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Abstract The sinh-arcsinh transform is used to obtain a flexible four-parametermodel
that provides a natural framework with which to perform inference robust to wide-
ranging departures from the logistic distribution. Its basic properties are established
and its distribution and quantile functions, and properties related to them, shown to be
highly tractable. Two important subfamilies are also explored. Maximum likelihood
estimation is discussed, and reparametrisations designed to reduce the asymptotic
correlations between the maximum likelihood estimates provided. A likelihood-ratio
test for logisticness, which outperforms standard empirical distribution function based
tests, follows naturally. The application of the proposedmodel and inferential methods
is illustrated in an analysis of carbon fibre strength data. Multivariate extensions of
the model are explored.
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1 Introduction

Let Z denote a standardised absolutely continuous random variable that is symmet-
ric about the origin, with distribution function FZ (z), quantile function QZ (u) =
F−1
Z (u), 0 < u < 1, and density fZ (z). Jones and Pewsey (2009) define the canoni-

cal sinh-arcsinhed counterpart of Z , Xε,δ , through the application of the sinh-arcsinh
transformation

Z = Sε,δ(Xε,δ) = sinh{δ sinh−1(Xε,δ) − ε}, (1)

and show that ε ∈ R is a skewness parameter in the sense of vanZwet’s(1964) skewness
ordering, and δ > 0 is a parameter controlling tailweight. For δ < 1 (δ > 1), the tails
of Xε,δ are heavier (lighter) than those of the base random variable Z .

Jones and Pewsey (2009) mainly provide results for the sinh-arcsinhed normal
distribution obtained using a standard normal Z . However, motivated by the idea of
deriving powerful likelihood-ratio tests for logisticness, in their Section 8.3 they refer
to the possibility of substituting a standard logistic Z instead. Historically, the logistic
distribution has been employed as amathematically tractable alternative to the normal,
its distribution and quantile functions having simple closed forms. A book-length
treatment of the logistic distribution, its generalisations, extensions and applications
is provided by Balakrishnan (1992). Chapter 23 of Johnson et al. (1994) is also an
essential extensive source. Of the related distributions mentioned in the latter, those
proposed by Tadikamalla and Johnson (1982) and Johnson and Tadikamalla (1992),
obtained by transforming a logistic random variable, above all their LU system based
on the inverse-sinh transformation, are particularly relevant to the approach adopted
here. More recently, Nadarajah (2009) studied a skew-logistic distribution generated
using the perturbation-based construction of Azzalini (1985); see also Gupta and
Kundu (2010).

In this paper, we extend the general results available for distributions obtained
using the sinh-arcsinh transformation and consider the four-parameter sinh-arcsinhed
logistic (SAS-logistic) family of distributions in its own right. The latter provides an
attractive alternative to the SAS-normal family of Jones and Pewsey (2009) and SAS-t
family of Rosco et al. (2011), which have the normal distribution as a central case, and
a limiting case, respectively. The new family is appealing in terms of the tractability of
its distribution and quantile functions and those properties related to them, especially
its ease of simulation: an important consideration for computer intensive approaches to
inference, which we illustrate too. It also provides a natural framework for performing
inference robust to wide-ranging departures from the logistic distribution. One par-
ticularly important inferential spin-off is a likelihood-ratio test that outperforms the
empirical distribution function based tests proposed by Stephens (1979); particularly
the Anderson-Darling test known to generally provide a powerful test for logisticness.

Section 2 focuses on the sinh-arcsinh transformation and its general properties. In
Sect. 3, we define the SAS-logistic model and consider properties such as its modal-
ity, limiting distributions, tailweight behaviour, moments, quantile-based measures of
location, scale, skewness and kurtosis, and two important subfamilies. Likelihood-
based inference is discussed in Sect. 4. There, we consider maximum likelihood
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Sinh-arcsinhed logistic family 575

estimation, reparametrisations that reduce the dependencies between the maximum
likelihood estimates, and likelihood-ratio tests for logisticness and symmetry. An
analysis of carbon fibre strength data, presented in Sect. 5, illustrates the application
of the model. Potential multivariate extensions of the SAS-logistic distribution are dis-
cussed in Sect. 6. Conclusions are drawn in Sect. 7. Results for use in likelihood-based
inference are collected together in an Appendix. A proof of the modality of the SAS-
logistic distribution, together with results for the moments of two of its subfamilies,
is given in the Supplementary Material available from the journal’s website.

2 General properties of the sinh-arcsinh transformation

The following three representations of the sinh-arcsinh transformation in (1) prove
useful in various mathematical contexts:

Sε,δ(x) = 1
2

[
e−ε exp{δ sinh−1(x)} − eε exp{−δ sinh−1(x)}

]

= 1
2

[
e−ε{(x2 + 1)1/2 + x}δ − eε{(x2 + 1)1/2 + x}−δ

]

= 1
2

[
e−ε{(x2 + 1)1/2 + x}δ − eε{(x2 + 1)1/2 − x}δ

]
. (2)

Inverting (1),

Xε,δ = S−1
ε,δ (Z) = sinh[δ−1{sinh−1(Z) + ε}] = S−ε/δ,1/δ(Z). (3)

The distribution function of Xε,δ , Fε,δ(x), is related to that of Z through

Fε,δ(x) = P(Xε,δ ≤ x) = P(S−ε/δ,1/δ(Z) ≤ x) = P(Z ≤ S−1
−ε/δ,1/δ(x))

= P(Z ≤ Sε,δ(x)) = FZ (Sε,δ(x)), (4)

whilst its quantile function is given by

Qε,δ(u) = F−1
ε,δ (u) = S−1

ε,δ (F−1
Z (u)) = S−ε/δ,1/δ(QZ (u)), 0 < u < 1. (5)

As Z is symmetric about 0, the median of a sinh-arcsinh transformed random variable
is Qε,δ(1/2) = S−ε/δ,1/δ(QZ (1/2)) = S−ε/δ,1/δ(0) = sinh(ε/δ). Differentiating (4)
with respect to x , the density of Xε,δ is available as

fε,δ(x) = F ′
ε,δ(x) = F ′

Z (Sε,δ(x))S
′
ε,δ(x) = fZ (Sε,δ(x))S

′
ε,δ(x)

= fZ (Sε,δ(x))
δCε,δ(x)

(1 + x2)1/2
, (6)

where Cε,δ(x) = cosh{δ sinh−1(x) − ε} = {1 + S2ε,δ(x)}1/2. Using the third identity
in (2), it follows that f−ε,δ(x) = fε,δ(−x). Thus, densities with negative values of
the skewness parameter ε are the reflections about the origin of their counterparts
with positive ε. In applied work, one will generally be interested in the location-scale
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extension of Xε,δ , Xξ,η,ε,δ = ξ + ηXε,δ , with location and scale parameters, ξ ∈ R

and η > 0, respectively. Xξ,η,ε,δ has density η−1 fε,δ((x − ξ)/η).

3 The SAS-logistic family

3.1 Definition and basic properties

Substituting a standard logistic random variable, L , for the generic symmetric random
variable Z in (3), a canonical sinh-arcsinhed logistic randomvariable is defined through
the relation Xε,δ = S−ε/δ,1/δ(L). Using (4)–(6), Xε,δ has distribution function

Fε,δ(x) = 1

1 + e−Sε,δ(x)
= 1

2 {1 + tanh( 12 Sε,δ(x))}, − ∞ < x < ∞, (7)

quantile function

Qε,δ(u) = S−ε/δ,1/δ(log{u/(1 − u)}), (8)

and density

fε,δ(x) = δCε,δ(x)

(1 + x2)1/2
e−Sε,δ(x)

(1 + e−Sε,δ(x))2
= δCε,δ(x)

4(1 + x2)1/2
sech2( 12 Sε,δ(x)). (9)

Equations (7) and (8) are appealing in the sense that, unlike their SAS-normal and
SAS-t counterparts, they are closed-form expressions and hence their computation
requires neither numerical integration nor root finding.

With regard to simulation, consider a uniform random variable on (0, 1),U . Apply-
ing the probability integral transform, L = log(U/(1 − U )) is a standard logistic
random variable and hence

Xε,δ = 1
2 [eε/δ{(L2 + 1)1/2 + L}1/δ − e−ε/δ{(L2 + 1)1/2 + L}−1/δ] (10)

is a SAS-logistic random variable. Note that the second term between square brackets
in (10) is minus the inverse of the first.

3.2 Modality

Although, as Jones and Pewsey (2008) show, all SAS-normal densities are unimodal,
more generally sinh-arcsinh densities are not always unimodal. Rosco et al. (2011)
show, for instance, that SAS-t distributions can be uni- or bimodal. In Section SM1
of the Supplementary Material, we prove that (9) is always unimodal if δ ≤ √

2. It is
always bimodal if δ ≥ δ†, where, to four decimal places,

δ† = 1/ max
0<u<u†

h(u) = 5.6876,
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u = −ε + δ sinh−1(x), h(u) = tanh u − tanh((sinh u)/2) cosh u and u† =
max{h−1(0)} = 0.9459. If

√
2 < δ < δ†, then the density is

unimodal if |ε| ≥ max
0<u<u†

gδ(u) and bimodal if |ε| < max
0<u<u†

gδ(u),

where gδ(u) = −u + δ tanh−1(δh(u)). Graphs of SAS-logistic densities illustrating
these results are portrayed in Fig. 1. Its panel (a) displays symmetric cases (with
ε = 0) for four δ-values and confirms the unimodality of the density for δ ≤ √

2 and
bimodality for δ >

√
2. The densities in panel (c)–(e) are all unimodal, corresponding

to δ-values of 0.5, 1 and
√
2, respectively. In its panel (f), corresponding to δ = 2,

the density is bimodal when ε = 0 but soon becomes unimodal as ε increases. Its
panel (g), with δ = 6, illustrates the fact that for δ ≥ δ† the density is always bimodal
whatever the value of ε. We will comment on the densities in panel (b), obtained as
ε → ∞, in the following subsection.

As mentioned in the Introduction, ε is a parameter that controls skewness and
δ controls tailweight. From a consideration of the densities in Fig. 1, it is evident,
however, that δ also affects the distribution’s dispersion and ε also affects its central
location. Clearly, the modality of the distribution depends on the values taken by both
parameters. Fig. 2 displays, in black, the (δ∗, ε∗) subregion, where δ∗ = δ/(1+δ) and
ε∗ = ε/(1+ ε), for which symmetric or positively skewed SAS-logistic densities are
bimodal. Its reflection about the horizontal axis is the corresponding region for which
symmetric or negatively skewed cases are bimodal.

We view the potential bimodality of SAS-logistic distributions as generally being
an unappealing property, primarily because we favour the use of two-piece mixtures
of unimodal distributions as a means of modelling bimodality; the interpretation of the
latter usually being more straightforward. One might therefore consider the unimodal
subfamily associated with the constraints

δ ≤ √
2 and ε ∈ R or

√
2 < δ < δ† and |ε| ≥ max

0<u<u†
gδ(u).

Alternatively, in order to ensure unimodality for any potential value of ε, one could
restrict the parameter space still further to δ ≤ √

2 and ε ∈ R. The latter subfamily will
always contain the symmetric case associated with any given δ-value. As is clear from
a consideration of the densities portrayed in Fig. 1, this restricted unimodal subfamily
contains densities displaying wide-ranging levels of skewness and tailweight. Finally,
from an applications perspective, there is an argument for not restricting the parameter
space at all; with bimodal solutions interpreted as indicating the need to explore the
fit of two-piece mixtures of unimodal distributions.

3.3 Limiting densities, tailweight and moments

First, consider the limiting densities as ε → ±∞. Because f−ε,δ(x) = fε,δ(−x), it
suffices to consider the limiting density as ε → ∞, denoted by f∞,δ . After suitable
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Fig. 1 The SAS-logistic density (9) for: (a) ε = 0 and, in order of increasing height at the origin, δ =
0.5, 1,

√
2, 2; (b) ε → ∞ and, from left to right, δ = 0.5, 0.75, 1,

√
2, 2, 6; (c) δ = 0.5 and, from left

to right, ε = 0, 0.5, 1, 2; (d) δ = 1 and, from left to right, ε = 0, 0.5, 1, 2; (e) δ = √
2 and, from left to

right, ε = 0, 0.5, 1, 2; (f) δ = 2 and, from left to right, ε = 0, 0.5, 1, 2; (g) δ = 6 and, from left to right,
ε = 0, 1, 2, 5. The densities in panels (c)–(g) have been drawn with different line types to aid visualisation
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Fig. 2 Subregion, in black, of
(δ∗, ε∗)-values, where
δ∗ = δ/(1 + δ) ∈ (0, 1) and
ε∗ = ε/(1 + ε) ∈ [0, 1), for
which symmetric (ε∗ = 0) or
positively skewed (ε∗ > 0)
SAS-logistic densities are
bimodal
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standardisation of location and scale, one obtains

f∞,δ(y) = δ

4y
cosh(δ log 2y) sech2( 12 sinh(δ log 2y)).

This is the density of Y = exp{sinh−1(L)/δ}/2where L is standard logistic. Examples
of this density for a range of δ-values are portrayed in Fig. 1(b). Those that are unimodal
are very skew indeed.

The tails of the base logistic distribution are simple exponential. As |x | → ∞,
Sε,δ(x) ≈ 2δ−1sgn(x) exp{−sgn(x)ε}|x |δ and Cε,δ(x) ≈ 2δ−1 exp{−sgn(x)ε}|x |δ ,
where sgn(x) denotes the sign of x . Making use of these results,

fε,δ(|x |) ≈ e−sgn(x)ε|x |δ−1 exp{−e−sgn(x)ε|x |δ}. (11)

These are Weibull-type tails, their relative scales being e±ε. Because of this tail
behaviour, the moments of Xε,δ about the origin, E(Xk

ε,δ), k = 1, 2, ..., all exist, and
are given by

E[Xk
ε,δ] =

∫ ∞

−∞
xk fXε,δ (x)dx =

∫ ∞

−∞
xk S′

ε,δ(x) fL(Sε,δ(x))dx

=
∫ ∞

−∞
xkdFL(Sε,δ(x)).

Setting u = FL(Sε,δ(x)), 0 < u < 1, F−1
L (u) = QL(u) = Sε,δ(x) and hence

x = S−ε/δ,1/δ(QL(u)). Thus,

E[Xk
ε,δ] =

∫ 1

0
Sk−ε/δ,1/δ (log{u/(1 − u)}) du,

whichmust generally be computed numerically. In Section SM2 of the Supplementary
Material, we provide results for the moments of the skew-logistic and symmetric
subfamilies corresponding to δ = 1 and ε = 0, respectively.
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3.4 Quantile-based measures of location, scale, skewness and kurtosis

Given the simple form of the quantile function (8) and the general lack of analytic
expressions for the moments, it is natural to consider measures based on quantiles as
summaries of the main characteristics of the SAS-logistic family.

As noted in Section 3.1, the median of any canonical sinh-arcsinhed distribution is
sinh(ε/δ). Using the first identity in (2) and the fact that the sinh function is odd, it
follows that

S−ε/δ,1/δ(x) − S−ε/δ,1/δ(−x) = 2 cosh(ε/δ) sinh(δ−1 sinh−1(x))

and

S−ε/δ,1/δ(x) + S−ε/δ,1/δ(−x) = 2 sinh(ε/δ) cosh(δ−1 sinh−1(x)).

Thus, the interquartile range of Xε,δ is given by

Qε,δ(3/4) − Qε,δ(1/4) = S−ε/δ,1/δ(log 3) − S−ε/δ,1/δ(− log 3)

= 2 cosh(ε/δ) sinh(δ−1 sinh−1(log 3)), (12)

whilst the quantile-based skewness coefficient of Bowley,

Bε,δ = Qε,δ(3/4) − 2Qε,δ(1/2) + Qε,δ(1/4)

Qε,δ(3/4) − Qε,δ(1/4)
,

reduces to

Bε,δ = S−ε/δ,1/δ(log 3) + S−ε/δ,1/δ(− log 3) − 2 sinh(ε/δ)

2 cosh(ε/δ) sinh(δ−1 sinh−1(log 3))

= sinh(ε/δ){cosh(δ−1 sinh−1(log 3)) − 1}
cosh(ε/δ) sinh(δ−1 sinh−1(log 3))

= tanh(ε/δ){coth(δ−1 sinh−1(log 3)) − csch(δ−1 sinh−1(log 3))}. (13)

The limits of Bε,δ are:

lim
ε→0

Bε,δ = lim
δ→∞ Bε,δ = 0;

lim
δ→0

Bε,δ = sign(ε);
lim

ε→∞ Bε,δ = sign(δ)(coth(δ−1 sinh−1(log 3)) − csch(δ−1 sinh−1(log 3))).

The kurtosis measure of Moors (1988),

Mε,δ = Qε,δ(7/8) − Qε,δ(5/8) + Qε,δ(3/8) − Qε,δ(1/8)

Qε,δ(3/4) − Qε,δ(1/4)
,
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Fig. 3 Plots, for SAS-logistic distributions with density (9) and 0 < δ < 5.6876, of: (a) contours of
Bowley’s skewness coefficient (13) as a function of 0 < ε∗ = ε/(1 + ε) < 1 and δ; (b) the standardised
version, M∗

δ = Mδ/(1+Mδ), of Moors’ kurtosis measure (14) as a function of δ. In (a), the solid horizontal
and vertical lines are the contours for values of 1 and 0 of Bowley’s coefficient, respectively. The dashed
line delimits δ = √

2. In (b), the horizontal dashed line delimits the value of the standardised measure for
the uniform distribution, 0.5, and the vertical dashed line delimits δ = √

2

simplifies to

Mδ = sinh(δ−1 sinh−1(log 7)) − sinh(δ−1 sinh−1(log(5/3)))

sinh(δ−1 sinh−1(log 3))
, (14)

the latter notation reflecting the fact that Moors’ measure only depends on the value
taken by the tailweight parameter δ. In fact, as shown in Jones et al. (2011), all quantile-
based measures of kurtosis that involve only (possibly scaled) differences between
quantile function values of the form Q(u) − Q(1 − u) are skewness invariant for all
sinh-arcsinhed distributions. The limits of Mδ are:

lim
δ→0

Mδ = ∞;

lim
δ→∞ Mδ = sinh−1(log 7) − sinh−1(log(5/3))

sinh−1(log 3)
≈ 0.9778.

Fig. 3 displays plots, for SAS-logistic distributions with 0 < δ < δ† = 5.6876,
of (13), for ε ≥ 0, and a standardised version of (14). As is evident from (13), the
effect of ε on Bε,δ , amplified by small values of the tailweight parameter, δ, enters via
the term tanh(ε/δ). The behaviour of this term is reflected in Fig. 3(a), the skewness
hardly increasing at all for ε∗ = ε/(1+ ε) > 0.7 (ε > 2.33). Fig. 3(b) illustrates that
all possible values of M∗

δ = Mδ/(1 + Mδ), and hence Mδ , above that for the logistic
distribution (M∗

1 = 0.5664,M1 = 1.3063) are attainable. Theminimumvalue reached
is M∗

δ†
= 0.4970 (Mδ† = 0.9881), marginally below that of M∗

δ = 0.5 (Mδ = 1) for
the uniform distribution. This might at first seem surprising but remember that the
SAS-density with δ = δ† and ε = 0 is bimodal. Overall, the loss in skewness and
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kurtosis flexibility corresponding to the restriction δ ≤ √
2, ensuring unimodality,

appears minor.

3.5 Symmetric and skew-logistic subfamilies

There are two subfamilies that are of particular interest: the symmetric one obtained
when ε = 0 and the skew-logistic subfamily corresponding to δ = 1.

Examples of densities from the symmetric subfamily are provided in Fig. 1(a). As
proved in Section SM1 of the Supplementary Material, such densities are unimodal
if δ ≤ √

2 and are bimodal otherwise. They range from the very heavy-tailed when δ

is close to 0, through the logistic when δ = 1, to the wide-bodied, bimodal and light-
tailed when δ is large. Whatever the value of δ, the mean, median and mode all equal
0, as are all the odd moments. Results for the even moments are provided in Section
SM2 of the Supplementary Material. The interquartile range and Bowley’s coefficient
of skewness, (12) and (13), reduce to 2 sinh(δ−1 sinh−1(log 3)) and 0, respectively. As
Jones and Pewsey (2009) have proved, δ acts as a kurtosis parameter in the sense of
van Zwet’s (1964) ordering for any symmetric sinh-arcsinhed distribution. As we have
seen above, it is also the parameter which most strongly regulates the distribution’s
modality. When δ is small, C0,δ(x) ≈ 1 and S0,δ(x) ≈ δ sinh−1(x), and substituting
these results in (9), one obtains

f0,δ(x) ≈ δ

(1 + x2)1/2
e−δ sinh−1(x)

(1 + e−δ sinh−1(x))2

= δ

(1 + x2)1/2
{x + (1 + x2)1/2}δ

[1 + {x + (1 + x2)1/2}δ]2 .

This is the density of the symmetric subset of Tadikamalla and Johnson (1982) LU

distribution. Symmetric LU distributions are those of Xδ , defined via the transfor-
mation L = δ sinh−1(Xδ), and have tails that are heavier than those of the logis-
tic.

All the members of the second subfamily, obtained when δ = 1, are uni-
modal. Applying (3) together with the third equality in (2), Xε,1 = S−ε,1(L) =
L cosh ε + (1 + L2)1/2 sinh ε. Such random variables have densities like those
displayed in Fig. 1(d). They are true skew-logistic densities in the sense that,
as is evident from (11) with δ = 1, both of their tails are simple exponen-
tial, like those of the base logistic distribution. This is not the case for the
skew-logistic densities of Nadarajah (2009), for which the weight in one of the
tails is altered through perturbation by the standard logistic distribution function.
Moment results are provided in Section SM2 of the Supplementary Material. The
interquartile range and Bowley’s skewness coefficient for Xε,1 are log(9) cosh(ε) and
tanh(ε) cosh(sinh−1(log 3))/ log 3, respectively. Because of its skewness invariance,
Moors’ kurtosis measure is the same as that for the logistic distribution, namely 1.3063
to four decimal places.
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4 Likelihood-based inference

4.1 Maximum likelihood estimation and reparametrisation

The log-likelihood for a random sample, X1, . . . , Xn , drawn from the four-parameter
SAS-logistic distribution with density η−1 fε,δ((x − ξ)/η) is

�(ξ, η, ε, δ) = n(log δ − log 4 − log η) (15)

+
n∑

i=1

[
logCε,δ(Yi ) − 1

2 log(1 + Y 2
i ) − 2 log cosh( 12 Sε,δ(Yi ))

]
,

where Yi = (Xi − ξ)/η. The score equations and the elements of the observed infor-
mation matrix evaluated at the maximum likelihood solution are given in the Appen-
dix. There are no closed-form expressions for the maximum likelihood estimates and
(15) must be maximised numerically. To achieve this, we have made use of both the
Nelder-Mead (Nelder and Mead 1965) and L-BFGS-B (Byrd et al. 1995) methods
of optimisation available within R’s general purpose optimisation function optim.
Other gradient-based methods of optimisation, as well as simulated annealing, are
also available as options of optim. Whichever method is employed, it is sensible
to use a range of different starting values in an attempt to ensure that the global
maximum is identified because the various methods can converge to local maxima.
The L-BFGS-B method is particularly attractive because one of its options returns
a numerical approximation to the Hessian matrix. The quality of the approximation
should be good but can always be checked by comparing the Hessian matrix returned
with −1 times the observed information matrix calculated using the results in Appen-
dix C2. The observed information matrix (or its approximation) can be inverted to
obtain (an approximation to) the asymptotic covariance matrix, which, in turn, can
be transformed into (an approximation to) the asymptotic correlation matrix for the
maximum likelihood estimates ξ̂ , η̂, ε̂ and δ̂.

Extensive numerical work for both the SAS-normal and SAS-logistic distribution
indicates that the asymptotic correlation matrix tends towards singularity as the tail-
weight parameter, δ, increases; its rank tending to 2. The problem is mainly a conse-
quence of large asymptotic correlations between η̂ and δ̂ and between ξ̂ and ε̂, and
kicks in for δ ≥ 2. This behaviour is evidence of light-tailed cases of the model being
non-identifiable. For low-δ, i.e. heavy-tailed unimodal, cases, singularity of the infor-
mation matrix, and hence non-identifiability, is not an issue. Using ηδ = η/δ instead
of η, as suggested in Jones and Pewsey (2009), results in an asymptotic correlation
between η̂δ and δ̂ that is somewhat lower than that between η̂ and δ̂, but the asymptotic
correlation matrix for (ξ̂ , η̂δ, ε̂, δ̂) is still close to singular, now with rank 3, for δ ≥ 2.
In principal, the Gram-Schmidt orthogonalisation process proposed by Rotnitzky et al.
(2000) can be employed to obtain an orthogonal reparametrisation. Instead, we sought
reparametrisations inwhich the parameters had clear interpretations. As the singularity
problem is due to the correlations between the maximum likelihood estimates of the
location and skewness parameters, and between those for the scale and tailweight para-
meters, we investigated replacing ξ and η by location and scale parameters that were
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robust to changes in skewness and tailweight, respectively. This logic led us to consider
parametrisations in which ξ is replaced by the median M = ξ + η sinh(ε/δ), and/or η

is replaced by the interquartile range I QR = 2η cosh(ε/δ) sinh(δ−1 sinh−1(log 3)).
In our investigations, we also considered replacing ε and δ by the quantile-based skew-
ness and kurtosis measures Bε,δ and Mδ , respectively, but these extra substitutions did
not lead to any general improvement in the properties of the asymptotic correlation
matrix.

The results from our numerical investigations indicate that no benefit accrues from
reparametrisation when samples are drawn from extremely heavy-tailed symmetric
SAS-logistic distributions. For samples from heavy- and very heavy-tailed cases, the
(ξ, I QR, ε, δ)parametrisation should beused. For samples fromall other SAS-logistic
distributions, with δ ≥ 1, the (M, I QR, ε, δ) parametrisation should be employed.
Note that these recommendations do not lead to full parameter orthogonality but much
improved properties of the asymptotic correlationmatrices of themaximum likelihood
estimates. In particular, the maximum likelihood estimate of the location parameter (ξ
or M , as appropriate), which in applications will generally be the parameter of main
interest, will often be close to orthogonal to those of the other three parameters. In
applications, it may be possible to identify which of the three cases described above
applies from a consideration of the tail behaviour manifested in a histogram of the
data. However, the ability to do so will heavily depend on the size of the sample being
considered. Should there be any doubt over which parametrisation to use, all three can
be applied and the resulting (estimated) asymptotic correlation matrices compared.
The R code for fitting the SAS-logistic distribution under the original parametrisation
is easily amended to accommodate the other two. R code for fitting the family under
each one of the parametrisations is available from the first author.

4.2 Likelihood-ratio tests for logisticness and symmetry

During the model reduction stage of data analysis involving a putative SAS-logistic
distribution, exploration of the fits of two specific subfamilies will be of particular
interest: namely the logistic (ε = 0, δ = 1) and symmetric (ε = 0) distributions.
As both are nested within the wider SAS-logistic family, likelihood-ratio tests (LRTs)
can be used to investigate the superiority of the fit of the full SAS-logistic family over
those of the two subfamilies. Under standard regularity conditions, the degrees of
freedom for the asymptotic chi-squared distribution of the test statistic −2(�0 − �1),
where �0 denotes the maximum of the log-likelihood under the null hypothesis (of
logisticness or symmetry) and �1 denotes its maximum under the full SAS-logistic
family, are 2 and 1, respectively. Extensive simulation shows that the asymptotic chi-
squared distributions provide reasonable approximations to the sampling distributions
of the test statistic for samples sizes of 50 or more for the LRT for symmetry and of
100 or more for the LRT for logisticness. Results for the true size of the latter, as a
function of sample size, n, are displayed for a nominal significance level of 5 % in
Fig. 4(a).

For smaller sample sizes, the true levels of both tests based on asymptotic chi-
squared theory tend to be higher than their nominal levels, i.e. both tests are liberal.
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Fig. 4 Proportion of samples for which the null hypothesis of an underlying logistic distribution was
rejected in nominally 5 % tests as a function of n calculated using 10000 random samples of size n from
the (a) logistic, (b) Tiku and (c) extreme-value distributions. The solid lines connect the results for the
likelihood-ratio test, the dashed lines for the Anderson-Darling (square), Cramér-von Mises (solid circle),
Kolmogorov-Smirnov (triangle) and Kuiper (diamond) tests. The dotted line in each panel delimits the
nominal level of 0.05

Calibration of the tests when n is small can be achieved using the bootstrap. In the
case of the LRT for symmetry, Efron’s (1979) device for symmetrising a sample
around an estimate of its centre, such as the mean or median, can be used first to
obtain an augmented sample of size 2n. Bootstrap samples of size n are then randomly
drawn from the augmented sample. For the LRT for logisticness, bootstrap samples are
drawn from the logistic distribution with parameter values set equal to their maximum
likelihood estimates for the original sample.

There are numerous alternative tests against which the LRTs for logisticness and
symmetry might be compared. Meintanis (2004) summarises much of the literature on
testing for logisticness; Cabilio and Masaro (1996) do likewise for tests of symmetry.
Simulation-based results reported inMeintanis (2004) indicate that, of the various tests
for logisticness, the Anderson-Darling test studied by Stephens (1979) is generally
competitive. Due to their ease of application and similarity of form, in our simulation
experiments we compared the performance of the LRT for logisticness with those of
the Cramér-vonMises, Watson, Anderson-Darling, Kolmogorov-Smirnov and Kuiper
empirical distribution function based tests considered in Stephens (1979). In ourMonte
Carlo studies, the size andpower results obtained for theCramér-vonMises andWatson
tests were found to be identical and so in what followswe refer to their common results
as being those of the Cramér-von Mises test. We compared the performance of the
LRT for symmetry with the tests of Boos (1982) and Cabilio and Masaro (1996),
recommended in the latter paper as omnibus tests of symmetry. The Boos test is
calibrated to the logistic distribution, whereas the normal distribution was used when
calibrating the test of Cabilio and Masaro (1996).

Unsurprisingly, we found that the two LRTs generally outperform the alternative
tests for samples drawn from the SAS-logistic distribution. However, the application of
the LRTs need not be restricted to scenarios involving just SAS-logistic distributions.
In order to investigate their performance as more general omnibus tests against distrib-
utions outside the SAS-logistic family, we conducted a further extensive Monte Carlo
experiment. As representative symmetric models we used, ranging from the light- to
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Fig. 5 Proportion of samples for which the null hypothesis of an underlying symmetric distribution was
rejected in nominally 5 % tests as a function of n calculated using 10000 random samples of size n from
the (a) normal ≡ SN (0), (b) SN (2) and (c) SN (5) distributions. The solid lines connect the results for the
likelihood-ratio test, the dashed lines for the Boos (square) and Cabilio-Masaro (triangle) tests. The dotted
line in each panel delimits the nominal level of 0.05. Results for the Boos test are unavailable for n > 100
as the storage required to perform it proved prohibitive

the heavy-tailed, the Tiku (Tiku et al. 2001), normal and t2 distributions. Mudholkar
and George (1978) have shown that the logistic distribution is very similar to the t9
distribution and thus sits between the last two. The asymmetric models used were the
extreme-value and a range of Azzalini skew-normal, log F (Jones 2004) and Jones and
Faddy (2003) skew-t distributions with varying degrees of asymmetry. The latter two
families are order-statistic distributions generated by the logistic and t2 distributions,
respectively.

The LRT was found to be by far the most powerful of the five tests for logistic-
ness against all of the symmetric and asymmetric alternatives considered. In order
to illustrate its superior performance, panels (b) and (c) of Fig. 4 portray the powers
of the five tests for samples of different size drawn from the Tiku and extreme-value
distributions and a nominal significance level of 5 %.

Of the three tests of symmetry considered, the LRT maintains the nominal level
best against Tiku’s distribution. As Fig. 5(a) portrays, it is slightly conservative against
the normal distribution. The Cabilio-Masaro test maintains the nominal level best
against the t2 distribution; the LRT and Boos tests being liberal. The LRT was the
most powerful of the tests against all of the asymmetric distributions considered.
The results obtained for samples simulated from Azzalini’s skew-normal distribution,
SN (λ), with values of the skewness parameter, λ, of 2 and 5 are presented in panels
(b) and (c) of Fig. 5, respectively. The SN (2) distribution is only slightly skewed,
whereas the SN (5) displays considerable skewness. Despite the LRT being slightly
conservative against the normal, or SN (0), distribution, of the three tests considered
it does by far the best job of picking up on the lack of symmetry.

The SAS-logistic-based LRT for symmetry provides an alternative to its SAS-
normal-based counterpart proposed by Jones and Pewsey (2009). The former tends
to maintain the nominal level better than the latter against the light-tailed Tiku and
heavy-tailed t2 distributions. Of the two, the SAS-normal-based LRT tends to be the
slightly more powerful against the various asymmetric distributions considered.
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Fig. 6 Histogram of 63 carbon
fibre strength measurements
with the densities of the
maximum likelihood fits for the
four-parameter SAS-logistic
(solid) and three-parameter
Azzalini-type skew-logistic
(dotted) distributions
superimposed. The dashed curve
is the density of the fit obtained
for the three-parameter Type I
generalised logistic distribution
using L-moment estimation
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Given these findings, we recommend both LRTs as omnibus tests for logisticness
and symmetry. For small-sized samples, we would expect their bootstrapped versions
to provide highly competitive alternatives to existing tests. We illustrate the use of the
bootstrap version of the LRT for logisticness in the next section where a sample with
a size lower than 100 is analysed.

5 Illustrative example

As our illustrative example, we consider a data set first presented in Badar and Priest
(1982) consisting of the strengths of 63 single carbon fibres of length 10mmmeasured
in gigapascals (GPa). Gupta and Kundu (2010) reproduce the data and provide the
maximum likelihood fit for the Nadarajah (2009) three-parameter Azzalini-type skew-
logistic distribution, as well as what they consider to be the best fit of the three-
parameter Type I generalised logistic (or power logistic) distribution, obtained using L-
moment estimation. The densities for those twofits are superimposed upon a histogram
of the data in Fig. 6, together with the density of the maximum likelihood fit for the
four-parameter SAS-logistic family. The latter appears to model the data in the left-
hand tail and much of the centre best, whilst the other two densities seem to do a better
job in the right-hand tail.

Results for the fits of the SAS-logistic family and its logistic, symmetric and skew-
logistic subfamilies are provided in Table 1. With values of δ̂ = 1.35 and ε = 0,
the best fitting symmetric density is bimodal. The p-values of likelihood-ratio tests
for underlying logistic, symmetric and skew-logistic distributions, calculated using
asymptotic chi-squared theory, are 0.02, 0.02 and 0.04, respectively. The p-value for
the bootstrap version of the likelihood-ratio test for logisticness, computed using 9999
bootstrap samples of size 63 simulated from the logistic distributionwith ξ = 3.02 and
η = 0.35, was slightly higher at 0.03. Thus, according to these tests, the SAS-logistic
family offers a significant improvement in fit over all three subfamilies. The AIC
and BIC values, and the p-values for the bootstrap versions of the Anderson-Darling
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Table 1 Maximum likelihood estimates, the values of the maximised log-likelihood (MLL), Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC) and p-value for bootstrapped versions of
the Anderson-Darling goodness-of-fit test (p-value) for the fits to the carbon fibre strengths of the four-
parameter SAS-logistic family and its skew-logistic (δ = 1), symmetric (ε = 0) and logistic (ε = 0, δ = 1)
subfamilies

Model ξ̂ η̂ ε̂ δ̂ MLL AIC BIC p-value

SAS-logistic 2.62 0.60 0.81 1.57 −55.47 118.95 127.52 0.53

Skew-logistic 2.73 0.32 0.48 (1) −57.56 121.12 127.55 0.03

Symmetric 3.05 0.56 (0) 1.35 −58.30 122.60 129.03 0.17

Logistic 3.02 0.35 (0) (1) −59.33 122.66 126.95 0.10

goodness-of-fit test, support the superior fit of the full family. The bootstrap tests were
performedby comparing the value of theAnderson-Darling test statistic for the original
data and a given fitted model with its values obtained using 9999 parametric bootstrap
samples of the same size simulated from the same fitted model. They suggest, in fact,
that all but the skew-logistic subfamily provide adequate fits to the data. Any other
goodness-of-fit test statistic could have been used with the bootstrap, but we chose the
Anderson-Darling statistic because of the competitive power of the Anderson-Darling
test for logisticness reported in Section 4.2.

Nominally 95 % confidence intervals for ξ , η, ε and δ, calculated using the inverse
of the observed information matrix together with asymptotic normal theory, are
(2.20, 3.04), (0.17, 1.04), (−0.08, 1.70) and (0.74, 2.41). The intervals for ε and δ

suggest an underlyingpositively skeweddistributionwith lighter than logistic tails. The
estimated asymptotic correlations between ξ̂ and ε̂, and between η̂ and δ̂, are−0.96 and
0.94, respectively. Under the (M, I QR, ε, δ) reparametrisation, the maximum likeli-
hood estimates of the median and interquartile range are M̂ = 2.94 and ˆI QR = 0.88,
with nominally 95 % confidence intervals of (2.78, 3.11) and (0.69, 1.07), respec-
tively. For this reparametrisation, the asymptotic correlations between the parameter
estimates are all lower than 0.67 in absolute value.

Finally, we also fitted the four-parameter SAS-normal family of Jones and Pewsey
(2009) to the data, obtaining a marginally lower maximised log-likelihood value of
−55.79. Its density is very similar to that for the SAS-logistic fit in the left-hand tail
and lies between the latter and the density of the Type I generalised logistic in the
centre and right-hand tail.

6 Multivariate SAS-logistic distributions

With regard to multivariate extensions, consider first a random vector Z =
(Z1, Z2, . . . , Zd) following the classical d-variate Gumbel–Malik–Abraham logis-
tic distribution (Gumbel 1961; Malik and Abraham 1973) with distribution function

F(z) = 1/{1 +
d∑

i=1

exp(−zi )}
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and density

f (z) = d! exp(−∑d
i=1 zi )

{1 + ∑d
i=1 exp(−zi )}d+1

.

The individual Zi ’s are univariate logistic and corr(Zi , Z j ) = 1/2. Applying the
SAS transformation to each of the components of Z (Zi = Sεi ,δi (Xi )), its natural
SAS-logistic analogue has density

f (x) = d! exp{−∑d
i=1 Sεi ,δi (xi )}

[1 + ∑d
i=1 exp{−Sεi ,δi (xi )}]d+1

d∏
i=1

δiCεi ,δi (xi )

(1 + x2i )
1/2

. (16)

By construction, the marginal distribution of Xi is univariate SAS-logistic with
parameters (εi , δi ). In general, cov(Xi , X j ) is intractable. However, when δi = δ j =
1,

cov(Xi , X j ) = cosh εi cosh ε j E[Zi Z j ] + sinh εi sinh ε j cov((1 + Z2
i )

1/2,

(1 + Z2
j )
1/2) + (cosh εi sinh ε j + sinh εi cosh ε j )E[Zi (1 + Z2

j )
1/2]

= π2

6
cosh εi cosh ε j + 0.2881 sinh εi sinh ε j

−0.4090(cosh εi sinh ε j + sinh εi cosh ε j ),

with both numerical values quoted to four decimal places.
In applications, the fixed correlation structure between the Zi ’s in the Gumbel–

Malik–Abraham multivariate logistic distribution will be an important potential
limitation to its use, as well as to the use of its SAS-logistic analogue. As an
alternative approach, copula theory (Nelsen 2006) provides a means of generat-
ing multivariate SAS-logistic distributions with wider ranging dependence struc-
tures. Let C denote a copula and FXi (xi ) : i = 1, ..., d the distribution func-
tions of d univariate SAS-logistic random variables. Then, the joint distribution
function of the corresponding multivariate SAS-logistic distribution is obtained as
F(x) = C(FX1(x1), . . . , FXd (xd)).

Continuing the logistic theme of the paper, appealing copulas in the context of
extreme-value theory are the logistic, or Gumbel-Hougaard, copula and its extensions
discussed in Gudendorf and Segers (2010). The distribution function obtained using
the logistic copula C(u1, ..., ud) = exp[−{(− log u1)1/θ + ...+ (− log ud)1/θ }θ ] with
SAS-logistic marginals is

F(x) = exp

⎧⎨
⎩−

(
d∑

i=1

[
log{1 + eεi ,δi (xi )}

]1/θ
)θ

⎫⎬
⎭ ,

where θ ∈ (0, 1] controls the degree of dependence; θ = 1 for independence and
θ = 0 for complete dependence, and eεi ,δi (xi ) = exp{−Sεi ,δi (xi )}. The joint density
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does not, in general, have a simple form, but reduces to

f (x) =
d∏

i=1

fXi (xi ) =
d∏

i=1

δiCεi ,δi (xi )

(1 + x2i )
1/2

eεi ,δi (xi )

{1 + eεi ,δi (xi )}2

under independence (i.e. when θ = 1). For the bivariate case, the joint density can be
represented as

f (x1, x2) = F(x1, x2)

{
L2(θ−1) + 1 − θ

θ
Lθ−2

}

×
2∏

i=1

δiCεi ,δi (xi )

(1 + x2i )
1/2

eεi ,δi (xi )l
(1−θ)/θ
εi ,δi

(xi )

{1 + eεi ,δi (xi )}
, (17)

where L = ∑2
i=1 l

1/θ
εi ,δi

(xi ) and lεi ,δi (xi ) = log{1 + eεi ,δi (xi )}.
Illustrative contour plots of (17) are provided in Fig. 7. The two panels in the first

rowhaveSAS-logistic components that are independent,whilst those in the second row
have components that are strongly dependent (θ = 0.2). The effects of the skewness,
tailweight and dependence parameters are reflected in the shapes assumed by the
contours. Those shapes suggest (17) could well provide a plausible model for bivariate
data.

For (17), cov(Xi , X j ) is, in general, intractable. However, as an alternative, non-
moment based, measure of dependence, the local dependence function γ (x1, x2) =
∂2 log f (x1, x2)/∂x1∂x2, proposed as a localised correlation coefficient by Jones
(1996), is readily available. It is given by

γ (x1, x2) = (1 − θ)

(Lθ−2

θ
+ 2L2θ + (θ − 3 + 4/θ)Lθ + (1 − θ)(2 − θ)/θ2

{θLθ+1 + (1 − θ)L}2
)

×
2∏

i=1

δiCεi ,δi (xi )

(1 + x2i )
1/2

eεi ,δi (xi )l
(1−θ)/θ
εi ,δi

(xi )

{1 + eεi ,δi (xi )}
, (18)

which reduces to 0 under independence (when θ = 1).

7 Concluding remarks

In this paper, we have introduced the four-parameter SAS-logistic family of distri-
butions; a flexible extension of the logistic distribution with parameters controlling
skewness and tailweight. Its density, distribution function and quantile-based sum-
maries inherit the tractability of the logistic distribution. Its moments, on the other
hand, do not have closed-form expressions and must generally be computed using
numerical integration. Likelihood-based inference is straightforward for data from all
but light-tailed cases of the family. For the latter scenario, we have identified repara-
metrisations which considerably reduce the magnitudes of the asymptotic correlations
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Fig. 7 Contour plots of the bivariate density (17). In the panels in the first row, θ = 1 (corresponding to
independence); in the second, θ = 0.2. In the panels in the first column, ε2 = 0; in the second, ε2 = 1.5.
Throughout, δ1 = 0.5, δ2 = √

2 and ε1 = 0

between the maximum likelihood estimators. Here, we have applied the SAS-logistic
as a model for univariate data. Other obvious applications involve its use as a model
for the error terms in regression problems.

We also proposed two natural multivariate extensions of the family; both with SAS-
logistic marginals. The second of the two was derived using the logistic copula. Other
multivariate distributionswith SAS-logisticmarginals can easily be obtained by apply-
ing the extensions of the logistic copula discussed in Gudendorf and Segers (2010) or,
indeed, any other appealing copula. When discussing the dependence structure of the
logistic copula-based bivariate extension, we presented its local dependence function.
Inference for the local dependence function is beyond the scope of the present paper.
The interested reader is referred to Jones (1996).
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8 Appendix: Likelihood results

8.1 C1. Score equations

∂�

∂ξ
= 1

η

{
n∑

i=1

Yi
1 + Y 2

i

+ δ

n∑
i=1

1

(1 + Y 2
i )1/2

A(Yi )

}
= 0,

∂�

∂η
= 1

η

{
n∑

i=1

Y 2
i

1 + Y 2
i

+ δ

n∑
i=1

Yi
(1 + Y 2

i )1/2
A(Yi ) − n

}
= 0,

∂�

∂ε
=

n∑
i=1

A(Yi ) = 0,
∂�

∂δ
= n

δ
−

n∑
i=1

A(Yi ) sinh
−1(Yi ) = 0,

where A(Yi ) = Cε,δ(Yi ) tanh( 12 Sε,δ(Yi ))−Tε,δ(Yi ) and Tε,δ(Yi )= tanh(δ sinh−1(Yi )−
ε).

8.2 C2. Elements of the observed information matrix

The elements of the observed information matrix at the maximum likelihood solution
are the following:

− ∂2�

∂ξ2
= 1

η2

{
n∑

i=1

1 − Y 2
i

(1 + Y 2
i )2

− δ

n∑
i=1

Yi
(1 + Y 2

i )3/2
A(Yi ) + δ2

n∑
i=1

1

1 + Y 2
i

B(Yi )

}
,

− ∂2�

∂ξ∂η
= 1

η2

{
n∑

i=1

Yi (1 − Y 2
i )

(1 + Y 2
i )2

−δ

n∑
i=1

Y 2
i

(1 + Y 2
i )3/2

A(Yi ) + δ2
n∑

i=1

Yi
1 + Y 2

i

B(Yi )

}
,

− ∂2�

∂ξ∂ε
= δ

η

n∑
i=1

1

(1 + Y 2
i )1/2

B(Yi ),

− ∂2�

∂ξ∂δ
= −1

η

n∑
i=1

1

(1 + Y 2
i )1/2

{A(Yi ) + δB(Yi ) sinh
−1(Yi )},

− ∂2�

∂η2
= 1

η2

{
n∑

i=1

2Y 2
i

(1 + Y 2
i )2

+ δ

n∑
i=1

Yi
(1 + Y 2

i )3/2
A(Yi ) + δ2

n∑
i=1

Y 2
i

1 + Y 2
i

B(Yi )

}
,

− ∂2�

∂η∂ε
= δ

η

n∑
i=1

Yi
(1 + Y 2

i )1/2
B(Yi ),

− ∂2�

∂η∂δ
= −1

η

n∑
i=1

Yi
(1 + Y 2

i )1/2
{A(Yi ) + δB(Yi ) sinh

−1(Yi )},
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−∂2�

∂ε2
=

n∑
i=1

B(Yi ), − ∂2�

∂ε∂δ
= −

n∑
i=1

B(Yi ) sinh
−1(Yi ),

−∂2�

∂δ2
= n

δ2
+

n∑
i=1

B(Yi ){sinh−1(Yi )}2,

where B(Yi ) = Sε,δ(Yi ) tanh(Sε,δ(Yi )) + 1
2C

2
ε,δ(Yi )sech(

1
2 Sε,δ(Yi )) − 1/C2

ε,δ(Yi ).
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