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Abstract We study nonparametric robust tail coefficient estimation when the variable
of interest, assumed to be of Weibull type, is observed simultaneously with a random
covariate. In particular, we introduce a robust estimator for the tail coefficient, using
the idea of the density power divergence, based on the relative excesses above a high
threshold. The main asymptotic properties of our estimator are established under very
general assumptions. The finite sample performance of the proposed procedure is
evaluated by a small simulation experiment.
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1 Introduction

In practical data analysis, it is not unusual to encounter outliers which may have
a disturbing effect on the estimation results. In such situations, the estimates of the
model according to themaximum likelihood approach are typically fairly unstable and
this asks for robustmethods. A special treatment of the outlying points is then required,
for instance by an adequate downweighting of their influence on the estimation.

In this paper, we focus on robust procedures to estimate some tail parameters in
an extreme value context. Such a topic has been recently studied in the literature.
We can mention among others Brazauskas and Serfling (2000) and Vandewalle et al.
(2007) for strict Pareto and Pareto-type distributions, Dupuis and Field (1998), Peng
and Welsh (2001), and Juárez and Schucany (2004) for generalized extreme value or
generalized Pareto distributions. In the sequel, we consider the Gumbel class, which
is a rich subclass of the max-domain of attraction. Although different types of tail
behavior are possible, all these distributions have in common an extreme value index
equal to zero and thus differentiating them on the basis of this parameter alone is
impossible. To solve this issue, we restrict our study to Weibull-type distributions for
which the distribution functions have the following form:

F(y) := 1 − F(y) = e−y1/θ �F (y), y > 0,

where θ > 0, and �F is a slowly varying function at infinity, i.e., an ultimately positive
function satisfying

lim
y→∞

�F (λy)

�F (y)
= 1, for all λ > 0.

Here, θ denotes the Weibull-tail coefficient. Different values of it allow the Weibull-
type distributions to cover a large part of the Gumbel class and hence to constitute a
flexible subgroup. The estimation of this coefficient has been extensively studied in the
literature (see e.g., Broniatowski 1993; Beirlant et al. 1995; Gardes and Girard 2005,
2008b; Diebolt et al. 2008; Dierckx et al. 2009; Goegebeur et al. 2010 or Goegebeur
andGuillou 2011 among others), but notmuch attention has been paid to the regression
context with covariates.

We will consider this framework of nonparametric regression estimation of con-
ditional tails when the covariates are random. The case of random covariates is less
explored in extreme value theory compared to the fixed covariates, and only few papers
can indeed be mentioned: Wang and Tsai (2009) with a parametric maximum likeli-
hood approach within the Hall subclass of Pareto-type models (Hall 1982), Daouia et
al. (2011) in the framework of Pareto-type distributions, and Daouia et al. (2013) in
the general max-domain of attraction, but under rather restrictive assumptions on the
underlying distribution function. Here, we consider the case of Weibull-type distrib-
utions and our approach will be based on local estimation within a narrow window
around the point in the covariate space where the tail behavior of the response variable
is of interest. This local fitting is performed by an adjustment of the robust minimum
density power divergence (MDPD) estimation criterion, originally proposed by Basu
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et al. (1998), to the locally weighted regression setting. This criterion has already been
used for robust estimation of Pareto-type distributions (see for instance Kim and Lee
(2008), Dierckx et al. (2013, 2014)), but to the best of our knowledge it is new in the
Weibull-type framework.

The remainder of this paper is organized as follows. In Sect. 2, we introduce our
robust estimator of the conditionalWeibull-tail coefficient and state itsmain asymptotic
properties. The finite sample performance of our procedure is illustrated on a small
simulation study in Sect. 3. In Sect. 4 we will make some concluding remarks and
discuss some possibilities for future research. The proofs of all results can be found
in the Appendix.

2 Construction and asymptotic properties

Let (Xi ,Yi ), i = 1, . . . , n be independent copies of a random pair (X,Y ) ∈ R
p×R+,

where X has the density function f and the conditional survival function of Y given
X = x is of Weibull type with a tail coefficient θ(x) > 0, that is

F(y; x) = e−y1/θ(x)�F (y;x), y > 0. (1)

This model can also be defined in terms of the generalized inverse of F , denoted by
Q, i.e., Q(q; x) := inf{y : F(y; x) ≥ q}, 0 < q < 1. Indeed, under (1), we have

Q(q; x) = (− ln(1 − q))θ(x) �(− ln(1 − q); x) (2)

where � is again a slowly varying function at infinity. The function θ(x) governs the
tail behavior, with larger values indicating a slower tail decay. This function has to be
adequately estimated from the data.

As is usual in an extreme value context, we base our estimation method on the
relative excesses above a high threshold un , namely Z := Y/un , which admit, under
model (1), the following conditional survival function:

P

(
Y

un
> t
∣∣∣Y > un; x

)
= F(tun; x)

F(un; x)
� e−cn(t1/θ(x)−1)=: G(t; cn, θ(x)) for t > 1,

(3)

where cn := − ln(F(un; x)). The approximation in (3) follows from the properties
of slowly varying functions and is valid for large values of un . We denote by g the
density function associated with this distribution G.

The proposed estimation procedure works as follows. First, we estimate cn exter-
nally in a consistent way, cf infra. Then, we estimate θ(x) with the MDPD criterion
combined with a kernel approach and applied to the relative excesses above un . More
precisely, we define the MDPD estimator as the value of θ, minimizing the empirical
density power divergence:
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�̂α(θ; ĉn) :=
⎧⎨
⎩

1
n

∑n
i=1 Kh(x − Xi )1{Yi>un}

{∫∞
1 g1+α(z)dz − (

1 + 1
α

)
gα(Yi/un)

}
for α > 0

− 1
n

∑n
i=1 Kh(x − Xi )1{Yi>un} ln g(Yi/un) for α = 0

where ĉn is a consistent estimator for cn, Kh(x) := K (x/h)/h p, K is a joint density
function onRp, h = hn is a positive, non-random sequence of bandwidthswith h → 0
if n → ∞, 1{A} is the indicator function on the event A and un is a local non-random
threshold sequence satisfying un → ∞ if n → ∞.

Note that a joint estimation of θ(x) and cn with the MDPD method is practically
feasible, but gives difficulties in the theoretical analysis concerning consistency and
asymptotic normality, and in particular it requires the introduction of rather restrictive
conditions. For this reason, we opt to estimate cn externally in a consistent way.
Remark also that this density power divergence criterion is indexed by a single non-
negative parameter, α, that controls the trade-off between robustness and efficiency. In
particular, it encompasses the maximum likelihood method, corresponding to α = 0,
which is efficient but not robust. Increasing the value of α increases the robustness
and decreases the efficiency of the estimation.

The MDPD equation for θ is thus:

�̂′
α(θ; ĉn) = 1 + α

n

n∑
i=1

Kh(x − Xi )1{Yi>un}
∫ ∞

1
gα(z)

∂g(z)

∂θ
dz

−1 + α

n

n∑
i=1

Kh(x − Xi )1{Yi>un}gα−1
(
Yi
un

)
∂g(Yi/un)

∂θ

= 1 + α

n

n∑
i=1

Kh(x − Xi )1{Yi>un}

×
{

− α eĉn(1+α)ĉ αθ
n

θα+1(1 + α)2+α(1−θ)

[
θ�(α(1 − θ) + 1, ĉn(1 + α))

+(1 − θ ln((α + 1)̂cn)	(α(1 − θ) + 1, ĉn(1 + α))
]}

+ ĉ α
n

θα+1

1 + α

n

n∑
i=1

Kh(x − Xi )e
−ĉnα

[(
Yi
un

)1/θ−1

] (
Yi
un

)α(1/θ−1)

1{Yi>un}

+ ĉ α
n

θα+2

1 + α

n

n∑
i=1

Kh(x − Xi )e
−ĉnα

[(
Yi
un

)1/θ−1

] (
Yi
un

)α(1/θ−1)

ln
Yi
un

1{Yi>un}

− ĉ α+1
n

θα+2

1+α

n

n∑
i=1

Kh(x − Xi )e
−ĉnα

[(
Yi
un

)1/θ−1

] (
Yi
un

)α(1/θ−1)+1/θ

ln
Yi
un

1{Yi>un}

(4)
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where 	(a, b) denotes the incomplete Gamma function

	(a, b) :=
∫ ∞

b
za−1 e−z dz

and �(a, b) its derivative with respect to the first argument

�(a, b) :=
∫ ∞

b
ln z za−1 e−z dz.

In the functions 	 and �, b is positive whereas a ∈ R.
The MDPD estimator for θ(x) satisfies the estimating equation

�̂′
α(θ; ĉn) = 0, (5)

where ĉn := − ln(F̂(un; x)),

F̂(un; x) :=
1
n

∑n
i=1 Kh(x − Xi )1{Yi>un}
1
n

∑n
i=1 Kh(x − Xi )

,

is a kernel estimator for F(un; x), as considered also in Daouia et al. (2013) and de
Wet et al. (2013).

In view of (4), we start by considering the following locally weighted sums of
power-transformed excesses over a high threshold:

Tn(K , α, β, r; x) := 1

n

n∑
i=1

Kh(x−Xi )e
−cnα

[(
Yi
un

)1/θ(x)−1

](
Yi
un

)β(
ln

Yi
un

)r

+
1{Yi>un}

(6)

where α ≥ 0, β ∈ R, r ≥ 0, and (x)+ := max{0, x}.
To obtain the limiting behavior of (6), one has to impose some more structure on

the tail of the distribution. Typically, one invokes a so-called second-order condition,
specifying the rate of convergence of �(λy; x)/�(y; x), where � is the slowly varying
function appearing in (2), to its limit, being one, as y → ∞.

Assumption (R)There exists a constantρ(x) < 0 and a rate functionb(.; x) satisfying
b(y; x) → 0 as y → ∞, such that for all λ ≥ 1, we have

ln

(
�(λy; x)
�(y; x)

)
= b(y; x)Dρ(x)(λ)(1 + o(1))

with Dρ(x)(λ) := ∫ λ

1 tρ(x)−1dt , and where o(1) is uniform in λ ≥ 1, as y → ∞.

As shown in Geluk and de Haan (1987), (R) implies that |b(y; x)| is regularly
varying with index ρ(x), i.e., |b(λy; x)|/|b(y; x)| → λρ(x) as y → ∞ for all λ > 0,
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so ρ(x) governs the rate of the first-order convergence of �(λy; x)/�(y; x) to one. If
|ρ(x)| is small, then the convergence is slow and the estimation of tail quantities is
generally difficult. Condition (R) is well accepted in the extreme value literature, see,
e.g., Gardes and Girard (2008a).

As a first step in the theoretical study of estimators for θ(x), we consider the local
behavior of the following conditional expectation:

m(un, α, β, r; x) = E

⎛
⎝e−cnα

[(
Y
un

)1/θ(x)−1

] (
Y

un

)β (
ln

Y

un

)r

+
1{Y>un}

∣∣∣∣X = x

⎞
⎠ .

Lemma 1 Case (i), α = β = r = 0:

m(un, 0, 0, 0; x) = F(un; x).

Case (ii), (α, β, r) ∈ R
+ × R × R

+ \ (0, 0, 0): assume (2) and Assumption (R). We
have for un → ∞ that

m(un, α, β, r; x) = F(un; x) 	(1 + r)

(1 + α)1+r
θr (x)

{
c−r
n + θ(x)β

1 + α
c−1
n 1{r=0}

+ r − α

1 + α

b(cn; x)
θ(x)

c−r
n

+ o(b(cn; x)c−r
n ) + O

(
1

c(1+α)∧2
n

1{r=0}

)

+ O

(
1

c(1+r+α−rε)∧(1+r)
n

1{r>0}

)}
,

for ε sufficiently small.

We now turn to the derivation of the asymptotic expansion for the unconditional
moment. Let

mn(K , α, β, r; x) :=E

⎡
⎣Kh(x − X)e

−cnα

[(
Y
un

)1/θ(x)−1
] (

Y

un

)β (
ln

Y

un

)r

+
1{Y>un}

⎤
⎦.

Note that since Tn(K , α, β, r; x) is an average of independent and identically distrib-
uted (i.i.d.) terms, we also have that mn(K , α, β, r; x) = E(Tn(K , α, β, r; x)).

We introduce the following further conditions. Let ‖.‖ be a norm on R
p.

Assumption (F) There exists M f > 0 and η f > 0 such that | f (x) − f (x ′)| ≤
M f ‖x − x ′‖η f for all x, x ′ ∈ R

p.

Assumption (K) K is a bounded density function on Rp, with support � included in
the unit hypersphere in R

p.
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Finally, we introduce a condition on the oscillation of the response distribution in
a neighborhood of the point x where the estimation will take place. This condition is
formulated in terms of the conditional excess function:

Assumption (M)The conditional excess functionm(un, α, β, r; x) satisfies forun →
∞, h → 0, and some ᾱ > 0, R > 0, ξ > 0 that

�n(x) := sup
α∈[0,ᾱ]

sup
β∈[α/θ(x)−ξ,α/θ(x)+ξ ]

sup
r∈[0,R]

sup
z∈�∣∣∣∣m(un, α, β, r; x − hz)

m(un, α, β, r; x) − 1

∣∣∣∣ → 0 as n → ∞.

The following lemma gives then the asymptotic expansion of mn(K , α, β, r; x).
Lemma 2 Assume (2), (R), (F), (K) and (M). For all x ∈ R

p where f (x) > 0,
we have that if un → ∞ and h → 0 as n → ∞ then

mn(K , α, β, r; x) = m(un, α, β, r; x) f (x)(1 + O(hη f ) + O(�n(x))).

Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the random vec-
tor (X,Y ) where Y |X = x satisfies (2) and X ∼ f . If in addition to the previous
assumptions one also has that nh pF(un; x) → ∞ as n → ∞, then

T̃n(K , α, β, r; x) := crnTn(K , α, β, r; x)
F(un; x) f (x)

P→ θr (x)	(1 + r)

(1 + α)1+r
as n → ∞.

The consistency of F̂(un; x) follows now easily from Lemma 2.

Corollary 1 Let (X1,Y1), . . . , (Xn,Yn)be i.i.d. randomvectors andassume (F), (K)

and (M). For all x ∈ R
p where f (x) > 0, we have that if h → 0, un → ∞ with

nh pF(un; x) → ∞ as n → ∞, then

F̂(un; x)
F(un; x)

P→ 1.

Note that this result holds for a general conditional survival function F(y; x), where
X ∼ f , i.e., the assumption of conditional Weibull-type behavior, and hence (R), is

not needed. In our context we have then ĉn − cn = − ln F̂(un; x)/F(un; x) P→ 0, by
a straightforward application of the continuous mapping theorem.

The following theorem states the existence and consistency of sequences of solu-
tions to the estimating equation (5). From now on we denote the true value of θ(x) by
θ0(x).

Theorem 1 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the ran-
dom vector (X,Y ) where Y |X = x satisfies (2), X ∼ f , and assume (R), (F), (K)

and (M) hold. For all x ∈ R
p where f (x) > 0, we have that if hn → 0, un → ∞
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with nh p
n F(un; x) → ∞, then with probability tending to 1 there exists sequences

of solutions (θ̂n(x))n∈N of the estimating equation (5), such that θ̂n(x)
P→ θ0(x), as

n → ∞.

We now derive the limiting distribution of a vector of statistics of the form (6),
when properly normalized. This result will form the basis for proving the asymptotic
normality of the MDPD estimator. Let

T
′
n := (

T̃n (K1, α1, β1, r1; x) , . . . , T̃n (KJ , αJ , βJ , rJ ; x)
)

for some positive integer J and let � be a (J × J ) covariance matrix with elements

σ j,k := θ
r j+rk
0 (x)‖K j Kk‖1	(1 + r j + rk)

(1 + α j + αk)
1+r j+rk

.

Theorem 2 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the
random vector (X,Y ) where Y |X = x satisfies (2) and X ∼ f , and assume
(R), (F), (M) hold and kernel functions K1, . . . , KJ satisfying (K). For all x ∈ R

p

where f (x) > 0, we have that if h → 0, un → ∞ for n → ∞, with nh pF(un; x) →
∞, then

√
nh pF(un; x) [Tn − E(Tn)] � NJ

(
0,

1

f (x)
�

)
.

With the result of Theorem 2, we can now establish the asymptotic normality of
θ̂n(x), when properly normalized.

Theorem 3 Let (X1,Y1), . . . , (Xn,Yn) be a sample of independent copies of the
random vector (X,Y ) where Y |X = x satisfies (2), X ∼ f , and assume
(R), (F), (K) and (M) hold. Consider (θ̂n(x))n∈N, a consistent sequence of esti-
mators for θ0(x) satisfying (5). For all x ∈ R

p where f (x) > 0, we have that if
h→0 and un→∞ as n→∞ with nh pF(un; x)→∞,

√
nh pF(un; x)b(cn; x)→λ ∈

R,
√
nh pF(un; x)hη f

n →0,
√
nh pF(un; x)�n(x)→0,and

√
nh pF(un; x)/c(1+α−ε)∧1

n
→0 (for some small ε > 0), then

√
nh pF(un; x)

(
θ̂n(x) − θ0(x)

)

� N

(
λ,

θ20 (x)(1 + α)2‖K‖22
(1 + α2)2(1 + 2α)3

(1 + 4α + 9α2 + 14α3 + 13α4 + 8α5 + 4α6)

)
.

Note that the mean of the limiting distribution in Theorem 3 depends only on λ

and not on α or on the weight function K or parameters related to the distribution
of Y given X = x . This is in line with the usual asymptotic normality result in the
univariate case, see e.g., Girard (2004), Gardes and Girard (2008b) and Goegebeur
et al. (2010). The asymptotic variance in Theorem 3 increases in α, which reflects
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Fig. 1 Asymptotic standard deviation of the MDPD estimator for θ0(x) as a function of α when θ0(x) = 1
and K (u) = 0.5 1u∈[−1,1]

the decreasing efficiency of the MDPD estimation method when α increases. The
maximum likelihood estimator, corresponding to α = 0, has an asymptotic variance
equal to θ20 (x)‖K‖22, which, apart from the factor ‖K‖22, coincides with the asymptotic
variance of theHill-type estimator proposed byGirard (2004) in the univariate context.
In Fig. 1 we show the asymptotic standard deviation as a function of α when θ0(x) = 1
and K (u) = 0.5 1u∈[−1,1].

3 Simulation results

The aim of this section is to illustrate the efficiency of our robust estimation method
on a small simulation study. As is clear from the above discussion, the computation of
the estimator requires a selection for the bandwidth parameter h and the threshold un .
We select the threshold as usual in extreme value theory, that is, we take the (k + 1)
largest response observation in the ball B(x, h) for any fixed value of x . We propose
a data-driven method to determine (h, k) and we compare it with a theoretical one,
called Oracle strategy, which requires the knowledge of the function θ(x). These two
methods are similar to those used in Goegebeur et al. (2013a) and are briefly recalled
as follows:

The Oracle strategy, proposed in Gardes et al. (2010) consists in selecting (h, k)
satisfying

(h0, k0) := argmin
h,k

�
(
θ̂ (·), θ(·)) , (7)

where

�2 (θ̂ (·), θ(·)) := 1

M

M∑
m=1

(
θ̂ (zm) − θ (zm)

)2
,
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Fig. 2 Results for the Oracle method for the three distributions and different values of α. Row 1 strict
Weibull, row 2 extended Weibull, row 3 perturbed Weibull. Column 1 α = 0.1, column 2 α = 0.5, column
3 α = 1

and z1, . . . , zM are points regularly spread in the covariate space. The retained value
θ̂ (x) is the one corresponding to this pair (h0, k0).

The data-drivenmethod does not require any prior knowledge about θ(x) and thus
can be directly applied to a real data set. First, the method involves the selection of an
optimal bandwidth h. To this aim, we can use the following cross validation criterion
introduced by Yao (1999), implemented by Gannoun et al. (2002), and studied by
Daouia et al. (2011, 2013) in an extreme value context:

hcv := argmin
h∈H

n∑
i=1

n∑
j=1

(1{Yi≤Y j } − F̃n,−i (Y j |Xi ))
2, (8)

where H is a grid of values for h and

F̃n,−i (y|x) :=
∑n

j=1, j �=i Kh
(
x − X j

)
1{Y j≤y}∑n

j=1, j �=i Kh
(
x − X j

) .
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Fig. 3 Results for the data-driven strategy for the three distributions and different values of α. Row 1 strict
Weibull, row 2 extended Weibull, row 3 perturbed Weibull. Column 1 α = 0.1, column 2 α = 0.5, column
3 α = 1

Once the bandwidth h has been chosen, we compute θ̂ (x) for each k = 5, . . . , kmax
where kmax is an appropriate maximum value of the number of exceedances. The
retained value θ̂ is the median of these estimates of θ .

In the simulations, we use the following smooth and symmetric function

θ(x) = 1

2

(
1

10
+ sin(πx)

)(
11

10
− 1

2
exp

{
−64

(
x − 1

2

)2
})

proposed by Daouia et al. (2011), though originally in the context of Pareto-type tails,
and the estimators are based on the bi-quadratic kernel function

K (x) = 15

16
(1 − x2)21{x ∈ [−1, 1]}.

The function θ(x) is differentiable and has several stationary points. As such, it is more
challenging than a monotone function. We assume that X is uniformly distributed on
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[0, 1] and consider four different settings for the conditional distribution of Y given
X = x :

• the strict Weibull distributionW(ξ(x), λ),

1 − F(y; x) = e−λyξ(x)
, y > 0; ξ(x), λ > 0,

for which θ(x) = 1/ξ(x) and ρ(x) = −∞. We consider the case λ = 1;
• the extendedWeibull distribution EW(ξ(x), λ) (Klüppelberg andVillaseñor 1993),

1 − F(y; x) = r(y)e−yξ(x)
,

where ξ(x) > 0, and r(y) is a regularly varying function at infinity with index λ.
Here, θ(x) = 1/ξ(x) and ρ(x) = −1. We choose r(y) = 1/y, so λ = −1;

• the perturbed Weibull distribution W̃(ξ(x), λ) (Dierckx et al. 2009),

1 − F(y; x) = e−yξ(x)(C+Dyλ), ξ(x) > 0, λ < 0,C > 0, D ∈ R,

having θ(x) = 1/ξ(x) and ρ(x) = λθ(x). In this case we use λ = −5, C = 1 and
D = −1;

• a contaminated distribution with Fε(y; x) = (1− ε)F(y; x) + ε F̆(y; x) where the
distribution function F is one of the three above-mentioned distributions and for
the contaminating distribution function F̆ we consider
– a shifted strict Weibull distribution, i.e., it has distribution function F̆(y; x) =
1− e−(yβ−yβ

c ), y > yc. We choose β = 4/3, two different values for ε, namely
0.005 and 0.01, and yc = 1.2 times the 95 % quantile of the uncontaminated
distribution F ;

– a shifted strict Pareto distribution, with distribution function F̆(y; x) = 1 −
(y/yc)−1/γ , y > yc. We choose γ = 1/4, the same fractions of contamination
ε and two values for the shift parameter yc: yc = 1.2 and 1.35 times the 95 %
quantile of the uncontaminated distribution F .

Note that the contamination from a shifted strict Pareto distribution is more severe
than that from a shifted strict Weibull. Indeed, the strict Pareto distribution is in the
max-domain of attraction of the Fréchet distribution, for which γ > 0, and consists
of heavy-tailed distributions, whereas the strict Weibull distribution is in fact in
the same class as the main distribution function F and thus having γ = 0, though
shifted. In the simulation experiment, we also considered other values for β, γ and
yc, but those lead to similar results and therefore we do not include these here for
brevity.

Each time N = 100 samples of size n = 1,000 are generated. Both meth-
ods are implemented on M = 37 values of x , equally spaced in [0, 1], namely
{0.05, 0.075, . . . , 0.925, 0.95}. In all the settings, the minimization (7) is performed
on a grid H = {0.05, 0.075, . . . , 0.15} and kmax = 25.
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Table 1 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the case where there is no contamination

Distribution Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.051 0.004 0.065 0.095 0.014 0.097

0.25 0.053 0.005 0.067 0.095 0.014 0.099

0.5 0.059 0.006 0.076 0.096 0.015 0.104

1 0.070 0.008 0.088 0.098 0.016 0.109

2 0.079 0.010 0.100 0.101 0.017 0.111

EW(1/θ(x),−1) 0.1 0.053 0.005 0.065 0.089 0.013 0.100

0.25 0.055 0.005 0.068 0.089 0.013 0.102

0.5 0.060 0.006 0.075 0.091 0.014 0.107

1 0.068 0.007 0.085 0.093 0.014 0.110

2 0.068 0.007 0.085 0.093 0.014 0.110

W̃(1/θ(x), −5) 0.1 0.062 0.006 0.062 0.077 0.009 0.084

0.25 0.063 0.006 0.066 0.077 0.009 0.084

0.5 0.069 0.007 0.074 0.079 0.010 0.086

1 0.075 0.009 0.086 0.083 0.010 0.090

2 0.082 0.010 0.092 0.084 0.011 0.091

As indicators of efficiency we compute the bias, together with the mean-squared
error and the standard error

Bias(θ̂(.)) := 1

MN

M∑
m=1

N∑
i=1

∣∣∣θ̂ (i)(zm) − θ(zm)

∣∣∣ ,

MSE(θ̂(.)) := 1

MN

M∑
m=1

N∑
i=1

[
θ̂ (i)(zm) − θ(zm)

]2
,

SD(θ̂(.)) :=
√√√√ 1

M

M∑
m=1

1

N − 1

N∑
i=1

(
θ̂ (i)(zm) − θ̂ (zm)

)2
,

where θ̂ (zm) = 1
N

∑N
i=1 θ̂ (i)(zm) and θ̂ (i)(zm) is the estimate of θ(zm) obtained with

the i th sample and our estimator θ̂ (x) is evaluated at points z1, . . . , zM regularly
spaced in [0, 1].

The box plots based on the 100 simulations in the uncontaminated case are given
in Fig. 2 for the Oracle approach and Fig. 3 for the data-driven method. Overall,
both methods perform quite well, with, as expected, a better performance with the
Oracle approach, which is also confirmed by the bias, the standard deviation and the
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Fig. 4 Results for the Oracle method for the three distributions with shifted strict Weibull contamination,
ε = 0.005, β = 4/3 and different values of α. Row 1 contaminated strict Weibull, row 2 contaminated
extended Weibull, row 3 contaminated perturbed Weibull; Column 1 α = 0.1, column 2 α = 0.5, column
3 α = 1

MSE given in Table 1. In addition, we can observe that all these indicators slightly
increase with α whatever the method used. The increase in standard deviation when α

increases is in line with the decreasing efficiency of the MDPD method for increasing
α, as mentioned before.

Now, we consider setting 4 where the distribution is contaminated. Figures 4 and 5
summarize the results for ε = 0.005 with the Oracle and data-driven approach,
respectively, when the contamination is generated from the shifted strict Weibull dis-
tribution. The corresponding results for the strict Pareto contamination are shown
in Figs. 6 and 7 when yc = 1.2 times the 95 % quantile of the uncontaminated
distribution and in Figs. 8 and 9 when 1.2 is replaced by 1.35. Again, the Oracle
strategy outperforms the data-driven method, but the latter is still acceptable and fits
quite well the curve of the function θ . Note also that if we increase the value of
yc, the fit deteriorates since the contamination becomes heavier. Similar comments
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Fig. 5 Results for the data-driven strategy for the three distributions with shifted strict Weibull contamina-
tion, ε = 0.005, β = 4/3 and different values of α. Row 1 contaminated strict Weibull, row 2 contaminated
extended Weibull, row 3 contaminated perturbed Weibull; Column 1 α = 0.1, column 2 α = 0.5, column
3 α = 1

can be made in terms of bias, standard deviation and MSE, reported in Tables 2 and
3, for ε = 0.005 and ε = 0.01, respectively, in case of strict Weibull contamina-
tion, and in Tables 4 and 5 in case of strict Pareto contamination with yc = 1.2
times the 95 % quantile of the uncontaminated distribution and Tables 6 and 7 when
1.2 is replaced by 1.35. Indeed, based on these tables we can draw the following
conclusions:

• The Oracle strategy clearly outperforms the data-driven method, and, as expected,
the estimates obtained with both methods deteriorate in terms of bias, MSE and
standard deviation when the proportion of contamination ε increases.

• Unlike the uncontaminated cases where the smallest value of α, here 0.1, gave
the best results, we see now that a larger value of α is needed to deal with the
contamination. For the Oracle method the results in the tables suggest taking α =
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Fig. 6 Results for the Oracle method for the three distributions with shifted strict Pareto contamination,
ε = 0.005, γ = 1/4, yc = 1.2 times the 95 % quantile of the uncontaminated distribution and different
values of α. Row 1 contaminated strict Weibull, row 2 contaminated extended Weibull, row 3 contaminated
perturbed Weibull; Column 1 α = 0.1, column 2 α = 0.5, column 3 α = 1

0.25 or α = 0.5, while for the data-driven method a larger value of α seems to be
needed, say α = 1 or α = 2.

• The results for the contamination from the shifted strict Weibull and strict Pareto
distributions are similar, with bias, MSE and standard deviation being of the same
order of magnitude in case where yc = 1.2 times the 95 % quantile of the unconta-
minated distribution. This can possibly be explained by the fact that if we compare
the mean of the first two moments of the contaminated samples in both cases, they
are quite similar, despite the heavier tail in case of contamination by a strict Pareto
distribution. However, if we increase the contamination by increasing the value of
yc, the results deteriorate a bit while still remaining acceptable.

Summarized, we can state that the proposedMDPD estimator for the tail coefficient
ofWeibull-type distributions is a promising new estimator. Indeed, on uncontaminated
data the estimation results do not indicate the typical bias issues that occur in prac-
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Fig. 7 Results for the data-driven strategy for the three distributionswith shifted strict Pareto contamination,
ε = 0.005, γ = 1/4, yc = 1.2 times the 95 % quantile of the uncontaminated distribution and different
values of α. Row 1 contaminated strict Weibull, row 2 contaminated extended Weibull, row 3 contaminated
perturbed Weibull. Column 1 α = 0.1, column 2 α = 0.5, column 3 α = 1

tice when estimating Weibull-type tails, as experienced in, among others, Gardes and
Girard (2008b) and Goegebeur et al. (2010) in the univariate context. Also in case
of contamination, the method continues to work well, despite the fact that the con-
tamination was quite severe in terms of shift and tail heaviness of the contaminating
distribution.

4 Conclusion and future work

In this paper we introduced a nonparametric robust estimator for the conditional
Weibull-tail coefficient, which is obtained by the local fitting of an approximation
to the distribution of the relative excesses over a high threshold by theMDPDmethod.
The method showed a good performance on simulated data, both in situations with
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Fig. 8 Results for the Oracle method for the three distributions with shifted strict Pareto contamination,
ε = 0.005, γ = 1/4, yc = 1.35 times the 95 % quantile of the uncontaminated distribution and different
values of α. Row 1 contaminated strict Weibull, row 2 contaminated extended Weibull, row 3 contaminated
perturbed Weibull. Column 1 α = 0.1, column 2 α = 0.5, column 3 α = 1

and without outliers, and does not seem to suffer from the typical bias issues that are
encountered when fitting Weibull-type tails. Our paper is a first contribution to robust
estimation of conditional Weibull-type tails with random covariates, and therefore we
focused initially on the study of local asymptotic properties, which is already challeng-
ing, but it can also be of interest to study uniform or stochastic process properties of
the proposed method. So far, uniform or stochastic process properties of estimators of
the conditional tail index with random covariates are seldom considered in the extreme
value literature. In the framework of local estimation of conditional Pareto-type tails
with random covariates—which is generally much better explored than conditional
Weibull-type tails—there are to the best of our knowledge only two contributions on
uniform convergence available: Gardes and Stupfler (2013), who study the uniform
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Fig. 9 Results for the data-driven strategy for the three distributionswith shifted strict Pareto contamination,
ε = 0.005, γ = 1/4, yc = 1.35 times the 95 % quantile of the uncontaminated distribution and different
values of α. Row 1 contaminated strict Weibull, row 2 contaminated extended Weibull, row 3 contaminated
perturbed Weibull. Column 1 α = 0.1, column 2 α = 0.5, column 3 α = 1

weak consistency of a smoothed Hill estimator, and Goegebeur et al. (2013b) where
the uniform almost sure convergence of a local Hill-type estimator is established.
These papers are highly technical in nature even though they consider in fact only
estimators which are in structure quite simple—much simpler than, e.g., the MDPD
estimator considered in the present paper which is not explicitly available. At this stage
it remains uncertain whether in the setting of conditional Pareto-type tails with random
covariates, one can obtain a weak limit for the properly normalized conditional tail
index estimator considered as a stochastic process. In future work we intend to estab-
lish the uniform consistency of nonparametric estimators for conditional Weibull-type
tails, as well as to examine their properties when considered as stochastic processes.
In the first instance we will though focus on estimators that are explicitly available
and thus have a simpler structure than the MDPD estimator considered in the present
paper.
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Table 2 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Weibull contaminated case with ε = 0.005
and β = 4/3

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.068 0.008 0.086 0.173 0.057 0.170

0.25 0.062 0.007 0.079 0.148 0.041 0.151

0.5 0.064 0.007 0.081 0.130 0.031 0.138

1 0.072 0.009 0.091 0.126 0.028 0.133

2 0.080 0.011 0.102 0.130 0.029 0.132

EW(1/θ(x),−1) 0.1 0.069 0.008 0.089 0.179 0.058 0.175

0.25 0.062 0.006 0.079 0.150 0.040 0.154

0.5 0.064 0.007 0.081 0.130 0.029 0.141

1 0.071 0.008 0.089 0.124 0.026 0.135

2 0.076 0.009 0.095 0.125 0.026 0.134

W̃(1/θ(x), −5) 0.1 0.074 0.008 0.082 0.142 0.044 0.175

0.25 0.069 0.008 0.077 0.117 0.029 0.151

0.5 0.074 0.009 0.082 0.102 0.020 0.132

1 0.079 0.010 0.090 0.098 0.017 0.121

2 0.083 0.011 0.095 0.097 0.016 0.119

Table 3 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Weibull contaminated case with ε = 0.01
and β = 4/3

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.082 0.012 0.099 0.257 0.117 0.208

0.25 0.069 0.008 0.087 0.228 0.094 0.200

0.5 0.068 0.008 0.087 0.193 0.069 0.182

1 0.076 0.010 0.097 0.177 0.057 0.167

2 0.084 0.012 0.107 0.178 0.056 0.162

EW(1/θ(x),−1) 0.1 0.078 0.011 0.100 0.251 0.108 0.214

0.25 0.067 0.008 0.087 0.209 0.078 0.197

0.5 0.067 0.008 0.086 0.171 0.054 0.177

1 0.074 0.009 0.093 0.157 0.044 0.160

2 0.080 0.010 0.100 0.157 0.043 0.154

W̃(1/θ(x), −5) 0.1 0.083 0.011 0.097 0.198 0.078 0.204

0.25 0.074 0.009 0.086 0.160 0.055 0.190

0.5 0.075 0.009 0.086 0.130 0.036 0.168

1 0.080 0.010 0.093 0.118 0.027 0.149

2 0.084 0.011 0.099 0.114 0.025 0.141
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Table 4 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Pareto contaminated case with ε =
0.005, γ = 1/4, yc = 1.2 times the 95 % quantile of the uncontaminated distribution

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.066 0.008 0.076 0.147 0.043 0.152

0.25 0.062 0.006 0.069 0.125 0.028 0.125

0.5 0.066 0.007 0.075 0.114 0.023 0.118

1 0.075 0.009 0.084 0.114 0.023 0.119

2 0.083 0.011 0.093 0.117 0.025 0.121

EW(1/θ(x),−1) 0.1 0.069 0.008 0.076 0.142 0.039 0.146

0.25 0.063 0.006 0.069 0.123 0.029 0.130

0.5 0.067 0.007 0.072 0.111 0.023 0.121

1 0.072 0.008 0.078 0.108 0.021 0.118

2 0.083 0.011 0.093 0.109 0.021 0.117

W̃(1/θ(x), −5) 0.1 0.078 0.010 0.078 0.129 0.037 0.162

0.25 0.071 0.008 0.069 0.103 0.020 0.120

0.5 0.076 0.009 0.073 0.097 0.016 0.107

1 0.083 0.010 0.081 0.097 0.016 0.104

2 0.088 0.012 0.086 0.096 0.015 0.104

Table 5 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Pareto contaminated case with ε =
0.01, γ = 1/4, yc = 1.2 times the 95 % quantile of the uncontaminated distribution

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.078 0.009 0.071 0.196 0.071 0.185

0.25 0.079 0.009 0.071 0.154 0.045 0.157

0.5 0.083 0.011 0.077 0.129 0.032 0.141

1 0.090 0.012 0.085 0.123 0.028 0.134

2 0.096 0.014 0.090 0.124 0.028 0.132

EW(1/θ(x),−1) 0.1 0.078 0.010 0.085 0.187 0.068 0.178

0.25 0.072 0.008 0.075 0.152 0.042 0.147

0.5 0.072 0.008 0.075 0.132 0.030 0.133

1 0.079 0.010 0.082 0.124 0.027 0.126

2 0.085 0.011 0.089 0.124 0.027 0.124

W̃(1/θ(x), −5) 0.1 0.086 0.011 0.086 0.167 0.055 0.180

0.25 0.075 0.009 0.076 0.127 0.030 0.142

0.5 0.078 0.009 0.078 0.110 0.021 0.122

1 0.083 0.011 0.084 0.104 0.018 0.115

2 0.088 0.012 0.089 0.102 0.018 0.113
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Table 6 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Pareto contaminated case with ε =
0.005, γ = 1/4, yc = 1.35 times the 95 % quantile of the uncontaminated distribution

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.073 0.009 0.083 0.171 0.058 0.190

0.25 0.066 0.007 0.073 0.141 0.040 0.163

0.5 0.067 0.007 0.073 0.123 0.030 0.148

1 0.074 0.009 0.081 0.118 0.026 0.138

2 0.083 0.011 0.090 0.121 0.026 0.136

EW(1/θ(x),−1) 0.1 0.074 0.009 0.082 0.173 0.061 0.196

0.25 0.068 0.007 0.073 0.145 0.041 0.168

0.5 0.071 0.008 0.075 0.130 0.031 0.152

1 0.076 0.009 0.082 0.124 0.027 0.145

2 0.082 0.011 0.089 0.123 0.027 0.143

W̃(1/θ(x), −5) 0.1 0.083 0.011 0.084 0.145 0.048 0.198

0.25 0.073 0.008 0.073 0.119 0.030 0.163

0.5 0.075 0.009 0.076 0.103 0.020 0.138

1 0.082 0.010 0.083 0.099 0.018 0.130

2 0.088 0.012 0.088 0.098 0.017 0.128

Table 7 Bias, mean-squared error and standard deviation of theMDPD estimator for the three distributions,
the two approaches and different values of α in the shifted strict Pareto contaminated case with ε =
0.01, γ = 1/4, yc = 1.35 times the 95 % quantile of the uncontaminated distribution

Distribution F Value of α Oracle Data-driven

Bias MSE SD Bias MSE SD

W(1/θ(x), 1) 0.1 0.089 0.014 0.098 0.226 0.093 0.218

0.25 0.077 0.010 0.085 0.186 0.066 0.194

0.5 0.076 0.009 0.082 0.154 0.046 0.173

1 0.081 0.010 0.086 0.140 0.037 0.156

2 0.087 0.012 0.094 0.141 0.036 0.151

EW(1/θ(x),−1) 0.1 0.089 0.013 0.099 0.237 0.104 0.233

0.25 0.080 0.010 0.085 0.195 0.072 0.206

0.5 0.078 0.010 0.082 0.163 0.051 0.184

1 0.083 0.011 0.086 0.148 0.041 0.169

2 0.088 0.012 0.092 0.145 0.039 0.163

W̃(1/θ(x), −5) 0.1 0.089 0.013 0.094 0.183 0.067 0.215

0.25 0.082 0.010 0.083 0.143 0.039 0.177

0.5 0.084 0.011 0.085 0.120 0.026 0.157

1 0.086 0.011 0.088 0.111 0.022 0.145

2 0.091 0.013 0.093 0.108 0.020 0.139
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Appendix

Proof of Lemma 1

The case α = β = r = 0 is trivial, so we only consider case (ii). Let pn := F(un; x).
We remark that

m(un, α, β, r; x) = E

⎛
⎝e−cnα

[(
Q(U ;x)
Q(pn ;x)

)1/θ(x)−1

] (
Q(U ; x)
Q(pn; x)

)β

×
(
ln

Q(U ; x)
Q(pn; x)

)r

+
1

{Q(U ;x)>Q(pn;x)}

)

=
∫ p̃n

pn
e
−cnα

[(
Q(u;x)
Q(pn ;x)

)1/θ(x)−1

] (
Q(u; x)
Q(pn; x)

)β (
ln

Q(u; x)
Q(pn; x)

)r

du

+
∫ 1

p̃n
e
−cnα

[(
Q(u;x)
Q(pn ;x)

)1/θ(x)−1

] (
Q(u; x)
Q(pn; x)

)β(
ln

Q(u; x)
Q(pn; x)

)r

du

=: m(1)(un, α, β, r; x) + m(2)(un, α, β, r; x),

where U is a uniform [0, 1] random variable and p̃n := 1 − 1−pn
ln e

1−pn
.

We will study the two terms separately. First, we remark that

Q(u; x)
Q(pn; x) =

(
1 + − ln 1−u

1−pn

− ln(1 − pn)

)θ(x) �

((
1 + − ln 1−u

1−pn
− ln(1−pn)

)
(− ln(1 − pn)); x

)

�(− ln(1 − pn); x) .

(9)

Thus by the change of variable z = 1−u
1−pn

, Assumption (R) and the bound ρ(x)−1
2 z2 ≤

Dρ(x)(1 + z) − z ≤ 0, for z ≥ 0, we deduce that

m(1)(un, α, β, r; x) = (1 − pn)

×
∫ 1

1− p̃n
1−pn

e
−cnα

[(
1+ − ln z

cn

)(
1+b(cn;x)Dρ(x)

(
1+ − ln z

cn

)
(1+o(1))

)1/θ(x)−1

]

×
(
1 + − ln z

cn

)θ(x)β (
1 + b(cn; x)Dρ(x)

(
1 + − ln z

cn

)
(1 + o(1))

)β

×
(
ln

[(
1+− ln z

cn

)θ(x) (
1+b(cn; x)Dρ(x)

(
1 + − ln z

cn

)
(1 + o(1))

)])r

dz

= (1 − pn)
∫ 1

1− p̃n
1−pn

zα
[
θr (x)

(− ln z

cn

)r

+ θr (x)
(
θ(x)β − r

2

)(− ln z

cn

)r+1
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+ rθr−1(x)

(− ln z

cn

)r

b(cn; x)(1 + o(1)) − αθr−1(x)
(− ln z)r+1

crn
b(cn; x)

× (1 + o(1)) + O

((− ln z

cn

)r+2
)]

dz.

Now, we remark that

∫ 1

1− p̃n
1−pn

zα(− ln z)rdz = 1

(1 + α)r+1
{	(r + 1) − 	(r + 1, (1 + α) ln(1 + cn))} .

Thus,

m(1)(un, α, β, r; x) = (1 − pn)
	(1 + r)

(1 + α)1+r
θr (x)

×
{
c−r
n + θ(x)β

1 + α
c−1
n 1{r=0} + r − α

1 + α

b(cn; x)
θ(x)

c−r
n

−c−1−α
n 1{r=0} + o(b(cn; x)c−r

n ) + O

(
ln cn

c2+α
n

1{r=0}
)

+ O

(
1

c2n
1{r=0}

)

+O

(
(ln cn)r

c1+r+α
n

1{r>0}
)

+ O

(
1

c1+r
n

1{r>0}
)}

.

Now, concerning the m(2)(un, α, β, r; x) term, using the monotonicity of Q and of
the exponential function leads to the inequality

m(2)(un, α, β, r; x) ≤ e
−cnα

[(
Q(̃pn ;x)
Q(pn ;x)

)1/θ(x)−1

]∫ 1

p̃n

(
Q(u; x)
Q(pn; x)

)β (
ln

Q(u; x)
Q(pn; x)

)r

du

=: T1 × T2.

Clearly, using (9), Assumption (R) and the bound for Dρ(x)(1 + .), we have

(
Q( p̃n; x)
Q(pn; x)

)1/θ(x)

= 1 + b (cn; x)
θ(x)

ln(1 + cn)

cn
(1 + o(1)) + ln(1 + cn)

cn
.

This implies that

T1 = e−α ln(1+cn)e− α
θ(x) b(cn;x) ln(1+cn)(1+o(1)) = c−α

n (1 + o(1))

since ρ(x) < 0.
Now, concerning the term T2, using the tail quantile function U (y; x) :=

Q
(
1 − 1

y ; x
)

, y > 1, combined with the change of variables z = 1−pn
1−u , we deduce
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that

T2 = (1 − pn)

⎛
⎝ a

(
1

1−pn
; x
)

U
(

1
1−pn

; x
)
⎞
⎠

r

×
∫ ∞

1+cn

⎡
⎣1 +

a
(

1
1−pn

; x
)

U
(

1
1−pn

; x
) U

(
z

1−pn
; x
)

−U
(

1
1−pn

; x
)

a
(

1
1−pn

; x
)

⎤
⎦

β

1

z2

×
⎛
⎝ lnU

(
z

1−pn
; x
)

− lnU
(

1
1−pn

; x
)

a
(

1
1−pn

; x
)

/U
(

1
1−pn

; x
)

⎞
⎠

r

dz,

where a is the positive function that appears in themax-domain of attraction condition

U (t x) −U (t)

a(t)
→ ln x, as t → ∞, for all x > 0.

We have to study two cases depending on the sign of β.
First case: β ≤ 0. Using the fact that U (.) is an increasing function combined

with Corollary B.2.10 in de Haan and Ferreira (2006, p. 376), we deduce that for pn
sufficiently large and ε sufficiently small that

T2 ≤ (1 − pn)

⎛
⎝ a

(
1

1−pn
; x
)

U
(

1
1−pn

; x
)
⎞
⎠

r

O
(
crε−1
n

)
= O

(
1 − pn

c1+r−rε
n

)
,

where we have also used that

a
(

1
1−pn

; x
)

U
(

1
1−pn

; x
) = O

(
1

cn

)
, as pn ↑ 1,

see, e.g., the proof of Lemma 1 in de Wet et al. (2013).
Second case: β > 0. Using again Corollary B.2.10 in de Haan and Ferreira (2006,

p. 376), we have for pn sufficiently large, δ and δ̃ positive constants, and ε and ε̃

sufficiently small that

T2 ≤ (1 − pn)δ
r

⎛
⎝ a

(
1

1−pn
; x
)

U
(

1
1−pn

; x
)
⎞
⎠

r+β

δ̃β

×
⎡
⎣1 +

U
(

1
1−pn

; x
)

a
(

1
1−pn

; x
) 1

δ̃(1 + cn )̃ε

⎤
⎦

β ∫ ∞

1+cn
zβε̃+rε−2 dz
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= (1 − pn)δ
r 1

(1 + cn )̃εβ

⎛
⎝ a

(
1

1−pn
; x
)

U
(

1
1−pn

; x
)
⎞
⎠

r

×
⎡
⎣1 +

a
(

1
1−pn

; x
)

U
(

1
1−pn

; x
) δ̃(1 + cn )̃

ε

⎤
⎦

β ∫ ∞

1+cn
zβε̃+rε−2 dz = O

(
1 − pn

c1+r−rε
n

)
.

Finally

m(2)(un, α, β, r; x) = O

(
1 − pn

c1+r+α−rε
n

)
.

Combining all these results together leads to Lemma 1. ��

Proof of Lemma 2

From the rule of repeated expectations, we have that

mn(K , α, β, r; x) = E(Kh(x − X)m(un, α, β, r; X)).

Straightforward operations give

mn(K , α, β, r; x) =
∫

�

K (z)m(un, α, β, r; x − hz) f (x − hz) dz

= m(un, α, β, r; x) f (x) + m(un, α, β, r; x)
∫

�

K (z)( f (x − hz) − f (x)) dz

+ f (x)
∫

�

K (z)(m(un, α, β, r; x − hz) − m(un, α, β, r; x)) dz

+
∫

�

K (z)(m(un, α, β, r; x − hz) − m(un, α, β, r; x))( f (x − hz) − f (x)) dz

=: m(un, α, β, r; x) f (x) + T3 + T4 + T5.

We now analyze each of the terms separately. By (F) and (K), we have that

|T3| ≤ m(un, α, β, r; x)M f

∫
�

K (z)‖hz‖η f dz

= O(m(un, α, β, r; x)hη f ),

and, by (M) and (K),

|T4| ≤ f (x)m(un, α, β, r; x)
∫

�

K (z)

∣∣∣∣m(un, αβ, r; x − hz)

m(un, α, β, r; x) − 1

∣∣∣∣ dz
= O(m(un, α, β, r; x)�n(x)).
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Using similar arguments, one obtains T5 = O(m(un, α, β, r; x)hη f �n(x)). This
proves the statement about the unconditional expectation.

For what concerns the convergence in probability, we already have from the first
part of the proof that

E
(
T̃n(K , α, β, r; x)) = θr (x)	(1 + r)

(1 + α)1+r
(1 + o(1)).

Also, again by using the result from the first part of the proof

Var
(
T̃n(K , α, β, r; x))

=
c2rn Var

⎛
⎝Kh(x − X)e

−cnα

[(
Y
un

)1/θ(x)−1

] (
Y
un

)β (
ln Y

un

)r
+ 1{Y>un}

⎞
⎠

n(F(un; x) f (x))2

= θ2r (x)‖K‖22	(1 + 2r)

(1 + 2α)1+2r nh pF(un; x) f (x)
(1 + o(1)).

Thus,

Var
(
T̃n(K , α, β, r; x)) → 0

under the assumptions of the lemma and the convergence in probability follows. ��

Proof of Corollary 1

First, note that

f̂n(x) := 1

n

n∑
i=1

Kh(x − Xi ),

is a classical kernel density estimator for f . As shown in Parzen (1962), if nh p → ∞,

then for all x ∈ R
p where f (x) > 0 one has that f̂n(x)

P→ f (x). The result follows
then by noting that

F̂(un; x)
F(un; x)

= f (x)

f̂n(x)
T̃n(K , 0, 0, 0; x).

Proof of Theorem 1

To prove the theorem, we will adjust the arguments used to prove the existence and
consistency of solutions of the likelihood estimating equation, see e.g., Theorem 3.7
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and Theorem 5.1 in Chapter 6 of Lehmann and Casella (1998), to the MDPD frame-
work. We rescale the objective function �̂α(θ; ĉn) as

�̃α(θ; ĉn) := �̂α(θ; ĉn)
F(un; x) f (x)cα

n

.

First, we will show that

Pθ0(x)(�̃α(θ0(x); ĉn) < �̃α(θ; ĉn)) → 1 (10)

as n → ∞, for any θ sufficiently close to θ0(x).
By Taylor’s theorem

�̃α (θ; ĉn) − �̃α (θ0(x); ĉn) = �̃′
α (θ0(x); ĉn) (θ − θ0(x)) + 1

2
�̃′′

α (θ0(x); ĉn)

× (θ − θ0(x))
2 + 1

6
�̃′′′

α

(
θ̃; ĉn

)
(θ − θ0(x))

3,

where θ̃ is a value between θ and θ0(x). The term �̃′
α(θ0(x); ĉn) can be obtained from

(4). Write �̃′
α(θ0(x); ĉn) =: R1 + R2 + R3 − R4. For analyzing the term R1, we use

the recursive relationships

	(a, b) = e−bba−1 + (a − 1)	(a − 1, b),

�(a, b) = e−bba−1 ln b + (a − 1)�(a − 1, b) + 	(a − 1, b),

Lemma 2, and the consistency of F̂(un; x), giving

R1
P→ − α

θα+1
0 (x)(1 + α)

.

For R2 we rearrange the terms to obtain

R2 = 1 + α

θα+1
0 (x)

(1 + oP(1))

{
Tn(K , α, α(1/θ0(x) − 1), 0; x)

F(un; x) f (x)

+

1
n

∑n
i=1 Kh(x − Xi )

⎡
⎣e−ĉnα

[(
Yi
un

)1/θ0 (x)−1

]
− e

−cnα

[(
Yi
un

)1/θ0 (x)−1

]⎤
⎦( Yi

un

)α(1/θ0(x)−1)
1{Yi>un }

F(un; x) f (x)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=: 1 + α

θα+1
0 (x)

(R2,1 + R2,2)(1 + oP(1)).
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By Lemma 2, we have that R2,1
P→ (1 + α)−1. For the term R2,2, we use the mean

value theorem to obtain, with c̃n being a random value between cn and ĉn ,

R2,2 = α ln
F̂(un; x)
F(un; x)

×

⎡
⎢⎢⎢⎣

1
n

∑n
i=1 Kh(x − Xi )e

−c̃nα

[(
Yi
un

)1/θ0(x)−1
] (

Yi
un

)α(1/θ0(x)−1)+1/θ0(x)
1{Yi>un}

F(un; x) f (x)

−
1
n

∑n
i=1 Kh(x − Xi )e

−c̃nα

[(
Yi
un

)1/θ0(x)−1

] (
Yi
un

)α(1/θ0(x)−1)
1{Yi>un}

F(un; x) f (x)

⎤
⎥⎥⎥⎦

=: α ln
F̂(un; x)
F(un; x)

(R2,2,1 − R2,2,2),

which can be easily bounded as follows:

R2,2,1 ≤
1
n

∑n
i=1 Kh(x − Xi )

(
Yi
un

)α(1/θ0(x)−1)+1/θ0(x)
1{Yi>un}

F(un; x) f (x)
= OP(1),

R2,2,2 ≤
1
n

∑n
i=1 Kh(x − Xi )

(
Yi
un

)α(1/θ0(x)−1)
1{Yi>un}

F(un; x) f (x)
= OP(1),

and, therefore, by the consistency of F̂(un; x), the convergence R2,2
P→ 0 follows.

Combining all results gives

R2
P→ 1

θα+1
0 (x)

.

The terms R3 and R4 can be analyzed in an analogous way and yield

R3
P→ 0 and R4

P→ 1

θα+1
0 (x)(1 + α)

.

Thus, �̃′
α(θ0(x); ĉn) P→ 0. Let |θ − θ0(x)| = r, r > 0. With probability tending to 1,

we have that

∣∣�̃′
α(θ0(x); ĉn)(θ − θ0(x))

∣∣ < r3.
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We now turn to the analysis of �̃′′
α(θ0(x); ĉn). Let

φ(a, b) :=
∫ ∞

b
ln2 z za−1e−z dz,

and

T̂n(K , α, β, r; x) := 1

n

n∑
i=1

Kh(x − Xi )e
−ĉnα

[(
Yi
un

)1/θ0(x)−1

]

×
(
Yi
un

)β (
ln

Yi
un

)r

+
1{Yi>un}.

Note that the function φ(a, b) satisfies the recursive relationship

φ(a, b) = e−bba−1 ln2 b + (a − 1)φ(a − 1, b) + 2�(a − 1, b). (11)

After tedious calculations, one obtains the following expression for �̃′′
α(θ0(x); ĉn):

�̃′′
α(θ0(x); ĉn)

= Tn(K , 0, 0, 0; x)
F(un; x) f (x)

eĉn(1+α)ĉ αθ0(x)
n

θα+2
0 (x)(1 + α)1+α(1−θ0(x))cα

n

× {α(1 + α)	(α(1 − θ0(x)) + 1, ĉn(1 + α)) + 2α2θ0(x)�(α(1 − θ0(x))

+ 1, ĉn(1 + α)) + α2θ20 (x)φ(α(1 − θ0(x)) + 1, ĉn(1 + α))

− 2α2θ0(x) ln(̂cn(1 + α))[	(α(1 − θ0(x)) + 1, ĉn(1 + α))

+ θ0(x)�(α(1 − θ0(x)) + 1, ĉn(1 + α))]
+ α2θ20 (x) ln2(̂cn(1 + α))	(α(1 − θ0(x)) + 1, ĉn(1 + α))}
− (α + 1)2ĉ α

n

θα+2
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1), 0; x)
F(un; x) f (x)

− 2(α + 1)2ĉ α
n

θα+3
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1), 1; x)
F(un; x) f (x)

+ 2(α + 1)2ĉ α+1
n

θα+3
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1) + 1/θ0(x), 1; x)
F(un; x) f (x)

− α(1 + α)̂c α
n

θα+4
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1), 2; x)
F(un; x) f (x)

+ (1 + 2α)(1 + α)̂c α+1
n

θα+4
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1) + 1/θ0(x), 2; x)
F(un; x) f (x)

− α(1 + α)̂c α+2
n

θα+4
0 (x)cα

n

T̂n(K , α, α(1/θ0(x) − 1) + 2/θ0(x), 2; x)
F(un; x) f (x)

.
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By a line of argumentation similar to that used for �̃′
α(θ0(x); ĉn) and also using (11),

one obtains that under the conditions of the theorem

�̃′′
α(θ0(x); ĉn) P→ 1 + α2

θα+2
0 (x)(1 + α)2

. (12)

Write

1

2
�̃′′

α(θ0(x); ĉn)(θ − θ0(x))
2 = 1 + α2

2θα+2
0 (x)(1 + α)2

(θ − θ0(x))
2

+ 1

2

(
�̃′′

α(θ0(x); ĉn) − 1 + α2

θα+2
0 (x)(1 + α)2

)
(θ − θ0(x))

2.

The random part in the right-hand side of the above display is in absolute value less
than r3 with probability tending to 1. There exist thus a δ1 > 0 and an r0 > 0 such
that for r < r0

1

2
�̃′′

α(θ0(x); ĉn)(θ − θ0(x))
2 > δ1r

2

with probability tending to 1.
For the third-order derivative, one can show that |�̃′′′

α (θ; ĉn)| ≤ M(V ), where

V := [(X1,Y1), . . . , (Xn,Yn)], for θ ∈ (θ0(x) − r, θ0(x) + r), with M(V )
P→ M ,

which is bounded. The derivation is straightforward but lengthy and is therefore omit-
ted from the paper. We can thus conclude that with probability tending to 1,

1

6
|�̃′′′

α (θ̃; ĉn)(θ − θ0(x))
3| <

1

3
Mr3.

Overall, we have that with probability tending to 1,

�̃α(θ; ĉn) − �̃α(θ0(x); ĉn) > δ1r
2 − (1 + M/3)r3,

which is positive if r < δ1/(1 + M/3) and thus (10) follows.
To complete the proof, we adjust the line of argumentation of Theorem 3.7 in Chap-

ter 6 of Lehmann and Casella (1998). Let δ > 0 be such that θ0(x)−δ > 0 and define

Sn(δ) = {
v : �̃α(θ0(x); ĉn) < �̃α(θ0(x) − δ; ĉn)

and �̃α(θ0(x); ĉn) < �̃α(θ0(x) + δ; ĉn)
}
.

For any v ∈ Sn(δ), since �̃α(θ; ĉn) is differentiable with respect to θ , we have that
there exists a θ̂n,δ(x) ∈ (θ0(x) − δ, θ0(x) + δ) where �̃α(θ; ĉn) achieves a local
minimum, so �̃′

α(θ̂n,δ(x); ĉn) = 0. By the first part of the proof of the theorem,
Pθ0(x)(Sn(δ)) → 1 for any δ small enough, and hence there exists a sequence δn ↓ 0
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such that Pθ0(x)(Sn(δn)) → 1 as n → ∞. Now, let θ̂∗
n (x) = θ̂n,δn (x) if v ∈ Sn(δn)

and arbitrary otherwise. Since v ∈ Sn(δn) implies �̃′
α(θ̂∗

n (x); ĉn) = 0, we have that

Pθ0(x)(�̃
′
α(θ̂∗

n (x); ĉn) = 0) ≥ Pθ0(x)(Sn(δn)) → 1,

as n → ∞, which establishes the existence part. For the consistency of the solution
sequence, note that for any fixed δ > 0 and n large enough

Pθ0(x)(|θ̂∗
n (x) − θ0(x)| < δ) ≥ Pθ0(x)(|θ̂∗

n (x) − θ0(x)| < δn) ≥ Pθ0(x)(Sn(δn)) → 1,

as n → ∞, whence the consistency of the estimator sequence. ��

Proof of Theorem 2

Let rn :=
√
nh pF(un; x). To prove the theoremwewill make use of the Cramér-Wold

device (see e.g., Severini 2005, p. 337) according to which it is sufficient to show that

�n := ξ ′rn[Tn − E(Tn)] � N

(
0,

1

f (x)
ξ ′�ξ

)
,

for all ξ ∈ R
J .

Take an arbitrary ξ ∈ R
J . A straightforward rearrangement of terms leads to

�n =
n∑

i=1

√
h p

nF(un; x)
1

f (x)

×
⎡
⎣ J∑

j=1

ξ j c
r j
n K j,h(x − Xi )e

−cnα j

[(
Yi
un

)1/θ0(x)−1

] (
Yi
un

)β j
(
ln

Yi
un

)r j

+
1{Yi>un}

−E

⎛
⎝ J∑

j=1

ξ j c
r j
n K j,h(x−Xi )e

−cnα j

[(
Yi
un

)1/θ0(x)−1

] (
Yi
un

)β j

×
(
ln

Yi
un

)r j

+
1{Yi>un}

)]
=:

n∑
i=1

Wi .

By the model assumptions, W1, . . . ,Wn are i.i.d. random variables, and therefore
Var(�n) = nVar(W1). We have

Var(W1) = h p

nF(un; x) f 2(x)
J∑

j=1

J∑
k=1

ξ jξkc
r j+rk
n C j,k,

with
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C j,k := E

⎡
⎣K j,h(x − X1)Kk,h(x − X1)e

−cn(α j+αk )

[(
Y1
un

)1/θ0(x)−1

]

×
(
Y1
un

)β j+βk
(
ln

Y1
un

)r j+rk

+
1{Y1>un}

⎤
⎦

−E

⎡
⎣K j,h(x − X1)e

−cnα j

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)β j
(
ln

Y1
un

)r j

+
1{Y1>un}

⎤
⎦

×E

⎡
⎣Kk,h(x − X1)e

−cnαk

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)βk
(
ln

Y1
un

)rk

+
1{Y1>un}

⎤
⎦ .

By using the results of Lemmas 1 and 2, we have then

C j,k = F(un; x) f (x)
h pc

r j+rk
n

‖K j Kk‖1	(1 + r j + rk)θ
r j+rk
0 (x)

(1 + α j + αk)
1+r j+rk

(1 + o(1)),

which gives that Var(�n) = 1/ f (x)ξ ′�ξ(1 + o(1)). To establish the convergence in
distribution to a normal random variable, we have to verify the Lyapunov condition
for triangular arrays of random variables (Billingsley 1995, p. 362). In the present
context, this simplifies to verifying that nE|W1|3 → 0. We have

E|W1|3 ≤
(

h p

nF(un; x)
)3/2 1

f 3(x)

×

⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎝ J∑

j=1

|ξ j |cr jn K j,h(x − X1)e
−cnα j

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)β j
(
ln

Y1
un

)r j

+
1{Y1>un }

⎞
⎠

3
⎤
⎥⎦

+ 3E

⎡
⎢⎣
⎛
⎝ J∑

j=1

|ξ j |cr jn K j,h(x − X1)e
−cnα j

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)β j
(
ln

Y1
un

)r j

+
1{Y1>un }

⎞
⎠

2
⎤
⎥⎦

×E

⎡
⎣ J∑

j=1

|ξ j |cr jn K j,h(x − X1)e
−cnα j

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)β j
(
ln

Y1
un

)r j

+
1{Y1>un }

⎤
⎦

+ 4

⎡
⎣E

⎛
⎝ J∑

j=1

|ξ j |cr jn K j,h(x − X1)e
−cnα j

[(
Y1
un

)1/θ0(x)−1

] (
Y1
un

)β j
(
ln

Y1
un

)r j

+
1{Y1>un }

⎞
⎠
⎤
⎦
3
⎫⎪⎬
⎪⎭ .

Again, by using Lemmas 1 and 2 we obtain that

E|W1|3 = O

((
n
√
nh pF(un; x)

)−1
)

,

and hence nE|W1|3 → 0. ��
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Proof of Theorem 3

Apply a Taylor series expansion to the estimating equation �̃′
α(θ̂n(x); ĉn) = 0 around

θ0(x). This gives

0 = �̃′
α(θ0(x); ĉn) + �̃′′

α(θ0(x); ĉn)(θ̂n(x) − θ0(x))

+ 1

2
�̃′′′

α (θ̃n(x); ĉn)(θ̂n(x) − θ0(x))
2

where θ̃n(x) is a random value between θ̂n(x) and θ0(x). A straightforward rearrange-
ment of the terms leads then to

rn(θ̂n(x) − θ0(x))

= − 1

�̃′′
α(θ0(x); ĉn) + 1

2 �̃
′′′
α (θ̃n(x); ĉn)(θ̂n(x) − θ0(x))

rn�̃
′
α(θ0(x); ĉn)

= −θα+2
0 (x)(1 + α)2

1 + α2 rn�̃
′
α(θ0(x); ĉn)(1 + oP(1)) (13)

by (12), the consistency of θ̂n(x) and the boundedness of the third derivative. Another
application of Taylor’s theorem gives

rn�̃
′
α(θ0(x); ĉn) = rn�̃

′
α(θ0(x); cn) − ∂

∂ ĉn
�̃′

α(θ0(x); ĉn)
∣∣∣∣̃
cn

rn ln
F̂(un; x)
F(un; x)

with c̃n being a randomvalue between ĉn and cn . Direct computations allow us to prove
that, under our assumptions, and using the second part of Lemma 2 and arguments
similar to those used in the proof of Theorem 1, we have

∂

∂ ĉn
�̃′

α(θ0(x); ĉn)
∣∣∣∣̃
cn

= oP(1).

In addition, by Theorem 2 in de Wet et al. (2013), we deduce that

rn�̃
′
α(θ0(x); ĉn) = rn�̃

′
α(θ0(x); cn) + oP(1)

= − α

θα+1
0 (x)(1 + α)

rn
[
T̃n(K , 0, 0, 0; x) − 1

]

+ 1 + α

θα+1
0 (x)

rn

[
T̃n(K , α, α(1/θ0(x) − 1), 0; x) − 1

1 + α

]

− 1 + α

θα+2
0 (x)

rn

[
T̃n(K , α, α(1/θ0(x) − 1)+1/θ0(x), 1; x) − θ0(x)

(1 + α)2

]
+oP(1).

(14)

Finally, combining (13) and (14) with Theorem 2 and the delta-method, Theorem 3
follows. ��
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