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Abstract Medical cost data are recorded through medical care and the cost is always
related to some sojourn in the health status of the patient. The total medical cost
accumulated in the entire lifetime of a life is of great interest to the health insurance
industry and government policy makers. In this paper, we develop a new method to
assess the lifetime medical cost up to the death time by incorporating the dynamics of
change in the health status of the patient based on incomplete data. A copula model
is proposed to fit the cost lifetime medical data subject to a terminal event (death).
A two-stage estimation procedure is applied to draw the statistical inference of the
marginals and the copula parameters. The asymptotic properties of the estimators
are established, and a simulation is performed to evaluate the proposed model and
estimation methods.

Keywords Dynamic change · Medical cost · Sojourn · Copula model · Two-stage
estimation · Pseudo-likelihood

1 Introduction

In many medical studies, the occurrence of events over time can be described as
the evolution of a finite-state stochastic process, with the state representing the health
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status or health condition. For example, the classical illness–mortalitymodel describes
health status as either “well”, “ill”, or “dead” (Gardiner et al. 2006). A multi-state
model is therefore a natural extension of the survival model that considers only two
state, “alive” or “dead”, and one possible transition from alive to dead.

The medical cost data can be collected from such a multi-state model in which
the cost data are accumulated during each sojourn (the time spent in a state until the
next transition) and depend on transition time, health state and patient characteristics
(covariates). As common in the longitudinal studies, some patients provide incomplete
data since they may be censored (drop out) before the endpoint of observation. In this
setting, the usual techniques in survival analysis are not applicable because the accu-
mulated cost at the failure (death) time is generally correlated with the accumulated
cost at the censoring time (Castelli et al. 2007).

For these correlated observations, some methods can be found in the literature. For
example, Carides (2000) and Polverejan et al. (2003) estimated the medical costs via a
function of the failure time, which is based on the grouped cost data. Regression is an
alternative in the cost analysis, which has been extensively discussed bymany authors.
The regression model, however, may be unsuitable for censored costs (Castelli et al.
2007) since the costs at failure and censored times tend to be positively correlated
(Lin 2003; Etzioni et al. 1999). To model these correlated observations, in this paper,
a copula model is proposed to model the correlation between the lifetime and the
corresponding medical cost, where the cost data are collected up to the lifetime (death
time) under a Markov process. This model has not been considered so far in the
literature.

A Markov process is proposed to describe the dynamic movements between the
health states of patients. Our interest is focused on estimating the transition prob-
abilities, the distribution of sojourn and the accumulation rate function of the cost
in different states. Since the effects of patient characteristics, such as demographics,
treatments and clinical conditions, on these entities can be assessed on the basis of a
proportional cost accumulation rate model, the covariate effects can be considered via
the cost accumulation rate.

The rest of paper is organized as follows. In Sect. 2, we specify our model. The
medical cost function and the copula parameters are estimated in Sect. 3 by the pseudo-
likelihood method based on the estimated Markov process. The asymptotic properties
of the estimators are established in Sect. 4. Sections 5 reports some simulation results,
followed by concluding remarks in Sect. 6. Technical proofs are relegated toAppendix.

2 Model specifications

Let X = {X (t), t ≥ 0} denote a finite-state time-inhomogeneous Markov processwith
state space E = {1, 2, . . . ,m}, where X (t) represents the state occupied at time t .
The transition probabilities {pkh(s, t) : k, h ∈ E} of X from time s to t are defined by

Pr(X (t) = h|X (s) = k, X (u), u < s) = Pr(X (t) = h|X (s) = k) = pkh(s, t)

for all 0 ≤ s ≤ t and k, h ∈ E . (1)
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The associated transition intensities α = {αkh : k, h ∈ E} are given by

αkh(t) = lim
�t→0

pkh(t, t + �t)

�t
, k �= h, and αkk = −

∑

h �=k

αkh .

The cumulative (integrated) intensities are given by Akh(t) = ∫ t
0 αkh(u) du.

Let P(s, t) = (pkh(s, t))m×m and A(u) = (αkh(u))m×m denote the transition
probability matrix and the intensity matrix, respectively, which are related by the
product-integral

P(s, t) =
∏

s<u≤t

(I + A(u) du),

where I is the identity matrix (Andersen et al. 1993).
Let Z denote a p-dimensional generic covariate profile. The covariate effects on the

transition intensities are modeled by αkh(t) = αkh0(t) exp(Z�
khμkh), where αkh0(t)

denotes an unknown baseline intensity and μkh is an unknown p×1 parameter vector
to be estimated (cf. Gardiner et al. 2006).

Suppose that the costs of patient i are incurred over a time interval [0, Ti ], Ti < ∞.
The cost accumulation rate at time t in state h is denoted by Bi

h(t), so that the cost
incurred in interval [t, t + dt) is Y i

h(t)b
i
h(t |Z) dt , where Y i

h(t) = I {Xi (t−) = h}
is the indicator function for occupying state h just before time t and bih(t |Z) =
E[Bi

h(t)|X (t−) = h, Z ] is the expected rate of the cost accumulation in state h
at time t .

Given the initial state X (0) = k and a fixed covariate Z , according to Gardiner
et al. (2006), the expected total cost composed by all sojourn costs in state h and
interval [0, Ti ], conditional on Ti , is given by

wi
h(k, Z |Ti ) =

∫ Ti

0
bih(t |Z)pkh(0, t |Z) dt. (2)

Let πk(0|Z) = Pr(X (0) = k|Z) be the initial distribution. Given Ti , the expected cost
is

wi =
∑

k

∑

h

πk(0|Z)

∫ Ti

0
bih(t |Z)pkh(0, t |Z) dt. (3)

Model (3) has been investigated by Gardiner et al. (2006), in which the accumulation
rate Bi

h(s) is estimated by the regression method proposed in Lin et al. (1997) and
the transition probabilities are estimated using the partial likelihood. The regression
method, however, partitions the observation interval into sub-intervals to weaken the
impacts of the correlated observations, which may not be the best way to deal with
correlated data.

Suppose that the observed transition times are

0 = Si,0 < Si,1 < · · · < Si, j < · · · < Si,Ji+1 = Ti ∧ Yi ,
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where Yi is a censoring variable. Obviously, the patient occupies the initial state up to
the first transition time Si,1. Assume that pkh(0, t) is right-continuous and piecewise
constant between the observed transition times (which is the case for the nonparametric
estimator of pkh(0, t)we will use). Then, pkh(0, t) = pkh(0, Si, j−1) for Si, j−1 ≤ t <

Si, j , j = 1, . . . , Ji + 1. As a result, (3) implies (cf. Gardiner et al. 2006)

wi =
∑

k

∑

h

Ji+1∑

j=1

πk(0|Z)pkh(0, Si, j−1)
(
mi

h(Si, j |Z) − mi
h(Si, j−1|Z)

)
, (4)

where pkh(0, Si, j−1) and mi
h(t |Z) = ∫ t

0 b
i
h(u|Z) du are to be estimated.

The accumulated cost is correlated with the survival time (Castelli et al. 2007). The
correlation of the cost and the failure time, however, is very complicated and cannot be
diagnosed easily. In this paper, we propose a copula model to fit the accumulated cost
data and the survival time. The main advantage of the copula model is its flexibility
to choose the dependent structure of variables and the marginal distributions for the
cost and the survival time.

As usual in the cost analysis, the marginal distribution of the lifetime cost can be
assumed to be log-normal with mean wi given by (4) and variance σ 2 > 0 in the
literature (cf. Zhou 1998; Nixon and Thompson 2004). More specifically, conditional
on Ti , the density function of the lifetime cost Ci for subject i is given by

fCi |Ti (x) = 1√
2πσ x

exp

{
−(log x − wi )

2

2σ 2

}
, x > 0. (5)

The costs of patient i , however, are observable only in the interval [0, Ti ∧Yi ], which
is not necessarily the whole lifetime interval [0, Ti ] due to censoring. Therefore, in
this paper, we assume that the incomplete cost is log-normal with mean

w̃i =
∑

k

∑

h

πk(0|Z)

∫ Yi

0
bih(t |Z)pkh(0, t) dt (6)

(i.e., replace Ti by Yi in (3)). The cost in (6) is referred to as the total cost, which
differs from the lifetime cost in (3).

To best fit the correlated cost, we need the distribution of the variable Ti and Yi . As
common in survival analysis, the failure time Ti and censoring time Yi are assumed
to have proportional hazards as follows:

λTi (t) = λ01(t) exp(Z
�
i β), λYi (y) = λ02(y) exp(Z

�
i η), (7)

where λ01(t) and λ02(y) are unspecified baselines hazard rates, and β and η are the
coefficients of covariate Zi to be estimated.

To account for the correlation between the total costs Ci , the failure time Ti , and
the censoring time Yi , we propose to model the joint distribution of (Ti ,Yi ,Ci ) by
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a trivariate copula function with bivariate margins. Specifically, the joint survival
function of (Ti ,Yi ,Ci ) is given by

Pr(Ti > t,Yi > y,Ci > x) = Cρ(STi (t), SYi (y), SCi (x)), (8)

where Cρ(·, ·, ·) is a trivariate copula function on [0, 1]×[0, 1]×[0, 1]with parameter
ρ, SCi (x) is the survival function ofCi with density given by (5), and STi (t) and SYi (y)
are, respectively, the survival functions of Ti and Yi with hazard rates given by (7).

Since (Ti ∧ Yi = t, δi = 1) = (Ti = t,Yi > t) and (Ti ∧ Yi = y, δi = 0) =
(Ti > y,Yi = y), the conditional density of the total medical cost Ci given (Ti ∧Yi =
t, δi = 1) or (Ti ∧ Yi = y, δi = 0) can be defined, respectively, by (see Shih and
Louis 1995)

fCi |(Ti∧Yi=t,δi=1)(x |t) = C(13)
ρ (u1(t), u2(t), u3(x))

C(1)
ρ (u1(t), u2(t))

fCi (x) (9)

or

fCi |(Ti∧Yi=y,δi=0)(x |y) = C(23)
ρ (u1(y), u2(y), u3(x))

C(2)
ρ (u1(y), u2(y))

fCi (x), (10)

where (u1(·), u2(·), u3(·)) = (ST (·), SY (·), SC (·)), C(kl)
ρ = ∂2Cρ/∂uk∂ul for (k, l) =

(1, 3) or (2,3), Cρ(u1, u2) is a bivariate margin of Cρ(u1, u2, u3), and C(k)
ρ (u1, u2) =

∂Cρ(u1, u2)/∂uk, k = 1, 2. In this paper, we will apply a trivariate copula of the
following form, which will be further studied in statistical inference and simulation
in subsequent sections:

Cρ(u1, u2, u3) =
[
(u1u2)

1−ρ + u1−ρ
3 − 1

]1/(1−ρ)

. (11)

The copula in (11) implies that the survival time T and the censoring variable Y are
independent, and the association between T and the medical cost C is the same as that
between Y and C , both measured by the copula parameter ρ.

Remark 1 A more general trivariate copula is given by a trivariate survival function
of the form:

Cγ,ρ(u1, u2, u3) =
[(

u1−γ
1 + u1−γ

2 − 1
)(1−ρ)/(1−γ ) + u1−ρ

3 − 1

]1/(1−ρ)

. (12)

It has bivariate margins of the Clayton’s survival copula (see Example 3.2 and Section
5.3 of Joe 1997): Cγ (u1, u2) = (u1−γ

1 + u1−γ
2 − 1)1/(1−γ ) and Cρ(ui , u j ) = (u1−ρ

i +
u1−ρ
j − 1)1/(1−ρ) for (i, j) = (1, 3) or (2,3). This trivariate copula can model the

association between the survival time T and the censoring variable Y if they are
assumed to be dependent, andmeasure its size by γ . However, since only theminimum
of T and Y is observed, it would not be possible to estimate all marginal distributions
and the copula parameters ρ, γ from the data under model (12). Model (11), on the
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other hand, can avoid this difficulty by assuming independence between T and Y , and
is a special case of (12) as γ → 1. Moreover, when T and Y are independent and
only their minimum is observed, it is reasonable to measure the associations between
(T,C) and between (Y,C) by the same copula parameter ρ as assumed in model (11).

3 Pseudo-maximum likelihood

3.1 Marginal distributions

To construct the likelihood function of the copula model defined in (10), it is crucial
to have explicit cumulative distribution functions (cdf’s) of the variables Ti , Yi and
the total costs Ci in the interval [0, Ti ] or [0,Yi ] given in (5).

Assume that FTi (·) and FYi (·) are the cdf’s of the failure time Ti and the censoring
variable Yi , respectively. Based on (7), FTi (t) and FYi (y) can be expressed as

FTi (t) = 1 − [1 − F01(t)]exp(Z�
i β) and FYi (y) = 1 − [1 − F02(y)]exp(Z�

i η),

where F0k(t) = 1− exp{∫ t
0 λ0k(s) ds}, k = 1, 2, are unspecified baseline cdf’s deter-

mined by the baseline hazard rates λ01(t) and λ02(t) in (7).
The marginal cdf FCi (x) of the total cost of subject i can be obtained from the

log-normal density in (5). We incorporate the covariate Zi into the sojourn cost bih by

bih(t |Z) = b0h(t) exp
(
Z�
i αh

)
, (13)

where b0h(t) is the baseline accumulation rate function and αh is the coefficient of
covariate Zi to be estimated.

In this paper, the parameters β, η, αh, σ 2, μ and copula parameter ρ together with
the unspecified components αhk0(t), b0h(s), F01(t), F02(y) are to be estimated. In
the next section, the partial likelihoodwill be used to estimate themarginal cdf’s FTi (t)
and FYi (y), and the multivariate likelihood will be employed to estimate FCi (x).

3.2 Two-step parametric estimation

The pseudo-likelihood for (10) is computationally difficult to work with. Hence, we
propose a two-step procedure to tackle the estimations required. It first estimates
the marginal distributions of the failure time Ti and censoring variable Yi , and then
estimates the copula parameters ρ and themarginal distribution of the costCi based on
an ad hoc estimator. We follow this two-step procedure to draw statistical inference,
which differs from the two-step procedure proposed by Joe (2005).
Partial likelihood
To estimate the first margin for the terminal event, we make further specifications
to our model. As usual in survival analysis, denote the censoring indicator by δi =
1 if Ti ≤ Yi , and 0 otherwise. For the observations {Ti ,Yi , δi , i = 1, . . . , n}, the
distributions of Ti and Yi can be easily estimated from the partial likelihood as follows.
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Let t1 < · · · < tk be the ordered distinct (uncensored) failure times and R(t) the risk
set at time t . An estimator of β is obtained from the following partial likelihood:

L1(β) =
k∏

j=1

exp{Z�
j β}

∑
l∈R(t j ) exp{Z�

l β} . (14)

The Nelson–Aalen estimator for the cumulative baseline hazard rate 
01(t) =∫ t
0 λ01(s)ds is given by


̂01(t) =
∑

i :ti<t

δi∑
l∈R(ti ) exp{Z�

l β̂} , (15)

where β̂ is the estimate of β from (14). Then, the cdf of Ti is estimated by

F̂T (t) = 1 − exp
{
−
̂01(t) exp

(
Z�β̂

)}
. (16)

Proceeding along the same line as (14)–(16), the cdf of the censoring variable Yi can
be estimated as well.
Pseudo-maximum likelihood
Note that the cost Ci is incomplete if Yi < Ti . However, as the cost is log-normal with
parameters σ and αh defined in (5), the likelihood function of Ci conditional on Ti
and Yi of (10) can be written as:

L2(·) =
n∏

i=1

fCi (xi )

[
C(13)

ρ (ui (ti ), u2(ti ), u3(xi ))

C(1)
ρ (u1(ti ), u2(ti ))

]δi
[
C(23)

ρ (u1(yi ), u2(yi ), u3(xi ))

C(2)
ρ (u1(yi ), u2(yi ))

]1−δi

.

(17)
The mean w̃i of Ci , however, involves unknown baseline functions bh0(s) and the
transition probabilities pkh(0, t), which are to be estimated. The pseudo-likelihood
estimation is used to complete the statistical inference in a two-step procedure. The
first step is to estimate the transition probability function pkh(0, t) semi-parametrically
as in Andersen et al. (1993). Then, in the second step, the likelihood is used to estimate
the baselines bh0 together with some constants in w̃i , with the transition probabilities
P(s, t) replaced by their consistent estimators P̂(s, t), and the cdf’s FT (t), FY (y) and
their densities fT (t), fY (y) replaced by their estimators defined in (14)–(16).

Since the Nelson–Aalen estimator P̂(0, t) = ( p̂kh(0, t))m×m of P(0, t) remains
constant between transitions, we need an estimator of the total costs between consec-
utive transition times for (2). If 0 < Si,1 < Si,2 < · · · < Si,Ji < Ti ∧ Yi denote all
observed transition times in (0, Ti ∧ Yi ), an estimator of wi

h(k, Z |Ti ) in (2) is given
by

ŵi
h(k, Z |Ti ) =

Ji+1∑

j=1

p̂kh(0, Si, j−1|Z)
(
mi

h(Si, j |Z) − mi
h(Si, j−1|Z)

)
(18)
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(see Gardiner et al. 2006), where Si,0 = 0, Si,Ji+1 = Ti ∧ Yi and mi
h(t |Z) =∫ t

0 b
i
h(u) du.

In Gardiner et al. (2006), an estimator of bih(t) is given by the standard regression
method proposed by Lin et al. (1997). In this paper, for ease of representation of
the model and methods, we make a parametric assumption of the baseline h0h(s)
(some discussions will be given in Sect. 6). Together with the ad hoc estimator of
P(s, t), FT (t) and FY (y), the likelihood of (17) is referred to as the pseudo-maximum
likelihood.

4 Asymptotic properties for estimators

We now proceed to establish the asymptotic properties of the estimators in this paper.
For the marginal distribution functions FT (t) and FY (y), the asymptotic properties of
their estimators given in (16) depend on the asymptotic properties of the estimators
of (β, η) and the baseline cdf’s F01(t) and F02(y) defined in (14)–(15). To show
the asymptotic properties of the estimators for the other marginal cdf FC (x) and the
copula parameter ρ, two steps are needed since the estimation is based on the pseudo-
likelihood. This is a new two-step procedure: first show that the estimator of the
transition probabilities P(s, t) is consistent, and then the consistency and asymptotic
normality of the estimators of FT (t) and FY (y).

To show the asymptotic properties of F̂T (t), F̂Y (y) and P̂(s, t) is tedious. We omit
the details here, because the method is standard, such as: develop the convergence of√
n(β̂ − β) and

√
n(
̂0(t) − 
0(t)) to Gaussian processes G1 and G2, say (this can

be easily done by the existing results; cf. Andersen et al. 1993), express
√
n(F̂T (t) −

FT (t)) as a function of G1, G2 plus a remainder, and show that the remainder tends to
zero.

In this section, we focus on the asymptotic properties of the pseudo-likelihood
estimators of the accumulation rate function, such as bih(s), based on a consistent

estimator P̂(s, t). Our results are based on independent but non-identical distributions
(see Hu 1998; Shorack and Wellner 1986). We first introduce some notations that
are convenient in the theory of an analogy of empirical process (see Huang 1996).
In the sequel, we will denote P(t) = (p11(0, t), . . . , pmm(0, t), FT (t), FY (y))� for
simplicity.

Throughout the rest of this section, we will denote by Fi
φ,P(t) the cdf of the cost Ci

for every (φ, P(t)) and its density by f iφ,P(t), where φ = (ν0h, αh : h ∈ E; ρ)� with

true value φ0 = (ν00h, α
0
h : h ∈ E; ρ0)

� and ν0h is the collection of all the parameters
of bih(s).

Let Fn be the analogy of the empirical distribution of {Xi , i = 1, 2, . . . , n}
such that FnM = n−1∑n

i=1 M(Xi ) for any function M(x). Similarly, F0M =
n−1∑n

i=1

∫
M(x) dFi

φ,P(t)(x). Then, the log-likelihood for a single observation is
defined as

l(φ, P(t)|X) = log fφ,P(t)(X). (19)
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We also need the score function for φ, denoted by l̇φ(φ, P(t)|X) = ∂l(φ, P(t)|X)

/∂φ. The true values of (φ, P(t)) are denoted by (φ0, P0(t)). The true cdf fφ0,P0(t) is
sometimes simplified to f0. For the rest of this paper, we assume that the following
limits exist:

F0
[
l̇φ(φ, P(t)|X) j

]
= lim

n→∞
1

n

n∑

i=1

E
[
l̇φ(φ, P(t)|X) j

]
< ∞, j = 1, 2. (20)

Further assume that theLyapunovconditionholds for randomvariables l̇φ(φ0, P0(t)|X)

and F0
˙̇l··(φ, P(t)|X) < ∞, where the double dots on the top stand for twice-

differentiation and each dot in the subscript represents φ or P(t). Hence, for inde-
pendent observations X1, . . . , Xn , the score function can be written as

Fnl̇φ(φ, P(t)|·) = 1

n

n∑

i=1

l̇φ(φ, P(t)|Xi ). (21)

We define the parameter space as follows. Denote the set of all monotone functions
f : R → [0, 1] by Q. For some large Ã > 0 and small ζ > 0, let

S0 =
{
φ : φ�φ < Ã

}
and Sζ = {P(t) : ‖P(t) − P0(t)‖ ≤ ζ }, (22)

where ‖ · ‖ is the supremum norm.
Wefirst state some conditions fromHu (1998), which correspond toConditions 3, 1,

4, 2, 5 of Huang (1996), respectively. Note that op∗(1) in the following representation
indicates convergence to zero in outer probability in case that the term involved is
not Borel measurable. The notation Op∗(·) denotes bounded in probability F0. In the
sequel, we denote l̇φ(φ0, P0(t)|X) by l̇φ(φ0, P0(t)) sometimes for simplicity.

Now, we return to the asymptotic properties of the pseudo-likelihood estimator φ̂.
In the sequel, the definition of F0[l̇φ(φ, P(t))] is referred to (20). From (17), we can
see that the log-likelihood function, say l(φ, P(t)|x), for a single observation is given
by

log( fC (x)) + δ log
C(13)(u1, u2, u3)

C(1)
ρ (u1, u2)

+ (1 − δ) log
C(23)(u1, u2, u3)

C(2)
ρ (u1, u2)

.

Note that (20) implies F0l̇φ(φ, P(t)|X) < ∞ (this holds under a boundedparameter
space). Hence, by Lebesgue’s Dominated Convergence Theorem,

F0
∣∣l̇φ(φ, P(t))) − l̇φ(φ0, P0(t)))

∣∣2 = op(1), (23)

where |φ − φ0| ≤ ηn ↓ 0 and ‖P(t) − P0(t)‖ ≤ κn−1/2 for some constant κ . Note
that φ0 is the unique point such that l̇φ(φ, P0(t)|x) = 0. Thus, we obtain φ̂ by solving
l̇φ(φ, P̂(t)|x) = 0. We now give the asymptotic properties of the estimators. The
proofs of these Theorems can be found in the Appendix.
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Theorem 1 Suppose that covariates satisfy |z| ≤ D for some positive constant D, the
parameter space � (φ ∈ �) is bounded, and P̂(t) is a consistent estimator of P(t)
given in Sect. 3. Then, φ̂ solves equation Fnl̇φ(φ̂, P̂(t)) = op∗(1/

√
n) almost surely

and converges in outer probability to φ0.

To prove Theorem 2, we need Lemma 1 below, which is a restatement of Vaart and
Weller (1996) for the semiparametric model with an infinite-dimensional parameter
space. Lemma 1 is an extension of Lemma 3.1.1 of Hu (1998) from the i.i.d. case to
independent but non-identical distributions. The conditions of Lemma 1 provide a set
of simple sufficient conditions for Condition 1 of Hu (1998), so we will only verify
these conditions in Theorem 3 below.

Lemma 1 Suppose the class of functions
{
ψ(φ, P(t)) : |φ−φ0| < ξ, ‖P(t)−P0(t)‖

< ξ
}
to be F0-Donsker for some ξ > 0, and F0|ψ(φ, P(t)|X) − ψ(φ0, P0(t)|X)|2 →

0 as |φ − φ0| → 0 and ‖P(t) − P0(t)‖ → 0. If φ̂
p∗
→ φ0 and ‖P̂(t) − P0(t)‖ p∗

→ 0,
then ∣∣∣

√
nh̃ (Fn − F0)

[
ψ(φ̂, P̂(t)) − ψ(φ0, P0(t))

]∣∣∣ = op∗(1). (24)

The next theorem gives the convergence rate of the pseudo-likelihood estimator φ̂.

Theorem 2 Under the conditions of Theorem 1,
√
n(φ̂ − φ0) = Op∗(1).

Therefore, the asymptotic representation of φ̂ is an immediate consequence of the
above results. Similar to Theorem 3.1.4 in Hu (1998), it can be shown that

√
n(φ̂ − φ0) =

(
−F0

˙̇lφφ(φ0, P0(t)
)−1 √

n
{(
Fnl̇φ(φ0, P0(t)) − F0l̇φ(φ0, P0(t))

)

+F0
˙̇lφP(t)(φ0, P0(t)

[
P̂(t) − P0(t)

]}
+ op∗(1). (25)

Define �(x) = E
[
n−1 ˙̇(l2)φφ(φ0, P0(t))

]
and �(x) = Var(n−1 ˙(l2)φ(φ0, P0(t))).

Under some classic regularities, we have the normal distribution of the estimator φ̂

below.

Theorem 3 Under the conditions of Theorem 1, and some regularities, we have

√
n{[(φ̂1 − φ1), . . . , (φ̂m − φm)]� − �−1(x)E[(n)−1 ˙(l2)φ(φ0, P0(t))]}
d→(n)−1�(x)−1Nq (0, V ) , (26)

where
V = Var(
̃1 + F0

˙̇lφP(t)(φ0, P0(t))
2) and 
̃1 ∼ N (0, �(x)). (27)

Remark 2 For the asymptotic variance V of
√
n(φ̂ − φ0) in Theorem 3, a precise

expression can be found in Corollary 3.1.4 of Hu (1998) for the i.i.d. setup. In such a
case, there exists a zero-mean α(X, φ0, P0(t)) such that

√
nF0

˙̇lφφ(φ0, P0(t))[P̂(t) − P(t)] = √
nFnα(·, φ0, P0(t)) + op(1),
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where α(·, φ0, P0(t)) is defined by (3.1.21) in Hu (1998), and the variance of
√
n(φ̂ −

φ0) is given by V = Var[l̇φ(φ0, P0(t)|X)] + Var[α(X, φ0, P0(t))]. Without such an
α(X, φ0, P0(t)), however, a closed form of V is not available. In that case, we can
estimate V by bootstrap,whichwill be illustrated by the simulations in the next section.

5 Simulation results

To assess the proposed model and methodology in this paper, a simulation is carried
out as follows. We consider the case of a three-state model with the baseline transition
intensity matrix:

Q0 =
⎛

⎝
−α110 α120 α130
α210 −α220 α230
α310 α320 −α330

⎞

⎠ =
⎛

⎝
−2/3 1/3 1/3
0 −1/2 1/2
0 0 0

⎞

⎠ . (28)

That is, the change in health status is irreversible, which is realistic when the change is
due to aging, and more flexible than the existing literature such as Hsieh et al. (2002).
In this simulation, the covariate in αkh(t) is ignored, so that αkh(t) = αkh0(t), k, h =
1, 2, 3.

The transition probabilities can be obtained as follow (Andersen et al. 1993). First
define accumulative hazards as Hi j (t1, t2) = ∫ t2

t1
αi j (t) dt, i = 1, 2, 3, j = 1, 2, 3.

Then,
p11(t1, t2) = exp {−H11(t1, t2)} . (29)

This is the probability of remaining in state 1 between time t1 and t2 (referred to as
sojourn in state 1). The probability of observing state 1 at time t1 and state 2 at time
t2 is obtained by solving a linear differential equation, which leads to

p12(t1, t2) =
∫ t2

t1
exp {−H11(t1, t)} α12(t) exp {−H12(t, t2)} dt (30)

and p13(t1, t2) = 1 − p11(t1, t2) − p12(t1, t2). Note that numerical integration may
be needed to calculate (30) and get its estimator. Similarly, p22(t1, t2), p23(t1, t2) can
be obtained.

The initial state (π1(0) π2(0) π3(0)) is generated from a multinomial distribution
with probabilities (1/2 1/2 0) for each subject i at entry time ti0 = 0. For each subject
i , the observed terminal time Ti and Yi are assumed to have proportional hazards

λTi (t) = λ01(t) exp
(
Z�
i β

)
, λYi (t) = λ02(t) exp

(
Z�
i η
)

, (31)

where the covariates are generated from uniform [0, 1] with coefficients β = 0.5 and
η = 1.2. The baseline functions are taken as λ01(t) = 0.05t and λ02(t) = 0.05,
which correspond to the Weibull and exponential distributions of the baselines. We
also assume that all the observations of the terminal events are censored beyond the
observation endpoint τ = 6.
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For each state, the baseline accumulative rate functions b01, b02 and b03 are defined
as b01 = θ1t = 0.2t , b02 = θ2 = 6 and b03 = exp(−θ3t) = exp(−3t). For subject i ,
the covariate Zi is normally distributed with mean 0 and variance 2. The coefficient of
covariate is αh = 0.25 for all states. Furthermore, we assume a trivariate copula given
in (11) with parameter ρ = 2.0 for simplicity. The medical cost is generated from the
log-normal marginal distribution with parameter σ = 0.5 and density

fCi (x) = 1√
2πσ x

exp

{
− (log x − wi )

2

2σ 2

}
, x > 0, (32)

where wi is defined in (4).
One can find a special algorithm for sampling from a trivariate Archimedean cop-

ula, such as McNeil (2008), Hofert (2008a, b). The partial derivatives for model (11),
however, have a simple form, and hence a general algorithm using their conditional
copulas (cf. Nelsen 2005) is available for generating random variables from the pro-
posed model, which can proceed as follows:

Step 1 Generate independent random variables V1, V2 and V3 from U [0, 1].
Step 2 Calculate W1 = V1 and W2 = C−1

2|1(V2|W1), where C2|1(u2|u1) =
∂Cρ(u1, u2)/∂u1.

Step 3 Calculate W1 = V1, W2 = V2 and W3 = C−1
3|1,2(V3|W1,W2), where

C3|1,2(u3|u1, u2) = ∂2Cρ(u1, u2, u3)/∂u1∂u2
∂2Cρ(u1, u2)/∂u1∂u2

. (33)

Let C̃(u1, u2, u3) = (u1u2)1−ρ +u1−ρ
3 −1. Then C3|1,2 has a close form under

model (11):

C3|1,2(u3|u1, u2) = ρ(u1u2)
1−2ρ C̃(1−2ρ)/(ρ−1)(u1, u2, u3)

−(ρ − 1)(u1u2)
−ρ C̃−ρ/(1−ρ)(u1, u2, u3).

Step 4 Calculate Ci = S−1
Ci

(W3), Yi = S−1
Yi

(W2) and Ti = S−1
Ti

(W1), where
SCi (·), SYi (·) and STi (·) are the cdf’s of Yi ,Ci and Ti , respectively. Then, a
dependent triplet (Ti ,Yi ,Ci ) is generated from themodelCρ(STi (t), SYi (y), SCi

(x)).

In each simulation, we replicate 1000 times with sample sizes of 200 or 1000. The
simulation results are presented in Tables 1 and 2 below for samples of sizes 200 and
1000, respectively. In Tables 1 and 2, β̂ denotes the estimator of β, and so on; “Mean”
represents the average of estimates and “Std” is the standard error over 1000 replicate
samples.

The estimated transition probabilities p11(0, t), p13(0, t), p22(0, t) and p33(0, t)
are listed in Figs. 1, 2, 3 and 4 as well. From Tables 1 and 2 and Figs. 1, 2, 3 and 4,
we can see that the estimated parameters and curves perform reasonably well based
on the proposed semiparametric model.
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Table 1 Summaries of parameter estimators with n = 200

Estimator β̂ η̂ α̂ σ̂ θ̂1 θ̂2 θ̂3 ρ̂

Mean 0.465 1.241 0.255 0.463 0.154 6.301 3.570 2.378

Std 0.374 0.507 0.009 0.031 0.266 0.489 0.535 0.320

Table 2 Summaries of parameter estimators with n = 1000

Estimator β̂ η̂ α̂ σ̂ θ̂1 θ̂2 θ̂3 ρ̂

Mean 0.512 1.208 0.246 0.442 0.272 6.019 3.142 2.110

Std 0.103 0.329 0.009 0.015 0.129 0.174 0.381 0.107

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 The true and estimated p11(t)

6 Concluding remark

In this paper, we investigated the modeling and analysis of medical cost data of the
survival time. A copulamodel is proposed to capture the dependence between themed-
ical cost and the terminal event, in which the occurrence of the medical cost over time
can be described as the evolution of a finite-state stochastic process. A semiparametric
model is proposed to describe the medical cost, and the pseudo-likelihood method is
employed to estimate the parametric and nonparametric components of the proposed
model. The asymptotic properties have been established as well. The model with cop-
ula function to fit the medical cost and the terminal event makes a new contribution to
the literature.
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Fig. 2 The true and estimated p13(t)
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Fig. 3 The true and estimated p22(t)

Our focus in this paper is based on the total cost of the subject.Wemay also consider
the casewith interest in the sojourn cost andmodel the relationship between the sojourn
and its cost by a copula function. Then, the recurrent event model can be applied to fit
these data. The sojourn and its relatedmedical costmight bemodeled as nonparametric
or semiparametric such as proportional hazards. The marginal proportional hazards
assumption, however, is different from the medical cost data with copula model, since
the information censoring can be considered through this dependence structure. The
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Fig. 4 The true and estimated p33(t)

inference function of the margins for the two-step method (Joe 2005) can be used to
draw statistical inference. These issues are of interest in further studies.

Appendix

Proof of Theorem 1

Proof Since φ0 is the unique solution to F0l̇φ(φ, P(t)) = 0, this implies that for any
fixed ε > 0, there is a δ > 0 such that F0[|φ̂ − φ0| > ε] ≤ F0[|F0l̇φ(φ̂, P0(t))| > δ].
Then, the consistency of φ̂ will follow from F0l̇φ(φ̂, P0(t))| →p∗ 0.

To do this, first note that since ‖P̂(t) − P(t)‖ = oP∗(1), there exists a sequence
{δn} ↓ 0 such that ‖P̂(t)−P(t)‖ ≤ δn with probability approaching 1. Hence, we have
the inequality |F0l̇φ(φ̂, P0(t))| ≤ |Fnl̇φ(φ̂, P̂(t))|+|F0l̇φ(φ̂, P0(t))− Fnl̇φ(φ̂, P̂(t))|
by taking P(t) = P̂(t). The first term |Fnl̇φ(φ̂, P̂(t))| is op∗(1) by the definition of
estimator from the pseudo-likelihood. The second term is bounded by

∣∣∣(Fn − F0)l̇φ(φ̂, P̂(t))
∣∣∣+

∣∣∣F0(l̇φ(φ̂, P̂(t)) − l̇φ(φ̂, P0(t)))
∣∣∣ , (34)

which obviously tends to zero when |P(t)− P0(t)| ≤ ηn ↓ 0 by (23). Thus, it suffices
to show that the class of functions�ζ ≡ {l̇φ(φ, P(t)) : φ ∈ S0, |P(t)− P0(t)| ≤ ζ } is
a VC-class for some ζ > 0, where S0 is defined in (22). This implies that the uniform

strong law of large numbers holds, i.e., sup f ∈�ζ
|(Fn − F0) f | p→ 0. It can be easily

verified by Example 2.2.21 of Vaart and Weller (1996), Lemma 2.6.18 of Vaart and
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Weller (1996) and Lemma 5.1.1 in Hu (1998) that �ζ is a VC-class by the boundness
of the parameter space. The consistency of φ̂ then follows from (34). ��

Proof of Theorem 2

Proof Since |φ̂ − φ0| → op∗(1) and ‖P̂(t) − P0(t)‖ → Op∗(n−ε) with ε > 0, there
exists a sequence {δn} ↓ 0 and κ > 0 such that |φ̂ − φ0| ≤ δn and ‖P̂(t) − P0(t)‖ ≤
κn−ε with probability approaching one.

First, we can show the smoothness condition via direct calculations

∣∣√n
[
F0l̇φ(φ, P(t)) − F0l̇φ(φ0, P0(t))

]− √
nF0

˙̇lφφ(φ0, P0(t))(φ − φ0)

−√
nF0

˙̇lφP(t)(φ0, P0(t))[P(t) − P0(t)]
∣∣∣

= op∗(
√
n|φ − φ0|) + Op∗(

√
n|P(t) − P0(t)|)

= op∗(1 + √
n|φ − φ0|). (35)

Hence, (35) is equal to o(|φ − φ0|) for |φ − φ0| < δn ↓ 0.
On the other hand, we verify the stochastic equicontinuity condition:

∣∣∣
√
n(Fn − F0)

[
l̇φ(φ̂, P̂(t)) − l̇φ(φ0, P0(t))

]∣∣∣ = op∗(1). (36)

l̇φ(φ, P(t)) − l̇φ(φ0, P0(t)) can be easily found by their definitions. Let

Fζ = {
l̇φ(φ, P(t)) − l̇φ(φ0, P0(t)) : |φ − φ0| ≤ ζ, ‖P(t) − P0(t)‖ ≤ ζ

}
. (37)

Similar to Theorem 1, we can show that Fζ is F0-Donsker for some ζ > 0. Thus, (36)
follows from the VC-class (37) and (23) by Lemma 1.

By (36), we have

√
n
∣∣∣(Fn − F0)l̇φ(φ̂, P̂(t)) − (Fn − F0)l̇φ(φ0, P0(t))

∣∣∣

= op∗(1) + op∗
(√

n
∣∣∣Fnl̇φ(φ̂, P̂(t))

∣∣∣
)

+
(√

n
∣∣∣F0l̇φ(φ̂, P̂(t))

∣∣∣
)

. (38)

By the triangular inequality −|a| + |b| − |c| ≤ |a − b − c| and the fact that
F0l̇φ(φ0, P0(t)) = 0,

√
n
∣∣∣F0l̇φ(φ̂, P̂(t))

∣∣∣− √
n
∣∣∣Fnl̇φ(φ̂, P̂(t))

∣∣∣− √
n
∣∣Fnl̇φ(φ0, P0(t))

∣∣

= √
n
∣∣∣(Fn − F0)

(
l̇φ(φ̂, P̂(t)) − l̇φ(φ0, P0(t))

)∣∣∣ (see (38))

= op∗(1) + op∗
(√

n
∣∣∣Fnl̇φ(φ̂, P̂(t))

∣∣∣
)

+
(√

n
∣∣∣F0l̇φ(φ̂, P̂(t))

∣∣∣
)

, (39)
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which implies

√
n
∣∣∣F0l̇φ(φ̂, P̂(t))

∣∣∣ [1 − op∗(1)]
≤ op∗(1) + √

n
∣∣∣Fnl̇φ(φ̂, P̂(t))

∣∣∣ [1 − op∗(1)] + √
n
∣∣Fnl̇φ(φ0, P0(t))

∣∣

= op∗(1) + op∗(1) + Op∗(1), (40)

where the last equation follows from (36) and (20). Hence,

√
n
∣∣∣F0l̇φ(φ̂, P̂(t))

∣∣∣ = Op∗(1). (41)

By (41) together with F0l̇φ(φ0, P0(t)) = 0 and −|a| + |b| − |c| ≤ |a − b − c|, (35)
implies

−Op∗(1) +
∣∣∣
√
nF0

˙̇lφφ(φ0, P0(t))(φ̂ − φ0)

∣∣∣−
∣∣∣
√
nF0

˙̇lφP(t)(φ0, P0(t))(P̂(t) − P0(t))
∣∣∣

≤
∣∣∣
√
n[F0l̇(φ̂, P̂(t)) − F0l̇(φ0, P0(t))] − √

nF0
˙̇lφφ(φ0, P0(t))(φ̂ − φ0)

− √
nF0

˙̇lφP(t)(φ0, P0(t))(P̂(t) − P0(t))
∣∣∣

= Op∗
(
1 + √

n|φ̂ − φ|
)

. (42)

Since them×m matrix F0
˙̇lφφ(φ0, P0(t)) is nonsingular, there exists a constant κ1 > 0

such that as |φ − φ0| → 0,

∣∣∣F0 ˙̇lφφ(φ0, P0(t)) (φ − φ0)

∣∣∣ ≥ κ1|φ − φ0|. (43)

On the other hand, by the following equation

F0l̇(φ, P0(t)) − F0l̇(φ0, P0(t)) = F0
˙̇lφφ(φ0, P0(t))(φ − φ0) + o(|φ − φ0|), (44)

we have F0
˙̇lφP(t)(φ0, P0(t))(P̂(t)−P0(t)) = Op∗(1).Combining this with inequality

(42) yields

Op∗(1) ≥
∣∣∣
√
nF0

˙̇lφφ(φ0, P0(t))(φ̂ − φ0)

∣∣∣−
∣∣∣
√
nF0

˙̇lφP(t)(φ0, P0(t))(P̂(t) − P0(t))
∣∣∣

− Op∗(1 + √
n|φ̂ − φ|) ≥ c1

√
n|φ̂ − φ| − Op∗(1) − op∗(1 + √

n|φ̂ − φ|)
= [Op∗(1) − op∗(1)]√n|φ̂ − φ| − Op∗(1). (45)

Hence,
√
n|φ̂ − φ| = Op∗(1) in outer probability. ��
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Proof of Theorem 3

Proof By (25), we need to show

√
n (Fn − F0) l̇φ(φ0, P0(t))

d→ 
1 (46)

where 
1 = (
11, . . . , 
1q)� ∼ Nq (0, �(x)) with a q × q positive definite covari-
ancematrix�(x) = �11. This can be easily done by calculating its mean and variance.
Then, (46) follows from the Lyapounov Central Limit Theorem. On the other hand,
by the asymptotic results of transition probabilities in Andersen et al. (1993), we

have
√
n(P̂(t) − P0(t))

d→ 
2(t), where {
2(t), t ∈ T } is a Gaussian process with
mean zero and auto-covariance given by �22(t, t ′) = Cov(
2(t),
2(t ′)) for any
t, t ′ ∈ T . The cross-covariance function between 
1i and 
2(t) for t ∈ T is denoted
by �1i2 = Cov(
1i ,
2(t)). The conclusion of the theorem then follows from (25).
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