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Abstract The problem of estimating two ordered normal means is considered under
themodified Pitman nearness criterion in the presence and absence of the order restric-
tion on variances. When variances are not ordered, a class of estimators is considered
that reduce to the estimators of a common mean when the unbiased estimators violate
the order restriction. It is shown that the most critical case for uniform improvement
with regard to the unbiased estimators is the one when two means are equal. When
variances are ordered, a class of estimators is considered, taking the order restriction
on variances into consideration. The proposed estimators of the mean with a larger
variance improve upon the estimators that do not take the order restriction on variances
into consideration. Although a similar improvement is not possible in estimating the
mean with a smaller variance, a domination result is given in the simultaneous esti-
mation.

Keywords Order restriction · Common mean · Restricted MLE · Unbiased
estimator · Pitman nearness · Modified Pitman nearness · Uniform improvement

1 Introduction

Estimation of restricted normal means (simple order, tree order or orthant restrictions
etc.) has been considered by many authors and some estimators improving upon the
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unbiased estimators have been proposed.Most works related to the inference about the
restricted parameters are reviewed byBarlow et al. (1972), Robertson et al. (1988), Sil-
vapulle and Sen (2004) and Van Eeden (2006). As a criterion to evaluate the goodness
of estimators, mean squared error (MSE) is usually used and in some cases stochastic
domination as well.

A possible alternative criterion, which was introduced by Pitman (1937), is Pitman
nearness. Let T1 and T2 be two estimators of θ . Then, Pitman nearness of T1 relative
to T2 is defined by

PNθ (T1, T2) = P{|T1 − θ | < |T2 − θ |}

and T1 is said to be closer to θ than T2 if PNθ (T1, T2) ≥ 1/2 for any parameter
value. We refer the reader to Rao (1981), Keating and Mason (1985, 1986), Peddada
(1985), Rao et al. (1986), Peddada andKhattree (1986) for its discussions.Manyworks
related to Pitman nearness were published in the special issue of Communications in
Statistics—Theory and Methods A20 (11) in 1992 and were unified in the monograph
by Keating et al. (1993). Although the Pitman nearness has been severely criticized
as a measure of comparing estimators (see Robertson et al. 1993), we believe that it
is a useful criterion in comparing two estimators and understanding the nature of the
estimators.

Here, we consider the estimation of two ordered normal means when order restric-
tion on the unknown variances is present and not present. We propose some estimators
of the means which improve upon some baseline estimators which do not take into
account of the order restrictions in terms of modified Pitman nearness criterion sug-
gested by Gupta and Singh (1992). We first state some fundamental results on the
estimation of a common mean and ordered means when MSE, stochastic domination
or Pitman nearness is concerned. Let Xi j , i = 1, 2, j = 1, . . . , ni be independent
observations from normal distribution with mean μi and variance σ 2

i , where both μi

and σ 2
i are unknown. Let

X̄i =
ni∑

j=1

Xi j/ni and s2i =
ni∑

j=1

(Xi j − X̄i )
2/(ni − 1)

be the unbiased estimators of μi and σ 2
i , respectively.

For the common mean problem (μ1 = μ2 = μ) when two variances are unknown
and there is no order restriction on the two variances, Graybill and Deal (1959)
proposed the estimator

μ̂GD = n1s22
n1s22 + n2s21

X̄1 + n2s21
n1s22 + n2s21

X̄2

and gave a necessary and sufficient condition on n1 and n2 for μ̂GD to have a smaller
variance than both X̄1 and X̄2. Later, many authors, including Brown and Cohen
(1974), Khatri and Shah (1974), and Bhattacharya (1980), have given a class of
improved estimators of the form

123



Estimation of two ordered normal means under modified Pitman nearness 865

μ̂(γ ) = γ X̄1 + (1 − γ )X̄2,

where γ is a function of s21 , s
2
2 and possibly (X̄1 − X̄2)

2. As for Pitman nearness
criterion, Kubokawa (1989) has given a broad class of estimators of a common mean
with γ given by

γψ = 1 − a

1 + Rψ(s21 , s
2
2 , (X̄1 − X̄2)2)

where R = (bs22 + c(X̄1 − X̄2)
2)/s21 , ψ is a positive valued function and a, b, and c

are nonnegative constants. For suitably chosen ψ, a, b, and c, Kubokawa (1989) has
given a sufficient condition on n1 and n2 so that μ̂(γψ) is closer to μ than X̄1. Thus,
Kubokawa (1989) has shown that μ̂GD is closer to μ than both X̄1 and X̄2 if n1 ≥ 5
and n2 ≥ 5. Misra and Van der Meulen (1997) have discussed estimating a common
mean of k(≥ 2) normal distributions when order restriction is given on variances and
proposed an estimator improving upon μ̂GD in terms of stochastic dominance and
Pitman nearness.

For the case when k normal means satisfy simple order restriction and variances are
known, Lee (1981) has shown that restricted MLE (maximum likelihood estimator)
uniformly improves upon sample means in terms of MSE. Kelly (1989) and Hwang
and Peddada (1994) have proven that restricted MLE universally dominates sample
means. For the casewhenσ 2

i ’s are unknown and twomeans satisfy the order restriction,
μ1 ≤ μ2, Oono and Shinozaki (2005) have proposed the estimators of μi , i = 1, 2

μ̂OS
1 = min

{
X̄1, μ̂

GD
}

and μ̂OS
2 = max

{
X̄2, μ̂

GD
}

,

and have shown that μ̂OS
i uniformly improves upon X̄i in terms of MSE if and only if

MSE of μ̂OS
i is not larger than that of X̄i for the case when μ1 = μ2. Further, it has

been shown that μ̂OS
i improves upon X̄i if and only if μ̂GD improves upon X̄i in the

common mean problem. It should be mentioned that Garren (2000) has proposed a
similar estimator with s2i replaced by the MLE of σ 2

i in μ̂GD
i and has given a condition

on n1 and n2 for the estimator to have larger (or smaller) MSE when μ1 = μ2 and
σ 2
2 /σ 2

1 is sufficiently large.
Next, we consider the estimation of two ordered means when order restriction,

σ 2
1 ≤ σ 2

2 , is given on two variances. Such a situation can occur, for example, if there
are two kinds of motor engines, one of which is developed by a new method, and
has higher power but has larger variation than the other one developed by a standard
method. Shi (1994) and Ma and Shi (2002) have discussed the order restricted MLE
of μi and σ 2

i . Chang et al. (2012) have considered a class of estimators of μi , i = 1, 2
of the form

μ̂1(γ ) = min{X̄1, γ X̄1+(1−γ )X̄2}, μ̂2(γ ) = max{X̄2, γ X̄1+(1−γ )X̄2}, (1)

where γ is a function of s21 , s
2
2 , and (X̄1− X̄2)

2. γ may be considered to be an estimator
of n1σ 2

2 /(n1σ 2
2 + n2σ 2

1 ) which is not larger than n1/(n1 + n2) when σ 2
1 ≤ σ 2

2 . Thus,
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as in the common mean problem (see, for example, Seshadri 1966; Nair 1982; Elfessi
and Pal 1992), we may improve upon μ̂i (γ ) by replacing γ with

γ + =
{

γ, if γ ≥ n1
n1+n2

,

γ̃ , if γ < n1
n1+n2

,
(2)

and choosing γ̃ appropriately. Actually, Chang et al. (2012) have shown that μ̂2(γ
+)

stochastically dominates μ̂2(γ ) if γ̃ is chosen to satisfy

n1
n1 + n2

≤ γ̃ ≤ 2
n1

n1 + n2
− γ, when γ <

n1
n1 + n2

. (3)

Further, Chang et al. (2012) have shown that although μ̂1(γ ) has smaller MSE than
μ̂1(γ

+) for sufficiently largeμ2−μ1, (μ̂1(γ
+), μ̂2(γ

+)) dominates (μ̂1(γ ), μ̂2(γ ))

in the sense that

P

{
2∑

i=1

(
μ̂i (γ

+) − μi

τi

)2

≤ d

}
≥ P

{
2∑

i=1

(
μ̂i (γ ) − μi

τi

)2

≤ d

}

for any d > 0, where τ 2i = σ 2
i /ni .

Now, we state a modification of Pitman nearness to compare the estimators when
they are equal with positive probability. Nayak (1990) defined modified Pitman near-
ness of an estimator T1 of θ relative to the other estimator T2 by

MPNθ (T1, T2) = P{|T1 − θ | < |T2 − θ | | T1 �= T2}.

If MPNθ (T1, T2) ≥ 1/2 for any parameter value, then T1 is said to be closer to θ than
T2. Gupta and Singh (1992) have applied modified Pitman nearness to the estimation
of ordered means of two normal population with common variance and have shown
that MLE is closer than the unbiased estimator.

Here, we consider the estimation problems under modified Pitman nearness for the
following two cases

Case-I: estimation of two ordered means when σ 2
1 and σ 2

2 are unrestricted,

Case-II: estimation of two ordered means when σ 2
1 ≤ σ 2

2 .

We are much interested in whether or not the similar results can be obtained under the
modified Pitman nearness criterion to those obtained by Oono and Shinozaki (2005)
and Chang et al. (2012) under MSE or stochastic domination criterion.

We first treat Case-I in Sect. 2 of this paper. With respect to modified Pitman
nearness, we show that μ̂i (γ ) improves upon X̄i if and only if MPNμi (μ̂i (γ ), X̄i ) ≥
1/2 when μ1 = μ2, which is the most critical case for uniform improvement. Further,
it is shown that μ̂i (γ ) improves upon X̄i if and only if μ̂(γ ) improves upon X̄i for
the same γ in estimating a common mean. Thus, the problem of improving upon the
unbiased estimators of two ordered means essentially reduces to the one of a common
mean. This conclusion also applies even when variances are ordered. However, we
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Estimation of two ordered normal means under modified Pitman nearness 867

show that when σ 2
1 ≤ σ 2

2 , μ̂GD improves upon X̄2 for a wide range of (n1, n2) in
Sect. 3. In Sect. 4, for Case-II, we treat the problem of improving upon μ̂i (γ ) by
replacing γ with γ + satisfying (2) and (3) with respect to modified Pitman nearness
when the restrictionsμ1 ≤ μ2 and σ 2

1 ≤ σ 2
2 are given.We show that μ̂2(γ

+) improves
upon μ̂2(γ ) for suitably chosen γ̃ , but μ̂1(γ

+) does not improve upon μ̂1(γ ) even if γ̃
is chosen appropriately. Simultaneous estimation of μ1 and μ2 is also discussed with
respect to generalized Pitman nearness based on sum of normalized squared errors
(Rao et al. 1986; Peddada and Khattree 1986). In Sect. 5, we give some results of the
numerical study to evaluate the performance of the proposed estimators for the choice
γ = n1s22/(n1s

2
2 + n2s21 ) in terms of modified Pitman nearness. In Sect. 6, we make

a conclusion.
Throughout this paper, we assume that γ is a function of s21 and s22 satisfying

0 ≤ γ ≤ 1 and that in some places γ may depend on (X̄1 − X̄2)
2 as well.

2 Case-I: improving unbiased estimators of ordered means when variances
are unrestricted

In this section, we treat the estimation problem of ordered means μ1 ≤ μ2 when
variances are not ordered. We consider estimators of μi of the form (1) and compare
them with the unbiased estimator X̄i . We first show that for the case when γ is a
function of s21 and s22 only, the most critical case for μ̂i (γ ) to be closer to μi than X̄i

is the one when μ1 = μ2. Further, it is shown that μ̂i (γ ) improves upon X̄i if and
only if μ̂(γ ) dominates X̄i in the estimation problem of a common mean.

Theorem 1 Suppose that 0 ≤ γ ≤ 1 is a function of s21 and s22 .

(i) MPNμi (μ̂i (γ ), X̄i ) ≥ 1/2 for all μ1 ≤ μ2 and for all σ 2
1 and σ 2

2 if and only if
for all σ 2

1 and σ 2
2 ,MPNμi (μ̂i (γ ), X̄i ) ≥ 1/2 when μ1 = μ2.

(ii) MPNμi (μ̂i (γ ), X̄i ) ≥ 1/2 for all μ1 ≤ μ2 and for all σ 2
1 and σ 2

2 if and only if
for all σ 2

1 and σ 2
2 , PNμ(μ̂(γ ), X̄i ) ≥ 1/2 to estimate μ when μ1 = μ2 = μ.

Remark 1 In the estimation problem of a common mean, Kubokawa (1989) has given
a sufficient condition on sample sizes n1 and n2 for μ̂(γ ) to be closer to μ than X̄i for
some specified class of γ . For example, for the choice of γ = n1s22/(n1s

2
2 + n2s21 ),

μ̂GD is closer to μ than both X̄1 and X̄2 if n1 ≥ 5 and n2 ≥ 5.

Proof We need only to give a proof for the case of μ1.

(i) Since μ̂1(γ ) �= X̄1 if and only if X̄1 > X̄2 and γ < 1, we have

MPNμ1(μ̂1(γ ), X̄1)

= P{|μ̂1(γ ) − μ1| < |X̄1 − μ1| | μ̂1(γ ) �= X̄1}
= P{|γ X̄1 + (1 − γ )X̄2 − μ1| < |X̄1 − μ1| | X̄1 > X̄2, γ < 1}
= P{2μ1 < (1 + γ )X̄1 + (1 − γ )X̄2 | X̄1 > X̄2, γ < 1}
= P{0 < (1 + γ )Z1 + (1 − γ )Z2 | Z1 > Z2, γ < 1}, (4)
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where Zi = X̄i − μ1, i = 1, 2 are distributed as N (0, τ 21 ) and N (Δ, τ 22 ), respec-
tively, Δ = μ2 − μ1 and τ 2i = σ 2

i /ni . Now, we fix the values of s21 and s22 for
which γ < 1 and consider the conditional probability

P{0 < (1 + γ )Z1 + (1 − γ )Z2|Z1 > Z2, s
2
1 , s

2
2 } ≡ f (Δ)

as a function of Δ. We need only to show that f (Δ) ≥ f (0). Putting d = (1 +
γ )/(1 − γ ), we define the sets

A = {(z1, z2)|z1 ≥ z2, z2 ≥ −dz1}, B = {(z1, z2)|z1 ≥ z2, z2 < −dz1},
A1 = {(z1, z2)|z1 ≥ z2, z2 ≥ 0} and A2 = {(z1, z2)|z2 ≥ −dz1, z2 < 0}.

Since A1 and A2 are disjoint and A = A1 ∪ A2, we have

f (Δ)− f (0)= PΔ(A)

PΔ(A)+PΔ(B)
− P0(A)

P0(A)+P0(B)

= {PΔ(A1)P0(B)−P0(A1)PΔ(B)}+{PΔ(A2)P0(B)−P0(A2)PΔ(B)}
{PΔ(A)+PΔ(B)}{P0(A)+P0(B)} ,

where, for example, P0(A) denotes the probability of the set A when Δ = 0. We first
show that PΔ(A1)P0(B) − P0(A1)PΔ(B) > 0 for Δ > 0. For that purpose, we note
that

PΔ(B) =
∫ 0

−∞
1√
2πτ2

exp

{
− (z2 − Δ)2

2τ 22

}∫ −z2/d

z2

1

τ1
φ(z1/τ1)dz1dz2

< exp

{
− Δ2

2τ 22

}∫ 0

−∞
1√
2πτ2

exp

{
− z22
2τ 22

}∫ −z2/d

z2

1

τ1
φ(z1/τ1)dz1dz2

= exp

{
− Δ2

2τ 22

}
P0(B). (5)

Similarly, we have

PΔ(A1) =
∫ ∞

0

1√
2πτ2

exp

{
− (z2 − Δ)2

2τ 22

}∫ ∞

z2

1

τ1
φ(z1/τ1)dz1dz2

> exp

{
− Δ2

2τ 22

}
P0(A1). (6)

From (5) and (6), we see that PΔ(A1)P0(B) − P0(A1)PΔ(B) > 0.
Next, we show that PΔ(A2)P0(B) − P0(A2)PΔ(B) > 0 for Δ > 0. We express

PΔ(A2) as
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Estimation of two ordered normal means under modified Pitman nearness 869

PΔ(A2) =
∫ 0

−∞
1√
2πτ2

exp

{
− (z2 − Δ)2

2τ 22

}∫ ∞

−z2/d

1

τ1
φ(z1/τ1)dz1dz2

= PΔ{Z2 < 0}EΔ[g(Z2)|Z2 < 0],

where g(z2) = ∫∞
−z2/d

φ(z1/τ1)/τ1dz1. Since g(z2) is an increasing function and the
conditional distribution of Z2 < 0 is stochastically smallest when Δ = 0, we have for
Δ > 0

PΔ(A2) > PΔ{Z2 < 0}E0[g(Z2)|Z2 < 0] = P0(A2)PΔ{Z2 < 0}/P0{Z2 < 0}. (7)

Similarly, since h(z2) = ∫ −z2/d
z2

φ(z1/τ1)/τ1dz1 is a decreasing function, we have

PΔ(B) =
∫ 0

−∞
1√
2πτ2

exp

{
− (z2 − Δ)2

2τ 22

}∫ −z2/d

z2

1

τ1
φ(z1/τ1)dz1dz2

= PΔ{Z2 < 0}EΔ[h(Z2)|Z2 < 0]
< PΔ{Z2 < 0}E0[h(Z2)|Z2 < 0]
= P0(B)PΔ{Z2 < 0}/P0{Z2 < 0}. (8)

From (7) and (8), we have PΔ(A2)P0(B) − P0(A2)PΔ(B) > 0 and we have shown
that f (Δ) > f (0) for Δ > 0.

(ii) In the estimation problem of a common mean, as is stated in Kubokawa (1989, p.
481), Eq. (8), μ̂(γ ) is closer to μ than X̄1 if and only if

P{(1 − γ )(U2 −U1)
2 + 2U1(U2 −U1) ≤ 0} ≥ 1/2, (9)

where Ui = X̄i − μ, i = 1, 2. Since

(1 − γ )(U2 −U1)
2 + 2U1(U2 −U1) = (U2 −U1){(1 + γ )U1 + (1 − γ )U2},

the LHS of (9) is expressed as

P{U1 ≤ U2}P{(1 + γ )U1 + (1 − γ )U2 < 0 | U1 ≤ U2}
+ P{U1 > U2}P{(1 + γ )U1 + (1 − γ )U2 > 0 | U1 > U2}.

We notice that

P{(1 + γ )U1 + (1 − γ )U2 < 0 | U1 ≤ U2}
= P{(1 + γ )U1 + (1 − γ )U2 > 0 | U1 > U2},

since U1 and U2 are symmetrically distributed about the origin. Thus, noting that
P{U1 ≤ U2} = P{U1 > U2} = 1/2, we see that the LHS of (9) is equal to

P{(1 + γ )U1 + (1 − γ )U2 > 0 | U1 > U2},
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which is MPNμ1(μ̂1(γ ), X̄1) given by (4) for the case μ1 = μ2. Therefore, we see
from (i) that MPNμ1(μ̂1(γ ), X̄1)) ≥ 1/2 for all μ1 ≤ μ2 and for all σ 2

1 and σ 2
2 if

and only if PNμ(μ̂(γ ), X̄i ) ≥ 1/2 for all μ and for all σ 2
1 and σ 2

2 . We complete the
proof. 	


Remark 2 We shouldmention about the general casewhen γ is a function of s21 , s
2
2 and

(X̄1 − X̄2)
2. We first consider the case when we estimate μ1 and suppose that μ̂1(γ0)

is closer to μ1 than X̄1, where γ0 is a function of s21 , s
2
2 and possibly (X̄1 − X̄2)

2.
For any γ satisfying γ0 ≤ γ < 1 if γ0 < 1, μ̂1(γ ) is closer to μ1 than X̄1. This
is seen from (4), since (4) is true even when γ depends on (X̄1 − X̄2)

2 and (4) is
an increasing function of γ . Next, we consider the case when we estimate μ2 and
suppose that μ̂2(γ0) is closer to μ2 than X̄2, where γ0 is a function of s21 , s

2
2 and

possibly (X̄1 − X̄2)
2. For any γ satisfying 0 < γ ≤ γ0 if γ0 > 0, μ̂2(γ ) is closer to

μ2 than X̄2.

3 Case-II: improving unbiased estimators of ordered means when variances
are ordered

Now, we treat the estimation problem of ordered means μ1 ≤ μ2 when the order
restriction σ 2

1 ≤ σ 2
2 on variances is present. It is necessary for us to modify the

estimators μ̂i (γ ), i = 1, 2 treated in Sect. 2, taking into account of the order restriction
σ 2
1 ≤ σ 2

2 . We discuss such modifications of estimators in the next section. Before that
we discuss a sufficient condition on the sample sizes n1 and n2 for μ̂i (γ ) to improve
upon X̄i when the order restriction σ 2

1 ≤ σ 2
2 is present.

It is easily seen that Theorem 1 is true even for the case when the restriction
σ 2
1 ≤ σ 2

2 is present, if we replace “for all σ 2
1 and σ 2

2 ” by “for all σ 2
1 ≤ σ 2

2 ”. That is,
the most critical case for μ̂i (γ ) to improve upon X̄i is the case when μ1 = μ2, and
μ̂i (γ ) improves upon X̄i if and only if μ̂(γ ) improves upon X̄i for the same γ in the
estimation of a common mean. Thus, the problem reduces to the estimation problem
of a common mean when the restriction σ 2

1 ≤ σ 2
2 is present, which we are concerned

with in the rest of this section.
For the case when the restriction σ 2

1 ≤ σ 2
2 is not present, Kubokawa (1989) has

given a sufficient condition on n1 and n2 which guarantees that μ̂(γ ) improves upon
X̄i for some specified class of γ . We modify Kubokawa (1989)’s discussion for the
case when the restriction σ 2

1 ≤ σ 2
2 is present. We first note that there is no room for

modifying the sufficient condition for μ̂(γ ) to improve upon X̄1 which is associated
with smaller variance σ 2

1 , since the case σ 2
1 /σ 2

2 → 0 is critical as is seen from the
proof of Kubokawa (1989). However, we show that μ̂(γ ) improves upon X̄2 which is
associated with larger variance for a wide range of (n1, n2). Unfortunately, we have
not succeeded in showing generally the monotonicity of PNμ(μ̂(γ ), X̄2) in σ 2

1 /σ 2
2 .

Here, we restrict ourselves to the estimator μ̂(γ ) = γ X̄1 + (1 − γ )X̄2 with γ of the
form

γ = n1s22
n1s22 + cn2s21

, (10)
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Estimation of two ordered normal means under modified Pitman nearness 871

where c is a positive constant to be chosen properly. From Remark 2, it is seen that
if γ = n1s22/(n1s

2
2 + cn2s21 ) gives an improved estimator, then any γ satisfying

0 < γ ≤ n1s22/(n1s
2
2 + cn2s21 ) also gives an improvement even when γ depends on

(X̄1 − X̄2)
2.

We essentially follow the notations given in the proof of Kubokawa (1989) and
put τ = (n1σ 2

2 )/(n2σ 2
1 ) and Z = τ + cF , where F is a random variable having

F-distribution with degrees of freedom (n1 − 1, n2 − 1). Putting G = √
τ {1 − (1 +

τ)/(2Z)}, PNμ(μ̂(γ ), X̄2) ≥ 1/2 if

h(τ ) = E

[∫ (G+√
G2+1)2

0
f1,1(v)dv

]
≥ 1/2,

where f1,1(·) is a density of an F-distribution with degrees of freedom (1, 1) and the
expectation is taken with respect to the random variable F . Further, the derivative of
h(τ ) is given in Kubokawa (1989) as

h′(τ ) = C0

2
√

τ(1 + τ)
E

[
2Z2 − (1 + 3τ)Z + 2τ(1 + τ)

4Z2 − 4τ Z + τ(1 + τ)

]
, (11)

where C0 is a positive constant.
First, we see that for any c > 0, h(τ ) ≥ 1/2 for τ ≥ 1, since τ ≥ 1 implies

G ≥ 0. τ ≥ 1 for any σ 2
2 ≥ σ 2

1 if and only if n1 ≥ n2. Thus, we see that μ̂(γ ) with γ

given by (10) improves upon X̄2 if n1 ≥ n2.
Kubokawa (1989) has shown that if c ≥ (n1−1)/{2(n1−3)} for n1 ≥ 4, h′(τ ) ≥ 0

for any τ ≥ 0 and thus h(τ ) ≥ h(0) = 1/2, for any τ ≥ 0. Therefore, we see that under
the same condition on c, h(τ ) ≥ 1/2 for any τ ≥ n1/n2. Since (n1−1)/{2(n1−3)} ≤
1 for n1 ≥ 5, μ̂GD improves upon X̄2 for n1 ≥ 5.

Even when n1 ≤ 4, we can show that μ̂(γ ) improves upon X̄2 for a wide range of
n2. From (11), we see that h′(τ ) ≥ 0 if 2z2−(1+3τ)z+2τ(1+τ) ≥ 0 for any z ≥ τ ,
which is true if τ ≥ (−5 + 4

√
2)/7 = 0.0938. Therefore, h′(τ ) ≥ 0 for τ ≥ n1/n2

if n1/n2 ≥ 0.0938. Thus, we have seen that if n1/n2 ≥ 0.0938 and h(n1/n2) ≥ 1/2,
μ̂(γ ) improves upon X̄2. Setting c = 1, we have numerically evaluated h(n1/n2) for
some values of (n1, n2) as given in Table 1. From Table 1, we see that μ̂GD is closer
to μ than X̄2 for (n1 = 2, n2 ≤ 7), (n1 = 3, n2 ≤ 26) and (n1 = 4, n2 ≤ 31), and is
not closer to μ than X̄2 for (n1 = 2, 8 ≤ n2 ≤ 31) and (n1 = 3, 27 ≤ n2 ≤ 31).

4 Case-II: a class of improved estimators of ordered means when variances
are also ordered

In Sect. 2, we have compared μ̂i (γ ) with X̄i for Case-I, where the order restriction is
given on two means and σ 2

1 and σ 2
2 are unrestricted. Although we also compared them

for Case-II, where order restrictions are given onmeans and variances in Sect. 3, μ̂i (γ )

is not constructed so that the order restriction on variances is taken into consideration.
Since the inequality σ 2

1 ≤ σ 2
2 implies n1σ 2

2 /(n1σ 2
2 + n2σ 2

1 ) ≥ n1/(n1 + n2), we may
modify μ̂i (γ ) so that γ ≥ n1/(n1+n2) is satisfied. As is given in (3), we replace γ by
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Table 1 h(n1/n2)

n2/n1 2 3 4 5 6 7 8 9 10

2 0.636 0.690 0.720 0.740 0.756 0.769 0.780 0.789 0.797

3 0.583 0.640 0.671 0.693 0.710 0.723 0.735 0.744 0.753

4 0.552 0.610 0.642 0.663 0.680 0.694 0.706 0.716 0.724

5 0.531 0.590 0.621 0.643 0.659 0.673 0.685 0.695 0.703

6 0.516 0.575 0.606 0.627 0.644 0.657 0.668 0.678 0.687

7 0.505 0.563 0.594 0.615 0.631 0.644 0.655 0.665 0.674

8 0.495 0.554 0.584 0.605 0.621 0.634 0.645 0.654 0.663

9 0.488 0.546 0.576 0.597 0.612 0.625 0.635 0.645 0.653

10 0.482 0.540 0.570 0.590 0.605 0.617 0.628 0.637 0.645

11 0.476 0.535 0.564 0.584 0.598 0.611 0.621 0.630 0.638

12 0.472 0.530 0.559 0.578 0.593 0.605 0.615 0.624 0.632

13 0.468 0.526 0.555 0.574 0.588 0.600 0.610 0.618 0.626

14 0.464 0.522 0.551 0.570 0.584 0.595 0.605 0.614 0.621

15 0.461 0.519 0.548 0.566 0.580 0.591 0.601 0.609 0.617

16 0.459 0.517 0.545 0.563 0.577 0.588 0.597 0.605 0.613

17 0.456 0.514 0.542 0.560 0.573 0.584 0.594 0.602 0.609

18 0.454 0.512 0.539 0.557 0.571 0.581 0.590 0.598 0.606

19 0.452 0.510 0.537 0.555 0.568 0.579 0.587 0.595 0.602

20 0.450 0.508 0.535 0.553 0.566 0.576 0.585 0.593 0.599

21 0.449 0.506 0.533 0.551 0.563 0.574 0.582 0.590 0.597

22 0.447 0.505 0.532 0.549 0.561 0.571 0.580 0.587 0.594

23 0.446 0.503 0.530 0.547 0.559 0.569 0.578 0.585 0.592

24 0.445 0.502 0.529 0.545 0.558 0.567 0.576 0.583 0.590

25 0.444 0.501 0.527 0.544 0.556 0.566 0.574 0.581 0.588

26 0.443 0.500 0.526 0.542 0.554 0.564 0.572 0.579 0.586

27 0.442 0.499 0.525 0.541 0.553 0.562 0.571 0.578 0.584

28 0.441 0.498 0.524 0.540 0.552 0.561 0.569 0.576 0.582

29 0.440 0.497 0.523 0.539 0.550 0.560 0.567 0.574 0.580

30 0.439 0.496 0.522 0.538 0.549 0.558 0.566 0.573 0.579

31 0.438 0.495 0.521 0.537 0.548 0.557 0.565 0.571 0.577

γ̃ ≥ n1/(n1 + n2) when γ < n1/(n1 + n2). Using γ + given in (2), we have μ̂i (γ
+)

and compare it with μ̂i (γ ) in this Section. In Theorem 2, for the estimation of the
mean μ2 of the population with larger variance, we show that μ̂2(γ

+) is closer to μ2
than μ̂2(γ ) for suitably chosen γ̃ . In Theorem 3, for the estimation of the mean μ1 of
the population with smaller variance, we show that MPNμ1(μ̂1(γ

+), μ̂1(γ )) < 1/2
for some parameter values even when γ̃ is chosen appropriately. In Theorem 4, we
show that improvement is possible when we estimate means (μ1, μ2) simultaneously
under generalized Pitman nearness based on sum of normalized squared errors. Here,
we assume that γ may depend on (X̄1 − X̄2)

2 as well.
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Estimation of two ordered normal means under modified Pitman nearness 873

4.1 Estimation of individual means when means and variances are ordered

Theorem 2 Suppose that P{X̄1 − X̄2 > 0, γ < n1/(n1 + n2)} > 0 for any μ1 ≤ μ2
and σ 2

1 ≤ σ 2
2 . If γ̃ is chosen so that

n1
n1 + n2

≤ γ̃ ≤ 2
n1

n1 + n2
− γ when γ <

n1
n1 + n2

, (12)

then for any μ1 ≤ μ2 and σ 2
1 ≤ σ 2

2 ,MPNμ2(μ̂2(γ
+), μ̂2(γ )) ≥ 1/2.

Proof We show that

P
{|μ̂2(γ

+) − μ2| < |μ̂2(γ ) − μ2|, μ̂2(γ
+) �= μ̂2(γ )

}

≥ P
{
μ̂2(γ

+) �= μ̂2(γ )
}
/2. (13)

From (12), we see that μ̂2(γ
+) �= μ̂2(γ ) if and only if X̄1 > X̄2 and γ < n1/(n1+n2).

In this case, μ̂2(γ
+) = γ̃ X̄1 + (1 − γ̃ )X̄2 > γ X̄1 + (1 − γ )X̄2 = μ̂2(γ ). Thus, the

LHS of (13) is expressed as

P
{|μ̂2(γ

+) − μ2| < |μ̂2(γ ) − μ2|, X̄1 > X̄2, γ < n1/(n1 + n2)
}

= P
{
μ̂2(γ̃ ) + μ̂2(γ ) < 2μ2, X̄1 > X̄2, γ < n1/(n1 + n2)

}

= P
{
(γ + γ̃ )(X̄1 − μ2) + {2 − (γ + γ̃ )}(X̄2 − μ2) < 0,

X̄1 > X̄2, γ < n1/(n1 + n2)
}
. (14)

Now, we make the variable transformation

V1 = (X̄1 − μ2) − (X̄2 − μ2), V2 = (τ 22 /τ 21 )(X̄1 − μ2) + (X̄2 − μ2).

Then, V1 and V2 are independently distributed as N
(−Δ, τ 21 + τ 22

)
and

N (−(τ 22 /τ 21 )Δ, τ 22 (τ 21 + τ 22 )/τ 21 ), respectively, where Δ = μ2 −μ1 ≥ 0. Noting that

X̄1 − μ2 = τ 21 (V1 + V2)

τ 21 + τ 22
and X̄2 − μ2 = τ 21 V2 − τ 22 V1

τ 21 + τ 22
,

and denoting the indicator functions of the sets V1 > 0 and γ < n1/(n1 + n2) by
IV1>0 and Iγ<n1/(n1+n2 , respectively, (14) becomes

P
{[

(γ +γ̃ )τ 21 −{2−(γ +γ̃ )}τ 22
]
V1+2τ 21 V2 < 0, V1 > 0, γ < n1/(n1+n2)

}

= E

⎡

⎣Φ

⎛

⎝ [{2−(γ +γ̃ )}τ 22 −(γ +γ̃ )τ 21 ]V1+2τ 22Δ

2τ1τ2
√

τ 21 +τ 22

⎞

⎠ IV1>0 Iγ<n1/(n1+n2)

⎤

⎦, (15)
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874 Y.-T. Chang, N. Shinozaki

where expectation is taken with respect to V1, s21 and s
2
2 . Noting that {2−(γ + γ̃ )}τ 22 −

(γ + γ̃ )τ 21 ≥ 0 since γ + γ̃ ≤ 2n1/(n1 + n2), we have

(15) ≥ P {V1 > 0, γ < n1/(n1 + n2)} /2,

which is RHS of (13). Since the inequality (13) implies that MPNμ2(μ̂2(γ
+),

μ̂2(γ )) ≥ 1/2, this completes the proof. 	

Remark 3 Wemay mention that if we choose γ̃ = 2n1/(n1 +n2)−γ, |γ −n1/(n1 +
n2)| = |γ̃ − n1/(n1 + n2)|. We note that 2n1/(n1 + n2) − γ may be larger than
1 for some values of s21 and s22 if n1 > n2. In such cases, we should replace γ̃ by
γ̃ ′ = min(γ̃ , 1), which leads to a further improvement.

Remark 4 For the case when γ ≡ 0, we apply Theorem 2 and we obtain a class of
estimators improving upon X̄2. We see that for any γ satisfying n1/(n1 + n2) ≤ γ ≤
2n1/(n1 + n2), μ̂2(γ ) improves upon X̄2. From Remark 2, we can broaden the class
of improved estimators. We see that when n1 ≥ n2, μ̂2(γ ) improves upon X̄2 for any
γ satisfying 0 ≤ γ ≤ 1.

Remark 5 Suppose that μ̂2(γ ) improves upon X̄2 under modified Pitman nearness
criterion. Although μ̂2(γ

+) improves upon μ̂2(γ ) for suitably chosen γ̃ from The-
orem 2, this does not imply that μ̂2(γ

+) improves upon X̄2 since transitivity does
not hold for Pitman nearness criterion. As a matter of fact, MPNμ2(μ̂2(γ ), X̄2) >

MPNμ2(μ̂2(γ
+), X̄2) since |μ̂2(γ

+) − μ2| < |X̄2 − μ2| implies |μ̂2(γ ) − μ2| <

|X̄2 − μ2| for the case when X̄1 > X̄2 and γ < n1/(n1 + n2). Thus, μ̂2(γ
+) is less

likely to improve upon X̄2 than μ̂2(γ ). We need to examine whether μ̂2(γ
+) improves

upon X̄2 or not in estimating a common mean, from the results given in Sects. 2 and 3
for the case when n2 > n1.

Remark 6 Whenweconsider the estimation problemof a commonmeanof twonormal
distributions when variances satisfy the order restriction σ 2

1 ≤ σ 2
2 and consider the

estimator of the form μ̂(γ ) = γ X̄1 + (1 − γ )X̄2, then PNμ(μ̂(γ +), μ̂(γ )) ≥ 1/2 if
γ̃ satisfies the condition (12). We can show this by treating the cases X̄1 ≤ X̄2 and
X̄1 > X̄2 separately along the same line as the proof of Theorem 2.

In the next Theorem, we treat the estimation problem of the mean μ1 which is asso-
ciated with smaller variance and show that MPNμ1(μ̂1(γ

+), μ̂1(γ )) < 1/2 when the
difference of the two means, Δ = μ2 − μ1, is sufficiently large. To prove it, we need
the following.

Lemma 1 Let g(·) be the probability density function of the normal distribution
N (−Δ, σ 2). For any c > 0 and d > 0

∫ ∞

0
Φ(cy − dΔ)g(y)dy <

∫ ∞

0
g(y)dy/2

for sufficiently large Δ.

A proof is given in Appendix A.
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Theorem 3 Suppose that γ is a non-decreasing function of X̄1 − X̄2 > 0 and that
P{X̄1 − X̄2 > 0, γ < n1/(n1 + n2)} > 0 for any μ1 ≤ μ2 and σ 2

1 ≤ σ 2
2 . If γ̃ is

chosen so that (12) is satisfied, then for sufficiently large Δ,

MPNμ1(μ̂1(γ
+), μ̂1(γ )) < 1/2.

Proof Noticing again that μ̂1(γ
+) �= μ̂1(γ ) if and only if X̄1 > X̄2 and γ < n1/(n1+

n2) and that in this case μ̂1(γ
+) > μ̂1(γ ), we have

P{|μ̂1(γ
+) − μ1| < |μ̂1(γ ) − μ1|, μ̂1(γ

+) �= μ̂1(γ )}
= P{μ̂1(γ ) + μ̂1(γ̃ ) < 2μ1, X̄1 > X̄2, γ < n1/(n1 + n2)}
= P

{
(γ + γ̃ )(X̄1 − μ1) + {2 − (γ + γ̃ )}(X̄2 − μ1) < 0,

X̄1 > X̄2, γ < n1/(n1 + n2)
}
. (16)

We make the variable transformation

Y1 = (X̄1 − μ1) − (X̄2 − μ1) and Y2 = (X̄1 − μ1) + (τ 21 /τ 22 )(X̄2 − μ1).

Then, Y1 and Y2 are independently distributed as N (−Δ, τ 21 + τ 22 ) and
N ((τ 21 /τ 22 )Δ, τ 21 (τ 21 + τ 22 )/τ 22 ), respectively. Noting that

X̄1 − μ1 = τ 21 Y1 + τ 22 Y2
τ 21 + τ 22

and X̄2 − μ1 = τ 22 (Y2 − Y1)

τ 21 + τ 22
,

(16) is rewritten as

P
{[(γ +γ̃ )τ 21 −{2−(γ +γ̃ )}τ 22 ]Y1+2τ 22 Y2 < 0, Y1 > 0, γ < n1/(n1+n2)

}

= E

⎡

⎣
∫ ∞

0
Φ

⎛

⎝ [{2−(γ +γ̃ )}τ 22 −(γ +γ̃ )τ 21 ]y1/2−τ 21Δ

τ1τ2

√
τ 21 +τ 22

⎞

⎠ Iγ<n1/(n1+n2)g(y1)dy1

⎤

⎦ ,

(17)

where expectation is taken with respect to s21 and s22 and g(·) is the density function
of N (−Δ, τ 21 + τ 22 ). Setting

c = τ2/(τ1

√
τ 21 + τ 22 ) and d = τ1/(τ2

√
τ 21 + τ 22 ),

we have

Φ

⎛

⎝ [{2 − (γ + γ̃ )}τ 22 − (γ + γ̃ )τ 21 ]y1/2 − τ 21Δ

τ1τ2

√
τ 21 + τ 22

⎞

⎠ ≤ Φ(cy1 − dΔ).
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Fixing s21 and s22 , we define

t (s21 , s
2
2 ) = sup{Y1 = X̄1 − X̄2 > 0 | γ < n1/(n1 + n2)}.

Since γ is a non-decreasing function of X̄1 − X̄2,

∫ ∞

0
Φ(cy1 − dΔ)Iγ<n1/(n1+n2)g(y1)dy1 =

∫ t (s21 ,s22 )

0
Φ(cy1 − dΔ)g(y1)dy1.

Thus, we need only to show that

∫ t (s21 ,s22 )

0
Φ(cy1 − dΔ)g(y1)dy1 < 1/2

∫ t (s21 ,s22 )

0
g(y1)dy1.

From Lemma 1, we see that for sufficiently large Δ,

∫ ∞

0
Φ(cy1 − dΔ)g(y1)dy1 <

∫ ∞

0
g(y1)dy1/2,

which implies

∫ t

0
Φ(cy1 − dΔ)g(y1)dy1 <

∫ t

0
g(y1)dy1/2

for any t > 0 since Φ(cy1 − dΔ) is an increasing function of y1 > 0. This completes
the proof. 	

Remark 7 Although μ̂1(γ

+) does not dominate μ̂1(γ ) from Theorem 3, we see that
if μ̂1(γ ) dominates X̄1 and P{X̄1 > X̄2, γ < n1/(n1 + n2)} > 0, then μ̂1(γ

+)

dominates X̄1 for any γ̃ satisfying the condition (12). This is seen from (4) since the
probability of (4) is an increasing function of γ .

Remark 8 From the expression (17) of the probability P{|μ̂1(γ
+)−μ1| < |μ̂1(γ )−

μ1|, μ̂1(γ
+) �= μ̂1(γ )}, we see that the probability is larger than P{μ̂1(γ

+) �=
μ̂1(γ )}/2 when Δ = 0 and σ 2

1 /σ 2
2 is sufficiently small. Thus, neither μ̂1(γ

+) nor
μ̂1(γ ) dominates the other.

4.2 Simultaneous estimation of ordered means when variances are also ordered

Here, we simultaneously estimate ordered means μ1 ≤ μ2 when variances are
also ordered. We show that µ̂(γ +) = (μ̂1(γ

+), μ̂2(γ
+)) improves upon µ̂(γ ) =

(μ̂1(γ ), μ̂2(γ )) under generalized Pitman nearness based on sum of normalized
squared errors in the following.

Theorem 4 Suppose that P{X̄1 − X̄2 > 0, γ < n1/(n1 + n2)} > 0 for any μ1 ≤ μ2
and σ 2

1 ≤ σ 2
2 . If γ̃ is chosen so that (12) is satisfied, then for any μ1 ≤ μ2 and

σ 2
1 ≤ σ 2

2 , MPNµ(µ̂(γ +), µ̂(γ )) > 1/2, where
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MPNµ(µ̂(γ +), µ̂(γ ))

= P

{
2∑

i=1

{μ̂i (γ
+) − μi }2/τ 2i ≤

2∑

i=1

{μ̂i (γ ) − μi }2/τ 2i | µ̂(γ +) �= µ̂(γ )

}
.

Proof Putting Zi = X̄i−μ1, i = 1, 2 andΔ = μ2−μ1,we express sumof normalized
squared errors for µ̂(γ ) as

2∑

i=1

{μ̂i (γ ) − μi }2/τ 2i

= 1

τ 21

{
γ X̄1 + (1 − γ )X̄2 − μ1

}2 + 1

τ 22

{
γ X̄1 + (1 − γ )X̄2 − μ2

}2

= 1

τ 21
{γ Z1 + (1 − γ )Z2}2 + 1

τ 22
{γ Z1 + (1 − γ )Z2 − Δ}2

=
(

1

τ 21
+ 1

τ 22

)
{γ Z1 + (1 − γ )Z2}2 − 2Δ

τ 22
{γ Z1 + (1 − γ )Z2} + Δ2

τ 22
.

(18)

We note that µ̂(γ +) �= µ̂(γ ) if and only if X̄1 > X̄2 and γ < n1/(n1 + n2). In
this case, by replacing γ by γ̃ in (18), we have sum of normalized squared errors for
µ̂(γ +) as

2∑

i=1

{μ̂i (γ
+) − μi }2/τ 2i =

(
1

τ 21
+ 1

τ 22

)
{γ̃ Z1 + (1 − γ̃ )Z2}2

−2Δ

τ 22
{γ̃ Z1 + (1 − γ̃ )Z2} + Δ2

τ 22
.

Thus, we have

2∑

i=1

{μ̂i (γ ) − μi }2/τ 2i −
2∑

i=1

{μ̂i (γ
+) − μi }2/τ 2i

= (γ − γ̃ )(Z1 − Z2)

[(
1

τ 21
+ 1

τ 22

)
[(γ + γ̃ )Z1 + {(2 − (γ + γ̃ )}Z2] − 2Δ

τ 22

]
,

which is non-negative if and only if

(τ 21 + τ 22 )
[
(γ + γ̃ )Z1 + {2 − (γ + γ̃ )}Z2

]− 2τ 21Δ ≤ 0

since Z1 − Z2 = X̄1 − X̄2 > 0 and γ̃ > γ . Therefore, we need only to show that

P
{
(τ 21 + τ 22 )[(γ + γ̃ )Z1 + {2 − (γ + γ̃ )}Z2] − 2τ 21Δ ≤ 0,
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Z1 > Z2, γ < n1/(n1 + n2)
}

≥ P {Z1 > Z2, γ < n1/(n1 + n2)} /2.

Now, we make the variable transformation

Y1 = Z1 − Z2, Y2 = Z1 + (τ 21 /τ 22 )Z2.

Then, Y1 and Y2 are the same with those given in the proof of Theorem 3. Since Y1 and
Y2 are independently distributed as N (−Δ, τ 21 +τ 22 ) and N (τ 21Δ/τ 22 , τ 21 (τ 21 +τ 22 )/τ 22 ),
respectively, and Z1 = (τ 21 Y1 + τ 22 Y2)/(τ

2
1 + τ 22 ) and Z2 = τ 22 (Y2 − Y1)/(τ 21 + τ 22 ),

we have

P
{
(τ 21 + τ 22 )[(γ + γ̃ )Z1 + {2 − (γ + γ̃ )}Z2] − 2τ 21Δ ≤ 0,

Z1 > Z2, γ < n1/(n1 + n2)
}

= P
{
[(γ + γ̃ )τ 21 − {2 − (γ + γ̃ )}τ 22 ]Y1 + 2τ 22 (Y2 − τ 21Δ/τ 22 ) ≤ 0,

Y1 > 0, γ < n1/(n1 + n2)
}

= E

⎡

⎣Φ

⎛

⎝ [{2 − (γ + γ̃ )}τ 22 − (γ + γ̃ )τ 21 ]Y1
2τ1τ2

√
τ 21 + τ 22

⎞

⎠ IY1>0 Iγ<n1/(n1+n2)

⎤

⎦ ,

where expectation is taken with respect to Y1, s21 and s22 . Since {2 − (γ + γ̃ )}τ 22 −
(γ + γ̃ )τ 21 > 0, we have the desired result. 	


5 Numerical results

Here, we illustrate the behavior of the proposed estimators by numerical evaluation for
Case-II, where both means and variances are ordered. We set γ = n1s22/(n1s

2
2 +n2s21 )

and γ̃ = n1/(n1 + n2) when γ < n1/(n1 + n2). Then, μ̂i (γ
+) is given by

μ̂CS
1 =

{
μ̂OS
1 , if s21 ≤ s22

min{X̄1,
n1

n1+n2
X̄1 + n2

n1+n2
X̄2}, if s21 > s22

and

μ̂CS
2 =

{
μ̂OS
2 , if s21 ≤ s22

max{X̄2,
n1

n1+n2
X̄1 + n2

n1+n2
X̄2}, if s21 > s22 ,

which are proposed by Chang and Shinozaki (2012). For various values of
n1, n2,Δ, σ 2

2 ≥ 1 and σ 2
1 = 1, we compare μ̂CS

i with μ̂OS
i , and have numerically

evaluated MPNμi (μ̂
CS
i , μ̂OS

i ), i = 1, 2. To compare µ̂CS with µ̂
OS, we have numer-

ically evaluated MPNµ(µ̂
CS

, µ̂
OS

), and also P{X̄1 > X̄2, s21 > s22 }, which are all
given in Table 2.
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From Table 2, we see that MPNμ1(μ̂
CS
1 , μ̂OS

1 ) > 1/2 when Δ = 0 and
MPNμ1(μ̂

CS
1 , μ̂OS

1 ) gets larger as σ 2
2 increases. However, MPNμ1(μ̂

CS
1 , μ̂OS

1 ) gets
smaller fast as Δ increases. We see that MPNμ2(μ̂

CS
2 , μ̂OS

2 ) gets larger as Δ increases
or σ 2

2 increases. We also see that MPNµ(µ̂
CS

, µ̂
OS

) gets larger as σ 2
2 increases, but

gets smaller as Δ increases.

6 Conclusion

In this paper, we have dealt with the problem of estimating two ordered normal means
under modified Pitman nearness criterion when the order restriction on variances is
present and not present. For the case where the order restriction on variances is not
present, it is shown that the most critical case for μ̂i (γ ) to improve upon X̄i is the
one when μ1 = μ2 and that the problem of improving upon X̄i reduces to the one
of a common mean. This result is similar to the one given in Theorems 2.1 and 2.2
of Oono and Shinozaki (2005) when MSE is the criterion. For the case where the
order restriction on variances, σ 2

1 ≤ σ 2
2 , is present, it is shown that we can improve

upon μ̂2(γ ) by μ̂2(γ
+) by suitably choosing γ +. Although such an improvement is not

possible for μ̂1(γ ), it is shown that (μ̂1(γ
+), μ̂2(γ

+)) improves upon (μ̂1(γ ), μ̂2(γ ))

for suitably chosen γ + in the simultaneous estimation of μ1 and μ2. These results
are similar to those given in Theorems 3.1, 3.3 and 4.1 of Chang et al. (2012) when
MSE or stochastic dominance is concerned. Thus, we have confirmed that similar
results are obtained under modified Pitman nearness criterion to those obtained under
MSE or stochastic dominance criterion. Although we have not succeeded in giving an
illustrative example, one possible inconsistency among the criterions is suggested in
Remark 5 which may occur due to nontransitivity of the Pitman nearness criterion.

7 Appendix A: A proof of Lemma 1

Put k = d/(2c), then ckΔ − dΔ = −dΔ/2. For any 0 < ε < 1/2, we choose
sufficiently large Δ > 0 so that Φ(−dΔ/2) < 1/2 − ε and

∫ ∞

kΔ
g(y)dy < ε

∫ kΔ

0
g(y)dy.

To see that this is possible, we only need to show that

lim
Δ→∞

∫∞
kΔ g(y)dy
∫ kΔ
0 g(y)dy

= 0,

which we can verify by applying L’Hospital’s rule. Therefore, for sufficiently large
Δ > 0, we have

∫ ∞

0
Φ(cy − dΔ)g(y)dy =

∫ kΔ

0
Φ(cy − dΔ)g(y)dy +

∫ ∞

kΔ
Φ(cy − dΔ)g(y)dy
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<

∫ kΔ

0
Φ(−dΔ/2)g(y)dy +

∫ ∞

kΔ
g(y)dy

< (1/2 − ε)

∫ kΔ

0
g(y)dy + ε

∫ kΔ

0
g(y)dy

= 1/2
∫ kΔ

0
g(y)dy < 1/2

∫ ∞

0
g(y)dy.

This completes the proof. 	
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