simple and
for large sample sizes the test can be based on the (null) asymptotic standard normal
distribution of n−1/2(2R(n) − n); see Cohen and Menjoge (1988).

ExtendingMcWilliams’ test to the multidimensional setup requires defining appro-
priate multivariate versions of Steps (i)–(ii). Compared to the spherically symmetric
construction from Marden (1999) (that results in a test for spherical symmetry; see
Sect. 4.1 below), our proposal is of a more nonparametric nature. More specifically,
we propose the following bivariate extensions of Steps (i)–(ii):

(i) In the univariate case, the random permutation does not require a genuine distance
from the null symmetry center, but rather only a center–outward ordering of the
observations. In the bivariate setup, it therefore seems natural to order observations
according to some statistical depth function (Zuo and Serfling 2000a), which is
actually providing such a two-dimensional center–outward ordering.

(ii) InMcWilliams’ runs test statistic, a new run is obtained exactlywhenSign(XAi ) �=
Sign(XAi−1), or equivalently when the origin is contained in the interval with end
points XAi and XAi−1—an interval that can be seen as the simplexwith vertices XAi

and XAi−1 . In the bivariate setup, this suggests defining a runs statistic as the
number of simplices with vertices XAi ,XAi−1 ,XAi−2 that contain the origin.

As we show below, the resulting bivariate McWilliams tests, as desired, are tests of
central symmetry and enjoy many good properties of their univariate antecedent.

The paper is organized as follows. Section 2 describes the proposed test statistics:
first, the concept of statistical depth functions is shortly discussed (Sect. 2.1) and the
simplicial bivariate runs are defined (Sect. 2.2); then the proposed test statistics are
provided and their invariance properties are studied (Sect. 2.3). In Sect. 3, the null
asymptotic distribution of our tests is derived, which establishes in particular their
asymptotic distribution freeness. Section 4 is dedicated to Monte Carlo experiments:
several competitors are briefly described (Sect. 4.1) before the Monte Carlo study
is conducted (Sect. 4.2). Section 5 provides some final comments. Eventually, the
Appendix collects technical proofs.

2 The proposed tests

Consider the null hypothesis Hcenter
0 under which the bivariate observations Xi , i =

1, . . . , n are mutually independent and admit a common pdf f (with respect to the
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Lebesgue measure on R
2) that satisfies f (x) = f (−x) almost everywhere in x ∈ R

2

(central symmetry about the origin). As announced in Sect. 1, we propose tests for
bivariate central symmetry that rely on (1) a random permutation of the observations
determinedby some statistical depth function andon (2) anoriginal concept of bivariate
runs. Sections 2.1 and 2.2, respectively, focus on these two aspects.

2.1 Statistical depth functions

Informally, a k-variate statistical depth function D(·,P) : R
k → [0, 1] provides,

for each x ∈ R
k , a measure D(x,P), of how central x is relative to the probability

measure P over Rk [the larger D(x,P), the more central is x]. According to Zuo
and Serfling (2000a), a statistical depth function should satisfy the following four
properties:

P1 affine invariance: for any invertible k × k matrix A and any b ∈ R
k, D(Ax +

b,PA,b) = D(x,P) where, for any k-dimensional Borel set B, PA,b[B] :=
P[A−1(B − b)];

P2 maximality at center: if P is centrally symmetric1 about x0 ∈ R
k , then D(x0,P) ≥

D(x,P) for any x ∈ R
k ;

P3 monotonicity relative to any deepest point: if D(x0,P) ≥ D(x,P) for any x ∈ R
k ,

then λ �→ D(x0 + λ(x − x0),P) is monotone non-increasing over [0,∞);
P4 vanishing at infinity: as ‖x‖ → ∞, D(x,P) → 0.

The properties P1–P3 directly entail that statistical depth functions induce an affine
invariant center–outward ordering of points in Rk , where the (depth) center—i.e., the
deepest point—coincides, for symmetric distributions, with the symmetry center.

Classical examples of statistical depths include

1. The Tukey (1975) halfspace depth DH (x,P) = infH∈Hx P[H ], where Hx stands
for the collection of closed halfspaces in Rk with x on their boundary hyperplane.

2. The Liu (1990) simplicial depth DS(x,P) = P[x ∈ S(X1,X2, . . . ,Xk+1)], where
the Xi s are i.i.d. with common distribution P and S(x1, x2, . . . , xk+1) stands for
the closed simplex with vertices x1, x2, . . . , xk+1 in Rk .

3. The simplicial volume depth (sometimes also referred to as Oja depth in the lit-
erature) DSV (x,P) = 1/ [1 + EP[mk(S(x,X1,X2, . . . ,Xk))]] , where the Xi s
are i.i.d. with common distribution P and mk denotes the Lebesgue measure
in R

k . This depth does not satisfy P1; however, if ���P is some affine-equivariant
scatter matrix functional (in the sense that ���PA,b = A���PA′ for any invert-
ible k × k matrix A and any k-vector b), then the modified simplicial volume
depth DSV

mod(x,P) = 1/
[
1 + (det���P)

−1/2EP[mk(S(x,X1,X2, . . . ,Xk))]
]
satis-

fies P1.

The corresponding deepest points θθθDH , θθθDS and θθθDSV (= θθθDSV
mod

) are called the
Tukey median, the simplicial median and the Oja (1983) median, respectively. In the

1 Zuo andSerfling (2000a) also consider P2 forweaker concepts of symmetry, namely angular and halfspace
symmetry, but, for our purposes, we may restrict to central symmetry in the sequel.
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Depth-based runs tests 921

univariate case, they all reduce to the univariate median, which justifies the terminol-
ogy.

Of course, whenever k-variate observations Xi , i = 1, . . . , n, are available, sam-
ple depth functions are simply obtained as x �→ D(x,P(n)), where P(n) denotes the
corresponding empirical distribution. As their population counterparts, sample depth
functions provide a center–outward orderingwith respect to the corresponding deepest
point or multivariate sample median, e.g., θθθ(n)

D .
In the univariate McWilliams’ test statistic (Sect. 1), however, observations are

permuted according to a center–outward ordering with respect to the null symmetry
center—namely, the origin of the real line—and not with respect to the median. To
properly extend the McWilliams test to the bivariate setup in the sequel, we therefore
replace D(·,P(n)) with D(·,P(n)

sym), where P(n)
sym denotes the empirical distribution of

the symmetrized sample (±X1, . . . ,±Xn) of size 2n. Clearly, it follows from P2 that
the deepest point then is the origin of R2, hence that the resulting center–outward
ordering is indeed relative to the null symmetry center.

In the univariate case, the three depth functions above, in their symmetrized ver-
sions, will make x deeper than y iff |x | < |y|. Therefore, the three resulting center–
outward orderings, unlike the statistical depth functions themselves, do strictly agree,
and lead to the same ordering as in Step (i) of the McWilliams procedure.

2.2 Simplicial runs

As mentioned in the Introduction, the univariate McWilliams (1990) test statistic is
based on the number of runs in some given sequence. This number of runs, in an
ordered real sequence x1, . . . , xn , can be written as 1 + ∑n

i=2 I[Sign(xi ) �=Sign(xi−1)].
Our bivariate extension is motivated by the fact that the same runs statistic can also be
expressed as 1+∑n

i=2 I[0∈S(xi ,xi−1)],where S(x, y) = [min(x, y),max(x, y)] stands
for the simplex with vertices x, y ∈ R, that is, for the convex hull of those two points
on the real line.

For a sequence of bivariate vectors x1, . . . , xn , it is then natural to define the number
of (simplicial) runs as

1 +
n∑

i=3

I[0 ∈ S(xi , xi−1, xi−2)], (1)

where S(x, y, z) still denotes the closed simplex with vertices x, y, z ∈ R
2. The

connection between (1) and the bivariate simplicial depth (of the origin of R2) is
obvious; see Liu (1990) or Sect. 2.1. Clearly, the ordering of the xi s explains that (1)
avoids the U -statistic structure that characterizes the sample simplicial depth.

2.3 The proposed test statistics

LetXi , i = 1, . . . , n, be bivariate observations and let D be a statistical depth function
on R

2. Sections 2.1 and 2.2 lead to extending the univariate McWilliams (1990) test
statistic into
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922 R. Dyckerhoff et al.

R(n)
D = 1 +

n∑

i=3

I[0 ∈ S(XAi ,XAi−1 ,XAi−2)
],

where the reordered observations XA1 , . . . ,XAn are defined through

D
(
XA1 ,P

(n)
sym

)
≥ D

(
XA2 ,P

(n)
sym

)
≥ · · · ≥ D

(
XAn ,P

(n)
sym

)
; (2)

as in Sect. 2.1, P(n)
sym stands for the empirical distribution of the symmetrized sam-

ple (±X1, . . . ,±Xn). If ties occur in (2), we impose that each block of undefined
anti-ranks A j+1, . . . , A j+r forms amonotone increasing sequence (we avoid breaking

the ties randomly as this would possibly affect affine invariance of R(n)
D ; see Propo-

sition 1 below). Parallel to the univariate case, the resulting bivariate test for central
symmetry—φ

(n)
D , say—rejectsHcentr

0 for small values of the number of simplicial runs

R(n)
D . Critical values will be derived in Sect. 3 below.
As mentioned in the Introduction, the univariate McWilliams statistic R(n) enjoys

strong invariance properties. It is indeed straightforward to check that R(n) is invariant
under any transformation of the form

gh : R × · · · × R → R × · · · × R

(x1, . . . , xn) �→ (h(x1), . . . , h(xn)), (3)

where h : R → R is an odd, continuous, and monotone increasing function satis-
fying h(+∞) = +∞. All such transformations form a group G, ◦ that happens to
generate the null hypothesis of symmetry about zero. The exact distribution-freeness
of R(n) under the null is a direct corollary of this invariance under a generating group.

Onemight wonder whether our bivariate statistics R(n)
D are similarly invariant under

a group of transformations that generates the null Hcentr
0 of central symmetry about

the origin. Unfortunately, the answer is negative. Actually, for each of the three depth
functions DH , DS , and DSV /DSV

mod introduced in Sect. 2.1, it can be checked that

R(n)
D fails to be invariant under the group of radial transformations

gh : R2 × · · · × R
2 → R

2 × · · · × R
2

(x1, . . . , xn) �→
(
h‖·‖(‖x1‖) x1

‖x1‖ , . . . , h‖·‖(‖xn‖) xn
‖xn‖

)
,

where h‖·‖ : R+ → R
+ is continuous, monotone increasing, and satisfies h‖·‖(0) = 0

and h‖·‖(+∞) = +∞; these transformations extend those in (3) in a spherical fashion
and form a group that generates the nullHspher

0 of bivariate spherical symmetry about

the origin. Since Hspher
0 ⊂ Hcentr

0 , this implies that R(n)
D (at least for the three depth

functions considered above) cannot be invariant under a group of transformations that
generates Hcentr

0 .

The statistics R(n)
D , however, are permutation-invariant and affine invariant. Affine

invariance, which is a classical requirement in multivariate statistics, removes any
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Depth-based runs tests 923

dependence on the choice of the underlying coordinate system and ensures that the
performances of the corresponding testswill not be affected by the variance-covariance
structure—under infinite second-ordermoments, the “scatter” structure—of the under-
lying distribution.

Proposition 1 (i) R(n)
D is invariant under permutations of the observations. (ii)

If D satisfies P1 from Sect. 2.1, then R(n)
D is affine invariant, in the sense

that R(n)
D (AX1, . . . ,AXn) = R(n)

D (X1, . . . ,Xn) for any invertible 2 × 2 matrix A.

We omit a proof here, as Part (i) is obvious and Part (ii) follows from both the affine
invariance of the anti-ranks Ai (thanks to P1) and the affine invariance of the indicator
function of the event that the origin belongs to a data-based simplex (which can be
established as in (Liu 1990, Page 407)). This entails affine invariance of R(n)

DH , R
(n)

DS

and R(n)

DSV
mod

. Note that, in order to ensure affine invariance of the anti-ranks, it suffices

that the center–outward ordering is affine invariant, while the exact value of the depth
need not be affine invariant. This shows that R(n)

DSV is also affine invariant.

3 Asymptotic null distribution

In this section, we derive the asymptotic null distribution of R(n)
D , which is of course

needed to apply the corresponding test φ(n)
D (at a fixed asymptotic level α).

Obtaining the asymptotic distribution of R(n)
D , however, is much more difficult than

deriving the asymptotic null distribution of theMcWilliams’ test statistic, as, unlike the
summands in the latter, the summands in R(n)

D are not mutually independent. Note that
they further do not form a stationary sequence. We therefore need a nonstandard CLT
that also applies to triangular arrays of random variables (since the whole collection
of anti-ranks may be affected by the introduction of an extra observation Xn+1). We
will make use of the following recent result.

Theorem 1 (Neumann 2013) Let (Zn,i )i=1,...,n, n ∈ N0 be a triangular array of
random variables with mean zero. Assume that

(i) supn
∑n

i=1 E[Z2
n,i ] < ∞;

(ii) for all ε > 0,
∑n

i=1 E[Z2
n,i I[|Zn,i |>ε]] = o(1) as n → ∞;

(iii) there exists a summable sequence (ah) such that, for all m ∈ N0 and all
indices 1 ≤ i1 < i2 < · · · < im + h =: j1 ≤ j2 ≤ n,

∣∣Cov[g(Zn,i1, . . . , Zn,im ), Zn, j1 ]
∣∣ ≤ ah(E[g2(Zn,i1 , . . . , Zn,im )])1/2

×max((E[Z2
n, j1 ])1/2, n−1/2)

for all measurable and square integrable functions g : Rm → R, and

∣
∣Cov[g(Zn,i1, . . . , Zn,im ), Zn, j1 Zn, j2 ]

∣
∣ ≤ ah‖g‖∞

(
E[Z2

n, j1] + E[Z2
n, j2 ] + n−1)

for all measurable and bounded functions g : R
m → R with ‖g‖∞ :=

supx∈Rm |g(x)|.
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924 R. Dyckerhoff et al.

Then, provided that σ 2 := limn→∞ Var[∑n
i=1 Zn,i ] < ∞,

∑n
i=1 Zn,i is asymptot-

ically normal with mean zero and variance σ 2.

To apply this result, we need the subsequent three lemmas (which are proved in the
Appendix) and the two following assumptions:

(A1) consistency: supx∈R2 |D(x,P(n)) − D(x,P)| = o(1) almost surely as n → ∞,
where P(n) denotes the empirical distribution associated with n random vectors
that are i.i.d. P.

(A2) strict monotonicity: the mapping α �→ gP(α) = P[{x ∈ R
2 : D(x,P) ≥ α}]

strictly decreases on (αmin, αmax), with αmin = inf{α > 0 : gP(α) < 1} and
αmax = sup{α > 0 : gP(α) > 0}.

Assumption (A1) is satisfied for halfspace depth, simplicial depth, and projection
depth (under mild assumptions on the univariate location and scale functionals used in
this depth); see Zuo (2003), Remark 2.5. Under finite second-order moments, it also
holds for Mahalanobis depth; see Liu and Singh (1993), Remark 2.2. As for Assump-
tion (A2), it is easy to show that it holds in particularwhen (i) P is absolutely continuous
with respect to the Lebesgue measure over R2, (ii) the support C of P is convex, and
(iii) x �→ D(x,P) is continuous (in the absolutely continuous case considered, con-
tinuity holds for most depths, including, e.g., halfspace depth, simplicial depth, and
projection depth; see, in Paindaveine and Van Bever (2013), Assumption (Q1), the
comment below Theorem 3.1, and the proof of Lemma A.1).

Lemma 1 Let x, y, z ∈ R
2 be in “general position from the origin”—in the sense

that all straight lines through the origin contain at most one element of {x, y, z}. Then
there are exactly two vectors (sx , sy, sz) ∈ {−1, 1}3 such that 0 ∈ S(sxx, syy, szz),
and those two vectors are the opposite of each other.

Lemma 2 LetX1, . . . ,X4 be i.i.d. random vectors inR2 with common centrally sym-
metric distribution P. Then, for any τ ∈ (0, supx D(x, P)), the probability

pτ,P = P [0 ∈ S(X1,X2,X3), 0 ∈ S(X2,X3,X4) | D(Xi ,P) = τ, i = 1, 2, 3, 4]

= E
[
I[0 ∈ S(X1,X2,X3)]I[0 ∈ S(X2,X3,X4)] | D(Xi ,P) = τ, i = 1, 2, 3, 4

]

is equal to 1
12 .

Lemma 3 Let Assumptions (A1)–(A2) hold, and consider the triangular array of ran-
domvariables (In,i )i=3,...,n, n ∈ {3, 4, . . .}, where In,i :=I[0 ∈ S(XAi ,XAi−1 ,XAi−2)].
Then, under Hcentr

0 , (i) E[In,i ] = 1/4 for all n, i ; (ii) for any ρ ∈ (0, 1/2),

sup
i∈In(ρ)

∣∣∣
∣E[In,i In,i−1] − 1

12

∣∣∣
∣ = o(1)

as n → ∞, where In(ρ) := {
ρn�, 
ρn� + 1, . . . , 
(1 − ρ)n�}; (iii) for all n, the
sequence (In,i )i=3,...,n is 1-dependent.
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Depth-based runs tests 925

The main result of this section is then the following; see the Appendix for a proof.

Theorem 2 Let Assumptions (A1)–(A2) hold, and assume that the statistical depth
function D satisfiesP2–P4. Then, underHcentr

0 , n−1/2
(
4R(n)

D −n−2
)
is asymptotically

normal with mean zero and variance σ 2 = 11/3.

This theorem shows that the statistics R(n)
D are asymptotically distribution free. Of

course, it also implies that the resulting tests φ
(n)
D reject the null of central symme-

tryHcentr
0 at asymptotic level α whenever

4R(n)
D − n − 2√
11n/3

< �−1(α),

where � stands for the cumulative distribution function of the standard normal distri-
bution.

4 Monte Carlo experiments

The aim of this section is to conduct a Monte Carlo study that investigates the finite-
sample performances of the proposed tests. We start by describing briefly the compet-
ing procedures we will consider.

4.1 Some competitors to our runs tests

We consider nine competitors, which may be grouped into the following four classes:

• The first competitors are related to the runs tests for spherical symmetry proposed
in Marden (1999). His extension of the McWilliams (1990) procedure consists
in reordering [Step (i)] the observations X1, . . . ,Xn as XA1 , . . . ,XAn according
to their Euclidean norms ‖Xi‖, and then defining [Step (ii)] his bivariate runs as
consecutive inner products in the seriesUAi , i = 1, . . . , n, whereUi := Xi/‖Xi‖
is the so-called spatial sign of Xi . More precisely, Marden (1999)’s bivariate runs
test is based on the statistic

T (n)
Marden =

√
2

n

n∑

i=2

U′
Ai
UAi−1 ,

which is asymptotically standard normal under Hspher
0 , the null hypothesis of

spherical symmetry about the origin. Besides the one-sided test φ
(n)spher
Marden1 :=

I[T (n)
Marden>�−1(1−α)], which is a natural extension of the univariate McWilliams

(1990) test, we also consider the two-sided test φ
(n)spher
Marden2 := I[(T (n)

Marden)
2>χ2

1,1−α]
(where χ2


,1−α denotes the α-upper quantile of the χ2

 distribution), as this is actu-

ally the test described in Marden (1999).
The use of Euclidean distances leaves no doubt about the spherical nature
of these tests. However, it is possible to extend them into tests of ellipti-
cal symmetry about the origin. Such tests are obtained by applying Marden’s
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926 R. Dyckerhoff et al.

tests on standardized observations �̂��
−1/2

Xi , i = 1, . . . , n, where �̂�� is some
affine-equivariant shape estimator—in the sense that for any invertible 2 × 2
matrix A, �̂��(AX1, . . . ,AXn) = cA�̂��A′ for some constant c that may depend
on the sample. Below, we use the Tyler (1987) shape estimator (with fixed loca-
tion 0 ∈ R

2), which is defined as the solution of 1
n

∑n
i=1 XiX′

i/(X
′
i���

−1Xi ) = 1
2���

under the constraint Trace[���] = 2. This leads us to add the ellipticity testsφ
(n)ellipt
Marden1

and φ
(n)ellipt
Marden2 to our simulation study. Since the emphasis of our work is not on

these ellipticity tests, we do not prove that their asymptotic distributions under
Hellipt

0 (the hypothesis of elliptical symmetry about the origin) do coincide with

those of φ
(n)spher
Marden1 and φ

(n)spher
Marden2 under Hspher

0 (yet, the simulations below suggest
that this is indeed the case).

• Baringhaus (1991) proposes a class of sphericity tests based on statistics of the
form

B(n) = 1

n

n∑

i, j=1

h(U′
iU j )min

(
1 − Ri − 1

n
, 1 − R j − 1

n

)
,

where h is defined over [−1, 1] and satisfies some regularity conditions (see Bar-
inghaus 1991 for more details) and where Ri , i = 1, . . . , n, is the rank of ‖Xi‖
among ‖X1‖, . . . , ‖Xn‖.We restrict below to h(t) = (

t− 1
4

)
/
( 17
8 −t

)
, t ∈ [−1, 1],

for mainly two reasons: (i) the asymptotic null distribution of B(n) then coin-
cides (up to a multiplicative constant) with that of (the squared of) the natural
Kolmogorov–Smirnov statistic for the problem under study, and hence is fairly
standard (whereas other choices of h would necessitate simulations to approxi-
mate the limiting null distribution); (ii) the resulting test—say, φ(n)spher

Bar —then is
a universally consistent sphericity test.
Again, we also consider the extension of this sphericity test into an ellipticity test,

φ
(n)ellipt
Bar (still obtained by applying the test φ(n)spher

Bar to observations �̂��
−1/2

Xi , i =
1, . . . , n, standardized through Tyler’s estimator of shape; here as well, our simu-
lations tend to confirm that φ(n)ellipt

Bar is a valid ellipticity test).

• We further consider the pseudo-Gaussian ellipticity test φ(n)ellipt
Cassart described in Cas-

sart (2007), Chapter 3. This test achieves Le Cam optimality against the Fechner-
typemultinormal alternatives defined therein. It rejectsHellipt

0 at asymptotic levelα
whenever

8

3nm(n)
4

n∑

i, j=1

d̂2i d̂
2
j S

′
Ûi
SÛ j

> χ2
2,1−α,

where d̂i := (X′
i�̂��

−1
Xi )

1/2, Ûi := �̂��
−1/2

Xi/d̂i , SÛi
:= (((Ûi )1)

2

Sign((Ûi )1), ((Ûi )2)
2Sign((Ûi )2))

′, and m(n)
4 := 1

n

∑n
i=1 d̂

4
i . We still use Tyler’s

estimator of shape for �̂��. This parametric test requires finite fourth-order
moments.
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• Finally,we also consider theBlough (1989) projection pursuit tests for central sym-
metry. These tests first apply some univariate symmetry test φ(n)

univ on the projected
data set u′

1Xi , i = 1, . . . , n, with

u1 :=arg min
u∈S1

[
max
1≤i≤n

(u′X)(i) + (u′X)(n−i+1)

2
− min

1≤i≤n

(u′X)(i)+(u′X)(n−i+1)

2

]
,

where (u′X)( j) stands for the j th order statistic of the projected sample u′Xi , i =
1, . . . , n, and S1 is the unit circle in R

2. If this univariate symmetry test rejects
the null, then the projection pursuit test does rejectHcentr

0 . In case of no rejection,
the same univariate test is run for the direction orthogonal to u1. The projection
pursuit test then does not rejectHcentr

0 iff this second run of φ
(n)
univ does not lead to

rejection. If the overall test should have level α, then the two runs ofφ(n)
univ should be

conducted at level α/2 according to Bonferroni. For φ(n)
univ, we will use the classical

test of skewness (based on empirical third-order moments) and the McWilliams
(1990) runs test. The resulting projection pursuit tests will be denoted as φ

(n)
PPG and

φ
(n)
PPR, respectively.

4.2 Finite-sample performances of our runs tests

To compare the finite-sample performances of the proposed tests with those of their
nine competitors described above, we have considered several settings.

In each setting, 3, 000 independent random samples of size n = 100were generated
fromacentrally symmetric kernel (associatedwith j = 0below) and three increasingly
skewed versions of this original symmetric distribution (associated with j = 1, 2, 3
below) obtained from a particular skewing mechanism. Each sample was subjected to
the runs testsφ

(n)

DH , φ
(n)

DS , andφ
(n)

DSV (based, respectively, on the halfspace, the simplicial
and the simplicial volume depth) and to their nine competitors, all at nominal level 5%.
The resulting rejection frequencies are plotted against j in Figs. 1, 2, 3, while Table 1
contains the numerical values for two situations where the power curves present a
strong overlapping. Of course, the various settings differ by the symmetric kernels
and/or the skewing mechanisms involved.

The six settings in Fig. 1 mainly differ by the symmetric kernels used. In the first
(resp., second) row, these kernels are spherical (resp., elliptical) bivariate normal and
Cauchy distributions with shape parameter

��� =
(
1 0
0 1

) (
resp.,��� =

(
2 1
1 3

))
.

In the third row, we used centrally symmetric kernels associated with the distributions
obtained by conditioning bivariate spherical normal and Cauchy random vectors in the
event that the random vectors belong to the (two-sided) cone C1 := {(x1, x2)′ ∈ R

2 :
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928 R. Dyckerhoff et al.

Fig. 1 Curves of rejection frequencies (out of 3,000 replications), under skewed (by means of Azzalini-
type skewing mechanisms) spherically, elliptically and centrally symmetric bivariate normal and Cauchy
distributions of the proposed depth-based runs tests, the Marden (1999)-type tests, the Baringhaus (1991)-
type tests, the pseudo-Gaussian test from Cassart (2007), and the projection pursuit tests from Blough
(1989) for samples of size n = 100; see Sect. 4 for details

| arctan(x2/x1)| ≤ 1/2}. For each of these six settings, the corresponding symmetri-
cally distributed random vectors Z1, . . . ,Zn were skewed into X1, . . . ,Xn through

{
Xi = Zi if U ≤ �( jδδδ′Zi )

Xi = −Zi if U > �( jδδδ′Zi ),
j = 0, 1, 2, 3,
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Fig. 2 Curves of rejection frequencies (out of 3,000 replications), under contaminated skewed (by means
of Azzalini-type skewing mechanisms) spherically symmetric distributions, shifted centrally symmetric
distributions, and sinh–arcsinh-transformed centrally symmetric distributions (in each case with bivariate
normal and Cauchy kernels) of the same tests as in Fig. 1 for samples of size n = 100; see Sect. 4 for details

for normal kernels, and through

{
Xi = Zi if U ≤ T3( jδδδ′Zi (3/(1 + Z′

iZi ))
1/2)

Xi = −Zi if U > T3( jδδδ′Zi (3/(1 + Z′
iZi ))

1/2),
j = 0, 1, 2, 3,

for Cauchy ones, where δδδ = (0.15, 0.15)′, U is uniformly distributed over (0, 1), and
T3 stands for the cdf of the univariate t distribution with 3 degrees of freedom. These
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930 R. Dyckerhoff et al.

Fig. 3 Curves of rejection frequencies (out of 3,000 replications), under a sinh–arcsinh-transformed cen-
trally symmetric spiral-type distribution of the same tests as in Figs. 1, 2 for samples of size n = 100; see
Sect. 4 for details

Table 1 Numerical rejection frequencies (out of 3,000 replications) under Azzalini-skewed spherically
symmetric and shifted centrally symmetric bivariate Cauchy distributions of the proposed depth-based runs
tests, the Baringhaus (1991)-type spherical test, the pseudo-Gaussian test from Cassart (2007), and the
projection pursuit tests from Blough (1989) for samples of size n = 100

Test Spherical normal kernel and Azzalini skewing with contamination

δδδ = (0, 0) δδδ = (0.15, 0.15) δδδ = (0.30, 0.30) δδδ = (0.45, 0.45)

DepthRunH 0.0427 0.0767 0.1640 0.3557

DepthRunS 0.0403 0.0617 0.1570 0.3253

DepthRunSV 0.0413 0.0753 0.1413 0.3187

BarS 0.0527 0.1427 0.4477 0.8010

Cassart 0.0000 0.0047 0.0270 0.0997

PPG 0.0000 0.0000 0.0000 0.0000

PPR 0.0417 0.0387 0.0553 0.0743

Test Centrally symmetric Cauchy kernel and shift skewing

δδδ = (0, 0) δδδ = (0, 0.04) δδδ = (0, 0.08) δδδ = (0, 0.12)

DepthRunH 0.0410 0.1090 0.3817 0.7003

DepthRunS 0.0363 0.1087 0.3737 0.7120

DepthRunSV 0.0370 0.1223 0.3750 0.7043

BarS 1.0000 1.0000 1.0000 1.0000

Cassart 0.0480 0.0557 0.0473 0.0463

PPG 0.0007 0.0023 0.0003 0.0013

PPR 0.0333 0.0590 0.1750 0.4313
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skewing mechanisms go back to Azzalini and Dalla Valle (1996) for the normal case
and to Azzalini and Capitanio (2003) for the Cauchy case.

Figure 1 reveals that, in all settings, the behavior of our tests does not depend
much on the depth function used. As expected, while the sphericity and ellipticity tests
collapse under central symmetry, our tests and the projection pursuit tests still meet the
5 % nominal level constraint under such conditions. As for the non-null behavior, our
tests always detect asymmetry, irrespective of the shape or tail weight of the underlying
distribution. Moreover, they perform well under heavy tails. For instance, under the
skewed centrally symmetric Cauchy distribution (lower right picture in Fig. 1), only
φ

(n)
PPR beats our tests (note that φ

(n)
PPG has no power at all there, a feature common

to all settings based on a Cauchy distribution). Simulations based on t3 instead of
Cauchy distributions led to very similar results (except that φ

(n)ellipt
Cassart exhibits some

power there), which is the reason why we do not include the corresponding plots here.
Parallel to Fig. 1, the first (resp., second) column of Fig. 2 reports rejection frequen-

cies under skewed normal (resp., Cauchy) distributions. In the first row, in which we
intended to investigate the robustness properties of the various tests, we considered
the same distributions as in the first row of Fig. 1, but replaced the last two observa-
tions with the outlying values (10, 10)′ and (11, 1)′. This has a dramatic impact on
φ

(n)ellipt
Cassart and on the projection pursuit tests (mainly on φ

(n)
PPG), while the other tests,

including ours, are not much affected by this contamination. Since further simula-
tions have actually revealed that other contaminations yield very similar results, our
tests, parallel to their classical univariate antecedent, enjoy good robustness prop-
erties. Let us now turn our attention to the second row of Fig. 2. The symmetric
kernels there are centrally symmetric normal and Cauchy densities, but with the thin-
ner (two-sided) cone C2 := {(x1, x2)′ ∈ R

2 : | arctan(x2/x1)| ≤ 1/5}. Asymmetry
is now introduced by transforming the corresponding symmetric random vectors Zi

into Xi = Zi + j (0, 0.04)′, j = 0, 1, 2, 3, that is, by simply shifting the Zi s in
the direction orthogonal to the axis of the cone. While it remains true that only
tests designed for central symmetry meet the 5 % level constraint and that φ

(n)
PPG

exhibits no power under skew-Cauchy distributions, it is interesting to note that our
three tests here clearly outperform the projection pursuit test φ

(n)
PPR. Finally, the third

row of Fig. 2 uses again centrally symmetric distributions, but, instead of a single
two-sided cone, we consider the union of two such cones, namely C2 ∪ C3, where
C3 := {(x1, x2)′ ∈ R

2 : | arctan(x2/x1) − π/4| ≤ 1/10}. The skewing method
employed is based on the sinh–arcsinh transform from Jones and Pewsey (2009),
which turns the corresponding symmetrically distributed Zi s into

Xi =
(
Xi1
Xi2

)
=

(
sinh(sinh−1(Zi1) + jδ1)
sinh(sinh−1(Zi2) + jδ2)

)
, j = 0, 1, 2, 3, (4)

with (δ1, δ2)
′ = (0.12, 0.1)′. The same comments as above concerning the validity

of the tests under the null and the power of some competitors under a Cauchy kernel
still apply here. Quite interestingly, note that skewing this centrally symmetric normal
distribution bymeans of the sinh–arcsinh transform is actually the only example where
our three tests do not perform in exactly the same way. Moreover, the plots speak a
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932 R. Dyckerhoff et al.

clear language: our tests perform well in this setting too, especially under the skew-
Cauchy version. And in the skew-normal setting, they are dominated by φ

(n)
PPG only.

Overall, Fig. 2 thus shows that our tests perform uniformly well, irrespective of the
skewing methods used.

Finally, we considered a totally different setting, in which the symmetric kernel is
the pdf of the bivariate “spiraled” random vector

(
Z1
Z2

)
= SU (1 + 10 θ)

(
cos θ

sin θ

)
,

where S = ±1 with respective probability 1/2, U ∼ Unif(0, 1) and θ ∼ Unif(0, π),
all three randomvariables beingmutually independent.Asymmetrywas introduced via
the sinh–arcsinh transform defined in (4), now with (δ1, δ2)

′ = (0.2, 0.15)′. Figure 3
reports the resulting rejection frequencies and shows that, again, only our tests and
the projection pursuit tests are able to meet the nominal level constraint. Quite inter-
estingly, our tests uniformly outperform the runs-based projection pursuit test φ

(n)
PPR.

Note that they beat the Gaussian projection pursuit test φ(n)
PPG for severely asymmetric

distributions only; recall, however, that φ(n)
PPG is poorly robust to heavy tails.

As a summary, thisMonte Carlo study shows that our depth-based runs tests, unlike
most of their competitors, always meet the nominal level constraint, and that they
always detect asymmetry, irrespective of the symmetric kernel or skewing mechanism
used. They moreover exhibit good robustness properties and often outperform most
of their competitors, which is particularly remarkable for tests that extend to the
multivariate setup a univariate universally consistent procedure. Finally, we report
that simulations for sample sizes n = 50 and n = 200 led to very similar results,
which explains why we restricted here to n = 100.

5 Final comments

In this final section, we shall briefly discuss some open problems and possible exten-
sions related to the material presented in this paper.

In the univariate case, Modarres and Gastwirth (1996) propose a weighted version
of theMcWilliams (1990) test statistic. The same weighting scheme straightforwardly
applies in the bivariate setup, yielding weighted (depth-based) runs statistics of the
form

R(n)
D;ω = 1 +

n∑

i=2

ωi I[0∈S(XAi ,XAi−1 ,XAi−2 )],

where the ωi s are positive real weights. With the choice of the weights being totally
free, one can give more importance to the observations near the center of symmetry by
choosing a monotonically decreasing sequence of weights, whereas, on the contrary, a
monotonically increasing sequence ofωi s allows to base the outcome of the tests more
on the observations in the “tails”. In contrast with this, R(n)

D treats equally observations
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from various depth levels. Therefore, it is clear that, in some situations, using R(n)
D;ω

instead of R(n)
D may increase the power.

The proposed bivariate runs tests can quite naturally be extended into tests for
k-variate central symmetry. First, the statistical depth functions from Sect. 2.1 were
indeed described for an arbitrary dimension k, which defines the corresponding anti-
ranks. Second, the bivariate simplicial runs introduced in (1) readily generalize into

1 +
n∑

i=k+1

I[0 ∈ S(xi , xi−1, . . . , xi−k)],

where S(x1, x2, . . . , xk+1) stands for the k-dimensional simplex with vertices
x1, x2, . . . , xk+1 ∈ R

k . Consequently, the resulting depth-based runs testswould reject
the null of k-variate central symmetry for small values of

R(n)
D;k = 1 +

n∑

i=k+1

I[
0∈S

(
XAi ,XAi−1 ,...,XAi−k

)]
.

Deriving the asymptotic null distribution of this test requires extending Lemmas 1–
3 to the k-dimensional setup. This can be achieved fairly easily (in Lemma 3, the
sequence of indicator functions is then (k − 1)-dependent with marginal expectation
1/2k), except for Lemma 2 and, consequently, Lemma 3(ii). Computing—or even
only showing distribution freeness of—the k−1 probabilities involved in the k-variate
version of that result would typically need ordering the directions of the observations.
For dimensions k ≥ 3, this means that vectors of k − 1 ≥ 2 angles should be ranked,
which adds further spice to the problem, but is also a very delicate issue and hence
left for future research work.

Finally, it is natural to wonder whether or not the proposed tests for bivariate central
symmetry inherit the universal consistency property from their univariate antecedent;
recall indeed that Henze (1993) proved that the McWilliams (1990) test is universally
consistent under absolute continuity. Henze’s proof actually identifies McWilliams’
test as a two-sample location runs test and then exploits universal consistency proper-
ties of such runs tests. In the univariate case, the two samples are naturally made of (i)
the original positive observations and (ii) the reflections (about the origin) of negative
observations. In the bivariate case, however, infinitely many halflines from the ori-
gin can bear observations and such a two-sample structure does not exist. Extending
the proof from Henze (1993) is therefore extremely challenging. Yet, our tests exhibit
some power in all setups considered in theMonte Carlo study above, and this universal
consistency therefore remains an interesting open problem.

Appendix A: technical proofs

Proof of Lemma 1. Fix sz = 1 and consider the system of equations

λx sxx + λysyy + λzz = 0, (5)
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to be solved in (λx , λy, λz) ∈ (R0)
3. The general position assumption implies that

each of the 4 couples of signs (sx , sy) ∈ {−1, 1}2 generates a solution (λx , λy, λz)

of (5). Clearly, only one of those 4 couples produces λs that all share the same sign.
For that (sx , sy),

ξx sxx + ξysyy + ξzz = 0, with

⎛

⎝
ξx
ξy
ξz

⎞

⎠ = 1

λx + λy + λz

⎛

⎝
λx

λy

λz

⎞

⎠ ∈ [0, 1]3, (6)

which entails that0 ∈ S(sxx, syy, z). For all other couples, it is impossible (irrespective
of the normalization) to make all coefficients of the linear combination (6) positive,
so that the corresponding simplices cannot contain the origin. The same reasoning
applies to the case sz = −1 and obviously leads to one single couple (sx , sy) that is
opposite to the couple identified for sz = 1. ��
Proof of Lemma 2. LetY := (Y′

1,Y
′
2,Y

′
3,Y

′
4)

′, whereYi := SiXi := Sign((Xi )2)Xi ,
and fix y := (y′

1, y
′
2, y

′
3, y

′
4)

′ ∈ (∂D+
τ )4, with ∂D+

τ := ∂Dτ ∩ (R × R
+), where

∂Dτ := {x ∈ R
2 : D(x, P) = τ }. Since P is a centrally symmetric distribution,

the signs Si are i.i.d. (they take values ±1 with respective probability 1/2) and are
independent of Y. It thus follows that

P[0 ∈ S(X1,X2,X3), 0 ∈ S(X2,X3,X4) | D(Xi ,P) = τ, i = 1, 2, 3, 4, Y = y]
= P[0 ∈ S(X1,X2,X3), 0 ∈ S(X2,X3,X4) |Y = y]
= 1

24
∑

(s1,s2,s3,s4)∈{−1,1}4
I[0 ∈ (S(s1y1, s2y2, s3y3)∩S(s2y2, s3y3, s4y4))]

= 1

24

(y),

where 
(y) denotes the number of sign vectors (s1, s2, s3, s4) ∈ {−1, 1}4 for which
both S(s1y1, s2y2, s3y3) and S(s2y2, s3y3, s4y4) contain the origin. Lemma 1 implies
that the only positive value of l(y) is 2, but since we may actually have l(y) = 0 (see
Figs. 4, 5 for an illustration), we may write

P[0 ∈ S(X1,X2,X3), 0 ∈ S(X2,X3,X4) | D(Xi ,P) = τ,

i = 1, 2, 3, 4, Y = y] = 1

23
I[
(y)=2].

Multiplying both sides of this equality with the density (with respect to the uniform
distribution over (∂D+

τ )4) of Y at y conditional on [D(Xi ,P) = τ, i = 1, 2, 3, 4]
(equivalently, conditional on [Y ∈ (∂D+

τ )4]) and then integrating over (∂D+
τ )4 yield

pτ,P = 1

8
P
[

(Y) = 2 |Y ∈ (∂D+

τ )4
]
.

To evaluate this probability, we need to discriminate between the ys in (∂D+
τ )4 for

which 
(y) = 2 and those for which 
(y) = 0.
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Fig. 4 Left For the given y-configuration, exactly two sign vectors (s1, s2, s3, s4) ∈ {−1, 1}4 are such that
both simplices S(s1y1, s2y2, s3y3) and S(s2y2, s3y3, s4y4) contain the origin. To see this, first fix s1 = 1.
Center Identify then the unique (Lemma 1) pair (s2, s3) such that S(y1, s2y2, s3y3) contains the origin.
Right Only one sign value s4 then provides a sign vector (1, s2, s3, s4), namely (1, −1, 1,−1), for which
both simplices contain the origin. Clearly, for s1 = −1, the same reasoning applies, resulting in the only
sign vector (s1, s2, s3, s4) = (−1, 1,−1, 1)

Fig. 5 For the given y-configuration, there is no sign vector (s1, s2, s3, s4) ∈ {−1, 1}4 for which both
simplices S(s1y1, s2y2, s3y3) and S(s2y2, s3y3, s4y4) contain the origin (by proceeding as in Fig. 4, it is
seen that, in the right subfigure, no sign value s4 is such that S(s2y2, s3y3, s4y4) contains the origin)

To this end, let θi := arccos((Yi )1/‖Yi‖), i = 1, 2, 3, 4 be the angle between the
positive first semi-axis and the halflineLi := {λYi : λ ≥ 0}, and denote by Ri the rank
of θi among θ1, θ2, θ3, θ4.Clearly, 
(Y) ismeasurablewith respect to (R1, R2, R3, R4).

Now, among the 4! = 24 possible rankings (R1, R2, R3, R4), it can easily be
checked that exactly 16 are such that 
(Y) = 2 (these 16 rankings are made of the
12 rankings with |R2 − R3| = 1 and the 4 rankings with {R2, R3} = {1, 4}). This,
and the fact that even conditional on [Y ∈ (∂D+

τ )4] the 24 rankings are equally likely,
eventually yields

pτ,P = 1

8
P

[

(Y) = 2 |Y ∈ (∂D+

τ )4
]

= 1

8
× 16

24
= 1

12
,

as was to be proved. ��
The proof of Lemma 3 requires the following technical result on depth that is of

independent interest.

Lemma 4 Let D be a statistical depth function and P be a probability measure onR2

that meet Assumptions (A1)–(A2). Let Z1,Z2, . . . ,Zn be i.i.d. P, and denote by P(n)

the resulting empirical distribution. Then,
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max
i=2,...,n

|D(Z(i),P
(n)) − D(Z(i−1),P

(n))| → 0

almost surely as n → ∞, where D(Z(i),P(n)) denotes the i th order statistic
of D(Z1,P(n)), . . . , D(Zn,P(n)).

Proof of Lemma 4. Partition the interval [αmin, αmax] [see Assumption (A2)] in M
intervals K1,M , K2,M , . . . , KM,M of equal length. Since gP is strictly decreasing
on [αmin, αmax], we have that pm,M := P[D(Zi ,P) ∈ Km,M ] > 0 for all m =
1, . . . , M . Denoting by A(n)

m,M the event that none of the D(Zi ,P)s, i = 1, . . . , n,
belong to Km,M , we have that, for all M ∈ N and 1 ≤ m ≤ M,

P
[
A(n)
m,M

]
= (

P
[
D(Z1,P) /∈ Km,M

])n = (1 − pm,M )n,

so that, letting Am,M := ∩∞
n=1A

(n)
m,M , we have that

P[Am,M ] = lim
n→∞P

[
A(n)
m,M

] = 0.

Since a countable union of null sets is again a null set, we conclude that

P

[ ∞⋃

M=1

M⋃

m=1

Am,M

]
= 0.

In other words, with probability 1, for any M ∈ N andm = 1, . . . , M , there exists i ∈
N0 such that D(Zi ,P) ∈ Km,M . Hence, for any M ∈ N, there exists NM ∈ N0 such
that for all n ≥ NM , each of the intervals K1,M , . . . , KM,M contains at least one of
the depth values D(Z1,P), . . . , D(Zn,P).

Now, let ε > 0 and choose M so large that the length—say, δ—of the intervals
K1,M , . . . , KM,M is smaller than ε/4. Then, from what we have just shown and by
Assumption (A1), it follows thatwith probability 1 there exists N , such that for n ≥ N ,

we have that (i) supz∈R2 |D(z, P(n)) − D(z, P)| < δ/2, and (ii) each of the intervals
K1,M , . . . , KM,M contains at least one of the depth values D(Z1,P), . . . , D(Zn,P).

Fix n ≥ N and choose i ∈ {1, . . . , n} arbitrarily. From what precedes, we know
that D(Zi ,P) ∈ Km,M for some m ∈ {1, . . . , M}. Then, two situations can occur:

1. Assume that m ≥ 3. Pick j ∈ {1, . . . , n} such that D(Z j ,P) ∈ Km−2,M . We have
that δ ≤ D(Zi ,P) − D(Z j , P) ≤ 3δ. Since |D(Z
, P(n)) − D(Z
,P)| < δ/2
for 
 = i, j , we obtain

D(Zi ,P
(n)) − D(Z j ,P

(n)) >
(
D(Zi ,P) − δ

2

)
−

(
D(Z j ,P) + δ

2

)

= D(Zi ,P) − D(Z j ,P) − δ ≥ 0
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and

D(Zi ,P
(n)) − D(Z j ,P

(n)) <
(
D(Zi ,P) + δ

2

)
−

(
D(Z j ,P) − δ

2

)

= D(Zi ,P) − D(Z j ,P) + δ ≤ 4δ ≤ ε.

2. Assume that m ≤ 2, that is, D(Zi ,P) ∈ (K1,M ∪ K2,M ) (which implies that
D(Zi ,P) ≤ αmin + 2δ). Now, either there exists j ∈ {1, . . . , n} such that
D(Z j ,P(n)) < D(Zi ,P(n)), in which case

D(Zi ,P
(n)) − D(Z j ,P

(n)) <
(
D(Zi ,P) + δ

2

)
−

(
D(Z j ,P) − δ

2

)

≤
(
αmin + 2δ + δ

2

)
−

(
αmin − δ

2

)
= 3δ < ε,

or there is no such j , in which case D(Zi ,P(n)) = D(Z(1),P(n)).

Summing up, we have proved that, for every i ∈ {1, . . . , n}, either there exists j ∈
{1, . . . , n} \ {i} such that 0 < D(Zi ,P(n)) − D(Z j ,P(n)) < ε or D(Zi ,P(n)) =
D(Z(1),P(n)). Clearly, this implies that

max
i=2,...,n

∣∣∣D(Z(i),P
(n)) − D(Z(i−1),P

(n))

∣∣∣ < ε

for n ≥ N , which establishes the result. ��
We attract the reader’s attention to the fact that in the previous proof, we have used

P not only for the common density of the Zi s (as in the rest of the paper), but as well
for the probability measure of the underlying probability space on which the random
quantities are defined (e.g., in P[Am,M ]). This abuse of notation is voluntary to avoid
unnecessarily complicated notations.

Proof of Lemma 3. (i) Define Y := (Y′
1, . . . ,Y

′
n)

′, with Yi := SiXi := Sign((Xi )2)

Xi , i = 1, . . . , n.
Note that the anti-ranks Ai , i = 1, . . . , n are Y-measurable quantities, since they

are computed on the basis of the symmetrized sample. This, along with the fact that
under Hcentr

0 the Si s are i.i.d. (they take here as well values ±1 with respective prob-
ability 1/2) and are independent of Y, yields

E[In,i |Y] = E
[
I[0 ∈ S(SAi (Y)YAi (Y), SAi−1(Y)YAi−1(Y), SAi−2(Y)YAi−2(Y))] |Y]

= 1

23
∑

(si ,si−1,si−2)∈{−1,1}3
I[0 ∈ S(siYAi (Y), si−1YAi−1(Y), si−2YAi−2(Y))].

In view of the absolute continuity of the Yi s, Lemma 1 therefore shows that

E[In,i |Y] = 2

23
= 1

4
a.s. (7)
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Taking expectations then yields the result.
(ii) Let �n = maxi=4,...,n(αn,i−3 − αn,i ), where αn,i = D(XAi ,P

(n)
sym), i =

1, . . . , n, by construction, forms a monotonically decreasing sequence. For any i =
4, . . . , n and k = 0, 1, 2, 3, we then have that (i) αn,i−k ≤ αn,i−3 < αn,i−3(1 + 1/n)

and (ii) αn,i−k ≥ αn,i ≥ αn,i−3 − �n . In other words,

X(n)
Ai

,X(n)
Ai−1

,X(n)
Ai−2

,X(n)
Ai−3

∈ D(n)
αn,i−3−�n

\ D(n)
αn,i−3(1+1/n) ∀i = 4, . . . , n,

where D(n)
α denotes the collection of points x ∈ R

2 such that D(x,P(n)
sym) ≥ α.

Now, fix ρ ∈ (0, 1/2) and restrict to indices i ∈ In(ρ) := {
ρn�, 
ρn� +
1, . . . , 
(1 − ρ)n�}. With probability one, this ensures that, for n large enough,

[
αn,
(1−ρ)n�−3, αn,
ρn�−3

]
⊂

[
α(1 − ρ/2), α(ρ/2)

]
,

where α(β) is defined through P[D(X, P) ≥ α(β)] = β. Theorem 4.1 from Zuo
and Serfling (2000b) implies that, for any α ∈ [α(1 − ρ/2), α(ρ/2)], D(n)

α−hn
\ D(n)

α

converges almost surely to ∂Dα = {x ∈ R
2 : D(x, P) = α} (recall that P(n)

sym
converges weakly to P since P is symmetric about the origin). It is easy to check that
the proof given in Zuo and Serfling (2000b) actually shows that this result also holds
uniformly in α ∈ [α(1 − ρ/2), α(ρ/2)]. This uniform convergence and Lemma 4
(which implies that �n converges to zero almost surely as n → ∞), along with
Lemma 2, establish the result.

(iii) First note that (7) yields P[In,i = a |Y] = 31−a/4(= P[In,i = a]) a.s.,
a ∈ {0, 1}, which implies that conditional (on Y) independence between In,i and In, j

can be written as

P[In,i = a, In, j = b |Y] = 31−a

4
× 31−b

4
, a, b ∈ {0, 1}. (8)

Would this conditional independence hold true for |i − j | ≥ 2, the lemma would
follow since this would provide

P[In,i = a, In, j = b] = E[P[In,i = a, In, j = b |Y]]
= 31−a

4
× 31−b

4
= P[In,i = a]P[In, j = b],

for all a, b ∈ {0, 1}.
We therefore conclude the proof by establishing the conditional independence above
for |i − j | ≥ 2. First, for |i − j | ≥ 3, we can see that

In,i = I[0∈S(SAi (Y)YAi (Y),SAi−1(Y)YAi−1(Y),SAi−2(Y)YAi−2(Y))]

and

In, j = I[0∈S(SA j (Y)YA j (Y),SA j−1(Y)YA j−1(Y),SA j−2(Y)YA j−2(Y))]
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involve disjoint triples of signs, so that the result trivially follows from the mutual
independence of those two collections of signs under the null. We may therefore focus
on the case |i − j | = 2 (for which exactly one sign is common to both In,i and In, j ).
Then, conditioning with respect to that common sign and then applying Lemma 1 to
each corresponding simplex yield (8) (after some immediate manipulations). ��
Proof of Theorem 2. The strategy consists in applying Theorem 1 to the statis-
tic (n − 2)−1/2

(
R(n)
D − 1 − (n − 2)/4

) = ∑n
i=2 Zn,i , based on the triangular

array (Zn,i )i=3,...,n, n ∈ {3, 4, . . .}, with Zn,i := (In,i − 1
4 )/

√
n − 2.

Lemma 3(i) directly shows that E[Zn,i ] = 0 for all n, i , and that Cov[Zn,i , Zn,i−h]
= (n − 2)−1Cov[In,i , In,i−h] = (n − 2)−1(E[In,i In,i−h] − 1

16 ) for h = 0, 1 (in
particular, E[Z2

n,i ] = Var[Zn,i ] = 3/[16(n − 2)]), while Lemma 3(iii) yields
Cov[Zn,i , Zn,i−h] = 0 for h ≥ 2. For n large (more precisely, n ≥ 4), we there-
fore have

σ 2
n := Var

[ n∑

i=3

Zn,i

]
= 3

16
+ 2

n − 2

n∑

i=4

(E[In,i In,i−1] − 1/16)

= 3

16
− 2(n − 3)

16(n − 2)
+ 2

n − 2

n∑

i=4

E[In,i In,i−1] → 1

16
+ 2c =: σ 2 ,

where we let

c := lim
n→∞ cn := lim

n→∞

[
1

n − 2

n∑

i=4

E[In,i In,i−1]
]
.

To determine c, we split cn into

cn = c(1)
n,ρ + c(2)

n,ρ + c(3)
n,ρ

:= 1

n − 2


ρn�∑

i=4

E[In,i In,i−1] + 1

n − 2


(1−ρ)n�∑

i=
ρn�+1

E[In,i In,i−1]

+ 1

n − 2

n∑

i=
(1−ρ)n�+1

E[In,i In,i−1],

where ρ ∈ (0, 1/2) is fixed. It follows from Lemma 3(ii) that c(2)
n,ρ → (1− 2ρ)/12 as

n → ∞, whereas the inequality |In,i In,i−1| ≤ 1 yields

|c(1)
n,ρ | ≤ 
ρn� − 3

n − 2
→ ρ and |c(3)

n,ρ | ≤ n − 
(1 − ρ)n�
n − 2

→ ρ

as n → ∞. Since this holds for any ρ ∈ (0, 1/2), we conclude that c = 1/12. This
establishes the result since it is easy to check that the conditions (i)–(iii) of Theorem 1
hold [(i) is a trivial consequence of the identity E[Z2

n,i ] = 3/[16(n − 2)] and, (ii)
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follows from the boundedness of (n − 2)1/2|Zn,i |, whereas (iii) is a direct corollary
of Lemma 3(iii)]. ��
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