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Abstract In this paper, we study integrated regression techniques to check the ade-
quacy of a given model in the context of selection-biased observations. We introduce
integrated regression in this setting, providing not only a suitable statistic for enabling
a model checking test, but also a bootstrap distributional approximation to carry out
the test. We also address the behaviour of the test under different alternatives show-
ing that this behaviour is asymptotically the same for both selection-biased and non
selection-biased data. The technique is illustrated with a simulation study and a data
analysis based on a real situation that shows the performance of the method and how
selection bias affect both estimation and inference.

Keywords Bootstrap · Goodness of fit · Integrated regression ·
Selection-biased data · Marked empirical process

1 Introduction

The way sample data are observed plays a major role in any subsequent statistical
derivation or study driven by the data. As is pointed out in Cox (1969), where a
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number of sampling problems arising in an industrial setting are discussed, the direct
observation of the phenomena of interest is not always possible. In such circumstances,
we have to face the problem of extracting information on the basis of the observable
phenomena about which we are able to register information.

Among the causes of the lack of direct information from the phenomena of interest
mentioned in Cox (1969) we find the absence of a framework where the sampling
procedure takes place, the inaccessibility of part of the population of interest, or the
complexity of the object to be sampled. In addition to these sampling problems, Cox
(1969) also presented a number of inherent drawbacks we have to face in such a
setting, one of these being the lack of correction and/or adjustment in most cases.
These concerns are also shared by a number of other authors, see for example Patil
and Rao (1978), Patil (1984), Quesenberry and Jewell (1986), Patil and Taillie (1989),
Rao (1997), Cristóbal and Alcalá (2001).

As mentioned in all these references, a large number of situations where selection
bias occurs can be addressed by means of weighted distributions because, in most
cases, when the random phenomena of interest is distributed according to a random
variableX, possibly inRd , with c.d.f. F , the c.d.f. Fw of the observed random variable
Xw is given by

dFw(x) = w(x)dF(x)
μw

, (1)

where w is a known non-negative weight function that characterizes the selection bias
and μw = E [w(X)] = ∫

w(u) dF(u) > 0. As a consequence, the influence of the
way we observe the data on usual estimators depends on both the function w and the
estimator being considered.

Against this background where data observation modifies the real frequency of
events, we propose a procedure that enables us to perform model checking for the
regression function in this context, allowing us to decide if a parametric model is
suitable or not. The basis of this procedure is not the bias correction inherent to usual
estimation procedures in this type of setup, but the compensation of the selection bias
that is present in the observed sample. As can be seen from (1), the reciprocal of
the function w(x) can compensate the distortion caused by the selection bias in the
original distribution F whenever P{w(X) > 0} = 1.

Model Checking for direct observations (i.i.d. samples from the r.v. X) has been
extensively studied from different perspectives in the literature. Hart (1997) offers an
overview of some of the available techniques to perform goodness of fit test from the
nonparametric point of view. Among the nonparametric techniques, it is worth men-
tioning the developments presented in Härdle and Mammen (1993), Stute (1997) Fan
et al. (2001) and Van Keilegom et al. (2008). The idea in Härdle and Mammen (1993)
is to use a minimum distance approach based on the comparison of the nonparametric
and the parametric fits jointly with the aid of bootstrap resampling techniques. On the
other hand, Fan et al. (2001) and Fan and Jiang (2007) introduced the “Generalized
likelihood ratio” to test in the parametric and semi-parametric settings, proving that the
so-calledWilks phenomena also holds for suitably chosen nonparametric alternatives.
Van Keilegom et al. (2008) adopted a distributional point of view to the goodness
of fit focusing on the error distribution. Their approach is based on the comparison
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of the properly scaled nonparametric and parametric error distributions by mean of
Cramer–von Mises and Kolmogorov–Smirnov type statistics. Yet a completely differ-
ent approach can be found in Stute (1997), wheremarked empirical process techniques
are introduced to perform goodness of fit tests, see also Zhu (2005).

While these works and the references therein show how rich the goodness of fit
literature is when data can be observed directly, this is not the case for selection-biased
observations. Most of the work devoted to selection-biased data is focused on the
unidimensional case and it is mostly based on the observed distribution, or on ad hoc
procedures, see for example Rao (1997), Navarro et al. (2001) or Patil (2002) and the
references therein. It was not until recently that the problem has been addressed from
a broader perspective in Ojeda et al. (2008) or Ojeda and Keilegom (2009) in an effort
to extend existing methods to this framework. While these approaches have proven to
work in the framework of selection-biased data, they still rely on proper bandwidth
selection procedures which can be avoided if the Marked Empirical Process works in
the selection-biased setting.

In line with the aforementioned studies, and following ideas proposed in Cristóbal
and Alcalá (2000) and Cristóbal et al. (2004), the main motivation for this work is to
extend and investigate the performance of the integrated regression function introduced
in Stute (1997) to carry out goodness of fit tests in a framework where data from the
real phenomena of interest are not present. In particular, we will study the cumulated
residuals process and the influence the interaction between the approximation error
and the selection bias has in it. In order to achieve thiswe introduce themain definitions
and estimators in the first section, leaving the development of the test and its bootstrap
implementation for the second section. The third and fourth sections are devoted to a
brief simulation study and data analysis example based on real data that allow us to
show the performance of themethod jointly with the effect and consequences selection
bias may have from the point of view of estimation and inference.

2 Linear models for selection-biased data

2.1 Model, data and assumptions

Throughout the rest of the paper we will assume that the phenomena of interest
(X,Y ) ∈ Rd × R is a continuous random vector distributed according to F , with
joint density function f, so dF(x, y) = f (x, y) dx dy, and continuous regression
function m(x) = E [Y |X = x]. In order to ease the presentation, to fit m we will
consider the model

M =
⎧
⎨

⎩
m(x;βββ) = g(x)Tβββ =

k∑

j=1

β j g j(x) : βββ ∈ Ω ⊂ Rk

⎫
⎬

⎭
,

where g(x)T = (g1(x), . . . , gk(x)), is a row vector of bounded continuous functions
and βββ is the vector of linear combination coefficients (β1, . . . , βk) ∈ Ω , a compact
subset in Rk .
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Provided that the functions g j are suitable for representing m (i.e. m ∈ M), we
have to determine the value βββ0 such that m(x) = m

(
x;βββ0

)
. From this perspective, the

problem that we will address is how to check that this class of functions is adequate
to represent m. More precisely, we will consider the following hypothesis test:

H0 : m ∈ M vs. H1 : m /∈ M

when the available sample (x1, y1), . . . , (xn, yn) does not come from the target pop-
ulation (X,Y ) but from its selection-biased version (Xw,Yw) whose density is given
by

dFw(x, y) = f w(x, y) dx dy = w(x, y) f (x, y)
μw

dx dy, (2)

where μw = E [w(X,Y )] = ∫
w(u, v) f (u, v) du dv > 0.

The fact that the observations in the sample are i.i.d. observations from (Xw,Yw),
the selection-biased version of the target population (X,Y ), has a number of different
consequences from which it is worth mentioning that

E
[
Yw|Xw = x

] = m(x)
(

1 + Cov [Y, w(X,Y )|X = x]
m(x)E [w(X,Y )|X = x]

)

,

which means that in this framework usual regression estimators are going to be biased
because Cov [Y, w(X,Y )|X = x] is not null for arbitrary w functions. Furthermore,
marginal densities for X and Y also change in the following way:

f w
X (x) = E [w(X,Y )|X = x]

μw

fX(x), f w
Y (y) = E [w(X,Y )|Y = y]

μw

fY (y)

being fX(x) and fY (y) the marginal densities of X and Y , respectively.
Through the rest of the paperwewill require following assumptions on the observed

population (Xw,Yw),w and M:

A1 P{w(X,Y ) > 0} = 1 and E
[
w(Xw,Yw)−2] < +∞.

A2 The Matrix L = E
[
g(X)g(X)T

]
is not singular.

B1 The function

vw(x) = E

[(
Yw − m(Xw)

w(Xw,Yw)

)2∣∣
∣
∣X

w = x

]

(3)

is integrable with respect to Fw.
Assumption A1 plays a crucial role to identify the whole distribution F when we

observe Fw, for if P{w(X,Y ) = 0} > 0 there will be part of the support of F whose
probability mass would be inaccessible, see Gill et al. (1988) for further details. As a
consequence of having completely identified F , any problem-related parametrization,
correlation or independence issues related to the population covariables, etc. have to
do with F and not with the observed distribution Fw. In particular, this means that if
a parametrization is identifiable for F , it will also be identifiable when we have data
from selection-biased distribution Fw and we use compensation to avoid the selection
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bias. At this point, it is important to notice that this is not the case in general, as
any parameter in F will appear for example involved with μw in Fw. This is a very
remarkable feature of compensation: it allows modeling of F when dealing with data
from Fw.

2.2 Estimation and asymptotics under H0

Following Cristóbal and Alcalá (2000) and Wu (2000), we use the reciprocal of wi =
w(xi , yi ) as a weight in the least squares minimization problem:

β̂ββn = argmin
βββ

n∑

i=1

1

wi

(
yi − g(xi )Tβββ

)2
, (4)

where we can think of wi as a “compensation” of the effect of selection bias in every
observation (xi , yi ). The solution for the estimation of the vector of coefficients is
then

β̂ββn = (GTBG)−1GTBY,

where Y is the column vector with observations, G is the n × k matrix with
entries g j(xi ) for i = 1, . . . , n, j = 1, . . . , k and B is a diagonal matrix given by
diag (w−1

1 , . . . , w−1
n ).

Thus, if εεε denotes the column vector (ε1, . . . , εn) with εi the regression errors
(yi − m(xi )), we have

Proposition 1 If assumptionsA1 andA2 are fulfilled and m ∈ M, then the estimator
β̂ββn admits the following almost sure expansion:

β̂ββn = βββ0 + μwL−1 1

n

n∑

i=1

g(xi )
εi

wi
+ Ok

(
log log n

n

)

. (5)

As a consequence β̂ββn = βββ0 + Ok
(√

log log n/n
)
almost surely.

Recall that previous result holds for basis of continuous functions like splines, etc.
Furthermore, it also holds when we have discrete covariables with suitable notational
changes.

The concept of Integrated Regression, i.e, I(x) = ∫ x
−∞ m(z) dFX(z), introduced in

Stute (1997), turns out to be the key for developing the test based on the residual accu-
mulation. As a consequence of (2) and its implications for the marginals of (Xw,Yw)

we have that

I(x) =
∫ x

−∞
m(z)

μw

E [w(X,Y )|X = z]
dFw

X (z), (6)

where we have used the integral symbol with limits −∞ and x = (x1, . . . , xd) to
denote an integral over the domain (−∞, x1] × · · · × (−∞, xd ]. I(x) uniquely deter-
mines m in such a way that, in this setting were the observations are biased, there is
no other way to compute I(x).
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Proposition 2 The function h(x) = μw(E [w(X,Y )|X = x])−1m(x) for x ∈ Rd is
the unique measurable function Fw-a.e. such that I(x) = ∫ x

−∞ h(z) dFw(z).

As in the unbiased case, its computation can be made simple with the use of the
compensation:

Iw
n (x) = 1

n
wH

n∑

i=1

1

wi
yi1{xi≤x},

where wH = (
n−1∑n

i=1 1/wi
)−1

and x ≤ z for vectors x and z with components
(x1, . . . , xd) and (z1, . . . , zd) is understood as x ∈ (−∞, z1] × · · · × (−∞, zd ].
Proposition 3 If assumption A1 is fulfilled

lim
n→∞ Iw

n (x) = I(x)

uniformly and almost surely.

Bearing in mind previous discussion about the Integrated Regression function, let
us now focus on the cumulative residual process for the fit of model M

Rw
n (x) = 1√

n

n∑

i=1

1

wi
ε̂i1{xi≤x} = 1√

n

n∑

i=1

1

wi

(
yi − m

(
xi ; β̂ββn

))
1{xi≤x}. (7)

This process comprises the main features of the residuals ε̂i in the same way Iw
n

comprises the main features of m; hence it is sound to study its behaviour to see ifM
is a suitable model for m.

Rw
n can be decomposed as Rw

n (x) = Rw0

n (x) + Rw1

n (x) with

Rw0

n (x) = 1√
n

n∑

i=1

1

wi
(yi − m(xi ))1{xi≤x},

Rw1

n (x) = 1√
n

n∑

i=1

1

wi

(
m(xi ) − m

(
xi ; β̂ββn

))
1{xi≤x}

= 1√
n

n∑

i=1

1

wi
g(xi )T

(
βββ0 − β̂ββn

)
1{xi≤x},

where last equality is a consequence of (5) when m ∈ M.
From previous expressions we can see that Rw

n cumulates two sources of error.
The first accounts for the random error the data has in itself, and it depends on the
regression errors εi . The second, which depends on β̂ββn , has to do with the estimation
error for the regression function. As a consequence, the first of these two components
is unavoidable and inherent to the random phenomena we are studying. On the other
hand, the second component depends on how well the class of function M fits m.
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Clearly, both Rw0

n and Rw1

n are dependent not only on εi , but also on the reciprocal of
the wi as these are introduced by the compensation technique.

Proposition 4 If assumptions A1, A2 and B1 are fulfilled

Rw0

n (x) → Rw0

∞ (x)

in distribution in the space D[R]d , where Rw∞(x) is a Gaussian process with null
expectation and whose covariance function is given by

Cov
[
Rw0

∞ (x), Rw0

∞
(
x′)] = E

[
1{Xw≤x∧x′}vw

(
Xw
)]

.

Having characterized the stochastic behaviour of Rw0

n (x), we can use it to address
the distributional behaviour of Rw

n (x) using the following uniform representation:

Proposition 5 If assumptions A1, A2 and B1 are fulfilled

Rw
n (x) = Rw0

n (x) − G(x)T L−1 1√
n

n∑

i=1

g(xi )
1

wi
εi + O

(
log log n√

n

)

almost surely and uniformly for x ∈ Rd , where G(x) = E
[
g(X)1{X≤x}

]
.

The following result establishes the asymptotic distribution for Rw
n (x).

Theorem 1 If assumptions A1, A2 and B1 are fulfilled, then when m ∈ M

Rw
n (x) → Rw∞(x)

in distribution in the space D[R]d , Rw∞(x) is a Gaussian process with null expectation
and whose covariance function is given by K vw(

x, x′), where

K h(x, x′) = E
[
1{Xw≤x∧x′}h

(
Xw
)]

− G
(
x′)T L−1 E

[
1{Xw≤x}h

(
Xw
)
g
(
Xw
)]

− G(x)T L−1 E
[
1{Xw≤x′}h

(
Xw
)
g
(
Xw
)]

+ G
(
x′)TL−1E

[
h
(
Xw
)
g
(
Xw
)
g
(
Xw
)T]L−1G(x).

Even though it is out of the scope of this work, it is worth noticing that the result still
holds when discrete covariates are present jointly with continuous covariates. Thus if
we have a binary covariable F such that pk = P{F = k} for k = 1, 2, we can consider
our data being composed of two samples of sizes n1 and n2 such that n = n1+n2, with
their respective random processes Rw

1,n and Rw
2,n Theorem 1 ensures that they have

limit processes Rw
1,∞ and Rw

2,∞, respectively. Hence, the process Rw
n , which can be

written as
√
p̂1 Rw

1,n+√ p̂2 Rw
2,n for p̂i = ni/n converges to

√
p1 Rw

1,∞+√
p2 Rw

2,∞ in

the space D[R]d , being p1 and p2 the marginal probabilities of the discrete covariable.
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The statistics we are going to consider to perform the test are

Kn = sup
x∈Rd

∣
∣Rw

n (x)
∣
∣, W 2

n =
∫

Rd
Rw
n (z)2 dF(z).

Aswe can see, the stochastic behaviour of Rw
n (x) does not allow for simple asymptotics

for these statistics; therefore„ wewill introduce a suitable bootstrap scheme to develop
the test in the next section.

2.3 The test under the alternatives

Aswe have seen, the process Rw
n can be decomposed as the summation of the processes

Rw0

n and Rw1

n . Indeed, whenm /∈ M, Rw1

n (x) can be further decomposed as Rw11

n (x)+
Rw12

n (x) being

Rw1,1

n (x) = 1√
n

n∑

i=1

1

wi

(
m(xi ) − m

(
xi ;βββ ′))1{xi≤x},

Rw1,2

n (x) = 1√
n

n∑

i=1

1

wi

(
m
(
xi ;βββ ′)− m

(
xi ; β̂ββn

))
1{xi≤x}

for βββ ′ the value of βββ which causes E [w(Xw,Yw)−1(Yw − m(Xw;βββ))2] to be mini-
mum, i.e. (mxi ;βββ ′) is the closest function in M to the regression function m in the
mean square error sense.

While in our previous analysis, Rw11

n (x) = 0 for allx becauseβββ ′ = L−1E[g(X)Y ] =
βββ0, when m /∈ M we also have to consider the approximation error Δ(x) = m(x) −
m(x;βββ ′). Furthermore, as a consequence of the so-called “Least SquaresNormalEqua-
tions” for the linearmodel, it turns out thatE [w(Xw,Yw)−1g(Xw)TΔ(Xw)] = 0. This
fact not only leads to the consistency of β̂ββn computed from the minimization problem
in (4), but also to an expansion like the one given in Proposition 1 in terms of both the
regression and the approximation error. The following results require an additional
assumption on the approximation errors:

C1 The function

E

[(
Δ(Xw)

w(Xw,Yw)

)2∣∣
∣
∣X

w = x

]

is integrable with respect to Fw.

Proposition 6 If assumptionsA1,A2 andC1 are fulfilled andm /∈ M, then β̂ββn admits
the following almost sure expansion:

β̂ββn = βββ ′ + μwL−1 1

n

n∑

i=1

g(xi )
ε′
i

wi
+ Ok

(
log log n

n

)
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for ε′
i = εi + Δ(xi ).

Therefore, we can characterize the stochastic behaviour of Rw
n (x) by means of a

stochastic process whose covariance resembles in some sense the covariance structure
of Rw∞(x), plus an additional drift term that has to dowith the cumulated approximation

errorD(x) = μ−1
w E [Δ(X)1{X≤x}], which is a consequence of the fact that Rw11

n (x)
cumulates the compensated approximation error along the values of xi whenm /∈ M.

Theorem 2 If assumptions A1, A2, B1 and C1 are fulfilled, when m /∈ M

Rw
n (x) − √

nD(x) → Rw,Δ∞ (x)

in distribution in the space D[R]d where Rw,Δ∞ (x) is a Gaussian process with null
expectation and covariance function K vw,Δ

(x, x′):

vw,Δ(x) = E

[(
Yw − m(Xw) + Δ(Xw)

w(Xw,Yw)

)2∣∣
∣
∣X

w = x

]

. (8)

Hence, in spite of the bias present in the data, we can conclude that under the
compensation strategy selection bias in data does not affect the main terms order of
the alternatives these tests are able to detect, but to the constants in those terms and
the test power. While this is a consequence of the first order or mean preservation
properties of compensation, it is clear from the expression given for vw,Δ(x) that
the cumulative residual process is also affected by both the reciprocal of the weight
function and the approximation error. Indeed, in the unbiased data case vw,Δ(x) is
simply vw(x) + E [Δ(X)]2 making it clear how model misspecification may affect
the test power, but in the selection-biased case the expression is rather involved and
the effects of regression errors, model misspecification and selection bias interact in
a complex way.

The previous result enables us to prove the consistency of the test procedure.

Corollary 1 If assumptions A1, A2, B1 and C1 are fulfilled, when m /∈ M:

P{Kn > c}−→1, P
{
W 2

n > c
}
−→1

for any c > 0. Hence the tests are consistent.

As the main aim of the present work is to extend the results given in Stute (1997)
to the framework of selection-biased data, we have only considered linear models
in order to ease the presentation of the main results. While Linear Models allow for
a simple exposition and understanding of the issues raised by selection-biased data
when making inferences for the regression function, the results we have introduced
are valid in a broader estimation context. As we can see, the assumptions required
by the main results ensure the existence and uniqueness of the solution for the least
squaresminimization problem. These estimator properties can be obtained in a number
of ways, see for example Jennrich (1969), or Stute (1997). In Ojeda and Keilegom
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(2009) it is proved that, under a number of assumptions on the class of functions M
and the population (X,Y ), the compensation strategy also works for non linear least
squares estimators in the selection-bias framework and hence the present results can
also be extended also to that setting.

3 Bootstrap calibration

As it has been shown, the process Rw
n exhibits a complex covariance structure that

makes it difficult to use such asymptotics. To overcome this problem, in this section,
we introduce a combination of a bootstrap scheme and a suitable bootstrap parameter
estimation procedure. The basic idea is to use the wild bootstrap approach (see Liu
1988; Stute et al. 1998 or Härdle and Mammen 1993) jointly with compensation.
This leads to compensated residuals that allow us to obtain the appropriate stochastic
behaviour for this context.

The resampling procedure we are going to consider is given by

x∗
i = xi ; y∗

i = m
(
x∗
i ; β̂ββn

)
+ ε∗

i ; ε∗
i = ε̂i γi , (9)

where γi i = 1, . . . , n is an i.i.d. sample of the Wild Bootstrap variable �, which is
independent of (Xw,Yw) and has null expectation with variance and third moment
equal to 1. Notice also that residuals ε̂i can be written as εi +Δ(xi )+g(xi )T(βββ ′ −β̂ββn),
being βββ ′ = βββ0 and Δ(x) the null function in case m ∈ M.

Bearing in mind that we are interested in characterizing the stochastic behaviour
of a process related to residuals, it is important to realize that, apart from any possible
estimation and/or approximation error due to the lack of fit for m in class M, the
bootstrap errors ε∗

i are selection-biased because of being also computed at (xi , yi ).

As a consequence of this inherited selection-bias, the bootstrap estimator β̂ββ
∗
n for the

vector βββ of parameters in classM based on the bootstrap sample should be obtained
from

β̂ββ
∗
n = argmin

βββ

n∑

i=1

1

wi

(
y∗
i − g

(
x∗
i

)T
βββ
)2

. (10)

In this way, the use of wild bootstrap resampling together with the compensated
estimator to avoid the selection bias leads to bootstrap residuals ε̂∗

i = y∗
i −m(x∗

i ; β̂ββ
∗
n)

whose accumulation resembles in a proper way the behaviour of Rw
n . Notice that

although the expected value of ε̂i is non null when m /∈ M, the expected value of Γ

is null, and β̂ββ
∗
n follows the same sort of expansion we found for β̂ββn in Proposition 1.

Proposition 7 If assumptionsA1,A2 andC1 are fulfilled then the estimator β̂ββ
∗
n admits

the following almost sure expansion:

β̂ββ
∗
n = β̂ββn + μwL−1 1

n

n∑

i=1

g(xi )
ε∗
i

wi
+ Ok

(
log log n

n

)

.

123



Modeling selection-biased data 421

As a consequence β̂ββ
∗
n = β̂ββn + Ok

(√
log log n/n

)
almost surely.

The bootstrap counterpart of expression (7) is given by

Rw
n

∗
(x) = 1√

n

n∑

i=1

1

wi
ε̂∗
i 1{xi≤x} = 1√

n

n∑

i=1

1

wi

(
y∗
i − m

(
x∗
i ; β̂ββ

∗
n

))
1{x∗

i ≤x}.

As y∗
i is built using the parametric fit foundwith (10), the bootstrap regression function

alwaysbelongs toM. Indeedbootstrap residuals ε̂∗
i , canbewritten as ε

∗
i +g(x∗

i )
T(β̂ββ

∗
n−

β̂ββn), which is analogous to the expansion for ε̂i when Δ(x) = 0, (i.e.: m ∈ M).
Therefore, these residuals resemble the stochastic behaviour of the regression error
under H0 jointly with the compensation of the selection bias bymeans of the reciprocal
of wi leads to a process Rw

n
∗(x) whose stochastic behaviour is useful to perform in a

consistent manner the test no matter whether m ∈ M or m /∈ M.

Theorem 3 Under the assumptions made in Theorem 2:

Rw
n

∗
(x) → Rw,Δ∞ (x)

in distribution in the space D[R]d .
In particular, when m ∈ M : Rw

n
∗(x) → Rw∞(x).

The last assertion in Theorem 3 states that the distributional behaviour for Rw
n

∗(x)
agrees with the one we found for Rw

n (x) asymptotically in D[R]d . While the consis-
tency of this bootstrap procedure follows from this last assertion, it is worth noticing
that whenm /∈ M the tests still detect the deviations from H0 because of vw,Δ(x) (see
(8)) being finite. Therefore, the bootstrap allow us to obtain quantiles for our testing
statistics:

K ∗
n = sup

x∈Rd

∣
∣Rw

n
∗
(x)
∣
∣ , W 2∗

n =
∫

Rd
Rw
n

∗
(z)2 dFn(z).

Using thewild bootstrap resamplingmechanismswe have just describedwe can obtain
B bootstrap observations (K ∗

n ) j and (W 2∗
n ) j for j = 1, . . . , B. The null hypothesis

should be rejected if the proportion of the bootstrap samples that are larger than Kn

and W 2
n , respectively, is less than the desired error level α.

This selection-bias adapted bootstrap scheme we have presented is crucial for
obtaining a good calibration of the critical rejection point for the tests as a conse-
quence of the complexity exhibited by the covariance of the process Rw

n .

4 Empirical study

The simulations carried out in this section are focused on the analysis of the accep-
tance/rejection performance of the test introduced in Sects. 2 and 3 when the data
suffer from length bias, i.e. w(x, y) = y. Besides models already studied in Ojeda et
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al. (2008) and Ojeda and Keilegom (2009), we also consider one of the examples in
Stute et al. (1998) with suitablemodifications to obtain a positive response. In this way,
this empirical study will also provide the reader with a comparative view of existing
methods.

In the examples that followwewill consider the regression functionE [Y |X = x] to
bem(x)+ Aδ(x) form ∈ M, a class of linear combinations of functions, and δ /∈ M.
Therefore, when A �= 0 this regression function does not belong toM. The scenarios
we have contemplated have sample sizes n = 50, 100, 200, and A taking the values in
(−a, a) for a > 0 allowing in this way the exploration of different degrees of deviation
from the null hypotheses. Some of the models include a parameter σ , with values 0.1
or 0.5 that controls the variance. The number of bootstrap replications is B = 1,000
in all these scenarios and the empirical p values (i.e.: proportion of rejections) have
been computed for 1,000 simulations. To ease the presentation we only include the
tables for the example 4.2 when A is −1, 0, or 1, while for the rest of the scenarios we
have plotted the empirical power function depending on the value of Awhen n = 200.

Example 1 Model 3 in Stute et al. (1998) with multiplicative errors. This is a multi-
variate regression model in which the population (X,Y ) stochastic behaviour is given
by

Y = (2 + 5X1 − X2 + A δ(X1, X2))
(
1 + σ U

(
−√

3,
√
3
))

,

(X1, X2) ∼ U(0, 1) × U(0, 1), δ(x1, x2) = x1 x2.

Notice the use of the multiplicative error to obtain a positive response value, which is
needed to address length-biased sampling (i.e.: w(x, y) = y). As a consequence, of
this multiplicative error Var [Y |X = x] depends on the regression function m(x).

Example 2 Models inOjeda et al. (2008). In this case, the population (X,Y ) stochastic
behaviour is given by

Y =
(
2X − X2 + Aδ(X)

)(
1 + 0.1U

(
−√

3,
√
3
))

,

X ∼ U(0, 1)

for δ being

δ1(x) = 1

4
exp
(
−100(x − 1/2)2

)
,

δ2(x) = 2(x − 1/16)(x − 1/2)(x − 15/16).

As before A controls the degree of separation of the null hypotheses (i.e.: quadratic
model), but in this case we consider two different departures from it. While δ1 is a
local peak function, δ2 exhibits a smooth and global cubic deviation, see Ojeda et al.
(2008).
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Example 3 First Model in Ojeda and Keilegom (2009). In this case, the population
(X,Y ) stochastic behaviour is given by

Y = 8 − 1.25X + 2(X − 1.5)2 + Aδ(X) + σ U(−5, 5),

X ∼ U(0, 5), δ(x) = (x − 1.5)3.

The main difference in this case is that the errors are additive while in the previous
ones they are multiplicative.

A quick view of each of the examples considered separately, see Figs. 1–4 and
Table 1, shows the consistency of the test procedure as expected from the theoretical
results. Thus the percentage of rejections increases as the absolute value of A increases,
and this is better appreciated as n increases. In each of the empirical studies we can
also see that when σ has a large value the test loses power.

While it is very difficult to compare the performance of the test procedures among
these scenarios, there are a few facts that are worth noticing. The error distribution
considered in the simulations, the uniform distribution, is, in some sense, a worst
scenario case as the errors are no longer concentrated at zero. While it seems that
in the case of multiplicative errors the tests have less power than in the case of the
additive ones, this can be misleading, as a consequence of having very different ranges
of perturbations and regressions considered in the examples.

Wn
2 % Rej vs. A

A

%
 r

ej
.

0.0

0.2

0.4

0.6

0.8

1.0

3210−1−2−3

sigma= 0.1 sigma= 0.5

Fig. 1 Empirical power functions for W 2
n in the example in Stute et al. (1998) (α = 0.05)
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Kn, % Rej vs. A
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%
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.
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3210−1−2−3

sigma= 0.1 sigma= 0.5

Fig. 2 Empirical power functions for K∞
n in the example in Stute et al. (1998) (α = 0.05)
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sigma= 0.1 sigma= 0.5

Fig. 3 Empirical power functions for W 2
n in the example in Ojeda and Keilegom (2009) (α = 0.05)
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sigma= 0.1 sigma= 0.5

Fig. 4 Empirical power functions for K∞
n in the example in Ojeda and Keilegom (2009) (α = 0.05)

Example 4.2 deserves special attention as we have two different perturbations with
the aim of characterizing both local and global departures from H0. A direct compari-
son of the figures in Table 1 for α = 0.05 with their counterparts in Ojeda et al. (2008)
shows that as expected when A = 0 their behaviour is more or less similar for any n.
On the other hand, when A = 1 it seems that the approach in Ojeda et al. (2008) gives
a better performance for small samples.

In the case of the simulations carried out inOjeda andKeilegom (2009), the compar-
isons between Figs. 3, 4 and the tables in that paper seem to suggest that the behaviour
is quite similar.

5 Real case example

The aim of the following real case example is not only to show the empirical perfor-
mance of the technique with real data, but also to emphasize the effects selection-
bias has in estimation, inference and in the observed data. This real case exam-
ple tackles length-biased sampling, a well known and studied selection bias, on
a database of patients that require surgery. Notice, that without actual observa-
tions, i.e. with simulated data for example, it would not be possible to see how
selection-biased sampling mechanism affects the whole process of sampling, esti-
mation and inference. In particular, Figs. 5 and 6 below would have not been achiev-
able.
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Table 1 Rejection percentage of H0 for K∞
n and W 2

n depending on A for both perturbation functions δ1
and δ2 considered in the example in Ojeda et al. (2008)

δ n α = 0.01 α = 0.05

A K∞
n W 2

n A K∞
n W 2

n

δ1(x) 50 −1.0 0.093 0.145 −1.0 0.303 0.405

0.0 0.007 0.005 0.0 0.049 0.054

1.0 0.114 0.169 1.0 0.350 0.419

100 −1.0 0.349 0.473 −1.0 0.607 0.743

0.0 0.012 0.010 0.0 0.045 0.054

1.0 0.432 0.529 1.0 0.705 0.800

200 −1.0 0.811 0.909 −1.0 0.937 0.975

0.0 0.012 0.008 0.0 0.046 0.049

1.0 0.855 0.934 1.0 0.958 0.983

δ2(x) 50 −1.0 0.091 0.178 −1.0 0.276 0.418

0.0 0.006 0.004 0.0 0.052 0.036

1.0 0.104 0.195 1.0 0.304 0.438

100 −1.0 0.304 0.533 −1.0 0.598 0.783

0.0 0.010 0.007 0.0 0.054 0.050

1.0 0.354 0.588 1.0 0.643 0.831

200 −1.0 0.752 0.931 −1.0 0.914 0.982

0.0 0.011 0.010 0.0 0.043 0.039

1.0 0.794 0.958 1.0 0.956 0.990

In order to achieve this, length-bias sampling is simulated in a database (population)
consisting of male patients aged between 30 and 85 years for whom surgery was
prescribed after 01-01-2001 and was carried out before 30-04-2001. This database
has been provided by the Servicio Aragonés de Salud, (the Aragon regional health
authority), and it comprises information relating to the following variables:

– FL: Date of surgery prescription.
– FS: Date of surgical operation.
– waiTim: Time spent in the system. Number of days between the date surgery was
prescribed and the date it was carried out.

– age: Age of the patient in years.

Wewill focus on the relationship betweenwaiTim andage,modeling the dependence
of the former on the latter.

Figure 5 provides a graphical representation of the variables FL, FS and waiTim
for the entire population. Time is plotted in the x axis, so the time spent in the health
system queue is represented by a straight line parallel to this axis. Individuals, who are
sorted according to their surgical operation date, are placed the y axis. Usual unbiased
sampling mechanism would select random individuals from the y axis, but when the
sample consists on those patients that were in the system (i.e. patients waiting for the
surgery to take place) on 1st. March, 2001 (vertical line located around the middle
of the x axis) we obtain a length-biased sample regarding waiTim. The effect of

123



Modeling selection-biased data 427

time

in
d

2001−01−02 2001−01−31 2001−03−02 2001−03−31 2001−04−30

0
10

0
20

0
30

0
40

0

Fig. 5 Population with sampled individuals in red (colour figure online)

length bias is clear: those individuals whose duration are shown in red appear more
frequently in the upper part of the plot, where those individuals with large duration
are located.

Figure 6 is a scatter-plot of the variables waiTim and age for the “entire” database
where sampled individuals have been coloured in red jointly with the true regression
function and its length-biased simple linear regressions estimator.Whatwe have called
the true regression function is the Local Linear regression estimator over the entire
database. This is plotted in black, jointly with its non parametric confidence bands,
see Xia (1998), in green colour. The length-biased simple linear regressions estimator
is plotted in blue and it is computed using the length-biased sample without the recip-
rocals of the responses to compensate the length bias; hence it is really an estimator
of E [Yw|Xw = x], i.e. a length-biased estimator of m.

Aswe have pointed out, the effect of length bias is visible in Fig. 5, wherewe can see
that the larger waiTim is, themore chances an individual has to be in the length-biased
sample. Nevertheless, the effect of the length-biased data on the regression estimators
is much more important, we can see noticeable differences between the length-biased
simple linear regression and the true population regression in Fig. 6. Indeed, the length-
biased simple linear regressions estimator is outside the nonparametric confidence
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Fig. 6 The effect of length bias in estimation

Table 2 Int. Reg. compensated
tests Kn p value W 2

n p value Kn W 2
n

waiTim˜1 0.01 0.00 1.43 0.50

waiTim˜age 0.27 0.19 0.80 0.17

waiTim˜-1+age 0.17 0.11 1.14 0.36

waiTim˜-1+I(ageˆ2) 0.00 0.00 2.52 3.00

waiTim˜1+age+I(ageˆ2) 0.48 0.35 0.46 0.04

bands for the true regression function. It is worth noticing that these differences affect
not only the intercept of the linear regression estimator, but also the slope.

The results for the different tests with statistics and p values are summarized in
Table 2 for different Linear Models when the tests are developed using the reciprocal
of the responses to compensate the length bias present in the data as described in
Sects. 2.2 and 2.3, and the bootstrap procedure in Sect. 3 with B=999 replications.
When the significance level is α = 0.05 all models with a linear term with variable
age are accepted, even without intercept, which is consistent with what is shown in
Fig. 6. In Table 3 we have included the results of the length-biased tests, that is to
say the results of the tests without taking into account the length bias present in the
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Table 3 Int. Reg. tests without compensation (length-biased tests)

Kn p value W 2
n p value Kn W 2

n

waiTim˜1 0.01 0.02 40.89 468.58

waiTim˜age 0.47 0.53 15.22 37.47

waiTim˜-1+age 0.02 0.01 45.62 1,016.65

waiTim˜-1+I(ageˆ2) 0.00 0.00 109.58 7,560.26

waiTim˜1+age+I(ageˆ2) 0.39 0.50 13.63 25.28

data. Notice that, apart from the differences existing in the values of the estimators,
the linear model without intercept (model waiTim ˜-1+age) is not accepted when the
length bias is not considered. This means that, at the significance level α = 0.05, the
inference for the intercept would have been different if the length bias had not been
taken into account.

Appendix

Proof of Proposition 1 (4) can be expressed in matrix terms as

β̂ββn = argmin
βββ

(Y − Gβββ)TB(Y − Gβββ),

therefore β̂ββn = (GTBG)−1GTBY. n−1GTBG is a matrix whose entries are n−1
∑n

i=1 w−1
i g j(xi )gl(xi ) and E [w(Xw,Yw)−1g j(Xw)gl(Xw)] = μ−1

w E [g j(X)gl(X)]
because of (1), plus all these entries have finite second-ordermoment as a consequence
of assumption A1. Therefore, according to the Law of the Iterated Logarithm we have
following expansion:

1

n
GTBG = 1

μw

L + Ok×k

(√
log log n

n

)

(11)

almost surely. As Y = GTβββ0 + εεε for a sufficiently large n we obtain

β̂ββn = βββ0 +
(
GTBG

)−1
GTBεεε.

This, jointly with A2, leads to the following almost sure representation for β̂ββn :

β̂ββn = βββ0 +
(

μwL−1 + Ok

(√
log log n

n

))
1

n
GTBεεε.

Now, as n−1GTBεεε is a vector with entries n−1∑n
i=1 w−1

i g j(xi )εi the Law of the
Iterated Logarithm means that GTBεεε is a matrix whose entries are quantities of order
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√
log log n/n almost surely, leading to the almost sure representation given in the

proposition. 
�
Proof of Proposition 2 If we assume that there exist another function h1 such

that I(x) = ∫ x
∞ h1(z) dFw

X (z), then
∫ x
∞((h1(z) − h(z))dFw

X (z) = 0 for all x and
h1(z) = h(z) Fw

X -a.e. 
�
Proof of Proposition 3 Iw

n (x) can be written as an empirical process

Iw
n (x) = wH

∫
1

w(z, y)
1{z≤x} dFw

n (z, y) = wH Fw
n

1

w(z, y)
1{z≤x} ,

where Fw
n f denotes the process

∫
f (u, v) dFw(u, v) for f in a given class of func-

tions. Therefore, Iw
n (x)/wH is an empirical process indexed by the Fw-measurable

VC-class of functions C = {w(z, y)−11{z≤x} : x ∈ Rd} because they are indicators
of quadrants in Rd . As the envelope of C eC(z, y) = w(z, y)−1 has finite expectation
w.r.t. Fw, it verifies Glivenko–Cantelly property as stated in van der Vaart andWellner
(1996).

The Law of the Iterated Logarithm for the reciprocal of the responses 1/wi proves
that wH − μw is an O

(√
log log n/n

)
quantity with probability one and the result

follows. 
�
Proof of Proposition 4 From the definition of Rw0

n (x) it is clear that this process
belongs to D[R]d because any intersection between quadrants (see definition in Bickel
andWichura 1971) inRd and {x ∈ Rd : x ≤ xi } is again a quadrant inRd and Rw0

n (x)
is a finite linear combination of the indicators of {x ∈ Rd : x ≤ xi }whose coefficients
are continuous functions in Rd . To prove the result we will follow Billingsley (1968)
checking finite-dimensional distribution convergence and tightness.

The finite-dimensional distribution of a vector (Rw0

n (x1), . . . , Rw0

n (xk)) for x1, . . . ,
xk in Rd is a multivariate normal distribution with null mean because for every x the
expected value of Rw0

n (x) is null and covariance E[vw(Xw)1{Xw≤x∧x′}] at x and x′.
The proof of tightness will be based on the properties of the transformed process

Qw
n (u) given by

Rw0

n (x) = Qw
n (T (x)),

for

Qw
n (u) = 1√

n

n∑

i=1

1

wi

(
yi − m

(
T−1(ui )

))
1{ui≤u},

where ui = T (xi ), recall that as wi = w(xi , yi ) it also depends on ui . T defined as

T (x) = (
Fw(x1|x2, . . . , xd), Fw(x2|x3, . . . , xd), . . . , Fw(xd−1|xd), Fw(xd)

)
,

where Fw(xi |xi+1, . . . , xd) denotes the conditional distribution of the random vari-
able Xw

i |Xw
i+1, . . . , X

w
d and Fw(xd) denotes the marginal distribution of Xd , the last

variable inX. As a consequence of this definition, T mapsRd into [0, 1]d and we will
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use Fq to denote the distribution of the transformed variable while Eq [·] will be used
for its expectation.

Bearing in mind the tightness criteria introduced in Theorem 3 in Bickel and
Wichura (1971), the increment of a function H from Rd into R around a quadrant
D = [a1, a1 + b1] × · · · × [ad , ad + bd ] in Rd is defined as

H(D) =
1∑

l1=0

· · ·
1∑

ld=0

(−1)d−∑ j l j H(a1 + l1b1, . . . , ad + ldbd).

Therefore, if H(x) = 1{x j≤x} we have that H(D) = 1{x j∈D} and as Qw
n (u) is a linear

combination of indicators 1{ui≤u}, we obtain that for a quadrant D ⊂ [0, 1]d

Qw
n (D) = 1√

n

n∑

i=1

1

wi

(
yi − m

(
T−1(ui )

))
1{ui∈D} = 1√

n

n∑

i=1

1

wi
αi(D).

Hence, if quadrants D1 and D2 are neighbouring blocks in [0, 1]d (see definition in
pg. 1658 in Bickel and Wichura 1971):

Qw
n (D1)

2Qw
n (D2)

2 = 1

n2

(
n∑

i=1

αi(D1)

)2( n∑

i=1

αi(D2)

)2

.

Lemma 5.1 in Stute (1997) with αi = αi(D1) and βi = αi(D2) leads to

Eq
[
Qw

n (D1)
2Qw

n (D2)
2
]

≤ 1

n2

(
nEq

[
αi(D1)

2αi(D2)
2
]

+3n(n − 1)Eq
[
αi(D1)

2
]
Eq
[
αi(D2)

2
])

.

But as a consequence of D1 and D2 being disjoint sets we have that

Eq
[
αi(D1)

2αi(D2)
2
]

= Eq

⎡

⎣

(
yi − m

(
T−1(ui )

)

wi

)2

1{ui∈D1}1{ui∈D2}

⎤

⎦ = 0

and, therefore,

Eq
[
Qw

n (D1)
2Qw

n (D2)
2
]

≤ 3
n − 1

n
Eq
[
αi(D1)

2
]
Eq
[
αi(D2)

2
]
.

From which we have that

Eq
[∣
∣Qw

n (D1)
∣
∣2
∣
∣Qw

n (D2)
∣
∣2
]

≤ μ(D1) μ(D2),
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where we have taken μ(D) to be
√
3Eq [αi(D)2]. Hence, condition (3) in Bickel and

Wichura (1971) becomes fulfilled for neighbouring blocks D1 and D2, and Qw
n is tight

in [0, 1]d which means that Rw
n also is tight in Rd .

Notice that μ is a measure that in this particular case is induced by the relative
variance function vw:

μ(D) = Eq

⎡

⎣

(
yi − m

(
T−1(ui )

)

wi

)2

1{ui∈D}

⎤

⎦ =
∫

T−1(D)

vw(z) dFw
X (z).


�
Proof of Proposition 5 We will use the results given in Zhang (2006) to achieve

a strong and uniform representation for

Gn(x) = 1

n

n∑

i=1

1

wi
g(xi )1{xi≤x} =

∫
1

w(z, y)
g(z)1{z≤x}dFw

n (z, y).

Notice that for every entry g j(x) in g(x), the integral can be written in terms of the
empirical process theory as Fw f , for f ∈ C j defined by

C j =
{

f (x) : f (x) = 1

w(z, y)
g j(z)1{z≤x}, x ∈ Rd

}

.

According to the notation in Zhang (2006), P(n)(also P(n)) and Pn are given in this
setting by Fw and Fw

n , respectively, whileF is in our case C j . BothμC j = ‖ Fw f ‖C j

and σ 2
C j

= ‖ Fw f 2 ‖C j , where ‖·‖C j
is the supremum over the class of functions C j ,

are finite as a consequence of g j being uniformly bounded functions and assumption
A1.

Using the arguments that were given in Proposition 3 for the class C with class
C j proves that C j are VC-subgraph classes of functions, and hence covering numbers
N2(δ, F, C j ) and N2(δ, Fn, C j ) are bounded by polynomials in δ. Furthermore, the
functions in C j are measurable in the product space determined by the sample of i.i.d.
observations from (Xw,Yw) and Rd that are indexed by x ∈ Rd , which is a complete
metric spacewithinRd completion; therefore, they are permissible classes of functions
(see Pollard 1984).

It remains to check ‖ Fw
n f 2 − Fw f 2 ‖C j

−→0 to fulfill all assumptions required
by Corollary 3.1 in Zhang (2006). Notice that for every j = 1, . . . , k the classes of
functions

C∗
j =

{

f (x) : f (x) = 1

w(z, y)2
g j(z)21{z≤x}, x ∈ Rd

}

are also VC-subgraph classes of Fw measurable functions with envelope eC(z, y) =
w(z, y)−2g j(z)2 arguing as in the proof of Proposition 3. As eC(Xw,Yw) has finite
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expectation, C j are Glivenko–Cantelly classes of functions and ‖Fw
n f 2 − Fw f 2‖C j

−→0 almost surely. Therefore, Corollary 3.1 in Zhang (2006) implies that

sup
x∈Rd

∣
∣
∣
∣
∣
1

n

n∑

i=1

1

wi
g j(xi )1{xi≤x} − E

[
g j(X)1{X≤x}

]
∣
∣
∣
∣
∣
= O

(√
log log n

n

)

with probability one, and hence Gn(x) = μ−1
w G(x) + O

(√
log log n/n

)
uniformly in

x ∈ Rd and almost surely.
Now the result follows from Proposition 1 since

Rw
n (x) = Rw0

n (x) + 1√
n

n∑

i=1

1

wi
g(xi )T

(
βββ0 − β̂ββn

)
1{xi≤x}

= Rw0

n (x) − 1√
n
G(x)TL−1

n∑

i=1

g(xi )
εi

wi
+ O

(
log log n√

n

)

almost surely and uniformly over x ∈ Rd . 
�
Proof of Theorem 1 As

Rw
n (x) = Rw0

n (x) + Rw2

n (x) + O

(
log log n√

n

)

almost surely and uniformly over x ∈ Rd where

Rw2

n (x) = − 1√
n
G(x)TL−1

n∑

i=1

g(xi )
εi

wi
,

and the stochastic behaviour of Rw0

n has been addressed in Proposition 4 we only need

to study Rw2

n .

The finite-dimensional distributions of Rw2

n (x) converge to finite-dimensional dis-
tributions of a Gaussian random process with null expectation and a covariance at
x and x′ given by G(x)TL−1�wL−1G(x′), with �w = E [vw(Xw)g(Xw)g(Xw)T]
because

1√
n

n∑

i=1

g(xi )
εi

wi
→ N

(
0, �w

)

as a consequence the multivariate CLT.
Tightness for Rw2

n (x) in D[Rd ] can be proved as in Proposition 4 defining Qw
n
2(u)

by means of the same quantile transformation so that Rw2

n (x) = Qw2

n (Fw(x)). The
result follows having into account the covariance between processes Rw0

n (x) and

Rw2

n (x). 
�
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Proof of Proposition 6 The proof follows the same argumentation given in Propo-
sition1, but in this case, asm /∈ M and yi = m(xi ;βββ ′)+m(xi )−m(xi ;βββ ′)+εi ,wehave
to consider ε′

i = εi +
(xi ). Recall that although ε′
i does not have null expectation, the

expected value of w−1
i g(xi )
(xi ) is still null because w(Xw,Yw)−1g(Xw)T
(Xw)

has null expectation as a consequence of the wayβββ ′ is defined and its variance is finite
because of assumptions. 
�

Proof of Theorem 2 Notice that even though when m /∈ M the process Rw
n (x)

has non null expectation Proposition 6 supports a strong and uniform representation
like the one we have being studying for Rw

n (x) when m ∈ M but using ε′
i instead of

εi . Its centered version ζ(x) = Rw
n (x) − √

nD(x) can be written as

ζn(x) = 1√
n

n∑

i=1

(
ε′
i

wi
1{xi≤x} − D(x)

)

− 1√
n
G(x)TL−1

n∑

i=1

g(xi )
ε′
i

wi
+ O

(
log log n√

n

)

because w(Xw,Yw)−1g(Xw)TΔ(Xw) has null expectation and hence the first term in
Rw
n (x) is the only one that needs to be centered.
The rest of the proof proceeds as in Proposition 4 and Theorem 1 as the tightness

and finite-dimensional weak convergence follows in the sameway having into account
that the conditional variance of w−1

i ε′
i given Xw = xi is vw,Δ(xi ). 
�

Proof of Corollary 1 Recall that as m /∈ M, there exist x′ such that D(x′) =
μ−1

w

∫ x′
−∞ Δ(z) dF(z) �= 0. As Rw

n (x) = ζ(x) + √
nD(x):

W 2
n =

∫

Rd
ζn(x)2 dF(z) + n

∫

Rd
D(z)2 dF(z) + op(n).

As
∫
Rd D(z)2 dF(z) > 0 because D is a continuous function and D(x) �= 0 at some

neigbourhood V of x′, we have that P{W 2
n > c}−→1 for any c > 0.

In the case of Kn , notice that when m /∈ M we have n−1/2Rw
n (x′) p−→μ−1

w D(x′),
therefore for c > 0 we have

P{Kn > c} ≥ P
{∣∣Rw

n

(
x′)∣∣ > c

}−→1.


�
Proof of Proposition 7 Reasoning as in Proposition 1 we have

β̂ββ
∗
n = β̂ββn + μwL−1 1

n

n∑

i=1

g(xi )
ε∗
i

wi
+ Ok

(
log log n

n

)

.

When m ∈ M, ε̂i = εi + g(xi )T(βββ0 − β̂ββn) and

1

n

n∑

i=1

g(xi )
ε∗
i

wi
= 1

n

n∑

i=1

g(xi )
εi

wi
γi + 1

n

n∑

i=1

g(xi )g(xi )T
γi

wi

(
βββ0 − β̂ββn

)
.
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The properties of γi , g(xi )g(xi )T jointly with the LIL lead to

1

n

n∑

i=1

g(xi )g(xi )T
γi

wi
= Ok×k

(√
log log n

n

)

,

and the result follows having into account that βββ0 − β̂ββn = Ok
(√

log log n/n
)
because

of Proposition 1.
Recall that when m /∈ M, ε̂i = ε′

i + g(xi )T(βββ ′ − β̂ββn) and, as g(x)
Tβββ ′ is the best

approximation tom(x) inM in the least squares sense andE[g(X)T(Y−g(X)Tβββ ′)] =
0 and it hasfinite variancebecause of assumptions.Therefore,whenm /∈ M,βββ ′−β̂ββn =
Ok(

√
log log n/n) and we can argue as in the case m ∈ M. 
�

Proposition 8 Under the assumptions made in Proposition 7 then

Rw
n

∗
(x) = 1√

n

n∑

i=1

εiγi

wi
1{xi≤x} − G(x)T L−1 1√

n

n∑

i=1

g(xi )
εiγi

wi
+ O

(
log log n√

n

)

almost surely and uniformly for x ∈ R.

Proof The result follows as Proposition 5 expanding ε̂∗
i in terms of εi and γi as

γiεi + γi
(xi ) + γig(xi )T(βββ ′ − β̂ββn). In this case we also need to consider empirical
processes indexed by following classes of functions:

C′
j =

{

f (x) : f (x) = γ

w(z, y)
g j(z)1{z≤x}, x ∈ R

}

with respect to the distribution of (Xw, Γ ). As Xw and Γ are independent, its distri-
bution is given by dFw

X (z) pc, being c equal to a or b, the values the wild bootstrap
random variable � can take and pa and pb their respective probabilities. Proposition 6
ensures βββ ′ − β̂ββn = O(n−1 log log n). 
�

Proof of Theorem 3 The result follows from Proposition 8 arguing as in Theo-
rems 1 and 2, but in this case taking into account that we have to deal with ε′

iγi instead
of εi .

Recall that εiγi follows a distribution determined by the r.v. (Xw, εwΓ ) for εw =
(Yw − m(Xw)) which is a continuous r.v. whose distribution function is given by

P
(
Xw ≤ z, εwΓ ≤ e

) = Fw
(
z,

e

a

)
pa + Fw

(
z,

e

b

)
pb.

Notice we have denoted by Fw(z, e) the distribution of the r. v. (Xw, εw). As a con-
sequence, E [w−1

i ε′
iγi |Xw = xi ] is null and E [(w−1

i ε′
iγi )

2|Xw = xi ] is finite. 
�
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