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Abstract We determine the joint limiting distribution of adjacent spacings around a
central, intermediate, or an extreme order statistic Xk:n of a random sample of size
n from a continuous distribution F . For central and intermediate cases, normalized
spacings in the left and right neighborhoods are asymptotically i.i.d. exponential ran-
dom variables. The associated independent Poisson arrival processes are independent
of Xk:n . For an extreme Xk:n , the asymptotic independence property of spacings fails
for F in the domain of attraction of Fréchet and Weibull (α �= 1) distributions. This
work also provides additional insight into the limiting distribution for the number of
observations around Xk:n for all three cases.

Keywords Spacings · Uniform distribution · Central order statistics · Intermediate
order statistics · Extremes · Poisson process

1 Introduction

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics of a random sample X1, . . . , Xn from
a continuous cdf F . For 1 ≤ k ≤ n, we examine the clustering of data around the order
statistic Xk:n . This is done by an investigation into the limiting properties of the right
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and left neighborhoods formed by the adjacent spacings (Xk+1:n−Xk:n, . . . , Xk+r :n−
Xk+r−1:n) and (Xk:n − Xk−1:n, . . . , Xk−s+1:n − Xk−s:n) for fixed r and s. We let
n → ∞ and consider three scenarios: (i) Central case where k/n → p, 0 < p < 1;
(ii) Intermediate case where k, n − k → ∞ and k/n → 0 or 1; (iii) Extreme case
where k or n − k is held fixed. In the first two cases we show that, under some
mild assumptions, these (r + s) spacings appropriately scaled with a common scale
parameter converge weakly to a set of i.i.d. standard exponential random variables
(rvs). In the extreme case, this conclusion holds only when F is in the domain of
attraction of the Gumbel cdf G3, or the Weibull type cdf G2;α with α = 1. A direct
and useful consequence of such a result is that order statistics around a selected one
arrive as in a homogeneous Poisson process.

Neighborhoods around a selected order statistic have been investigated by several
authors in recent years. Almost all these results, starting with Xn:n , have concentrated
on the distribution of counts around it. We refer to a few, relevant to our results, from
an exhaustive list: (Balakrishnan and Stepanov 2005; Dembińska et al. 2007; Pakes
and Steutel 1997; Pakes 2009; Dembińska and Balakrishnan 2010). These authors
typically consider neighborhoods of the form (Xk:n − d, Xk:n) or (Xk:n, Xk:n + d)

where the lengths of the intervals may or may not depend on n; in some papers, the
d’s are induced by the quantile function F−1 or are chosen to be random. While these
approaches are beneficial from a technical perspective, it is more natural and practical
to consider neighborhoods that are in the scale of the data collected. This is our
motivation for considering the joint distribution of adjacent spacings. Our approach
allows us to characterize the process governing the distribution of counts and provides
additional insight into the asymptotic properties of the counts of cluster sizes around
a specified order statistic.

Section 2 contains preliminaries that explore the properties of uniform and exponen-
tial order statistics; it introduces the von Mises conditions and the associated extreme
value distributions. Section 3 is concerned with the joint distribution of a central order
statistic and spacings adjacent to it on its right and left neighborhoods. The Poisson
arrival process of adjacent order statistics is established there. Assuming von Mises
conditions, Sect. 4 reaches a similar conclusion for the neighborhood of an inter-
mediate order statistic. Section 5 displays the distributional structure of the extreme
spacings assuming that F is in the domain of attraction of an extreme value distribu-
tion. Section 6 applies our results and describes the limiting distribution of the counts
of observations around an order statistic. Section 7 discusses further applications of
our results and contains concluding remarks.

Let f (x) denote the pdf and F−1(p), 0 ≤ p ≤ 1, be the quantile function associated
with F(x), where F−1(p) = inf{x : F(x) ≥ p} for 0 < p ≤ 1, F−1(0) = sup{x :
F(x) = 0}. We interchangeably use xp and F−1(p) as the pth quantile. It is well
known that if F is differentiable at xp with finite and positive pdf f (xp), F−1 is
differentiable at p with derivative 1/ f (xp). Standard uniform and exponential rvs
are, respectively, denoted by U and Z . An exponential rv with rate parameter λ will
be denoted by Exp(λ), and Poi(λ) represents a Poisson rv with mean parameter λ.
The sum of r i.i.d. standard exponentials is a Gamma rv, to be denoted as Gam(r ).
A Weibull rv with shape parameter δ will be denoted by Wei(δ). Further, a standard
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Spacings around an order statistic 517

normal rv will be denoted by N (0, 1) and its pdf by φ(·). The Zi ’s and Z∗
i ’s are i.i.d.

Exp(1) rvs. The symbol ∼ indicates asymptotic equivalence.
The rvUi :n, 1 ≤ i ≤ n, is the i th order statistic from a random sample of size n from

a standard uniform population. The distributional equivalence, Xi :n
d= F−1(Ui :n), for

any collection of order statistics from an arbitrary cdf F is helpful in our investigations.

2 Preliminaries

2.1 Spacings near a uniform order statistic

The key to our approach is the following well-known exchangeable property of the
uniform order statistics. LetU0:n = 0 andUn+1:n = 1, and define the uniform spacing

Δi,n = Ui+1:n −Ui :n, 0 ≤ i ≤ n. (1)

Then, it is well known that the Δi,n’s are exchangeable and for any fixed r , and for
constants vi ≥ 0, i = 1, . . . r with r ≤ n, and

∑r
i=1 vi ≤ 1, the joint survival function

of Δ1,n, . . . , Δr,n (and hence any collection of rΔi,n’s) is given by (see, e.g., David
and Nagaraja 2003, p. 135)

P(Δ1,n > v1, . . . , Δr,n > vr ) =
(

1 −
r∑

i=1

vi

)n−1

.

This means

P(nΔ1,n > v1, . . . , nΔr,n > vr ) →
r∏

i=1

{e−vi }, v1, . . . , vr > 0. (2)

That is, nΔi,n forms an i.i.d. Exp(1) sequence Zi as n → ∞. The convergence is fast;
Problem P.5.19 of Reiss (1989, p. 201) notes that there exists a constant C such that
for every positive integer n and r ≤ n,

sup
B∈B

|P{(nΔ1,n, . . . , nΔr,n) ∈ B} − P{(Z1, . . . , Zr ) ∈ B}| ≤ C · (r/n),

where B denotes the family of all Borel sets. We record the implications of (2) and the
exchangeability of the Δi,n’s as a lemma given below; it uses the fact that the inter-
arrival times being i.i.d. Exp(λ) rvs is a defining property of a homogeneous Poisson
process with rate λ.

Lemma 1 Let Ui :n denote the i th order statistic from a random sample of size n
from a standard uniform distribution, and assume n → ∞. Then, for any k such that
n − k → ∞,

(n(Uk+1:n −Uk:n), . . . n(Uk+r :n −Uk+r−1:n))
d→ (Z1, . . . , Zr ),
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for any fixed r, and for any k → ∞

(n(Uk:n −Uk−1:n), . . . n(Uk−s+1:n −Uk−s:n))
d→ (Z∗

1 , . . . , Z
∗
s ),

for any fixed s, where the Zi ’s and Z∗
i ’s are all mutually independent Exp(1) rvs. That

is, inter-arrival times of successive order statistics in the right and left neighborhoods
of kth uniform order statistic, upon scaling by n, produce asymptotically independent
homogeneous Poisson processes if n, k, and n − k approach infinity. If k [resp. n − k]
is bounded, the right [resp. left] neighborhood produces a Poisson process in the limit.

2.2 Spacings near an exponential order statistic

When F is standard exponential, it is well known that

Xi :n
d= Z1

n
+ · · · + Zi

n − i + 1
, i = 1, . . . , n, (3)

where the Zi ’s are i.i.d. Exp(1) rvs. From this representation, it follows that (n − i +
1)(Xi :n−Xi−1:n) are i.i.d. Exp(1) rvs. So, if k/n → p, 0 ≤ p < 1, n(1− p)(Xk+ j :n−
Xk+ j−1:n), j = 1, . . . , r will be asymptotically i.i.d Exp(1) rvs.

When (n − k) is bounded, (n − k − j + 1)(Xk+ j :n − Xk+ j−1:n), j = 1, . . . , r for
r ≤ n − k turn out to be i.i.d. Exp(1) rvs. Only in this scenario, we need finite and
distinct scaling constants for the spacings to transform them into i.i.d. exponential rvs
for any n, and hence asymptotically as well.

2.3 Extremes and von Mises conditions

Suppose there exist sequences of constants an and bn > 0 such that P{(Xn:n −
an)/bn ≤ x} converges to a nondegenerate cdf G(x) corresponding to a rv W . Then,
we say F is in the domain of maximal attraction to G and we write F ∈ D(G). Then,
it is known that G is necessarily of one of the three types given below.

(Fréchet) G1;α(x) =
{
0 x ≤ 0, α > 0,
exp(−x−α) x > 0;

(Weibull) G2;α(x) =
{
exp[−(−x)α] x ≤ 0, α > 0,
1 x > 0;

(Gumbel) G3(x) = exp(−e−x ), −∞ < x < ∞. (4)

The following are necessary and sufficient conditions on the right tail of F in order
that F ∈ D(G). The first two are due to Gnedenko (1943) and the last one is due to
de Haan (1970).
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Spacings around an order statistic 519

(a) F ∈ D(G1;α) iff for all t > 0,

lim
x→∞

1 − F(t x)

1 − F(x)
= t−α.

(b) F ∈ D(G2;α) iff x1(= F−1(1)) is finite, and the following condition holds for
every t > 0:

lim
x→0+

1 − F(x1 − t x)

1 − F(x1 − x)
= tα.

(c) F ∈ D(G3) iff the following hold: E(X |X > c) is finite for some c, and for all
real t ,

lim
x→x1

1 − F(x + tm(x))

1 − F(x)
= e−t ,

where m(x) = E(X − x |X > x).

Our approach for the intermediate case assumes the following sufficient conditions
that are applicable to absolutely continuous cdf’s. The first two are due to von Mises
(1936), and the last one is due to Falk (1989) and is weaker than the corresponding
von Mises condition that assumes differentiability of the pdf f (see, e. g., David and
Nagaraja 2003, p. 300).

(a) F ∈ D(G1;α) if f (x) > 0 for all large x and for some α > 0,

lim
x→∞

x f (x)

1 − F(x)
= α. (5)

(b) F ∈ D(G2;α) if x1 < ∞ and for some α > 0,

lim
x→x1−

(x1 − x) f (x)

1 − F(x)
= α. (6)

(c) F ∈ D(G3) if f (x) > 0 for all x in (c, x1) and E(X |X > c) is finite for some
c, and

lim
x→x1−

f (x)m(x)

1 − F(x)
= 1, (7)

where m(x) = E(X − x |X > x).

The family of limiting distribution for normalized X1:n corresponds to that of −W
where W has one of the above three types of cdfs; parallel necessary and sufficient,
and sufficient conditions exist that impose conditions on the left tail of F .
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3 Spacings around a central order statistic

3.1 Joint distribution of spacings

For 0 < p < 1, Xk:n is a central order statistic if k
n → p. For such an Xk:n , Smirnov

(1952; Theorem 3, p. 12) has shown (as pointed out by a reviewer) that

Xk:n
a.s.→ xp (8)

if the condition F(x) = p has a unique solution xp. Since for any fixed j ,

n(Xk+ j+1:n − Xk+ j :n)
d= F−1(Uk+ j+1:n) − F−1(Uk+ j :n)

(Uk+ j+1:n −Uk+ j :n)
n(Uk+ j+1:n −Uk+ j :n),

(9)

the limiting joint distribution of the spacings from an arbitrary cdf F can be linked to
that of a collection of i.i.d. standard uniform rvs provided the first factor on the right
in (9) above converges in probability to a nonzero constant.

From (8), it follows that�k+ j,n = Uk+ j+1:n−Uk+ j :n (defined in (1)) almost surely
converges to 0. The first factor on the right in (9),

F−1(Uk+ j :n + Δk+ j,n) − F−1(Uk+ j :n)
Δk+ j,n

a.s.→ 1

f (xp)
, (10)

if the following condition holds:

f is positive, finite and continuous at xp. (11)

This conclusion follows from the definition of the derivative of F−1 and its assumed
continuity at p.

Upon using (10), (9), Slutsky’s Theorem, and Lemma 1, we conclude that jointly

n f (xp)(Xk+ j+1:n − Xk+ j :n)
d→ Z j+1, j = −s, . . . 0, . . . , r − 1,

where the Z j ’s are i.i.d. Exp(1) rvs if (11) holds.
Wecanweaken the continuity assumption for f in (11)with the following condition:

lim
(p1,h)→(p,0+)

F−1(p1 + h) − F−1(p1)

F−1(p + h) − F−1(p)
= 1, (12)

where 0 < p < 1. This assumption is similar to (17) in Dembińska et al. (2007) (given
as (38) in Sect. 6 later). The condition (11) implies that (12) holds since the latter is
satisfied upon dividing the numerator and denominator by h and taking the double
limit; the converse is not true.
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On the other hand, we can weaken the requirement for a finite nonzero f (xp) by
modifying a condition on F used by Chanda (1975) [see also Ghosh and Sukhatme
1981]. We assume that

lim
h→0

|F−1(p + h) − F−1(p)|
|h|θ = M(p, θ) ∈ (0,∞), (13)

for some θ > 0. If f is indeed finite and nonzero at xp, then the above condition is
satisfied with θ = 1. Whenever f (xp) is finite and positive or (13) holds, there is a
unique solution to F(x) = p and (8) holds.

Based on the above discussion, we can now formally state the result for the central
case.

Theorem 1 Let k/n → p ∈ (0, 1), and r and s be fixed positive integers.

(a) If condition (11) holds, or if (12) holds and f (xp) is finite and positive,

{n f (xp)(Xk+ j :n − Xk+ j−1:n), j = −(s − 1), . . . , 0, . . . , r}
d→ {Z∗

s , . . . , Z
∗
1 , Z1, . . . , Zr }

where the Z’s are i.i.d. Exp(1) rvs. Thus, the two counting processes defined by
setting the j th event to occur, respectively, at times

n f (xp)
k+ j−1∑

i=k

(Xi+1:n − Xi :n) and n f (xp)
k− j∑

i=k−1

(Xi+1:n − Xi :n)

converge weakly to two independent homogeneous Poisson processes with unit
intensity.

(b) Assume (12) and (13) hold. Then,

{nθ (Xk+ j :n − Xk+ j−1:n)/M(p, θ), j = −(s − 1), . . . , 0, . . . , r}
d→ {(Z∗

s )
θ , . . . , (Z∗

1)
θ , (Z1)

θ , . . . , (Zr )
θ }. (14)

That is, the counting processes defined by setting the j th event of the process to
occur at times

nθ

k+ j−1∑

i=k

(Xi+1:n − Xi :n)/M(p, θ) and nθ

k− j∑

i=k−1

(Xi+1:n − Xi :n)/M(p, θ)

converge to i.i.d. renewal processes with Wei(1/θ ) renewal distribution. They
reduce to homogeneous Poisson processes with unit intensity only when θ = 1
and f (xp) is finite and positive.

Proof To prove part (a), we need to show that (10) holds whenever (11) holds, or if
(12) holds and f (xp) is finite and positive. Then, we would use (10), (9), Slutsky’s
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Theorem, and Lemma 1. We have shown earlier that (10) holds whenever (11) is
satisfied.

If (12) holds and f (xp) is finite and positive, the left side expression in (10) can be
written as

F−1(Uk+ j :n + Δk+ j,n) − F−1(Uk+ j :n)
F−1(p + Δk+ j,n) − F−1(p)

· F
−1(p + Δk+ j,n) − F−1(p)

Δk+ j,n
,

where the first factor converges to 1 and the second factor converges to 1/ f (xp), both
almost surely. Thus, (10) is established.

For (b), the idea is similar.We note that nθ (F−1(Uk+ j :n+�k+ j,n)−F−1(Uk+ j :n))
can be written as

F−1(Uk+ j :n + �k+ j,n) − F−1(Uk+ j :n)
�θ

k+ j,n

(n�k+ j,n)
θ .

Assumption (13) coupled with (12) ensures that the first factor above converges
almost surely to M(p, θ). Since P(n�k+ j,n > w) → exp{−w} for all w > 0,

P((n�k+ j,n)
θ > w) → exp{−w1/θ }; that is, (n�k+ j,n)

θ d→ Z θ . The claim in (14)
now readily follows. If θ = 1 and (13) holds, then M(p; 1) = (F−1(xp))

′ = 1/ f (xp)
has to be positive and finite, and the limiting arrival process would be Poisson. ��

Remark The condition (13) does not imply (12); nor does it ensure that f (xp) is finite
and positive. Consider the pdf

f (x) = (η + 1)|x |η/2, |x | ≤ 1, η > −1.

This is a corrected version of the pdf given in Chanda (1975), and discussed in Ghosh
and Sukhatme (1981) (we thank a reviewer for noticing the error). The associated
quantile function is given by

F−1(u) =
{−(1 − 2u)1/(η+1), 0 < u ≤ 1

2
(2u − 1)1/(η+1), 1

2 ≤ u < 1.

This quantile function fails to satisfy the condition in (12) when p = 0.5 and η

is a positive even integer, but satisfies (13) with θ = 1/(η + 1). Here, xp = 0,
M(p, θ) = 2θ ; f (xp) is 0 or ∞ depending on whether η > 0 or η ∈ (−1, 0).

3.2 Asymptotic independence of a central order statistic and spacings in its
neighborhood

We now assume k/n = p + o(n−1/2) and establish the independence of Xk:n and
spacings around it.
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3.2.1 The uniform parent

Using the (well-known) joint pdf of the consecutive standard uniform order statistics
Uk−s:n, . . . ,Uk:n, . . . ,Uk+r :n , we first obtain the joint pdf of appropriately normalized
Uk:n and the vector

{n(Uk+ j :n −Uk+ j−1:n), j = −(s − 1), . . . , 0, . . . , r},

and thus determine the limiting form of the joint pdf.
The joint pdf of Uk−s:n, . . . ,Uk+r :n is given by

n!
(k − s − 1)!(n − k − r)!u

k−s−1
k−s (1 − uk+r )

n−k−r ,

for 0 < uk−s < · · · < uk < · · · < uk+r < 1. With tn = √[p(1 − p)]/n, consider
the transformation

v0 = (uk:n − p)/tn,

v∗
1 = n(uk:n − uk−1:n), . . . , v∗

s = n(uk−s+1:n − uk−s:n); (15)

v1 = n(uk+1:n − uk:n), . . . , vr = n(uk+r :n − uk+r−1:n).

Hence,

uk:n = p + tnv0
uk+1:n = p + tnv0 + (1/n)v1

· · ·
uk+r :n = p + tnv0 + (1/n)(v1 + v2 + · · · + vr )

· · ·
uk−1:n = p + tnv0 − (1/n)v∗

1

· · ·
uk−s:n = p + tnv0 − (1/n)(v∗

1 + v∗
2 + · · · + v∗

s ),

and the Jacobian is
∣
∣ ∂u
∂v

∣
∣ = tn/nr+s . The joint pdf of V0, V1, . . . , Vr , V ∗

1 , . . . , V ∗
s is

n!
(k − s − 1)!(n − k − r)!

tn
nr+s

{p + tnv0 − (1/n)(v∗
1 + v∗

2 + · · · + v∗
s )}k−s−1

×{1 − p − tnv0 − (1/n)(v1 + v2 + · · · + vr )}n−k−r ,

∼ n!
(k − 1)!(n − k)! tn p

s(1 − p)r (p + tnv0)
k−s−1(1 − p − tnv0)

n−k−r

×
{

1 − (v∗
1 + v∗

2 + · · · + v∗
s )

n(p + tnv0)

}k−s−1

×
{

1 − (v1 + v2 + · · · + vr )

n(1 − p − tnv0)

}n−k−r

,

= η1 × η2 × η3,
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say. Since k = np + o(
√
n) and tn → 0,

η2 → exp{−(v∗
1 + v∗

2 + · · · + v∗
s )} and η3 → exp{−((v1 + v2 + · · · + vr )}

for fixed r and s. Further,

η1 = n!
(k − 1)!(n − k)! tn p

s(1 − p)r (p + tnv0)
k−s−1(1 − p − tnv0)

n−k−r

∼ n!
(k − 1)!(n − k)! tn(p + tnv0)

k−1(1 − p − tnv0)
n−k,

the pdf of V0 = (Uk:n − p)/tn . With k = np+o(
√
n), using Stirling’s approximations

for the factorials and the expansion log(1 + x) = x − x2/2 + o(x2) for x close to 0,
it can be shown that this pdf converges to φ(v0).

The conclusion of the above discussion is summarized below.

Lemma 2 With k = np + o(
√
n), asymptotically (i) V0, V1, . . . , Vr , V ∗

1 , . . . , V ∗
s are

mutually independent, (ii) V0 is N (0, 1), and (iii) the remaining rvs are i.i.d. standard
exponential, where the rvs involved are defined in (15).

3.2.2 Arbitrary parent

By establishing density convergence under the assumption that k/n = p + o(n−1/2),
we have shown above that

√
n√

p(1 − p)
(Uk:n − p)

d→ N (0, 1). (16)

The conclusion in (16) also follows from Ghosh (1971) who has shown that if f (xp)
is positive and finite,

√
n f (xp)√
p(1 − p)

(Xk:n − xp)
d→ N (0, 1).

We have shown in Sect. 3.1 that when k/n = p + o(1), if condition (11) holds or if
(12) holds and f (xp) is finite and positive,

Xk+ j+1:n − Xk+ j :n
Uk+ j+1:n −Uk+ j :n

= F−1(Uk+ j+1:n) − F−1(Uk+ j :n)
Uk+ j+1:n −Uk+ j :n

a.s.→ 1

f (xp)
;

and if (12) and (13) hold,

Xk+ j+1:n − Xk+ j :n
Δθ

k+ j :n
= F−1(Uk+ j :n + Δk+ j :n) − F−1(Uk+ j :n)

Δθ
k+ j :n

a.s.→ M(p, θ),
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Spacings around an order statistic 525

for j = −s, . . . , 0, . . . , r − 1. Further,

Xk:n − xp
Uk:n − p

= F−1(Uk:n) − F−1(p)

Uk:n − p
a.s.→ 1

f (xp)

whenever f (xp) is finite and positive;

|Xk:n − xp|
|Uk:n − p|θ = |F−1(Uk:n) − F−1(p)|

|Uk:n − p|θ
a.s.→ M(p, θ),

if (13) holds.
In view of Lemma 2, assuming k = np + o(

√
n), we have established the asymp-

totic independence of the normalized spacings (Xk+ j :n − Xk+ j−1:n) introduced in
Theorem 1 and appropriately normalized Xk:n under the conditions stated there. This
discussion leads to the following result.

Theorem 2 Let k/n = p + o(n−1/2), 0 < p < 1, and r and s be fixed positive
integers.

(a) If condition (11) holds, or if (12) holds and f (xp) is finite and positive,

(√
n f (xp)(Xk:n − xp)√

p(1 − p)
, n f (xp)(Xk+ j :n − Xk+ j−1:n),−(s − 1) ≤ j ≤ r

)

d→ (N (0, 1), Z∗
s , . . . , Z

∗
1 , Z1, . . . , Zr ).

(b) Assume (12) and (13) hold. Then,

( √
n√

p(1 − p)

∣
∣
∣
∣
(Xk:n − xp)

M(p, θ)

∣
∣
∣
∣

1/θ

, n

(
Xk+ j+1:n − Xk+ j :n

M(p, θ)

)1/θ

,−s ≤ j ≤ r − 1

)

d→ (|N (0, 1)|, Z∗
s , . . . , Z

∗
1 , Z1, . . . , Zr ).

In both cases, the Zi ’s and Z∗
i ’s are Exp(1) rvs, and the r + s + 1 components in the

limit vector are mutually independent.

3.3 Remarks—the central case

Siddiqui (1960) considered higher order spacings around a central order statistic and
showed that when F is continuously twice differentiable and f (xp) is finite and
positive, the rvs

√
n f (xp)(Xk:n − xp)√

p(1 − p)
, n f (xp)(Xk:n − Xk−s:n) and n f (xp)(Xk+r :n − Xk:n)

are asymptotically independent when k/n → p ∈ (0, 1) with r/n and s/n tending
to zero; further, asymptotically the higher order spacings are Gam(r) and Gam(s),
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respectively. We have proved a more refined result here with less assumptions on the
properties of F , but have taken r and s to be fixed.

Pyke’s (1965) classic paper on spacings shows (Theorem 5.1) that
n f (xp1)(Xi :n − Xi−1:n) and n f (xp2)(X j :n − X j−1:n) with i/n → p1 and j/n → p2
where 0 < p1 �= p2 < 1 are asymptotically i.i.d. Exp(1) rvs. The key difference is
that the spacings considered there are far apart, while our focus is on adjacent spacings
around Xi :n .

The asymptotic half-normal distribution of the normalized central order statistic
under the conditions of part (b) of Theorem 2 is comparable to Chanda’s (1975)
conclusion; our condition (13) is on F−1, whereas his comparable condition (given
as (6) there) is on F .

4 The intermediate case

Here, we lean on the work of Falk (1989) and directly examine the convergence of
the joint pdf of an intermediate order statistic Xk:n and spacings around it. We assume
k → ∞ but k/n → 1 as n → ∞ such that n − k → ∞ and assume one of the von
Mises sufficient conditions stated in (5)–(7) holds. Theorem 2.1 of Falk (1989) shows
that

(Xk:n − an)/bn
d→ N (0, 1) with an = F−1(k/n); bn = √

n − k/(n f (an)). (17)

This is established by showing that the pdf of (Xk:n − an)/bn at x ,

n!
(k − 1)!(n − k)! [F(an + bnx)]k−1[1 − F(an + bnx)]n−kbn f (an + bnx) → φ(x),

(18)

for all real x .
Consider the joint pdf of Xk−s:n, . . . , Xk:n, . . . , Xk+r :n :

n!
(k − s − 1)!(n − k − r)!

⎡

⎣
s∏

j=1

f (x∗
j )

⎤

⎦ [F(x∗
s )]k−s−1

f (x0)

⎡

⎣
r∏

j=1

f (x j )

⎤

⎦ [1 − F(xr )]n−k−r ,

for x∗
s < · · · < x∗

1 < x0 < x1 < · · · < xr . Define

cn = 1

n f (an)
= bn√

n − k
= 1

n f (F−1(k/n))
(19)
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and consider the transformation

y0 = (xk:n − an)/bn,

y1 = (xk+1:n − xk:n)/cn, . . . , yr = (xk+r :n − xk+r−1:n)/cn,
y∗
1 = (xk:n − xk−1:n)/cn, . . . , y∗

s = (xk−s+1:n − xk−s:n)/cn, (20)

so that

xk:n = an + bn y0;
xk+ j :n = an + bn y0 + cn(y1 + · · · + y j ), j = 1, . . . , r;
xk− j :n = an + bn y0 − cn(y

∗
1 + · · · + y∗

j ), j = 1, . . . , s.

The Jacobian is
∣
∣ ∂x
∂y

∣
∣ = bncr+s

n and the joint pdf ofY0,Y1, . . . ,Yr ,Y ∗
1 , . . . ,Y ∗

s , defined
in (20), is

n!
(k − 1)!(n − k)! [F(an + bn y0)]k−1[1 − F(an + bn y0)]n−kbn f (an + bn y0) (21)

×
(
F(an + bn y0 − cn(y∗

1 + · · · + y∗
s ))

F(an + bn y0)

)k−s−1

(22)

×
s∏

j=1

{

cn(k − j)
f (an + bn y0 − cn(y∗

1 + · · · + y∗
j ))

F(an + bn y0)

}

(23)

×
r∏

j=1

{

cn(n − k − j + 1)
f (an + bn y0 + cn(y1 + · · · + y j ))

1 − F(an + bn y0)

}

(24)

×
(
1 − F(an + bn y0 + cn(y1 + · · · + yr ))

1 − F(an + bn y0)

)n−k−r

(25)

= τ1 × τ2 × τ3 × τ4 × τ5, (26)

where τ1–τ5 are, respectively, given by (21)–(25), y0 is real, and yi , y∗
i > 0.

From (18), it follows that τ1 → φ(y0). We will establish the limits for remaining
τi using the following lemma.

Lemma 3 Suppose one of the von Mises conditions stated in (5)–(7) holds, and n →
∞, k/n → 1 such that n− k → ∞. Then, with an and bn given by (17), the following
statements hold.

(a) For any real y0,
1−F(an+bn y0)

1−F(an)
= n(1−F(an+bn y0))

n−k → 1.

(b) If cn = bn/
√
n − k, for any y0, y1 real,

f (an+bn y0+cn y1)
f (an)

→ 1.

Proof (a) From Theorem 2.1 of Falk (1989), it follows that (17) holds under the
conditions we have assumed, and the limit distribution is N (0, 1). From Theorem 1
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of Smirnov (1967) [Remark (ii) of Falk (1989)], it then follows that [n − k + 1 +
n(F(an + bn y0) − 1)]/√n − k + 1 → x for all real y0. Thus,

√
n − k + 1 ·

{

1 − 1 − F(an + bn y0)

1 − F(an)

}

→ y0

since 1− F(an) = (n−k)/n. This implies that (1− F(an +bn y0))/(1− F(an)) → 1
for any real y0.

(b) In the proof of his Theorem 2.1, Falk establishes that whenever one of the
sufficient conditions stated in (5)–(7) holds, for any real y for which F(an +bn y) → 1
(or equivalently an + bn y → x1) as n → ∞,

f (an + bnθy)/ f (an) → 1 (27)

uniformly for θ ∈ (0, 1)where an and bn are given in (17). Part (a) that we just proved
implies that for any real y0, F(an +bn y0) → 1 as n → ∞. Thus, from (27), it follows
that f (an + bnθy0)/ f (an) → 1 for all real y0.

For large n − k and real y1,

y0 + y1√
n − k

∈ (0, 2y0) if y0 > 0; y0 + y1√
n − k

∈ (2y0, 0) if y0 < 0.

Using (27) with y = 2y0, we conclude that f (an + 2y0θbn){ f (an)}−1 → 1 uni-
formly for all 0 ≤ θ < 1. Since an + bn y0 + cn y1 = an + bn(y0 + y1/

√
n − k)

is in (an, an + 2y0bn) if y0 > 0 and in (an + 2y0bn, an) if y0 < 0. Hence,
f (an + bn y0 + cn y1)/ f (an) → 1 for all real y0 �= 0 and real y1. When y0 = 0,
for any real y1, f (an + bn(1/

√
n − k)y1)/ f (an) → 1 since 1/

√
n − k ∈ (0, 1) and

(27) holds. This completes the proof of the claim in (b). ��
With y = y∗

1 + · · · + y∗
s > 0, consider the following component of τ2 in (22):

F(an + bn y0 − cn y)

F(an + bn y0)
= 1 − F(an + bn y0) − F(an + bn y0 − cn y)

F(an + bn y0)

= 1 − f (an + bn y0 − θ∗cn y)
F(an + bn y0)

· cn y

= 1 − ydk,n
k

where the second form above follows from the mean value theorem, θ∗ ∈ (0, 1), and

dk,n = 1

F(an + bn y0)

f (an + bn y0 + θ∗cn(−y))

f (an)

k

n
,

where we have used the fact that cn = 1/n f (an). From part (a) of Lemma 3, the first
factor of dk,n above converges to 1; from part (b), the second factor approaches 1, and
from our assumptions about k and n made in the intermediate case, the third factor
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also approaches 1. Hence, dk,n → 1 as n, k → ∞. Thus, upon recalling (22), we
obtain

τ2 =
(

1 − ydk,n
k

)k−s−1

→ exp{−y} = exp

⎧
⎨

⎩
−

⎛

⎝
s∑

j=1

y∗
j

⎞

⎠

⎫
⎬

⎭
, y∗

j > 0.

With y = y∗
1 +· · ·+ y∗

j , the j th term in the product representing τ3 in (23) is given
by

cn(k − j)
f (an + bn y0 + cn(−y))

F(an + bn y0)
= k − j

n

f (an + bn y0 + cn(−y))

f (an)

1

F(an + bn y0)
.

Using Lemma 3 as we did in proving dk,n → 1 as n and n − k → ∞, we conclude
that the j th factor of τ3 → 1 for all j and so does τ3.

With y = y1 + y2 + · · · + y j , the j th term in the product representing τ4 in (24) is
given by

{

cn(n − k − j + 1)
f (an + bn y0 + cn y)

1 − F(an + bn y0)

}

= n − k − j + 1

n(1 − F(an))
· f (an + bn y0 + cn y)

f (an)
· 1 − F(an)

1 − F(an + bn y0)
.

Since F(an) = k/n, the first factor above converges to 1, and Lemma 3 shows that
the other two factors also approach 1 as n and n − k → ∞. Thus, τ4 → 1.

Finally, with y = y1 + · · · + yr , consider the following component of τ5 in (25):

1 − F(an + bn y0 + cn y)

1 − F(an + bn y0)
= 1 − F(an + bn y0 + cn y) − F(an + bn y0)

1 − F(an + bn y0)

= 1 − f (an + bn y0 + θ∗cn y)
1 − F(an + bn y0)

· cn y from the Mean Value Theorem

= 1 − y
f (an + bn y0 + θ∗cn y)

f (an)
· 1 − F(an)

1 − F(an + bn y0)
· 1

n(1 − F(an))

where θ∗ ∈ (0, 1) and we have used the fact that cn = 1/n f (an). Lemma 3 implies
that the first two factors of y converge to 1 as n, n − k → ∞, and the denominator of
the last factor, n(1 − F(an)), is n − k. Hence,

τ5 ∼
(

1 − y1 + · · · + yr
n − k

)n−k−r

→ e−(y1+···+yr ), y1, . . . , yr > 0,

as n, n − k → ∞.

Thus, we have formally proved the following theorem.

Theorem 3 Whenever one of the vonMises condition (5)–(7) holds, and n, k, n−k →
∞ such that k/n → 1, with an = F−1(k/n) and cn = 1/n f (an),
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((Xk−s:n − Xk−s+1:n)/cn, . . . , (Xk:n − Xk−1:n)/cn, (Xk+1:n − Xk:n)/cn, . . . ,

(Xk+r :n − Xk+r−1:n)/cn)
d→ (Z∗

s , . . . , Z
∗
1 , Z1, . . . , Zr );

1

cn
√
n − k

(Xk:n − an)
d→ N (0, 1),

where the Z∗
i ’s and Zi ’s are Exp(1) rvs, and the r + s + 1 limiting rvs are mutually

independent.

4.1 Remarks—the intermediate case

When F ∈ D(G1;α),

an f (an)

1 − F(an)
= F−1(k/n)cn

n − k
→ α

and hence α(n − k)/F−1(k/n) can be chosen as cn . When F ∈ D(G2;α), the von
Mises condition implies that α(n − k)/(x1 − F−1(k/n)) can be used as cn . When
F ∈ D(G3), [n f (an)m(an)/(n − k)] → 1 and we can use m(an)/(n − k) as our cn .

From Theorem 3, it follows that as in the central case, asymptotically, any two
spacings, possibly of higher order, formed by nonoverlaping collections of order sta-
tistics around an intermediate order statistic Xk:n are independent, and the collection
is independent of Xk:n .

Teugels (2001) has introduced a family C∗ of cdfs F with the following property:
F has an ultimately positive pdf f and for all real y,

1

h(x)

⎧
⎨

⎩

F
(
x + yh(x) 1−F(x)

f (x)

)
− F(x)

1 − F(x)

⎫
⎬

⎭
→ y,

whenever h(x) → 0 as x → x1. He states that the condition F ∈ C∗ ‘slightly general-
izes’ Falk’s (1989) version of von Mises conditions (i.e., (5)–(7)). Assuming F ∈ C∗,
Teugels shows that upon normalization described above (i) Xk:n is asymptotically
normal and (ii) (Xk:n − Xk−s:n) is asymptotically Gam(s). Their joint distribution and
the asymptotic independence are not discussed there.

5 The upper extreme case

We now assume that k → ∞ such that n − k is fixed. It is well known that when
F ∈ D(G) for G given in (4),

((Xn:n − an)/bn, . . . , (Xk:n − an)/bn)
d→ (W1, . . . ,Wn−k+1) (28)

where for any finite fixed j the vector (W1, . . . ,Wj ) has the same joint distribution as

(Z−1/α
1 , (Z1 + Z2)

−1/α, . . . , (Z1 + · · · + Z j )
−1/α), if G = G1;α; (29)

(−Z1/α
1 ,−(Z1 + Z2)

1/α, . . . ,−(Z1 + · · · + Z j )
1/α), if G = G2;α; (30)
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and if G = G3,

(W1, . . . ,Wj )
d= (− ln Z1,− ln(Z1 + Z2), . . . ,− ln(Z1 + · · · + Z j )) (31)

(W1, . . . ,Wj )
d=

( ∞∑

i=k

Zi − 1

i
+ γ −

k−1∑

i=1

1

i
, k = 1, . . . , j

)

(32)

where the Zi ’s are i.i.d. Exp(1) rvs, and γ is the Euler’s constant. The first three
representations above are from Nagaraja (1982) who also shows that the joint limiting
distribution (W1, . . . ,Wj ) is identical to the joint distribution of the first j lower record
values from the cdf G. The representation in (32) is due to Hall (1978), and is more
convenient when G = G3.

Thus, whenever F ∈ D(G), the limiting form of the joint distribution of the normal-
ized spacings and the concerned extreme order statistics can be described as follows:

((Xn:n − Xn−1:n)/bn, . . . , (Xk+1:n − Xk:n)/bn, (Xk:n − an)/bn,

(Xk:n − Xk−1:n)/bn, . . . , (Xk−s+1:n − Xk−s:n)/bn))
d→ (W1 − W2, . . . ,Wn−k − Wn−k+1,Wn−k+1,

Wn−k+1 − Wn−k+2, . . . ,Wn−k+s − Wn−k+s+1) (33)

where theWj ’s have one of the forms given in (29)–(32).We now specialize our results
for each of the three domains.

5.1 The Fréchet domain

In this case, an can be chosen to be 0 and bn to be F−1(1 − 1/n) (= x1−n−1 ). The
representation in (33) for the limiting joint distribution alongwith (29) suggests that an
extreme spacing is not asymptotically exponential, and the adjacent spacings are nei-
ther independent, nor identically distributed in the limit. The asymptotic independence
of the spacings and the extreme order statistic also fail. Hence, when F ∈ D(G1;α),
the asymptotic distributional structure for the extreme spacings differs from that for
the central and intermediate cases.

From (28) and (29), we conclude that when F ∈ D(G1;α), the normalized higher
order spacing,

(Xn:n − Xn− j :n)/bn
d→ W1 − Wj+1

d= Z−1/α
1 − (Z1 + S j )

−1/α,

where the sum S j = Z2 + · · · + Z j+1 is a Gam( j) rv that is independent of Z1. This
distributional representation complements the work of Pakes and Steutel (1997) who
have given an expression for the cdf of the limiting rv as (p. 192)

P(W1 ≤ w) + P(W1 − (S j + W−α
1 )−1/α ≤ w,W1 > w), w > 0.
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They comment that this expression for the cdf ‘does not seem susceptible to simpli-
fication for any choice of the parameter α’; for the other two domains, they provide
explicit distributional representation that is equivalent to ours (see below).

5.2 The Weibull domain

Here, x1(= F−1(1)) is finite and can be chosen to be our an and the scaling con-
stant bn can be chosen to be x1 − x1−1/n . From (33) and (30), we can conclude
that the normalized adjacent spacings are asymptotically i.i.d. exponential iff α = 1
when F ∈ D(G2;α). Otherwise, they are all dependent. When α = 1 and k < n,
the joint asymptotic distributional structure of ((Xn:n − Xn−1:n)/bn, . . . , (Xk+1:n −
Xk:n)/bn, (Xk:n − an)/bn, (Xk:n − Xk−1:n)/bn, . . . , (Xk−s+1:n − Xk−s:n)/bn) is that
of

(Z2, . . . , Zn−k+1,−(Z1 + · · · + Zn−k+1), Zn−k+2, . . . , Zn−k+s+1). (34)

Thus, when α = 1, Xk:n is asymptotically independent of the spacings in its left
neighborhood, but is symmetrically dependent on the ones on its right. This conclusion
is formalized in the following result.

Theorem 4 When F ∈ D(G2;α=1), for each fixed n − k and s, the asymptotic joint
distribution of ((Xn:n−Xn−1:n)/bn, . . . , (Xk+1:n−Xk:n)/bn, (Xk:n−an)/bn, (Xk:n−
Xk−1:n)/bn, . . . , (Xk−s+1:n−Xk−s:n)/bn) has the representation given by (34), where
the Z j ’s are i.i.d. Exp(1) rvs. The bn can be chosen as x1 − F−1(1 − 1/n). When
F ∈ D(G2;α), the adjacent spacings are i.i.d. exponential iff α = 1.

The standard uniform distribution is in D(G2;α) with α = 1 and hence has
asymptotically i.i.d. extreme spacings. We had reached this conclusion earlier in
Lemma 1 (recall x1 − F−1(1 − 1/n) = 1/n). But we have a more general result
now that describes the symmetric dependence of the right neighborhood spacings
on Xk:n and is applicable to all F ∈ D(G2;1). In fact with n − k fixed, given
(Xk:n − x1)/bn = u (< 0), (Xn:n − Xn−1:n)/bn, . . . , (Xk+1:n − Xk:n)/bn behave
asymptotically like the spacings from a random sample of size n − k from a uniform
distribution over (u, 0). For the form of the joint distribution, see, e.g., David and
Nagaraja (2003; Sec. 6.4).

From (28) and (30), we conclude that when F ∈ D(G2;α), the normalized higher
order spacing

(Xn:n − Xn− j :n)/bn
d→ W1 − Wj+1

d= (Z1 + S j )
1/α − Z1/α

1 ,

where the sum S j = Z2 + · · · + Z j+1 is a Gam( j) rv that is independent of Z1. This
is the conclusion of Theorem 7.2 in Pakes and Steutel (1997).

5.3 The Gumbel domain

Using (33) along with the representation for Wj in (32), we conclude the following.
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Theorem 5 When F ∈ D(G3), for each fixed n − k and s, the asymptotic joint dis-
tribution of ((Xn:n − Xn−1:n)/bn, . . . , (Xk+1:n − Xk:n)/bn, (Xk:n − an)/bn, (Xk:n −
Xk−1:n)/bn, . . . , (Xk−s+1:n − Xk−s:n)/bn) has the following distributional represen-
tation:

(

Z1,
Z2

2
, . . . ,

Zn−k

n − k
,

∞∑

i=n−k+1

Zi − 1

i
+γ −

n−k∑

i=1

1

i
,

Zn−k+1

n − k + 1
, . . . ,

Zn−k+s

n − k + s

)

(35)

where the Zi ’s are i.i.d. Exp(1) rvs. The bn can be chosen as m(F−1(1 − 1/n)), and
if (7) holds, as {n f (F−1(1 − 1/n))}−1.

The representation in (35) shows that while Xk:n is independent of spacings in its
right neighborhood, it is correlated with the spacings in its left neighborhood, and this
correlation decreases at the rate of 1/(n − k + j), j ≥ 1 as one moves away from it.
This is in contrast with the situation when F ∈ D(G2,1).

Weissman (1978) has considered the limit distribution of

((Xn:n − Xn−1:n)/bn, . . . , (Xk+1:n − Xk:n)/bn, (Xk:n − an)/bn),

and has given the representation given by the first (n − k) components of the vector
in (35). He has also noted the independence of these spacings and Wn−k+1 (in his
Theorem 2).

The above theorem shows that using varying scaling sequences for the spacings,
we can obtain i.i.d. standard exponential distributions in the limit. In particular, we
have the following:

((n − j + 1)(Xn− j+1:n − Xn− j :n)/bn, j = 1, . . . , n − k + s)
d→ (Z1, . . . , Zn−k+s).

From (28) and (32) or from the representation (35), we can conclude that when
F ∈ D(G3), the normalized higher order spacing,

(Xn:n − Xn− j :n)/bn
d→ W1 − Wj+1

d= Z1 + Z2

2
+ · · · + Z j

j
d= Z j : j .

The last equality above follows from the representation for exponential order statistics
given in (3). This is the conclusion reached in Theorem7.1 of Pakes and Steutel (1997).

5.4 Remarks—the extreme case

5.4.1 Cox processes

Whenever F ∈ D(G), we can say that the arrival process of order statistics in the left
neighborhood of an upper extreme order statistic is asymptotically a Poisson process
and is independent of its value only when F ∈ G2 with α = 1. The arrival processes
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on both sides of the extreme order statistics are pure birth processes when F ∈ G3;
only the arrival process on the right side is independent of the order statistic.

Harshova and Hüsler (2000) have shown that the arrival processes on the left neigh-
borhood of the sample maximum are special Cox processes, when G is of Weibull
(G2;α) or Gumbel (G3) type cdf. Cox processes are mixed Poisson processes where
the time-dependent intensity λ(t) is itself a stochastic process (Daley and Vere-Jones
(2003; Sec. 6.2)). Harshova and Hüsler consider the counting process in the left neigh-
borhood of Xn:n, Nn(·), defined by Nn([a, b)) = #{Xi ∈ [Xn:n − a · dn, Xn:n − b ·
dn)}, 0 < a < b. From their Theorem 1.2, it follows that Nn(·) d→ N (·) where
{N (t), t > 0} is a Cox process with stochastic intensity function λ(t) = et−W in the
Gumbel case whereW has cdfG3; and λ(t) = α(t−W )α−1 in theWeibull case where
W has cdf G2;α . The cdfs G2;α and G3 are given in (4). Representations given in (30),
and (31) or (32) provide another characterization of the resulting Cox processes in
terms of the distribution of inter-arrival times of order statistics below the maximum.

5.4.2 Higher order extreme spacings

The representation for the special higher order extreme spacing involving the sample
maximum (Xn:n − Xn− j :n , discussed above) can be expanded to other extremes. From
(28)–(30), and (32), we conclude that as n → ∞, for fixed 1 ≤ i < j, (Xn−i+1:n −
Xn− j+1:n)/bn converges in distribution to

(
i∑

l=1

Zl

)−1/α

−
⎛

⎝
j∑

l=1

Zl

⎞

⎠

−1/α

d= Wi −(W−α
i +Gam(( j − i)))−1/α,G ∈ D(G1;α);

(
i∑

l=1

Zl

)1/α

−
⎛

⎝
j∑

l=1

Zl

⎞

⎠

1/α

d= (Wα
i + Gam(( j − i)))1/α − Wi ,G ∈ D(G2;α),

d= Gam(( j − i)),G ∈ D(G2;1);
Zi

i
+ · · · + Z j−1

j − 1
d= Z j−i : j−1,G ∈ D(G3). (36)

Here, the last distributional equality follows from (3). The above representations are
extremely helpful in providing the asymptotic distribution theory for the number of
order statistics around a specified extreme order statistic. This will be illustrated in the
next section where all cases (central, extreme, and intermediate) will be considered.

6 Counts of observations around an order statistic

Consider the following count statistics that track the number of observations in the
right and left neighborhoods of Xk:n :

K−(n, k, d) = #{ j : X j ∈ (Xk:n − d, Xk:n)},
K+(n, k, d) = #{ j : X j ∈ (Xk:n, Xk:n + d)}.
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Clearly,

P(K−(n, k, d) < i) = P(Xk:n − Xk−i :n > d),

P(K+(n, k, d) < j) = P(Xk+ j :n − Xk:n > d), (37)

and thus the asymptotic distribution theory for spacings developed here can be directly
applied to determine the limit distributions of the count statistics for appropriately
chosen d that is dependent on n. Pakes and Steutel (1997) have used the link in (37)
in the reverse direction in the extreme case where they derive the limit distribution
of K−(n, n, dn) first and use it to determine the limit distribution of the spacing
Xn:n − Xn−k:n .

As noted in the introduction, the literature on the investigation into the limit distrib-
ution of K− and K+ is substantial. Poisson limits are generally obtained when d = dn
is nonrandom but is dependent on the behavior of F around the concerned statistic.
We now discuss implications of our results on spacings on the asymptotic distribution
of counts and compare our results with only the most relevant results in the literature.

6.1 The central and intermediate cases—the Poisson counts

We have seen in Theorems 1 and 3 that the (Xk+i :n − Xk+i−1:n)/cn are asymptoti-
cally i.i.d. standard exponential for any fixed (positive or negative) integer i , where
cn = 1/n f (xpn ) with pn ≡ p = lim(k/n) ∈ (0, 1) in the central case, and in the
intermediate case, pn = k/n → 0 or 1 such that, respectively k or n − k → ∞.
In other words, K−(n, k, λ1cn) and K+(n, k, λ2cn) are asymptotically independent,
and Poi(λ1) and Poi(λ2) rvs, respectively. This conclusion matches with that of Pakes
(2009) who has established the asymptotic Poisson property under a variety of tech-
nical conditions for the central [Theorem 16] and intermediate cases [Theorems 9, 10
(b), 12 (b)].

Dembińska et al. (2007) have established the asymptotic Poisson nature of both
K− and K+ for dn that depends on the local property of the quantile function F−1 in
the intermediate case and an associated technical condition on F in the central case.
Their condition for Poisson convergence of K+(n, k, dn) for a central order statistic
[(17) in their Theorem 5.2] is

lim
(x,y)→(xp,0+)

F(x + y) − F(x)

F(xp + y) − F(xp)
= 1. (38)

This is comparable to our condition (12), but there are differences in these conditions
and their implications. While (12) specifies the behavior of the quantile function F−1

around p, (38) puts a similar condition on the property of the cdf F around xp.
Dembińska et al.’s neighborhood is determined by dn = F−1(p+λ/n)−xp, a quantity
dependent on the behavior of F−1 at (p + λ/n). In contrast, our dn = λ/n( f (xp))
depends on the behavior of F−1 only at xp .When f is continuous around xp and f (xp)
is positive and finite, from L’Hospital’s rule it follows that (38) is readily satisfied, and
F−1(p + λ/n) − xp ∼ λ/n( f (xp)).
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Under (38) and a similar condition on the left neighborhood, Dembińska and Bal-
akrishnan (2010) have established the asymptotic independence of K− and K+. This
independence readily follows from our Theorems 2 and 3. The technical conditions
used in Dembińska et al. (2007) in the intermediate case (in their Theorem 6.1, for
example) appear difficult to verify whereas the familiar von Mises conditions needed
here are known to hold for many common distributions. In addition, our results show
that counts in disjoint intervals are Poisson and independent, and also that these are
independent of the location of Xk:n . These finer conclusions on the limiting structure
of the neighborhood cannot be reached using any of the currently available results in
the literature on count statistics for the central and intermediate cases.

6.2 The upper extremes—non-Poisson and Poisson counts

Asymptotic distributions of K−(n, k, d) and K+(n, k, d) have been investigated by
many authors when k or n−k are held fixed starting from thework of Pakes and Steutel
(1997) who looked at K−(n, n, d). Assuming k is held fixed, Pakes and Li (1998)
showed that K−(n, n − k, d) is asymptotically negative binomial, and Balakrishnan
and Stepanov (2005) showed that K+(n, n − k, d) is asymptotically binomial. The
success probability in these distributions is given by

β(d) = lim
x→x1

F(x + d)

F(x)
∈ (0, 1),

where x1 is assumed to be infinite.
Pakes (2009) has considered the limit distribution of K+(n, n−k, cbn)with k fixed

assuming that F is in the domain of attraction of either Fréchet or Gumbel distribution
and the bn’s form the associated scaling sequence. When F ∈ D(G1;α), he shows that
the limit distribution of K+(n, n − k, bn) is mixed binomial with parameters k and
random success probability that is a function of a Gam(k + 1) rv (his Theorem 5, part
(a)). When F ∈ D(G3), K+(n, n − k, λbn) is shown to be asymptotically a Binomial
rv with parameters k and success probability 1 − e−λ (his Theorem 4).

We now examine the consequences of the representations in (36) and the relations
in (37). When k is fixed and F ∈ D(G3), for any j, 1 ≤ j ≤ k,

P(K+(n, n − k, λbn) < j) = P(Xn−k+ j :n − Xn−k:n > λbn)

→ P(Z j :k > λ) =
j−1∑

i=0

(
k

i

)

(1 − e−λ)i (e−λ)k−i ,

as n → ∞. Since the maximum value attainable is k, the limit distribution is binomial,
a result noted above. Further,

P(K−(n, n − k, λbn) < j) = P(Xn−k:n − Xn−k− j :n > λbn)

→ P(Z j :k+ j > λ) =
j−1∑

i=0

(
k + j

i

)

(1 − e−λ)i (e−λ)k+ j−i ,
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resulting in a negative binomial distribution, a result shown by Pakes and Li (1998).
They also derive the limit distribution of K−(n, n−k, λbn) in other cases; the represen-
tations in (36) along with (37) yield us the same results. Of these, a commonly known
distribution is obtained only when F ∈ D(G2;1) in which case K+(n, n− k, λbn) has
a censored Poi(λ) distribution that is censored on the right at k; this conclusion was
reached in Theorem 4.1 of Dembińska et al. (2007) under a set of technical condi-
tions similar to the one given in (38). Further, K−(n, n − k, λbn) will have a Poi(λ)
distribution and these two statistics are asymptotically independent.

Whenever F ∈ D(G1;α or G2;α �=1), we can obtain the asymptotic distributions of
K− and K+ using (36) and (37) directly. For example, when F ∈ D(G1;α), we can use
the corresponding representation in (36) to obtain the cdf of K+(n, n−k, bn) in terms
of Gamma rvs (in contrast with the mixed binomial representation of Pakes (2009)
mentioned earlier). While closed form expression for the cdf may not be available, the
needed probabilities can be evaluated using tractable univariate integrals that involve
gamma type integrands that can be easily evaluated numerically. The link between
Gamma and Poisson cdfs comes in handy in this simplification.

7 Discussion

Wenowprovide further illustrations of applications of our results to distribution theory
and inference.

7.1 Examples

Our examples thus farwere the uniformand exponential populations, but our results are
widely applicable since the conditions imposed here are satisfied by several common
distributions. In the central case, we need positivity and continuity of the population
pdf at xp to achieve independent Poisson arrival process in both right and left neigh-
borhoods. von Mises conditions are satisfied by the common distributions that are in
the domain of attraction of an extreme value cdf G (given in (4)) and thus the inter-
mediate case also leads to independent Poisson arrival process for these distributions.
The extreme case does not require the von Mises conditions, and provides interest-
ing examples of situations where we do not get Poisson processes. For example, for
F ∈ D(G1;α), a property satisfied by Pareto and loggamma distributions, the arrival
process is no longer Poisson. Tables 3.4.2–3.4.4 of Embrechts et al. (1997) contain
a good list of distributions in the domain of attraction of each of the three extreme
value distributions along with the necessary norming (scaling) constants needed for
the application of our results in the extreme case.

Our intermediate and extreme case discussions focused on the upper end of the
sample. Parallel results hold for the lower end of the sample and upper-end and lower-
end spacings can exhibit different types of clustering processes. For example, in the
exponential parent case, upper extremes are in the Gumbel domain, and the lower
extremes are in the Weibull domain with α = 1 (i.e., Exp (1)). Thus, for the lower
extremes, we have a homogeneous Poisson arrival process in the right neighborhood,
whereas for the upper extremes, we have a pure birth process in the left neighborhood
of the concerned order statistic.
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7.2 Inferential implications

Theorem 2 (a) can be used in the central case to provide (asymptotically) distribution-
free estimates of xp and f (xp) as noted by Siddiqui (1960) when he studied the joint
distribution of Xk:n, Xk+r :n − Xk:n, Xk:n − Xk−s:n [see Sect. 3.3]. It follows from
Theorem 2 that n f (xp)(Xk+r :n − Xk−s:n) is asymptotically Gam(r + s) and this fact
can be used to provide estimates of f (xp) and confidence intervals for the population
pdf at the pth quantile. The asymptotic independence of n f (xp)(Xk+r :n − Xk−s:n)
and

√
n f (xp)(Xk:n − xp) and their known familiar distributions can be used to find

the distribution of the pivotal quantity

(Xk:n − xp)√
n(Xk+r :n − Xk−s:n)

.

FromTheorem2, it follows that this rv behaves asymptotically as the ratio of a standard
normal and an independent gamma rv (or a scaledChi-square rv) and this distribution is
free of f (xp). It easily leads to an asymptotically distribution-free confidence interval
for xp.

A similar application of Theorem 3 would provide asymptotically distribution-free
inference for the intermediate population quantile F−1(k/n) and pdf f (F−1(k/n))

when one of the von Mises conditions is assumed to hold.
In the extreme case, we have seen that the limit distributions of the top k order

statistics are dependent on the domain of attraction. Weissman (1978) has discussed
in detail inference on tail parameters (extreme quantiles and the tail index 1/α) based
on these limit results.

7.3 Concluding remarks

It is interesting to note that norming/scaling constants for Xk:n and the adjacent spac-
ings are of the same order only for the extreme case (bn); the limiting distributions
are similar as well (functions of Exp(1) rvs). For the central and intermediate cases,
the spacings and Xk:n are scaled differently, and their limit distributions are different;
the spacings are related to exponential, whereas Xk:n relates to the normal. For the
extreme and intermediate cases, our sufficient conditions that ensure the nondegener-
ate limit distributions for Xk:n and for the adjacent spacings are the same. In the central
case, asymptotic normality for Xk:n requires k = np + o(

√
n) (actually slightly less

restriction on k would work), the asymptotic independence property of spacings holds
whenever k = np + o(n).

Wehave focused here on neighborhoods of a single selected order statistic; thiswork
can easily be extended to multiple neighborhoods. In the case of two or more central
order statistics and their neighborhoods, we obtain a multivariate normal limit distrib-
ution for the selected order statistics and independent Poisson processes around them.
Such a set up is considered in Theorem 3.1 of Dembińska and Balakrishnan (2010)
where the independence of Poisson counts in right and left neighborhoods of multiple
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central order statistics is derived. In other cases (for example, one upper extreme, and
another lower, considered in Theorem 2.1 of Dembińska and Balakrishnan (2010)),
the resulting counting processes will turn out to be independent.
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