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Abstract This paper presents a general development of the basic logic of equivariance
for a parametric point prediction problem.We propose a framework that allows the set
of possible predictions as well as the losses to depend on the data and then explore the
nature and properties of relevant transformation groups for applying the functional and
formal equivariance principles. We define loss invariance and predictive equivariance
appropriately and discuss their ramifications. We describe a structure of equivariant
predictors in terms of maximal invariants and present a method for deriving minimum
risk equivariant predictors. We explore the connections between equivariance and
risk unbiasedness and show that uniquely best risk unbiased predictors are almost
equivariant. We apply our theoretical results to some illustrative examples.

Keywords Loss invariance · Maximal invariant · Minimum risk · Risk unbiased ·
Transformation group

1 Introduction

Consider a general prediction problem in a parametric setup: predict the unobserved
value of a random variable Y based on the observed value x of a random vector X ,
assuming that the joint density of X and Y is f (x, y|θ) (with respect to some sigma-
finite measure), where θ ∈ � is an unknown parameter, possibly vector-valued. A
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special case that has received much attention is where X and Y are independent given
θ . The books by Aitchison and Dunsmore (1975) and Geisser (1993) discuss frequen-
tist and Bayesian methods, and Bjornstad (1990) gives a broad review of predictive
likelihood approaches. Prediction is a common problem, which Pearson (1920) called
“the fundamental problem of practical statistics.” Also, some authors (e.g., Geisser
1993) have argued that in practice, predictions are more relevant than inferences about
parameters or indexes of statistical distributions, which dominate the statistical liter-
ature. From theoretical perspective, the prediction framework is significant due to its
generality. Estimation of a parametric function g(θ) is a special case, where Y = g(θ),
and hence, f (y|x, θ) is degenerate and independent of x . It also covers many non-
standard problems, where the quantity of inferential interest depends on x, θ and some
unobserved variables, as in prediction under mixed linear models, estimation under
superpopulation models, estimation after selection and loss estimation (see Yatracos
1992; Bjornstad 1996; Nayak 2000).

This paper is focused on equivariant prediction,which has been investigated byHora
andBuehler (1967), Takada (1981, 1982), Eaton andSudderth (2001, 2004) and others,
providing many interesting mathematical results. However, our primary goal is to
revisit the logic of equivariance in prediction context and develop it more broadly. The
equivariance argument rests on the principles of (i) functional equivariance,which says
that the action taken in a decision problem should not depend on units of measurement
or the coordinate system used to specify the problem and (ii) formal equivariance,
which says that if two problems have the same structure, one should use the same
decision rule. These principles have been developed extensively for a standard decision
problem, formally described by (X ,P,�,D, L), where X is a sample space, P is a
family of distributions with parameter θ and parameter space�,D is a decision space,
and L is a loss function on D ⊗ �. Some important references are as follows: Hall et
al. (1965), Hora and Buehler (1966), Berger (1985), Eaton (1989), Wijsman (1990)
and Lehmann and Casella (1998). To apply equivariance logic, one uses groups of
transformations to change the coordinate systemwhile preserving the formal structure
of the problem.

For applying the two equivariance principles to statistical prediction, first we need a
formal description of a prediction problem and thenwe need to explore transformation
groups that are suitable for “changing the coordinates” while preserving the formal
structure of the problem. For wide-ranging applicability, we try to keep the problem
description as well as the transformation groups as general as possible. One new aspect
of our approach is that the set of possible predictions and the loss function are allowed
to depend on x , the observed data. We develop our arguments in Sect. 2, leading
to a defining criterion for predictive equivariance; see (7) and (8). We motivate our
framework with examples and bring out some interesting structures and properties
of relevant transformation groups. One source for additional intricacies is that for
each transformation of X , there may correspond multiple transformations of Y . In
Sect. 3, we discuss some properties and risk optimality of equivariant predictors.
Section 4 gives some illustrative examples. In Sect. 5, we discuss certain connections
between equivariance and risk unbiasedness and prove that uniquely best risk unbiased
predictors are almost equivariant. Section 6 is devoted to some concluding remarks.
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For ease of readability, we leave out topological and measurability aspects, which are
also not crucial in our discussion.

2 Equivariance in statistical prediction

2.1 Formalization of prediction problems

Hora and Buehler (1967) describe a prediction problem by (X ,Y,P,�,D, L), where
X andY are sample spaces of X and Y ,P is a distribution family for Z = (X,Y )with
θ as the parameter, � is the parameter space, D is a decision space, and L is a loss
function defined onD⊗Y ⊗ �. Eaton and Sudderth (2001) use a similar framework,
but allow the loss function to depend on x . Both papers assumeD = Y , implying that
the decision set does not depend on x . They also assume that a group G acts on each
of X ,Y and �, and thus, the transformations of Y do not involve X . These conditions
may be overly restrictive, as the following examples show.

Example 1 Let X1 ≤ · · · ≤ Xn be the order statistics of a random sample of
size n from an unknown distribution. Consider predicting Y = Xm based on
X = (X1, . . . , Xk), where 1 ≤ k < m ≤ n (cf., Takada 1981). Here, Y ≥ Xk

and hence a natural decision space, when x is observed, is Dx = {d : d ≥ xk}, which
is data dependent.

Next, let W be a future observation from the same distribution and consider pre-
dicting Y = I (W > Xr ) based on X1, . . . Xn , where 1 ≤ r ≤ n. Here, Y is binary, but
[0, 1] is a reasonable decision space, which is different from Y . Eaton and Sudderth
(2001) discuss estimation of ψ(x, θ) = Eθ [Y |x], under an exponential model.

Example 2 Suppose X1, . . . , Xn+1 are iid Np(μ,�). Partition Xn+1 into X (1)
n+1 and

X (2)
n+1, with dimensions m and q, respectively, where m + q = p, and let �i j , i, j =

1, 2, denote the corresponding partition of �. Consider predicting Y = X (2)
n+1 based

on X = (X1, . . . , Xn, X
(1)
n+1) under L(d, y, θ) = ||�−1

22 (d − y)||2. For this problem,
Takada (1982) gives the best equivariant predictor under the transformations: Xi →
CXi+b, i = 1, . . . , n, X (1)

n+1 → C11X
(1)
n+1+b1,Y → C22Y+C21X

(1)
n+1+b2,whereC

is a lower triangular positive definite matrix, with partition matrices {Ci j } and b ∈ Rp,
with partition vectors b1 and b2; these partitions conform with the partition of Xn+1.
The main point here is that the transformations of Y involve both Y and X .

Recognizing that possible decisions may depend on x , we define a prediction prob-
lem as (X ,Z,P,�, {Dx }, L), where Z is a sample space of Z = (X,Y ), X ,Y,P
and� are as in Hora and Buehler (1967) (described above),Dx is a decision space for
observed x , and L = L(d, y, x, θ) is a loss function defined for all (x, y) ∈ Z, θ ∈ �,
and d ∈ Dx . We do not require Dx = Yx , where Yx = {y : (x, y) ∈ Z} is the sample
space of Y when X = x .

Assumption 1 The marginal model for X , i.e.,PX = { f (x |θ), θ ∈ �} is identifiable.
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Remark 1 Assumption 1 concerns estimability of θ based on X and implies that “true
θ ,” “true marginal distribution of X” and the “true joint distribution of (X,Y )” are
equivalent, in the sense that any one implies the others. Also, the case of interest is
where the true predictive distribution f (y|x, θ) depends on θ and thus unknown.

2.2 Transformations of sample spaces

To apply equivariance logic, we need to bring in transformations of Z , θ and d that
preserve themathematical problem.One of our goals is to bring out essential structures
andproperties of applicable transformation groups,without prejudice. In that direction,
we begin with a group G of transformations of Z . First, to preserve the problem
structure G must preserve P .

Definition 1 A group G of 1-1 transformations of Z onto Z is said to preserve P if
for each g ∈ G and θ ∈ �, there exists θ ′ ∈ � such that

Z ∼ f (z|θ) ⇒ Z∗ = g(Z) ∼ f (z∗|θ ′). (1)

If (1) holds, then for each g ∈ G, we can define ḡ : � �→ � by θ ′ = ḡ(θ). Next,
we observe that for formal equivariance, it is not enough for g : Z �→ Z to be 1-1,
onto and P preserving. This is because like Z , Z∗ = g(Z) must have an observable
part X∗ and an unobservable component Y∗. Obviously, X∗ must not depend on Y ,
while Y∗ may depend on both X and Y . Thus, we impose the following:

Assumption 2 Each g ∈ G consists of two functions hg : X �→ X and kg : Z �→ Y
such that g(x, y) = (hg(x), kg(x, y)) for all (x, y) ∈ Z .

For notational simplicity,we shall often omit the subscript g of h and k. For anyfixed
x , let kg|x (y) = kg(x, y), viewed as a function only of y. Clearly, kg|x : Yx �→ Yhg(x).
While in most papers, kg is a function only of Y , Takada (1982) allows it to depend
on X , but assumes that (i) the sample space of Y is independent of x , (ii) D = Y
and (iii) {kg|x } is a group. We do not make these assumptions. Next, we ascertain
certain properties of hg, kg and G. The following conclusions can be easily verified
as consequences of just g being 1-1 and onto.

Lemma 1 Let g(x, y) = (hg(x), kg(x, y)) : Z �→ Z be 1-1 and onto. Then, (i)
hg : X �→ X is onto, (ii) kg(x, y) : Z �→ Y is onto and (iii) for any fixed x,
kg|x (y) : Yx �→ Yhg(x) is 1-1.

Example 3 This example shows that a single 1-1 and onto function g = (h, k) does
not imply that h and k are 1-1. Let X = Y = {0, 1, 2, . . . }, Z = X × Y and

g(x, y) =
{( x−1

2 , 2y
)

if x is odd,( x
2 , 2y + 1

)
if x is even.

Here, g : Z �→ Z is 1-1 and onto and has the form g(x, y) = (h(x), k(x, y)), but
h : X �→ X and k(x, y) : Z �→ Y are not 1-1, and for any fixed x , k(x, y) : Y �→ Y
is not onto, as a function of y.
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As we show next, more can be said about h and k when g is a member of a
group G satisfying Assumption 2, where the inverse of g also has the structure
g−1(x, y) = (hg−1(x), kg−1(x, y)). This is not true for the g in Example 3. We shall
denote composition of transformations by ◦. Note that for any g1 = (h1, k1) and
g2 = (h2, k2) in G,

g1 ◦ g2(x, y) = (h1 ◦ h2(x), k1(h2(x), k2(x, y))). (2)

Lemma 2 Let G be a group of 1-1 transformations ofZ onto itself, satisfyingAssump-
tion 2. Then, for each g = (hg, kg) ∈ G, (i) hg is 1-1 and (ii) for each x, kg|x (y) is
onto Yhg(x).

Proof For any g = (hg, kg) ∈ G, using its inverse g−1 = (hg−1, kg−1) in (2), we get

(x, y) = g−1 ◦ g(x, y) = (hg−1 ◦ hg(x), kg−1(hg(x), kg(x, y))), (3)

for all (x, y) ∈ Z . Thus, hg−1 is the inverse of hg , and hence, hg must be 1-1.
As (x, y) = g−1 ◦ g(x, y) = g ◦ g−1(x, y), it follows from (3) that kg|x : Yx �→

Yhg(x) and kg−1|hg(x) : Yhg(x) �→ Yx are inverse of each other and hence those must
be onto. 
�

Let H = {h : (h, k) ∈ G for some k}, and for each h ∈ H , let Gh = {g ∈ G :
g = (h, k) for some k} and Kh = {k : (h, k) ∈ G}. In most applications, Gh (and
correspondingly Kh) is a singleton, but that need not be true in general, as we see next.

Example 4 Let X1, . . . , Xn, Xn+1 be i.i.d. N (0, σ 2), σ > 0. Consider predicting
Y = ∑n+1

i=1 Xi based on X = (X1, . . . , Xn). Here, (X,Y ) ∼ Nn+1(0, σ 2D) with
D = ((di j )), where di,i = di,n+1 = dn+1,i = 1, i = 1, . . . , n, dn+1,n+1 = n + 1 and
di, j = 0 in all other cases. This model is invariant under G = {gc, c > 0}, where
gc(x, y) = (cx, cy).

However, a larger transformation group also preserves the model. For each c > 0,
let hc(x) = cx, k1c(x, y) = cy and k2c(x, y) = c(2

∑n
i=1 xi − y). Let gic(x, y) =

(hc(x), kic(x, y)), Gi = {gic, c > 0}, i = 1, 2 and G∗ = G1 ∪ G2 (note that
G1 = G). It is easy to verify that G∗ is a group (under composition) and it preserves
the distribution family of (X,Y ). Note that here for any c > 0, Ghc = {g1c, g2c} has
two elements.

Proposition 1 If G is a group, then H and Ge = {g ∈ G : g = (e, k) for some k}
are also groups, where e is the identity transformation of X .

This result is easy to verify, and hence, we omit its proof. For h �= e,Gh is not
closed under composition and so it is not a group. However, we note that if g = (e, k)
and g1 = (h, k1), then g1 ◦ g = (h, k1(e, k)) ∈ Gh , and for any g1 = (h, k1)
∈ Gh and g2 = (h−1, k2) ∈ Gh−1 , g2 ◦ g1 = (e, k2(h, k1)) ∈ Ge. Also, if g =
(h, k) ∈ Gh and g1 = (h, k1) ∈ Gh , then g0 = g−1 ◦ g1 ∈ Ge and g ◦ g0 = g1. Thus,
Gh can be generated from Ge and any member of Gh . In summary, we have:
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Proposition 2 If g = (h, k) ∈ G, then gGe = Geg = Gh, and g∗Gh = Ghg∗ = Ge

for any g∗ ∈ Gh−1 .

Recall that ḡ is defined via (X,Y ) ∼ f (x, y|θ) ⇒ g(X,Y ) = (h(X), k(X,Y )) =
(X∗,Y∗) ∼ f (x∗, y∗|ḡ(θ)). Also, by Assumption 1, the marginal distributions of X
and X∗ determine the joint distributions of (X,Y ) and (X∗,Y∗), respectively (see
Remark 1). Then, since h determines the distribution of X∗, from X ∼ f (x |θ), we
get the following:

Proposition 3 If G preserves P, then for any g = (h, k) ∈ G, the induced transfor-
mation ḡ of � is determined solely by h.

In view of this result, the transformation of � induced by g = (h, k) shall often be
denoted by h̄ instead of ḡ. In fact, h̄ can be defined using X ∼ f (x |θ) ⇒ h(X) =
X∗ ∼ f (x∗|h̄(θ)). It is easy to see h̄ : � �→ � is 1-1 and onto and H̄ = {h̄ : h ∈ H}
is a group.

2.3 Invariant loss functions

IfG preservesP , then each g ∈ G gives a new coordinate system for X and Y and also
for θ , via h̄. Next, to apply equivariance logic, for each g ∈ G, we need a matching
transformation of possible decisions that preserves the loss function L(d, y, x, θ).
This means that for each g = (h, k) ∈ G, x ∈ X and d ∈ Dx , there exists d∗ ∈ Dh(x)

such that

L(d, y, x, θ) = L(d∗, k(x, y), h(x), h̄(θ)) for all y ∈ Yx , θ ∈ �. (4)

Assumption 3 For each x ∈ X , Dx is identifiable with respect to the loss function,
i.e., if d1, d2 ∈ Dx and L(d1, y, x, θ) = L(d2, y, x, θ) for all y ∈ Yx and θ ∈ �, then
d1 = d2.

This assumption prevents redundancy in Dx and ensures that d∗ in (4) is unique,
when it exists, in which case we can define a function: ϕg|x (d) : Dx �→ Dh(x) via
ϕg|x (d) = d∗.

Definition 2 A loss function L(d, y, x, θ) is said to be invariant under G if for each
g = (h, k) ∈ G and x ∈ X , there exists ϕg|x : Dx �→ Dh(x) such that

L(d, y, x, θ)=L(ϕg|x (d), k(x, y), h(x), h̄(θ)) for all d∈Dx , y ∈ Yx , θ ∈�. (5)

The transformations of decisions, induced by G and loss invariance, have a group
structure, if we consider the augmented space D∗ = {(x, d) : x ∈ X , d ∈ Dx }. For
any g ∈ G, let g̃ : D∗ �→ D∗ be defined by g̃(x, d) = (h(x), ϕg|x (d)). Also, let
G̃ = {g̃ : g ∈ G}.
Lemma 3 Suppose the loss function is invariant under G and Assumption 3 holds.

Then, (i) for any g1 and g2 in G, g̃1 ◦ g̃2 = g̃1 ◦ g2 and (ii) (g̃)−1 =˜g−1 for all g ∈ G.
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Proof Take any g1 = (h1, k1) and g2 = (h2, k2). Then, using (2) and (5), we get

L(ϕg1◦g2|x (d), k1(h2(x), k2(x, y)), h1 ◦ h2(x), h1 ◦ h2(θ))

= L(d, y, x, θ)

= L(ϕg2|x (d), k2(x, y), h2(x), h2(θ))

= L(ϕg1|h2(x)(ϕg2|x (d)), k1(h2(x), k2(x, y)), h1 ◦ h2(x), h1 ◦ h2(θ)),

and hence,

ϕg1◦g2|x (d) = ϕg1|h2(x)(ϕg2|x (d)) for all (x, d) ∈ D, (6)

by Assumption 3. The lemma now follows easily from the definition of g̃. 
�
Theorem 1 If L is invariant under G, then G̃ = {g̃ : g ∈ G} is a group of 1-1
transformations of D∗ onto D∗.

This theorem follows easily from Lemma 3. Takada (1982) assumed that ϕg|x =
kg|x and hence g̃ = g, which actually holds in the following special case.

Lemma 4 Suppose Dx = Yx for all x ∈ X , L is invariant and L(d, y, x, θ) = 0 if
and only if d = y. Then, for all g ∈ G and x ∈ X , ϕg|x = kg|x and hence g̃ = g.

Proof Under the assumptions of the lemma, for any g = (h, k) ∈ G, we get

0 = L(d, d, x, θ) = L(ϕg|x (d), kg|x (d), h(x), h̄(θ))

for all θ ∈ �, x ∈ X and d ∈ Yx . This implies ϕg|x = kg|x , from the condition for
L = 0. 
�

2.4 Equivariance criterion

Definition 3 Aprediction problem (X ,Z,P,�, {Dx }, L) is said to be invariant under
a transformation group G, satisfying Assumption 2, if Definitions 1 and 2 hold.

Suppose a prediction problem is invariant and the original problem is transformed
using some g = (h, k) ∈ G and corresponding h̄ and {ϕg|x }. The logic of functional
equivariance says that ifwe choose decisiond after observing x in the original problem,
then in the transformed problem we should choose the decision ϕg|x (d) when h(x) is
observed. On the other hand, the formal equivariance principle tells us to use the same
decision rule δ in the two problems as they have the same formal structure. These
arguments lead to the following:

Definition 4 Suppose a prediction problem is invariant under G. Then, a predictor
δ(X) is said to be equivariant under G if for all g = (h, k) ∈ G,

δ(h(x)) = ϕg|x (δ(x)) for all x ∈ X . (7)
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We should note a subtle feature of the condition in (7). Specifically, the left side
of (7) depends on g only through h and thus the right side must also be so, i.e., for
each x ∈ X and h ∈ H , ϕg|x (δ(x)) must be the same for all g ∈ Gh . Recalling the
definition of g̃, the condition for δ to be equivariant can also be stated as:

g̃(x, δ(x)) = (h(x), δ(h(x)) for all g = (h, k) ∈ G and x ∈ X . (8)

Lemma 5 (i) A necessary condition for δ(X) to be an equivariant predictor is that

δ(x) = ϕg|x (δ(x)) for all g ∈ Ge and x ∈ X . (9)

(ii) If δ(X) satisfies (9), then for all x ∈ X and h ∈ H, ϕg|x (δ(x)) is the same for all
g ∈ Gh .

Proof Part (i) follows directly from (7). To prove part (ii), let g1, g2 ∈ Gh for some
h and g1 �= g2. By Proposition 2, g1 = g2 ◦ g0 for some g0 ∈ Ge. Now, (9) and
Lemma 3 yield

g̃1(x, δ(x)) = g̃2 ◦ g̃0(x, δ(x)) = g̃2(x, δ(x)),

which shows that ϕgi |x (δ(x)), i = 1, 2, are the same. 
�

3 Risk comparison and optimality

For a predictor δ, let R(δ, θ) = Eθ [L(δ(X),Y, X, θ)] denote its risk function, where
the expectation is with respect to both X and Y . The transformation groups H and H̄
define partitions of X and �. For any θ0 ∈ �, the θ0-orbit, to be denoted Orb(θ0), is
defined as Orb(θ0) = {h̄(θ0) : h̄ ∈ H̄}.Two points θ1, θ2 ∈ � are said to be equivalent
if they belong to the same orbit, i.e., θ2 = h̄(θ1) for some h̄ ∈ H̄ . Similarly, for any
x0 ∈ X , the x0-orbit is defined as Orb(x0) = {h(x0) : h ∈ H}. The orbits define
partitions of � and X . The risk function of any equivariant decision rule is known to
be constant on each orbit of � (see Berger 1985, p. 396). Similarly, one can verify the
following.

Theorem 2 If δ is equivariant, then R(δ, θ) = R(δ, h̄(θ)) for all h̄ ∈ H̄ , θ ∈ �. If
� is transitive, i.e., � has a single orbit under H̄ , then any equivariant predictor has
a constant risk.

A structure of equivariant predictors can be revealed via maximal invariants. A
statistic T (X) is invariant with respect to H if T (h(x)) = T (x) for all x ∈ X and
h ∈ H and T (X) is a maximal invariant if it is invariant and T (x1) = T (x2) implies
x1 = h(x2) for some h ∈ H. A maximal invariant is not unique but all maximal
invariants induce the same partition ofX as the one induced by H . Also, any invariant
statistic is a function of a maximal invariant, and its distribution depends on θ only
through a maximal invariant on � (see Berger 1985, Sec. 6.5).
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Lemma 6 If δ is equivariant, then on each orbit A of X , δ(x) is fully determined by
its value at any one point in A.

Proof Consider any orbit A and any fixed point x0 in it. Then, for any other point x
in A, x = h(x0) for some h ∈ H . Now, using any g ∈ Gh and equivariance of δ, we
obtain δ(x) = δ(h(x0)) = ϕg|x0(δ(x0)), which shows that δ(x) can be obtained from
δ(x0). 
�

For each orbit A of X , fix a (any) point x(A) ∈ A. Assume that H acts freely on
X , i.e., for any x1, x2 ∈ X , there is at most one h ∈ H such that x1 = h(x2). Then,
all equivariant predictors can be constructed as follows: (i) For each fixed point x(A),
take a decision dx(A) in De

x(A) = {d ∈ Dx(A) : d = ϕg|x(A)(d) for all g ∈ Ge} and
assign it to x(A), i.e., define δ(x(A)) = dx(A). (ii) For any other x ∈ X , first find the
orbit A that contains x , then find the unique h ∈ H such that x = h(x(A)) and finally
take any g ∈ Gh and define δ(x) = ϕg|x(A)(dx(A)).

As in the proof of Lemma 5(ii), it can be seen that δ as constructed above is well
defined, i.e., it does not depend on the choice of g in Gh . Note that if De

x(A) is empty
for some A, then an equivariant predictor does not exist, by Lemma 5(i). This is a
new feature of predictive equivariance. In contrast, equivariant rules always exist in a
standard decision problem.

To verify that δ as defined above is equivariant, take any x ∈ X and any
g = (h, k) ∈ G. Let x0 be the fixed point of the orbit that contains x . Then,
there exists g1 = (h1, k1) ∈ G such that h1(x0) = x and by construction,
(x, δ(x)) = g̃1(x0, δ(x0)). Let g2 = g ◦ g1 = (h2, k2) and note that h2(x0) = h(x)
and hence g̃2(x0, δ(x0)) = (h(x), δ(h(x)), by construction. Thus, g̃(x, δ(x)) =
g̃ ◦ g̃1(x0, δ(x0)) = (h(x), δ(h(x)) and hence δ satisfies (8).

The preceding characterization of equivariant predictors is useful for obtaining a
minimum risk equivariant predictor when H acts freely onX and� is transitive under
H̄ . By Theorem 2, the risk function of any equivariant predictor is independent of θ ,
so it can be calculated under any fixed θ0 ∈ �. Now, if T = T (X) is a maximal
invariant statistics, then

R(δ, θ) = EZ
θ0
L(δ(X),Y, X, θ) = ET

θ0
EZ |T=t

θ0
[L(δ(X),Y, X, θ)|T (X) = t]. (10)

Note that T (X) = t defines a maximal invariant partition set, say At , and the condi-
tional expectation depends on δ only through δ(x) for x ∈ At , which in turn depends
only on δ(x(At )). So, finding a best equivariant predictor reduces to minimizing the
conditional expectation in (10), for each t , with respect to δ(x(At )), taking a value in
De

x(At )
.

4 Examples

Example 1 (continued). As before, let X1 ≤ · · · ≤ Xn be the order statistics of a
random sample of size n. Now, assume that the population distribution is Exp(α, σ )

with pdf
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fα,σ (x) = 1

σ
e− x−α

σ , x > α, α ∈ R, σ > 0.

(a) Consider predicting Y = Xm based on X = (X1, . . . , Xk), where 1 ≤ k <

m ≤ n. Here, the model is invariant under location-scale transformations

ga,b(x1, . . . , xk, y) = (ax1 + b, . . . , axk + b, ay + b)

= (ax + b�1, ay + b), a > 0, b ∈ R.

Suppose the loss function is L(d, y, σ ) = (
d−y
σ

)2. Then, the problem is invariant with
ḡa,b(μ, σ ) = (aα + b, aσ) and ϕga,b|x (d) = ad + b. By (7), δ(x) is an equivariant
predictor if

δ(ax + b�1) = aδ(x) + b for all x, a > 0, b ∈ R. (11)

Let Vi = (n − i + 1)(Xi − Xi−1), i = 2, . . . , n, and S = ∑m
i=k+1

1
n−i+1Vi .

Note that (X1, Q = ∑k
i=2 Vi ) is complete sufficient and Y = Xk + S. It follows that

T (X) = ( X3−X1
X2−X1

, . . . ,
Xk−X1
X2−X1

) is a maximal invariant and δ(x) satisfies (11) if and
only if

δ(x) = xk + w(t)Q(x) for all x (12)

and some function w (see Lehmann and Casella 1998, Sec. 3.3). As Q and T are
independent, by Basu’s theorem, and the parameter space is transitive, for any δ of the
form (12), we get

R(δ, α, σ ) = E0,1[L(δ(X),Y, 0, 1)|T = t]
= w2(t)E0,1Q

2 − 2w(t)E0,1[QS] + E0,1[S2]. (13)

Minimizing (13) w.r.t. w(t) for each t , we obtain the best equivariant predictor of Y
as

δ0(X) = Xk + Q

k

m∑
i=k+1

1

n − i + 1
.

We may remark that the preceding approach may be used to obtain a best equivariant
predictor when more generally the loss is a function of d−μ

σ
and y−μ

σ
.

(b) Consider predicting Y = I (W > Xr ) based on X = (X1, . . . , Xk), where W
is a future observation from the same Exp(α, σ ) distribution and r ≤ k ≤ n. Note that

Pα,σ [Y = 1|x] = e− 1
σ

(xr−α) and the distribution family for (X,Y ) is invariant under
the transformations

ga,b(x1, . . . , xk, y) = (ax1 + b, . . . , axk + b, y), a > 0, b ∈ R.
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Suppose Dx = [0, 1] for all x . Then, for any loss function that depends only on d
and y, the problem is invariant with ḡa,b(α, σ ) = (aα + b, aσ) and ϕga,b|x (d) = d.
So, a predictor δ is equivariant if δ(ax + b�1) = δ(x) for all x, a > 0, b ∈ R, i.e., δ is
invariant and hencemust be a function of T (as defined before and amaximal invariant).
By Theorem 2, the risk function of any δ(T ) is a constant and under α = 0, σ = 1,
the conditional risk of δ(T ) given T = t is

EY |t [L(δ(T ),Y )] = EX |t {EY |X,t [L(δ(T ),Y )]}
= EX |t [L(δ(t), 1)e−Xr + L(δ(t), 0)(1 − e−Xr )]
= L(δ(t), 1)η(t) + L(δ(t), 0)(1 − η(t)), (14)

where η(t) = E(0,1)[e−Xr |t]. Now, a best equivariant predictor can be obtained by
minimizing (14) w.r.t. δ(t) for each t . For L(d, y) = (d − y)2, the best equivariant
predictor of Y is η(T ). For L(d, y) = |d− y|, (14) reduces to (1−δ(t))η(t)+δ(t)[1−
η(t)] and minimizing this w.r.t. δ(t) we obtain the best predictor as δ1(T ) = 0 if
η(T ) ≤ 1/2 and δ1(T ) = 1 if η(T ) > 1/2.

Now, suppose Dx = {0, 1} for all x , which is the sample space of Y , and suppose
L(0, 0) = L(1, 1) = 0, L(0, 1) = c1 and L(1, 0) = c2. Here, the predictor that
minimizes (14) is given by δ2(T ) = 0 if η(T ) ≤ c1/(c1 + c2) and δ2(T ) = 1
if η(T ) > c1/(c1 + c2). Note that δ2(t) coincides with δ1(t) when c1 = c2. The
arguments used in this example are also applicable for predicting Y∗ = I [W > ψ(X)]
for any ψ satisfying ψ(ax + b�1) = aψ(x) + b for all x, a > 0, b ∈ R.

Example 5 Here, we consider a more general version of Example 4. Suppose X =
(X1, . . . , Xn) and Y have the following location-scale family of distributions:

X1, . . . , Xn |μ, σ ∼ 1

σ n
f

(
x1 − μ

σ
, . . . ,

xn − μ

σ

)
, x1, . . . , xn, μ ∈ R, σ > 0,

Y |X = x, σ ∼ 1

σ
q

(
y − ψ(x)

σ

)
, y ∈ R,

where f, q and ψ are known functions.
Case 1. Suppose ψ is location-scale equivariant, i.e., ψ(ax +b�1) = aψ(x)+b for

all x, a > 0 and b ∈ R. Then, the problem of predicting Y based on X under any loss
function of the form L(

d−μ
σ

,
y−μ
σ

, 1
σ
(x −μ�1)) is invariant under the transformations:

ga,b(x, y) = (ax + b�1, ay + b), h̄a,b(μ, σ ) = (aμ + b, aσ), ϕa,b(d) = ad + b, a >

0, b ∈ R. Here, a predictor δ(X) is equivariant if it satisfies (11) and hence has the
representation δ(x) = α(x) + w(T (x))Q(x) for all x, where α is any function that
satisfies (11), Q is location invariant and scale equivariant, and T is amaximal invariant
(see Lehmann and Casella 1998, Sec. 3.3). Thus, one may use the approach outlined
in Sect. 3 for finding a best equivariant predictor, for given f and L .

Now, suppose q(.) is also symmetric around 0. Then, as in Example 4, the dis-
tribution family of (X,Y ) is invariant under a larger group G∗, which contains two
transformations of Y , viz., Y → aY + b and Y → a[2ψ(X) − Y ] + b, corresponding
to each ha,b. Then, invoking Lemma 4, it can be seen that a loss function is invariant
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if and only if it is a function only of | d−y
σ

| and 1
σ
(x − μ�1). In such cases, a predictor

δ is equivariant under G∗ if it satisfies both (11) and

δ(ax + b�1) = a[2ψ(x) − δ(x)] + b for all x, a > 0, b ∈ R. (15)

Comparing the right sides of (11) and (15), we see that δ(X) = ψ(X) is the only (and
hence best) equivariant predictor of Y .

Case 2. Suppose ψ is location invariant and scale equivariant, i.e., ψ(ax + b�1) =
aψ(x) for all x, a > 0 and b ∈ R. Then, the model for (X,Y ) is invariant under the
transformations X → ha,b(X),Y → aY, a > 0, b ∈ R, with h̄a,b being the same as
in Case 1. Applying Lemma 5, along with its assumptions, we get ϕa,b(d) = ad. This
has two important implications. First, δ(X) is equivariant if

δ(ax + b�1) = aδ(x) for all x, a > 0, b ∈ R. (16)

Any such δ is location invariant and must be of the form δ(x) = δ0(x)w(T (x)), where
T is a maximal invariant, and δ0 is any given predictor satisfying (16) (see Lehmann
and Casella 1998, Sec. 3.3). Actually, one may take ψ(X) for δ0. Second, L satisfies
(5) if and only if

L(d, y, x, μ, σ ) = L

(
d

σ
,
y

σ
,
1

σ
(x − μ�1), 0, 1

)
for all x, y, d, μ and σ.

If q(.) is also symmetric around 0 and L is a function of | d−y
σ

| and 1
σ
(x − μ�1),

the problem is invariant under a larger group, which for each ha,b(X) contains two
transformations of Y , viz., Y → aY and Y → a[2ψ(X) − Y ]. Corresponding trans-
formations of d are d → ad and d → a[2ψ(X) − d]. Here, δ(X) is equivariant if
and only if aδ(x) = δ(ax + b�1) = a[2ψ(x)− δ(x)] for all a > 0, b ∈ R and x . Form
this, it follows that ψ(X) is the only (and hence best) equivariant predictor of Y .

5 Equivariance and risk unbiasedness

In decision theory, Lehmann (1951) introduced risk unbiasedness as a general concept
that includes mean andmedian unbiasedness as special cases and proved that if among
all risk unbiased decision rules there exists a unique rule with minimum risk, then it is
almost equivariant, and under certain conditions, best equivariant estimators are risk
unbiased. Xiao (2000), Deshpande and Fareed (1995) and Nayak and Qin (2010) have
generalized the concept for predictors. For a given loss function L , let

L1(d, x, θ) = E[L(d,Y, x, θ)|x, θ ],

and assume that for each x,mind L1(d, x, θ) is independent of θ . Then, from Nayak
and Qin (2010), we obtain:
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Definition 5 A predictor δ(X) is said to be risk unbiased if for each θ ∈ �,

Eθ [L1(δ(X), X, θ)] ≤ Eθ [L1(δ(X), X, θ ′)] for all θ ′ �= θ.

For squared error loss, risk unbiasedness reduces to mean unbiasedness if
Eθ (Y |X)] = h(X) + η(θ) for some h and η. This holds for location-scale mod-
els, for which Takada (1981) showed that best unbiased predictors are equivariant.
Our main results are as follows.

Theorem 3 Consider a prediction problem that is invariant under a group G and for
any given predictor δ and g = (h, k) ∈ G, let δg(x) = ϕg−1|h(x)(δ(h(x))) for all
x ∈ X . Then,

(i) R(δg(X), θ) = R(δ(X), h̄(θ)) for all θ ∈ �.

(ii) If δ(X) is risk unbiased, then so is δg(X).

Proof First, note that definition of δg , invariance of L and (6) yield

L(δg(x), y, x, θ) = L(δ(h(x)), k(x, y), h(x), h̄(θ)). (17)

Now, part (i) can be established by noting that invariance of the model gives

Eθ L(δ(h(X)), k(X,Y ), h(X), h̄(θ)) = Eh̄(θ)L(δ(X),Y, X, h̄(θ)).

To prove part (ii), let (U, V ) = (h(X), k(X,Y )) and note that since h is 1-1, the
distribution of U depends only on the distribution of X and the conditional of V
given U is determined by the conditional distribution of Y given X . So, invariance
of the model imply that if X ∼ fθ (x) and Y |x ∼ fθ ′(y|x), then U ∼ fh̄(θ)(u) and
V |u ∼ fh̄(θ ′)(v|u). Now, for any θ, θ ′ ∈ �,

R(δg, θ) =
∫ ∫

L(δ(x), y, x, h̄(θ)) f (x |h̄(θ)) f (y|x, h̄(θ)) dy dx by part (i)

≤
∫ ∫

L(δ(x), y, x, h̄(θ)) f (x |h̄(θ)) f (y|x, h̄(θ ′)) dy dx as δ is risk unbiasedness

=
∫ ∫

L(δ(h(x)), k(x, y), h(x), h̄(θ)) f (x |θ) f (y|x, θ ′) dy dx by model invariance

=
∫ ∫

L(δg(x), y, x, θ) f (x |θ) f (y|x, θ ′) dy dx, by Eq. (17)

which proves the result. 
�
Theorem 4 If among all risk unbiased predictors a unique (w.p.1) uniformly min-
imum risk predictor exists, then it must be almost equivariant, i.e., equivariant w.p.
1.

Proof Suppose δ is uniquely best among all risk unbiased predictors. Then, for all
g ∈ G, δg(X) and δg−1(X) are also risk unbiased, by Theorem 3, and

R(δ, θ) ≤ R(δg, θ) = R(δ, h̄(θ)) ≤ R(δg−1 , h̄(θ)) = R(δ, θ),
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where the two inequalities follow as δ is best risk unbiased and the two equalities hold
by Theorem 3, part (i). In the above, all quantities must be equal, which implies that
for all g ∈ G, δg and δg−1 are also best risk unbiased predictors. Now, by uniqueness,
for each θ ∈ � and g ∈ G, δ(X) = δg−1(X) w.p. 1 and hence δ(h(x)) = ϕg|x (δ(x))
for almost all x . 
�

6 Discussion

In this paper, we formalized the basic ideas of equivariance for prediction problems
more generally than previous approaches. We allowed the prediction space and losses
to depend on the data and imposed only some logically necessary restrictions on the
transformations for changing the “coordinates” of the problem. The resulting trans-
formation groups have novel features and properties. In particular, Ge may not be a
singleton, which can also be useful for selecting a best predictor, as seen in Example 5.
We showed that some well-known results in equivariant decision theory continue to
hold for prediction. For example, maximal invariants depict a structure of equivariant
predictors that is useful for finding a best predictor, and a best risk unbiased predictor
is almost equivariant.

In this paper, we only considered point prediction. We believe that investigating
equivariance for obtaining a prediction interval or a predictive distribution (see Eaton
and Sudderth 2001, 2004; Lawless and Fredette 2005) is an interesting topic for future
research. Under suitable conditions, best equivariant decision rules are known to be
Bayes rules with respect to right invariant Haar measures. Hora and Buehler (1967),
Takada (1982) and Eaton and Sudderth (2001) gave similar results for prediction.
Generalizing those results in our framework is also a topic for future research. Finally,
applications of our results to specific problems should be explored.
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