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Abstract The problem of estimating two ordered normal means is considered under
the modified Pitman nearness criterion in the presence and absence of the order restric-
tion on variances. When variances are not ordered, a class of estimators is considered
that reduce to the estimators of a common mean when the unbiased estimators violate
the order restriction. It is shown that the most critical case for uniform improvement
with regard to the unbiased estimators is the one when two means are equal. When
variances are ordered, a class of estimators is considered, taking the order restriction
on variances into consideration. The proposed estimators of the mean with a larger
variance improve upon the estimators that do not take the order restriction on variances
into consideration. Although a similar improvement is not possible in estimating the
mean with a smaller variance, a domination result is given in the simultaneous esti-
mation.

Keywords Order restriction - Common mean - Restricted MLE - Unbiased
estimator - Pitman nearness - Modified Pitman nearness - Uniform improvement

1 Introduction

Estimation of restricted normal means (simple order, tree order or orthant restrictions
etc.) has been considered by many authors and some estimators improving upon the
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unbiased estimators have been proposed. Most works related to the inference about the
restricted parameters are reviewed by Barlow et al. (1972), Robertson et al. (1988), Sil-
vapulle and Sen (2004) and Van Eeden (2006). As a criterion to evaluate the goodness
of estimators, mean squared error (MSE) is usually used and in some cases stochastic
domination as well.

A possible alternative criterion, which was introduced by Pitman (1937), is Pitman
nearness. Let 77 and 7, be two estimators of 6. Then, Pitman nearness of 7; relative
to T, is defined by

PNy(T1, 1) = P{|T1 — 0| < |T, — 01}

and T is said to be closer to 6 than 75 if PNg(T1, To) > 1/2 for any parameter
value. We refer the reader to Rao (1981), Keating and Mason (1985, 1986), Peddada
(1985), Rao et al. (1986), Peddada and Khattree (1986) for its discussions. Many works
related to Pitman nearness were published in the special issue of Communications in
Statistics—Theory and Methods A20 (11) in 1992 and were unified in the monograph
by Keating et al. (1993). Although the Pitman nearness has been severely criticized
as a measure of comparing estimators (see Robertson et al. 1993), we believe that it
is a useful criterion in comparing two estimators and understanding the nature of the
estimators.

Here, we consider the estimation of two ordered normal means when order restric-
tion on the unknown variances is present and not present. We propose some estimators
of the means which improve upon some baseline estimators which do not take into
account of the order restrictions in terms of modified Pitman nearness criterion sug-
gested by Gupta and Singh (1992). We first state some fundamental results on the
estimation of a common mean and ordered means when MSE, stochastic domination
or Pitman nearness is concerned. Let X;;, i = 1,2, j =1,...,n; be independent
observations from normal distribution with mean wu; and variance aiz, where both u;
and al.z are unknown. Let

n; nj
}_(l- = ZX,'j/ni and Si2 = Z(X” —Xi)z/(ni -1

J=1 j=1

be the unbiased estimators of u; and al.2, respectively.

For the common mean problem (1 = @y = u) when two variances are unknown
and there is no order restriction on the two variances, Graybill and Deal (1959)
proposed the estimator

2 2
. nis _ nas -
48P = 2 1 X

= 1
nlsg +n2312 nls% +n2sf

and gave a necessary and sufficient condition on n1 and n5 for 1P to have a smaller
variance than both X; and X». Later, many authors, including Brown and Cohen
(1974), Khatri and Shah (1974), and Bhattacharya (1980), have given a class of
improved estimators of the form
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Estimation of two ordered normal means under modified Pitman nearness 865

ay) =yXi+ 1 —y)Xa,

where y is a function of 512, 522 and possibly (X; — X»)%. As for Pitman nearness
criterion, Kubokawa (1989) has given a broad class of estimators of a common mean
with y given by

a
1+ Ry (s?, 53, (X1 — X2)?)

Yy =1-—

where R = (bs% + c()_(l — )_(2)2)/s12, Y is a positive valued function and a, b, and ¢
are nonnegative constants. For suitably chosen i, a, b, and ¢, Kubokawa (1989) has
given a sufficient condition on n and n; so that u(y,/,) is closer to p than X|. Thus,
Kubokawa (1989) has shown that MGD is closer to p than both X, and X5 ifn; > 5
and np > 5. Misra and Van der Meulen (1997) have discussed estimating a common
mean of k(> 2) normal distributions when order restriction is given on variances and
proposed an estimator improving upon 2°P in terms of stochastic dominance and
Pitman nearness.

For the case when k normal means satisfy simple order restriction and variances are
known, Lee (1981) has shown that restricted MLE (maximum likelihood estimator)
uniformly improves upon sample means in terms of MSE. Kelly (1989) and Hwang
and Peddada (1994) have proven that restricted MLE universally dominates sample
means. For the case when oiz ’s are unknown and two means satisfy the order restriction,
u1 < u2, Oono and Shinozaki (2005) have proposed the estimators of w;,i = 1,2

495 = min {Xl, /lGD} and 95 = max {)_(2, ,&GD} ,

and have shown that ,&ios uniformly improves upon X; in terms of MSE if and only if
MSE of ,&?S is not larger than that of X; for the case when p; = u». Further, it has
been shown that [L?S improves upon X; if and only if 6P improves upon X; in the
common mean problem. It should be mentioned that Garren (2000) has proposed a
similar estimator with sl.2 replaced by the MLE of al.z in ﬁiGD and has given a condition
on n1 and ny for the estimator to have larger (or smaller) MSE when 1 = u and
03 /o} is sufficiently large.

Next, we consider the estimation of two ordered means when order restriction,
0’12 < 022, is given on two variances. Such a situation can occur, for example, if there
are two kinds of motor engines, one of which is developed by a new method, and
has higher power but has larger variation than the other one developed by a standard
method. Shi (1994) and Ma and Shi (2002) have discussed the order restricted MLE
of u; and oiz. Chang et al. (2012) have considered a class of estimators of u;, i = 1,2
of the form

1(y) = min{X1, y X1 +(1—=y) X2}, fa(y) = max{X2, y X1 +(1—y) X2}, (1)

where )/ is a function of sl , 52 ,and ()_( 1—X 2)2 y may be considered to be an estimator
of njo; /(n1<72 + ny0q ) which is not larger than ny/(n| + ny) when 01 < 02 Thus,
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as in the common mean problem (see, for example, Seshadri 1966; Nair 1982; Elfessi
and Pal 1992), we may improve upon [i;(y) by replacing y with

Ly ity =
VIEY S - 2
v, 1y < ni+ny’

and choosing 7 appropriately. Actually, Chang et al. (2012) have shown that fi>(y 1)
stochastically dominates f1;(y) if 7 is chosen to satisfy

ni ni ni

3

<y<2 — v, wheny < .
n1+l’l2_y_ ny+np v v ny+np

Further, Chang et al. (2012) have shown that although /1| (y) has smaller MSE than

fu1(y*) for sufficiently large o — w1, (f1(y™1), fia(y ™)) dominates (/11 (y), f2(y))
in the sense that

2 ) — e\ 2 2 h0) — e\ 2
P[;(Mz(y t? ,U«z) fd] ZP[E(,‘M(V‘; H“l) Sd}

for any d > 0, where rl.z = al.z/n,-.

Now, we state a modification of Pitman nearness to compare the estimators when
they are equal with positive probability. Nayak (1990) defined modified Pitman near-
ness of an estimator 7' of 6 relative to the other estimator 7> by

MPNy (T, T2) = P{|Th — 0| < |T» — 0| | Th # T2}.

If MPNy (71, T>) > 1/2 for any parameter value, then 7 is said to be closer to 6 than
T,. Gupta and Singh (1992) have applied modified Pitman nearness to the estimation
of ordered means of two normal population with common variance and have shown
that MLE is closer than the unbiased estimator.

Here, we consider the estimation problems under modified Pitman nearness for the
following two cases

Case-I: estimation of two ordered means when 012 and 022 are unrestricted,

Case-II: estimation of two ordered means when 012 < 022.

We are much interested in whether or not the similar results can be obtained under the
modified Pitman nearness criterion to those obtained by Oono and Shinozaki (2005)
and Chang et al. (2012) under MSE or stochastic domination criterion.

We first treat Case-I in Sect. 2 of this paper. With respect to modified Pitman
nearness, we show that ft; (y) improves upon X; if and only if MPN ,, (i1; (), X;) >
1/2 when (1 = w2, which is the most critical case for uniform improvement. Further,
it is shown that /2;(y) improves upon X; if and only if /i(y) improves upon X; for
the same y in estimating a common mean. Thus, the problem of improving upon the
unbiased estimators of two ordered means essentially reduces to the one of a common
mean. This conclusion also applies even when variances are ordered. However, we
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Estimation of two ordered normal means under modified Pitman nearness 867

show that when 012 < 022, ,&GD improves upon X, for a wide range of (n1,ny) in
Sect. 3. In Sect. 4, for Case-II, we treat the problem of improving upon [i;(y) by
replacing y with ¥ satisfying (2) and (3) with respect to modified Pitman nearness
when the restrictions ;1 < o and 012 < 022 are given. We show that /i, (y 7) improves
upon i, (y) for suitably chosen 7, but /i1 (¥ 7) does not improve upon /i1 (y) evenif 7
is chosen appropriately. Simultaneous estimation of j¢1 and ., is also discussed with
respect to generalized Pitman nearness based on sum of normalized squared errors
(Rao et al. 1986; Peddada and Khattree 1986). In Sect. 5, we give some results of the
numerical study to evaluate the performance of the proposed estimators for the choice
y = n1s§ / (nlsg + nzslz) in terms of modified Pitman nearness. In Sect. 6, we make
a conclusion.

Throughout this paper, we assume that y is a function of 512 and s% satisfying
0 < y < 1 and that in some places y may depend on (X; — X3)? as well.

2 Case-I: improving unbiased estimators of ordered means when variances
are unrestricted

In this section, we treat the estimation problem of ordered means pu; < w@> when
variances are not ordered. We consider estimators of u; of the form (1) and compare
them with the unbiased estimator X;. We first show that for the case when y is a
function of 512 and s% only, the most critical case for /1; () to be closer to u,-_than X;
is the one when w1 = . Further, it is shown that [i;(y) improves upon X; if and
only if /1(y) dominates X; in the estimation problem of a common mean.

Theorem 1 Suppose that 0 < y < 1 is a function of S12 and s%.
(i) MPN,, (i (y), Xi) = 1/2 for all u1 < p2 and for all 012 and 622 if and only if
for all 012 and 022, MPN,,. (i (y), Xi) = 1/2 when 1 = po.

(i) MPN, (@i (), Xi) > 1/2 for all u1 < po and for all 012 and 022 if and only if
for all 012 and 022, PN, (fi(y), Xi) = 1/2 to estimate 1 when j11 = [ty = .

Remark 1 In the estimation problem of a common mean, Kubokawa (1989) has given
a sufficient condition on sample sizes n1 and n; for j1(y) to be closer to u than X; for

some specified class of y. For example, for the choice of y = n1s§ / (nlsg + n2s12),

[LGD is closer to p than both X, and X, if ny > 5and ny > 5.

Proof We need only to give a proof for the case of u1.

(i) Since fi1(y) # X if and only if X; > X, and y < 1, we have

MPN,,, (f11(y), X1)
= P{lu(y) — il < 1X1 — il | i (y) # X1}
=P{lyXi+d—-Xo— il <X — il | X1 > Xa,y < 1}
=P2u <(1+Xi+(1—pX2 | X1 > X2,y < 1}
=P0<(1+VZi+(1—YZ|Z1 > 2o,y < 1}, )
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where Z; = X; — u1,i =1, 2 are distributed as N (0, 1:12) and N(A, 7:22), respec-
tively, A = w2 — uq and rl.z = o*l.2 /ni. Now, we fix the values of slz and s% for
which y < 1 and consider the conditional probability

PO <(14+Zi+ (1 —y)22|Z1 > Za, 57,53} = f(A)

as a function of A. We need only to show that f(A) > f(0). Putting d = (1 +
¥)/(1 — y), we define the sets

A ={(z1,22)|z1 = 22,22 = —dz1}, B ={(z1,22)|21 = 22, 22 < —dz1},
Ay ={(z1,22)|z1 2 22,22 >0} and Ap = {(z1, 22)|z22 = —dz1, 22 < O}

Since A and A are disjointand A = A1 U A,, we have

Pa(A) Po(A)
A= f(0)= -
A =IO = 5 T PaB)  Po(A)+ Po(B)
_ (Pa(A1) Po(B)— Po(A1) Pa(B)}+Pa(42) Po(B) — Po(A2) Pa(B))
(Pa(A)+ Pa(B)}(Po(A)+ Po(B)] ’

where, for example, Py(A) denotes the probability of the set A when A = 0. We first
show that Po (A1) Py(B) — Py(A1)Pa(B) > 0 for A > 0. For that purpose, we note
that

A2 0 1 Z% —22/d |
<exp]—— exp| ——= —¢(z1/71)dz1dz2
P 2r22 /700 V2r T P 21’22 /zz 71 o/

2

_ exp[—A—}Po(B). 5)
21:22

Similarly, we have

_ e @2 o1
PA(AI)—/O e CXP[ 222 ]/22 rl<1>(Z1/T1)dZ1dZ2

A2
>exp[—2—7:22}P0(A1). (6)

From (5) and (6), we see that PA(A1)Py(B) — Py(A1)Pa(B) > 0.
Next, we show that Px(A)Po(B) — Py(A2)PA(B) > 0 for A > 0. We express
PA(A3) as
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0 _ 2 00
PA(A2) =/ : exp e e / l¢>(Zl/fl)ledzz
—o0 V21T 21’22 —z2/d Tl
= Pa{Zy < 0}Eslg(Z2)|Z2 < 0],

where g(z2) = fix;z/d ¢(z1/t1)/71dz1. Since g(z») is an increasing function and the

conditional distribution of Z, < 0 is stochastically smallest when A = 0, we have for
A>0

PA(A2) > Pa{Zy < 0}Eolg(Z2)1Zy < 0] = Po(A2) Pa{Zy < 0}/ Po{Zy < 0}. (7)

Similarly, since h(z2) = fZ;ZZ/d ¢ (z1/71)/71dz] is a decreasing function, we have

P = eXpy————>— - Z T Z Z

= Pa{Zy < 0}EA[R(Z2)]Z2 < 0]
< Pa{Zy < OYEplh(Z2)1Z2 < 0]
= Py(B)Pa{Zy < 0}/ Po{Z2 < 0}. ()

From (7) and (8), we have P (A3)Py(B) — Py(A2)PA(B) > 0 and we have shown
that f(A) > f(0) for A > 0.

(ii) In the estimation problem of a common mean, as is stated in Kubokawa (1989, p.
481), Eq. (8), t(y) is closer to u than X if and only if

P{(1 = y)(Uy — U))* + 20U, (U, — U)) <0} > 1/2, ©)
where U; = X; — wn,i =1,2. Since
(1 = y)(Uz = U1)* +2U1(Uz = Uy) = (Uz — UD{(1 + )U1 + (1 — y)Ua},
the LHS of (9) is expressed as

P{U < U}P{(1+ ) Ui+ (1 —y)Uy <0| Uy < Uy}
+P{UL > L}P{A+ ) Ui + (1 —y)Uz > 0| U; > Us}.

We notice that

P{A+y) Ui+ —=y)Uy < 0| U1 < U}
=P{(0+y)Ui+U—-y)Uy >0]|U; > U},

since Uy and U, are symmetrically distributed about the origin. Thus, noting that
P{U; < Uy} = P{U; > Uy} = 1/2, we see that the LHS of (9) is equal to

P{1+y)Ur+ 1 =y)U2 > 0| U > Us},
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870 Y.-T. Chang, N. Shinozaki

which is MPN,,, ({11 (y), X)) grven by (4) for the case u; = us. Therefore we see
from (i) that MPN,,, (,ul(y) X)) > 1/2 for all u; < Mz and for all 01 and 02 if
and only if PN, (ft(y), X;) = 1/2 for all p and for all 01 and 02 We complete the
proof. O

Remark 2 We should mention about the general case when y is a function of s i s2 and
(X1 — X»)2. We first consider the case when we estrmate m and suppose that 11 (o)
is closer to u; than X, where 1o is a function of s1 s s2 and possibly (X1 — X2)2
For any y satisfying yo < y < 1if y9 < 1, 1(y) is closer to x; than X;. This
is seen from (4), since (4) is true even when y depends on (X — X»)? and (4) is
an increasing function of y. Next, we consider the case when we estimate uz and
suppose that fip(yp) is closer to o than X,, where o is a function of sl, s2 and
possibly (X1 X»)?. For any y satisfying 0 < y < yp if o > 0, 22(y) is closer to
o than X2

3 Case-II: improving unbiased estimators of ordered means when variances
are ordered

Now, we treat the estimation problem of ordered means p; < @, when the order
restriction 012 < 022 on variances is present. It is necessary for us to modify the
estimators 1; (y), i = 1, 2treated in Sect. 2, taking into account of the order restriction
012 < 022. We discuss such modifications of estimators in the next section. Before that
we discuss a sufficient condition on the sample sizes n and n for [i;(y) to improve
upon X; when the order restriction 012 < 022 is present.

It is easily seen that Theorem 1 is true even for the case when the restriction
012 < 022 is present, if we replace “for all 01 and o, 2 by “for all ol < 022” That is,
the most critical case for [i;(y) to improve upon X; is the case when u; = o, and
i (y) improves upon X; if and only if fi(y) improves upon X; for the same y in the
estimation of a common mean. Thus, the problem reduces to the estimation problem
of a common mean when the restriction 012 < 022 is present, which we are concerned
with in the rest of this section.

For the case when the restriction (712 < 0’22 is not present, Kubokawa (1989) has
given a sufficient condition on 7 and n, which guarantees that f1(y) improves upon
X; for some specified class of y. We modify Kubokawa (1989)’s discussion for the
case when the restriction 012 < 022 is present. We first note tha}t there is no room for
modifying the sufficient condition for ,&(y) to improve upon X which is associated
with smaller variance 012, since the case o} /02 — 0 1s critical as is seen from the
proof of Kubokawa (1989). However, we show that [i(y) improves upon X, which is
associated with larger variance for a wide range of (n1, n2). Unfortunately, we have
not succeeded in showing generally the monotonicity of PN, (/i(y), X2) in o] /cr2
Here, we restrict ourselves to the estimator (y) = y X1 + (1 — y)X, with y of the

form

2
nis
- (10)

nisy + cnasj
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where c is a positive constant to be chosen properly. From Remark 2, it is seen that
if y = nls% / (nls% + cnzslz) gives an improved estimator, then any y satisfying
O0<y= nlsg / (nlsg + cnzslz) also gives an improvement even when y depends on
(X — X2)%.

We essentially follow the notations given in the proof of Kubokawa (1989) and
put T = (n1022)/(n2012) and Z = t + cF, where F is a random variable having
F-distribution with deg_rees of freedom (n; — 1, n, — 1). Putting G = /7{1 — (1 +
7)/(2Z)}, PNy (f(y), X2) = 1/21if

(G GHr1)?
o =£| [ frady | = 172

where f1(-) is a density of an F-distribution with degrees of freedom (1, 1) and the
expectation is taken with respect to the random variable F. Further, the derivative of
h(t) is given in Kubokawa (1989) as

2 _
Wie) — Co [22 (1431)Z +27(1 +r)]’

271+ 1) 472 —4tZ +t(1+1)

where Cy is a positive constant.

First, we see that for any ¢ > 0, h(r) > 1/2 for T > 1, since T > 1 implies
G > 0.7 > 1 for any 022 > alz_if and only if n; > ny. Thus, we see that j1(y) with y
given by (10) improves upon X if n; > ny.

Kubokawa (1989) has shown thatif ¢ > (ny—1)/{2(n; —3)}forny > 4, h'(r) >0
forany t > Oandthus (7)) > h(0) = 1/2,forany t > 0. Therefore, we see that under
the same conditiononc, A(t) > 1/2forany t > n/n;.Since (n1—1)/{2(n; —3)} <
1 for ny > 5, 2OP improves upon X for ny > 5.

Even when n; < 4, we can show that /1(y) improves upon X, for a wide range of
n. From (11), we see that i/ (7) > 0if 2z2 — (1+37)z+27(1+1) > O for anyz > 1,
which is true if T > (=5 + 4\/5)/7 = 0.0938. Therefore, h'(t) > O for T > n|/ns
if n1/no > 0.0938. Thus, we have seen thatif ny/ny > 0.0938 and h(ny/n2) > 1/2,
Q(y) improves upon X5. Setting ¢ = 1, we have numerically evaluated 4 (n1/n5) for
some values of (n1, n) as given in Table 1. From Table 1, we see that ,&GD is closer
to pu than X, for (ni=2,ny<7),(ny =3,np, <26)and (n; =4,ny <31),and is
not closer to u than )_(2 for(ny =2,8 <np <31)and (n; = 3,27 <np < 31).

Y

4 Case-II: a class of improved estimators of ordered means when variances
are also ordered

In Sect. 2, we have compared fi; (y) with X ; for Case-I, where the order restriction is
given on two means and 012 and 022 are unrestricted. Although we also compared them
for Case-II, where order restrictions are given on means and variances in Sect. 3, 1; ()
is not constructed so that the order restriction on variances is taken into consideration.
Since the inequality 012 < 022 implies 111022/(111022 + nzalz) > n1/(n1 + ny), we may
modify f1; (y) sothaty > ny/(n| +ny) is satisfied. As is given in (3), we replace y by
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Table1 h(ny/n2)

ny/n; 2 3 4 5 6 7 8 9 10
2 0.636  0.690 0720 0740 0756 0769 0780  0.789  0.797
3 0583  0.640 0671 0693 0710 0723 0735 0744  0.753
4 0552 0610 0642 0663 0680 0694 0706 0716  0.724
5 0531 0590  0.621 0643 0659 0673  0.685  0.695  0.703
6 0516 0575  0.606  0.627  0.644 0657  0.668 0678  0.687
7 0.505 0563 0594 0615 0631 0644 0655  0.665 0674
8 0495 0554 0584  0.605  0.621  0.634 0645  0.654  0.663
9 0488 0546 0576 0597 0612 0625  0.635  0.645  0.653
10 0482 0540 0570 0590  0.605 0617  0.628  0.637  0.645
11 0476 0535 0564 0584 0598 0611  0.621  0.630  0.638
12 0472 0530 0559 0578 0593 0.605  0.615  0.624  0.632
13 0468 0526 0555 0574 0588  0.600 0610 0618  0.626
14 0464 0522 0551 0570 0584 0595  0.605 0614  0.621
15 0461 0519 0548 0566 0580 0591  0.601  0.609  0.617
16 0459 0517 0545 0563 0577 0588 0597 0605  0.613
17 0456 0514 0542 0560 0573 0584 0594  0.602  0.609
18 0454 0512 0539 0557 0571 0581 0.590  0.598  0.606
19 0452 0510 0537 0555 0568 0579 0587 0595  0.602
20 0450 0508 0535 0553 0566 0576 0585 0593  0.599
21 0449 0506 0533 0551 0563 0574 0582 0590  0.597
2 0447 0505 0532 0549 0561 0571 0580 0587  0.594
23 0446 0503 0530 0547 0559 0569 0578 0585  0.592
24 0445 0502 0529 0545 0558 0567 0576 0583  0.590
25 0444 0501 0527 0544 0556 0566 0574 0581  0.588
26 0443 0500 0526 0542 0554 0564 0572 0579 0586
27 0442 0499 0525 0541 0553 0562 0571 0578 0584
28 0441 0498 0524 0540 0552 0561 0569 0576 0582
29 0440 0497 0523 0539 0550 0560 0567 0574 0580
30 0439 0496 0522 0538 0549 0558 0566 0573 0579
31 0438 0495 0521 0537 0548 0557 0565 0571 0577

7 >n1/(ny +ny) when y < ny/(ny + ny). Using yT given in (2), we have fi; (y ™)
and compare it with [i;(y) in this Section. In Theorem 2, for the estimation of the
mean /1, of the population with larger variance, we show that fi2(y ™) is closer to 112
than fi2(y) for suitably chosen 7. In Theorem 3, for the estimation of the mean p| of
the population with smaller variance, we show that MPN,,, (&1 (y1), 1 (y)) < 1/2
for some parameter values even when y is chosen appropriately. In Theorem 4, we
show that improvement is possible when we estimate means (w1, (2) simultaneously
under generalized Pitman nearness based on sum of normalized squared errors. Here,
we assume that y may depend on (X — X»)? as well.
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Estimation of two ordered normal means under modified Pitman nearness 873

4.1 Estimation of individual means when means and variances are ordered

Theorem 2 Suppose that P{X| — X, > 0,y < n1/(n1 +n2)} > 0forany u <
and 012 < 022. If y is chosen so that

ni ny ni

<y<2 — when y < , 12
n1+n2_y_ ny+np v 4 ny+ny (12)
then for any < pa and of < o3, MPN,, (fia(y ), a(y)) = 1/2.
Proof We show that
P{laa(y®) — mal < [pa(y) — pal, fay™) # fa(y)}
>P {/lz()ﬁ) b /12(3/)} /2. (13)

From (12), we see that {12 (y*) # f12(y) if and only ifX; > )_(z_andy < ny/(n1+ny).
In this case, fl,(y ) =7X1 + (1 — )Xz > y X1 + (1 — )Xo = f12(y). Thus, the
LHS of (13) is expressed as

P{laz(y™) — pal < lp2(y) — pal. X1 > Xa,y < ni/(n1 +n)}
=P {) + fa(y) < 2u2, X1 > Xp,y < ni/(n1 +ny)}
=P{(y + PN X1 —p2) + {2 = (v + 7IX2 — p2) <0,
X1 >Xo, ¥ <n1/(n1+n2)}. (14)

Now, we make the variable transformation
Vi=X1— ) — (X —p2), Vo= (3/t) (X1 — m2) + (X2 — 112).

Then, Vi and V; are independently distributed as N (—A, 1.12 + 122) and
N(—(‘L’zz/‘tlz)A, rzz(tl2 + ‘L'zz)/‘l,'lz), respectively, where A = up — 1 > 0. Noting that

2 (Vi + Vo)
2 2
7] + 12}

‘L'12V2 — ‘1522‘/1

and )_(2 — M2 =
rlz+r22

X|—p2 =

’

and denoting the indicator functions of the sets Vi > 0 and y < n;/(n; + n2) by
Iy,~0 and I, <, /(n) +n, respectively, (14) becomes

P [[(V"‘);)le_{Z—()/‘f‘);)}Tzz] V42tV <0,V >0,y < nl/(n1+n2)}
[(2-(+P) 5 - +P)fIVi+25A

IV1>OI;/<n|/(n1+n2) s (15)
21:11'2,/1712+1:22
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874 Y.-T. Chang, N. Shinozaki

where expectation is taken with respect to Vi, S12 and s%. Noting that {2 — (y + ;7)}7:22 -
(y + )7)112 > 0since y +y < 2n1/(n| + ny), we have

(15) = P{V1 >0,y <ni/(n1 +n2)}/2,

which is RHS of (13). Since the inequality (13) implies that MPN, (a(y™),
2(y)) > 1/2, this completes the proof. O

Remark 3 We may mention that if we choose y = 2n/(n; +n2)—vy, |y —n1/(n1 +
ny)| = |y —ni/(ny + n2)|. We note that 2n/(n; + ny) — y may be larger than
1 for some values of s]2 and s% if n; > ny. In such cases, we should replace y by
7’ = min(y, 1), which leads to a further improvement.

Remark 4 For the case when y = 0, we apply Theorem 2 and we obtain a class of
estimators improving upon X». We see that for any y satisfying n1/(n] +n2) <y <
2n1/(n1 + n2), flo(y) improves upon )_(2. From Remark 2, we can broaden the class
of improved estimators. We see that when ny > ny, fl2(y) improves upon X for any
y satisfying 0 < y < 1.

Remark 5 Suppose that {15(y) improves upon X, under modified Pitman nearness
criterion. Although fi2(y ™) improves upon fi(y) for suitably chosen 7 from The-
orem 2, this does not imply that i,(y ") improves upon X, since transitivity does
not hold for Pitman nearness criterion. As a matter of fact, MPN,, ({i2(y), X)) >
MPN,,, (f12(y ), X2) since |fa(y ™) — 2| < |X2 — pal implies |a2(y) — pal| <
| X, — 2] for the case when X; > X, and y < ny/(n1 + n2). Thus, ji2(y ™) is less
likely to improve upon X, than f1>(y). We need to examine whether /12 (y ) improves
upon X» or not in estimating a common mean, from the results given in Sects. 2 and 3
for the case when ny > nj.

Remark 6 When we consider the estimation problem of acommon mean of two normal
distributions when variances satisfy the order restriction 012 < 022 and consider the
estimator of the form i(y) = y X1 + (1 — ) X2, then PN, (&(y ™), fi(y)) > 1/2if
7 satisfies the condition (12). We can show this by treating the cases X| < X, and
X1 > X, separately along the same line as the proof of Theorem 2.

In the next Theorem, we treat the estimation problem of the mean | which is asso-
ciated with smaller variance and show that MPN,, (/11 (y ), 1(y)) < 1/2 when the
difference of the two means, A = u» — w1, is sufficiently large. To prove it, we need
the following.

Lemma 1 Ler g(-) be the probability density function of the normal distribution
N(=A,c?). Foranyc > 0andd > 0

o]

/O ®(cy — dA)g(y)dy < /O g(y)dy/2

for sufficiently large A.
A proof is given in Appendix A.
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Theorem 3 Suppose that y is a non-decreasing function of X1 — X» > 0 and that
P{X1— X, >0,y <ni/(n; +n2)} > 0forany u; < us anda]2 < 022. Ifyis
chosen so that (12) is satisfied, then for sufficiently large A,

MPN,,, (i1 (y ), i (y)) < 1/2.

Proof Noticing again that 11 (y 1) # i1 (y)ifandonlyif X; > X>andy < n1/(n1+
n7) and that in this case j11(y 1) > [fi1(y), we have

P{lai(y™) — il < 1) — ml iy # ()}
= P{i(y) + () <2p1, X1 > Xo,y < ni/(n) +n2)}
=P{y+7M&Ki =)+ 2 - +7IX2— ) <0,
X1 > X2,y <ni/(n +n2)}. (16)

We make the variable transformation
Yi=X —u)— Xa—p) and Y= (X; — 1) + (7/13) (X2 — ).

Then, Y| and Y> are independently distributed as N(—A, 712 + ‘1522) and
N((‘L’lz/‘tzz)A, 1’12(1'12 + 1'22)/1'22), respectively. Noting that

Y+ 14 and Ko — iy = 73 (Y2 — Y1)

Xi—p =
2 SR
tn T t+T

(16) is rewritten as

P {[(y+)7)r12—{2—(y+)7)}r22]Y1+2r22Y2 <0,Y1 >0,y <ni/(ni+ny)}

=E /Oocb [2- 4+ - +P)TiIn/2-17 A
0

Ly <ny J(npnn) (1AL |

7)

where expectation is taken with respect to 512 and s% and g(-) is the density function
of N(—A, 112 + 122). Setting

c= tz/(tl,/r12+t22) and d = 11/(m2 t12+t22),
we have

[{2— (v + P13 — (v + )iy /2 — 1A

rlrg,/tlz + rzz

0] < ®(cy; —dA).
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Fixing s7 and 53, we define
t1(s3,s3) =sup{¥) = X1 — X2 > 0|y < ni/(n +na)}.
Since y is a non-decreasing function of X — X»,

t(slz,sg)

o0
/0 D (cyr —dAYy <nyj(ny 4028 (YD AY1 =/0 D (cyr —dA)g(y)dy:.

Thus, we need only to show that

t(slz,sg)

t(sl2 s%)
/ D (cyr —dA)g(ypdy < 1/2/ g(ypdy.
0 0

From Lemma 1, we see that for sufficiently large A,

[ee]

/0 D (cy; —dA)g(y1)dy </O glyDdy/2,

which implies

t

t
/O<I>(cy1—dA)g(y1)dy1 </0 g(yndy1/2

for any ¢ > 0 since @ (cy; — d A) is an increasing function of y; > 0. This completes
the proof. O

Remark 7 Although fi1(y ™) does not dominate fi1(y) from Theorem 3, we see that
if f11(y) dominates X, and P{)_(l > X, y < ni1/(ny +n2)} > 0, then f1(y™)
dominates X for any 7 satisfying the condition (12). This is seen from (4) since the
probability of (4) is an increasing function of y.

Remark 8 From the expression (17) of the probability P{|fi(y ™) — u1| < |a1(y) —
wil, pi(y*) # 1(y)}, we see that the probability is larger than P{ji;(yT) #
11(y)}/2 when A = 0 and 012/022 is sufficiently small. Thus, neither fi1(y ") nor
[11(y) dominates the other.

4.2 Simultaneous estimation of ordered means when variances are also ordered

Here, we simultaneously estimate ordered means @1 < wo when variances are
also ordered. We show that i(y*) = (i1(y™), d2(y™)) improves upon it(y) =
(ft1(y), fia(y)) under generalized Pitman nearness based on sum of normalized
squared errors in the following.

Theorem 4 Suppose that P{)_(l — X, >0, y <ni/(ny+n2)} > 0forany uy < us
and 0'12 < 022. If y is chosen so that (12) is satisfied, then for any (1 < po and
of <03, MPN,(i(y ™). i(y)) > 1/2, where
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MPN, ((y ™), iL(y))

2 2
=r {Zmi(m — iV /Tt < D ) — w7 Ry T # mw] :

i=1 i=1

Proof Putting Z; = )_(,- —u1,i =1,2and A = uy—p1, we express sum of normalized
squared errors for ft(y) as

2
Z{ﬁ«i(y) — i)/}

i=1

1 - - 1 _ _
= S XAk - ) + SR+ -nk - w)’
1 2

1 1
=S lrZi+0- VZa¥ + SZi+ =92~ A

1 2
11 , 2A A?
=\t Wi+ 0 - - =SvZi+A-y) )+ —.
in ) &

(18)
We note that ft(y*) # fi(y) if and only if X; > X, and y < n1/(n] + n). In
this case, by replacing y by y in (18), we have sum of normalized squared errors for

a(y™)as

2
1 1
Dty — i/ = (; + —2) 721+ 0 -2z

i=1 )
2A . 2
——WZi+ (0 -y} + —.
%) 1)

Thus, we have

2 2
D) — i/ = D i) — il /7

i=1 i=1

. 1 1 . B 2A
=y —y)(Z1 - Zy) [(72 + ?) [y +P)Z1 +{2 = (y +¥)}Z2] - 7} ,

1 2 2

which is non-negative if and only if
@+ [+ P21+ 2=+ 7)) 2] 2574 <0
since Z; — Z» = X1 — X» > 0 and y > y. Therefore, we need only to show that

PLa+ DI + 721+ 2= v + 722l - 2074 <0,
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878 Y.-T. Chang, N. Shinozaki

Z1>Zy,y <ni/(m +n2)} > P{Z > Zy,y <ni/(ni +n2)}/2.
Now, we make the variable transformation
Yi=2Z1—22, Ya=Z+ /552,
Then, Y7 and Y> are the same with those given in the proof of Theorem 3 Since Y and
Y; are independently distributed as N (— A, 7 +122) and N (1'12A / 12 , (T1 +122) / 172)

respectively, and Z; = (r1 Y + ‘L'22Y2)/('C1 + 122) and Z, = 15 (Yz — Yl)/(r1 +15),
we have

Plat+ Dy + 921+ 2 - (v + 722l - 2504 <0,
21> Zoy <m/im +m))
= P{lo+ 75 — 2= (v + DI + 23 (s — f A/ <0,
V1> 0,y <m/on+n)
[2 - (v + P = v + DI

IY|>OIy<n1/(n1+nz) s
2r112,/r1 + r2

where expectation is taken with respect to Y7, s12 and s%. Since {2 — (y + )7)}122 —
(y + )7)1:12 > 0, we have the desired result. O

=E|®

5 Numerical results

Here, we illustrate the behavior of the proposed estimators by numerical evaluation for
Case-II, where both means and variances are ordered. We sety = n 1s2 / (n 1s2 + n2s2)
and ¥ = ny/(n1 +na) when y < ny/(ny + na). Then, ji;(y ™) is given by

~OS o2 2

s — [/,Ll , if 57 <53

e 2 2

mln{Xl,n]Jranl—i—anI X5}, if s7 > 55

and

~0S e 2 2
ACS_{MZ’ if s7 <53
2 . 2 2
max{Xz, m +n2 A T n1+n Xz} if s7 > 57,

which are proposed by Chang and Shinozaki (2012). For various values of
ni, na, A, 0’22 > 1 and ‘71 = 1, we compare [L With ,& , and have numerically

evaluated MPN ,; (/1; 8 /,LOS) i = 1, 2. To compare [L S with [L , we have numer-

ically evaluated MPN,, ([LCS

given in Table 2.

,[L ), and also P{X1 > X, s1 > sz}, which are all
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From Table 2, we see that MPNM(,O,ICS,/JL?S) > 1/2 when A = 0 and
MPN,,, (,&]CS, [L?S) gets larger as 022 increases. However, MPN,,, (ﬁlcs, ,11(1)5) gets

smaller fast as A increases. We see that MPN,, ([Lgs, ;lgs) gets larger as A increases
2 ~CS ~0OS 2

or o5 increases. We also see that MPN, (™", o) gets larger as o5 increases, but
gets smaller as A increases.

6 Conclusion

In this paper, we have dealt with the problem of estimating two ordered normal means
under modified Pitman nearness criterion when the order restriction on variances is
present and not present. For the case where the order restriction on variances is not
present, it is shown that the most critical case for f1;(y) to improve upon X; is the
one when ;| = p, and that the problem of improving upon X; reduces to the one
of a common mean. This result is similar to the one given in Theorems 2.1 and 2.2
of Oono and Shinozaki (2005) when MSE is the criterion. For the case where the
order restriction on variances, 012 < 022, is present, it is shown that we can improve
upon {12 (y) by fia(y ) by suitably choosing y T. Although such an improvement is not
possible for fi1(y),itis shown that ({11 (y ), fia(y ")) improves upon ({1 (y), f2(y))
for suitably chosen ¥ in the simultaneous estimation of 7 and . These results
are similar to those given in Theorems 3.1, 3.3 and 4.1 of Chang et al. (2012) when
MSE or stochastic dominance is concerned. Thus, we have confirmed that similar
results are obtained under modified Pitman nearness criterion to those obtained under
MSE or stochastic dominance criterion. Although we have not succeeded in giving an
illustrative example, one possible inconsistency among the criterions is suggested in
Remark 5 which may occur due to nontransitivity of the Pitman nearness criterion.

7 Appendix A: A proof of Lemma 1

Put k = d/(2c), then ckA —dA = —dA/2. For any 0 < ¢ < 1/2, we choose
sufficiently large A > 0 so that @®(—dA/2) < 1/2 — € and

00 kA
/ gy)dy <€ / g(y)dy.
kA 0

To see that this is possible, we only need to show that

- Jeagdy

0,
a=oo (K4 o(y)dy

which we can verify by applying L'Hospital’s rule. Therefore, for sufficiently large
A > 0, we have

o0

00 kA
/0 Dy — dA)g(y)dy = /0 O ey — dA)g()dy + /k Oy — sy
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o0

kA
< / ®(—dA/2)g(y)dy + / g dy
0 kA
kA kA
< (1/2—6)/0 g(y)dy+6/0 g(y)dy

kA 00
= 1/2/0 gndy < 1/2/0 g(y)dy.

This completes the proof. O
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