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Abstract In Section SM1 we provide a proof of the modality of the sinh-
arcsinhed logistic density (9). In Section SM2, we present results for the mo-
ments of its skew-logistic (6 = 1) and symmetric (¢ = 0) subfamilies.
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SM1: Proof of the modality of the SAS-logistic density

The logarithm of density (9) is
{ =log f(x) = log S. 5(x) — 2log{cosh(55:,s(x))} —log4,

with first partial derivative
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In order to identify the number of solutions to 9¢/0x = 0, set u = —e +
dsinh™*(z). Then
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= §{tanhu — tanh(} sinh u) coshu} — tanh((u +¢)/§) = 0.
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Defining the odd functions h(u) and gs(u) as
h(u) = tanhu — tanh(3 sinhu) coshu and gs(u) = —u + §tanh ™' (6h(u)),

the modality of the SAS-logistic density is determined by the number of solu-
tions to the equation € = gs(u).
If § < v/2 then, since the second derivative

R (u) = % [—4sech2u tanh u — {3 sinh u + sinh(sinh u)} sechz(% sinh ) cosh u
+ cosh® u tanh(1 sinh u)sech? (1 sinhu)]

is negative for all v > 0, the odd function h(u) is a convex function for all
u > 0. Noting that tanh(z) > x for |z| < 7/2, it holds that

Sh(u) < 5h'(0)u = u/2 < tanh(du/2).
Thus,
gs(u) = —u + dtanh ™ {Sh(u)} < (=14 6%/2)u <0

for all v > 0, and therefore the density is always unimodal regardless of the
value of €.

If 6 > 67 there exists a unique solution of the equation e = gs(u) for u > 0,
and therefore the density is always bimodal.

Finally, consider the case when V2 < § < 6%, As the second derivative
of h(u) is negative, A'(0) = 1/2 and h'(u) — —oo as u tends to infinity,
there exists a unique uo such that h'(ug) = 0. Let u' be the maximum argu-
ment of h for which h(u) = 0. To four decimal places, uf = max{h=1(0)} =
max{—0.9459,0,0.9459} = 0.9459. Then there exists a unique maximum of
h(u) on the interval [0,uf] and its value is, to four decimal places,

max h(u) = 0.1758.

O<u<uft

Therefore, if /2 < § < %, there exists a unique vo(> 0) for which gs(v) = 0.
Hence, the density is unimodal if there is no intersection of y = € and y = gs(u).
Otherwise, the density is bimodal.

SM2 Moments for two subfamilies

Consider first the moments of the skew-logistic subfamily with § = 1.

Bt = [ oS @) (S

—0Q0

= / {ycoshe + (1+¢?)2sinhe}* f1 (y)dy

— 00

k k . / 0o /
= cosh®™™ () sinh™/? (&) YL+ y?) ™ fu(y)dy,
() / L



Sinh-arcsinhed logistic family 3

where y = S, 1(z). Using Equation (10) in Erdélyi (1954), for integer values
of v,
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where Y, (z) = cse(mv){cos(mv)J,(z) — J_,(2)} and J,(z) denote the Bessel
functions of the second and first kind, respectively, and
S —1)™m(2/2 2m4+v+1
mo =3 CUrE)
At I'(m+3/2) ' (v +m+3/2)

is the Struve function. Thus, the first four moments of X, ; are given by
BIXa = [ {yeoshet (L+y?) 2sinhe} o )y
—sinhe [ (12 fu )y

—7rsmhez VP Hy (k) - Yi(k)),

= 0.58167 Slnh €,
BIX)) = [ {ycoshe + (14 42)! /2 sinh )2 i ()dy

= / {y? cosh® e + (1 + y*)sinh® e} f1. (y)dy
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B, = [ fyooshe + (1) 2 sinh = £ (0)dy
= sth/m {3y°(1 +y*) /2 cosh® e + (1 + y*)*/? sinh® e} f1, (y)dy
= sinh5/7OO {(1 4 y?)?/2(3cosh? € + sinh? &) — 3(1 + y?)/? cosh® e} 1, (y)dy
= 3msinhe f:(—l)’H E(s cosh? & 4 sinh? ) (Ha (k) — Ya(k)) — cosh? e(H1 (k) —
1

= 3msinh e{1.4081(3 cosh? ¢ 4 sinh? €) — 0.5816 cosh? £}
= 3w sinh e{5.0509 cosh? € — 1.4081},

Yi(k))
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o0
E[X2,] :/ {ycoshe + (1 +y*)"/?sinhe}* f1 (y)dy

oo
= / {y* cosh? € + 632 (1 + 32) cosh? esinh? € + (1 + 32)2sinh* e} 1, (y)dy

— o0
= / {y* cosh* € + 632 (1 + y?) cosh? e sinh? & + (1 4 y?)% sinh* e} 1. (y)dy
= / {(1 + 8cosh? e sinh? &)y* + 2sinh? (3 cosh? e + sinh? €)y?} f1 (y)dy + sinh? &

= 147%|B4|(1 + 8 cosh? e sinh? ) 4 47| By | sinh? £(3 cosh? € + sinh? &) + sinh* &

2r? Tt 1072 5674 5 8r2 567t 4
1+ 7Y (2 h 14 hte,
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where B,,,,m = 0,1, ..., denote the Bernoulli numbers and the numerical values
in the first and third moments are quoted to four decimal places. Note how
those two moments are multiples of the median, sinh(e), of X, ;.

Now consider the symmetric subfamily obtained when ¢ = 0. The odd
moments are all 0. The even moments can be expressed as

B = [ ) ) fu(Sna(e)s

—00

= O+ 0 4 - (2 1M = ) P )y
0

- i(—l)k(zn) /m{< P DYy fL(y)d
- 922n—1 — k 0 Y Yy L\y)ay,

where the integral in the last line must be computed numerically.
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