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Abstract Partial linear single-index model (PLSIM) is a flexible and applicable model
when investigating the underlying relationship between the response and the multi-
variate covariates. Most previous studies on PLSIM concentrated on mean regression,
based on least square or likelihood approach. In contrast to this method, in this paper,
we propose minimizing average check loss estimation (MACLE) procedure to conduct
quantile regression of PLSIM. We construct an initial consistent quantile regression
estimator of the parametric part base multi-dimensional kernels, and further promote
the estimation efficiency to the optimal rate. We discuss the optimal bandwidth selec-
tion method and establish the asymptotic normality of the proposed MACLE estima-
tors. Furthermore, we consider an adaptive lasso penalized variable selection method
and establish its oracle property. Simulation studies with various distributed error and
areal data analysis are conducted to show the promise of our proposed methods.
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1 Introduction

Semi-parametric model has been popular in the literature recently due to the explana-
tory power and the flexibility of modeling with multivariate covariates. See Ruppert
et al. (2003) and the reference therein for more comprehensive review. Among the
semi-parametric modeling literature, the partial linear single-index model (PLSIM)
plays an important role, which has form

Y =gXT0)+ 2T +¢, (D)

where X € R” and Z € RY are covariates of the response variable Y, ¢ is the model
error. g(-) is an unknown differentiable function, # and 8 are unknown parameters. For
identifiability, we assume ||f|| = 1 and the first nonzero element of 6 is positive. For
convenience, we call 6 index parameter, g(-) index function and 8 linear parameter.

Partial linear single-index model, as a combination of the single-index model (SIM),
the widely used dimension reduction approach to avoid the “curse of dimensionality”,
and the partial linear model, the most popular model in semi-parametric regression
(see Hirdle et al. 2007), has attracted many researcher’s attention and various methods
have been proposed to estimate its unknown parameters and nonparametric function.
Carroll et al. (1997) proposed full iteration algorithm using local linear method. As
observed by Yu and Ruppert (2002), the full iteration approaches may unstable in
computation. Yu and Ruppert (2002) proposed penalized spline approach to alleviate
the computational difficulties, which is essentially a flexible parametric model. Xia
and Hirdle (2006) proposed the well-known minimizing average variance estimation
(MAVE) method based on local linear approach, which gives the 1/ consistent estima-
tors of the parameters by constructive approach. Liang et al. (2010) investigate PLSIM
by profile likelihood, get efficient estimation of the parameters and also consider the
variable selection problem of PLSIM.

Most existing estimation procedures for PLSIM concentrate on mean regression,
based on either least squares or likelihood approach. In contrast to mean linear regres-
sion, quantile regression (QR) proposed by Koenker and Basset (1978) has been widely
used as a robust alternative to explore the underlying relationship between the covari-
ates and the response, see Koenker (2005) for comprehensive review. For nonpara-
metric regressions, Chaudhuri (1991) introduced local polynomial QR in a general
multivariate setting, which is flexible but usually inapplicable in practice due to the
“curse of dimensionality”. In order to avoid the “curse of dimensionality” in multi-
variate nonparametric QR, Chaudhuri et al. (1997) considered dimension reduction
by single-index modeling approach and developed the average derivative approach
(Hirdle and Stoker 1989) to estimate the index parameters directly. Recently, Wu
et al. (2010) proposed a practical estimation procedure for SIM based on the initial
estimator provided by Chaudhuri et al. (1997). Jiang et al. (2012) consider the com-
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Quantile regression of partial linear single-index model 377

posite quantile regression [CQR, proposed by Zou and Yuan (2008)] of SIM. Kong
and Xia (2012) proposed an adaptive estimation procedure, and the estimator obtained
is consistent with probability 1. However, there has been little research on the QR of
PLSIM.

In real data analysis, the covariates of model (1) may include many irrelevant
covariates, especially for high-dimensional X and Z. In this case, sparse model is
often considered superior, due to the enhancements of model predictability and inter-
pretability. Since semi-parametric models, like (1), involve both nonparametric and
parametric parts need to be estimated precisely, it is challenging to perform variable
selection. Liang et al. (2010) proposed an variable selection method for mean regres-
sion of (1) by combining the profile likelihood method and the SCAD (Fan and Li
2001) penalized approach. In quantile regression of semi-parametric model, Kai et al.
(2011) considered the variable selection of partial linear varying coefficient model.
About the composite quantile regression of SIM, Fan et al. (2013) proposed an vari-
able selection method by SCAD penalized method. Although, there has also been little
research on the variable selection in QR PLSIM.

Motivated by the above observations, we extend the quantile regression methodol-
ogy of semi-parametric models to PLSIM and propose an variable selection method,
respectively. There are three major contributions of the present study. (1) We con-
struct an initial consistent quantile regression estimation of the parameters 6 and S
based on multi-dimensional kernels, and then promote the estimation efficiency using
one-dimensional index kernels. The final estimators derived can reach the optimal
convergence rate. (2) The proposed estimation method is not sensitive to the band-
width selection and the common “under smoothing” problem is not necessary in out
estimation procedure. (3) We propose an variable selection method for quantile regres-
sion of PLSIM by combining the adaptive lasso penalized method with our proposed
estimation method, which enjoys the oracle properties defined by Zou (2006).

Monte Carlo simulations with various non-normal errors and parameters changing
with quantiles are conducted to show the performance of our estimation and variable
selection method. In real data analysis, we apply our method to Boston housing data.
Simulation and real data analysis validate the fine property of the minimizing average
check loss estimation (MACLE) procedure and the adaptive lasso penalized MACLE
variable selection method.

The paper is organized as follows. In Sect. 2, we introduce the estimation methodol-
ogy and the calculation procedure and present the asymptotic properties of the estima-
tors. In Sect. 3, adaptive lasso penalized quantile regression method is proposed and its
oracle property is presented. Monte Carlo simulations with various error distributions
are presented in Sect. 4. In Sect. 5, we apply the proposed estimation and variable
selection methods to Boston housing data. Regularity conditions and technical proofs
are given in the Appendix A and B.

2 Estimation methodology

In this section, we develop the semi-parametric quantile regression theory to PLSIM.
Let p:(u) = u[t — I(u < 0)] be the check loss function at T € (0, 1). Quantile
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regression is often used to estimate the conditional quantile functions of Y, which is
defined as

g (x,z) = argmin E{p: (Y —a)|(X,Z) = (x,2)}.
a
The partial linear single-index model assumes that the 7-th conditional quantile func-
tion of Y can be expressed as ¢, (X, z) = g xT6,) + ZT,BT.

Suppose {X;, Z;, ¥;}!_, is an independent and identically distributed sample from
the model

Y =g (X76) + 27 B + e, @)

where the tth conditional quantile of e; is zero when given (X, Z). For notational
convenience, we abbreviate g;(-) as g(-). Theoretically, the true parameter vector
(07, Br) satisfies that

6, B,) = arg;r;in E [,ot (Y _g (XTe) — ZT,B)] . 3)
11611=1,61>0
Note that

E[oc (v ¢ (X70) - 278)| =E[E[pev —sx"0) ~ 27 p)X"0]} . @)

where E[p (Y — g(XTB) — ZT/3) |XT9] is the conditional expected check loss on X7o.
In the following context, we will construct an empirical form of (4), by minimizing
which we can derive our estimations of the unknown parameters and the unknown
index function.

For given (0, ), when XiTG closed to u, g(Xl.TQ) can be approximated linearly by

g (XiTQ) ~ o(u) + ' () (X?@ - u) :

Then the local linear approximate of E[p; (Y — g(XTQ) — ZT/S) |XT9 = u] will be

n
> oc (Yi— g — /6 (X0 — u) — 27 ) wio,
i=1
where ;o are non-negative weights with >/, wjo = 1, typically centering at x
and x”6. By averaging on uj = X]TQ, j = 1,---,n, we can get an empirical
approximation of (4) by

1 v~ / T T
=22 pe(Yi = g(u)) = g X0 — Z] B, )

j=li=1

where X;; = X; — X, and w;; satisfies er‘l:l wjj =1forVj=1,---, n.
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Quantile regression of partial linear single-index model 379

We define the quantile regression estimates of (6;, B;) as

n n
6. By = argmin > pr (¥ — gw)) — &' @)Xo ~ 2] B) iy (©)
0,8 — =
[

The above estimation procedure can be called the MACLE method, which is parallel
to the MAVE method in mean regression of PLSIM. The weights w;; can be firstly
Hy (X))
D Hy(Xi))”
and Hp(-) = #H(' /b), b is the bandwidth. The initial estimations of (6;, 8;) can be

derived by following steps:

chosen as w;; = where H(-) is a p-dimensional kernel density function,

Step 1. For any given 6 and 3, g(XJTO), g (XJTO) can be estimated by
n
(aj,bj) = argmin Z’Of (Y,- —aj —ijZ/Q—ZiTﬂ) Wij,s @)
aj,bj i=1

forj=1,...,n.
Step 2. The values of € and 8 can be updated by

n n
@, B) = argerr;in ZZpT (Y,’—Ezj—ij,g@—ZiTﬁ) wjj .- (®)
leli=Lo>0" " ="

Step 3. Iterate Step 1 and Step 2 until convergence. Define the final estimation of
6: and B; by 6 and B.

Though the estimators 6 and 8 based on multi-dimensional kernels may loose effi-
ciency, we can show that under some regular conditions they are consistent to the true
values.

Lemma 1 Let 6 and B be the estimators derived above. Suppose that condition A.1—
A.6 in Appendix hold, b — 0, and nb?*?/logn — oc. If we start the estimation
procedure with 0 satisfies that 07 0; # 0, then we have

0 —6: =0p(1), B—pr=0pD).

Proof The proof of Lemma 1 will be presented in Appendix B. O
After we get the initial estimates of 6 and B, we can improve the estimation efficiency
by choosing w;; = Kj, (XiTjO) />0 Kn (X;@), where K (-) is an one-dimensional

kernel function, K, () = %K (7). h is the bandwidth. The estimation algorithm can
be divided as follows:
and 51 > 0. Let a; :=

Step 4. Given (9, ). Standardize 6 s.t. ||0]] = 1
g(XjTé),bj = g/(Xjré),j = 1,....n. Given 0, B get the estimates of
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aj, bj, j=1,...,nby

n
(aj, I;j)zargmin Z'Df [yi —aj —ijijé—ZiTﬁ]wij for j=1,...,n,

aj.bj

(C))

with the bandwidth ~h chosen by (13) in Sect. 3. o
Step 5. Givena;, bj, j =1,...,n,update the estimates (¢, ) by

@, ) =argmin 373 pr [Yi—a; = b;X[o) 2] By, (10)

j=1i=1

with w;; evaluated at 6 and h from step 1;
Step 6. Repeat Steps 4 and Step 5 until convergence. Let the final estimation of
(67, B-) by (0, B).

Remark 1 In the above algorithm, 6 is standardized as follows: 6 = sign(61)6/||6]],
where sign(6) is the sign of the first component of 6.

Here, we can call the above estimation of the parameter (6;, ;) as the refined mini-
mizing average check loss estimation (MACLE). This refined MACLE procedure was
initially proposed by Wu et al. (2010), which is similar as the refined MAVE method
proposed by Xia and Hirdle (2006). After obtaining 6, ,3 , the g(u) can be estimated
by the solution of a; in (9) with X]Té replaced by u, denoted by g (u; h, 6, B).

In the following, we present the asymptotic property of the proposed MACLE. Let
fr(-|XT0) and Fy (-|XT 9) be the density function and cumulative distribution function
of Y condition on X0, respectively. Let fu, (-) be the marginal density function of
the index X7 @;. We choose the kernel K (-) as a symmetric density function, and let

,uj:/ujl((u)du and vjz/ujl(z(u)du, j=0,1,2,....

Theorem 1 Suppose the conditions A.1-A.7 given in the Appendix hold, then we have

ﬁ(g:gf) N N(O,t(] —r)Dl_lDoDl_l), (1)

where N stands for convergence in distribution, Dy = E(D), D1 = E[ fy (¢: (X, Z)|
g XTo)X

®2
5 ) , X =X-—EX|XT0,)and Z =7 — EZ|XT6,).

X"6,)D], D = (

From Theorem 1, we can get ,/n-consistent estimators of (0, B;), then by (9), we can
get the estimation of the nonparametric function. We present the asymptotic properties
of the nonparametric part in the following:
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Quantile regression of partial linear single-index model 381

Theorem 2 Suppose u is an interior point of fy (-) and the regular conditions A.1-
A.7 in the Appendix hold, we have

Vnh { g(us b, 0, B) — g(u) — %g”(u)uzhz L N©. T ). (12)

where Tz (u) = T(1—=1)vo for, )~ fy (qe X, Z)|u) =2, fy (g (X, Z)|u) is the density
of Y at g. (X, Z) condition on X' 0, = u.

According to Theorem 2, when the sample size is large, the optimal bandwidth could be
derived by minimizing the asymptotic mean squared error (AMSE) from Theorem 2,

_ 1/5 2 1/5
hopt=[ (1 — 1) ] X[ [ K2(t)dt ] |

fr(g-(X, D)u)? nl [ 2K @)dt1*[g" )] fur, ()

This calculation indicates that the MACLE estimator of g(-) enjoys the optimal rate
of convergence n~2/3. While the optimal bandwidth hopt depends on some unknown
values such as fy(g:(X, Z)|u), g’ (u) and fu, (u), whose estimations may be com-
putational intensive. Following the similar argument as Yu and Jones (1998), we take
the following rule-of-thumb bandwidth %, in this algorithm,

1/5
he = h {21 =0 /p@7 @2} (13)

where ¢ () and @ (-) are the probability density and the cumulative distribution function
of the standard normal distribution, respectively. A, is the optimal bandwidth used in
mean regression, which can be easily obtained by the plug-in method (see Ruppert et
al. 1995). The approximation by (13) provides an easy approach to get the optimal
bandwidth for quantile regression. We recommend Yu and Jones (1998) for detail
discussion of this bandwidth approximation method.

3 Variable selection

In practice, the true model is often unknown, which may include many variables in
the covariates. An under-fitted model will yield biased estimates and large residuals,
while an over-fitted model may reduce the estimation efficiency. This motivates us to
consider variable selection in QR of PLSIM.

We adopt the adaptive lasso idea from Zou (2006). Suppose we first fit the model
by including all the predictors. Theorem 1 says that MACLE estimator, denoted by
(628 B2RY is /n consistent. Then, we use (628, B2R) to construct the adaptively
weighted lasso penalized target function as

Ga®,8) = D> pr (Y — 2 (X['0) ~ 2 B)
j:li:l
I Z 161 i 1B a4
! AQR|2 AQR|2'

m=1 |ﬁm
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For the given tuning parameters (11, A»), we obtain the penalized estimators by mini-
mizing G (6, B) with respect to 6 and 8 with constrains ||6|| = 1 and the first nonzero
element of 6 is positive. For the sake of simplicity, we denote the resulting estimators
by 6*1 and p*2.

Remark 2 Throughout this paper, we can choose different regularization parameters
A1 and A, to select the important variables of the index covariates and partial linear
covariates separately. For the purpose of selecting index covariates only, we can simply
set 1> = 0. Similarly, if we have only interest in selecting partial linear covariates,
then we can set A; = 0.

Remark 3 Other variable selection methods such as SCAD proposed by Fan and Li
(2001) can be also used here, and the oracle property can be derived similarly. For the
sake of easy computation, we choose adaptive lasso method here, which can be solved
conveniently by linear programming.

Note that we need two tuning parameters in (14), A1 and A, imposed on the linear part
and the single-index part, respectively. Following the approach of Fan and Li (2004),
we set A = A SE(X70) and A, = A SE(B”Z), where A is the tuning parameter,
and SE(XTé) and SE(ZT ,3) are the standard errors of the unpenalized MACLE of 6
and B, respectively. The tuning parameters A can be chosen optimally by BIC criteria.
Following Wang and Leng (2007), denote

BIC(A) = log P; () + log(n)/nDF;, (15)

where P; (1) = Z?‘:l > (Y — g(XiTéM) - Z?ﬁ*z)wlj, DF,, is the number
of nonzero coefficients of both #*! and 3)‘2. We let i(BIC) = argmin ; BIC(}).
The performance of i(BIC) will be examined in our simulation studies in the next
section.

Let 4y = {j 10 # 0} and Ag = {m : B, # 0}. Without loss of generality, it
is assumed that the correct model has regression coefficients 6; = (01, 6»;) and
Br = (Bir, P2r), where 61, and B, are po and go nonzero components of 6; and
B+, respectively, and 6, and By, are p — po and g — go vectors with zeros. Thus,
Ag ={1,---, poyand Ag = {1, --- , go}. In addition, we define X; and Z; in such
a way that they consist of the first pg and go elements of X and Z, respectively. We
define X; = X; — E(X;|X76,) and Z = Z; — E(Z;|X76;) similarly as in Sect. 3.
In what follows, we show the adaptive lasso penalized MACLE estimators enjoy the
oracle properties.

Theorem 3 (Oracle property). Under the regular condition A.1-A.8 in Appendix, if
Aif Jn — Oand i — oo fori = 1,2, then the adaptive lasso penalized estimators
0 and B** must satisfy

1. Consistency in selection: Pr({j : éj)“ #0} = Ag) > Land Pr({m : B2 # 0} =
Aﬂ) — 1.
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2. Asymptotic normality:

oM _ g L _ _
‘/;(31*2 ﬂllf ) = N (0, (1 — t)Dl*lDo*Dl*l) , (16)
1 - T

where él}” and 31& denote the first po and qo elements of 6™ and BAZ, respectively,
g/(XlTﬂlz)Xl

®2
] and Doy = E (Dy).
Z,

Dy = E[f(01XT0,.)D,], Dy = [

4 Monte Carlo simulations

In this section, we consider three examples parameters changing with quantiles or
with various distributed errors to assess the finite sample performance of the proposed
estimation and variable selection methods, respectively.

Example 4.1 In this example, we generate 200 random samples, each consisting of
n = 100, 200 observations, from the model

Y = sin (rr(XTO —a)/(b — a)) + 778 + o, a17)

where X are all uniformly distributed on [0, 1]3 with correlation as cor(X;, X;) =
0.51=J1, Z,, Z, are standard normal distributed with cor(Z;, Z,) = 0.5, Z5 is discrete
distributed on [—1, 1] with probability (0.4, 0.6), X. (Z1, Z,) and Z3 are independent.
6 =(1,1,1)/v/3,a = 03912, b = 1.3409, B = (2,0.5, 1), 0 = 0.1. This model is
similar as that in Carroll et al. (1997), while with more complicate linear covariates.
In this simulation, we consider four error distributions for ¢: N (0, 1), #(3), standard
Cauchy and mixture of normals 0.9N (0, 1) + 0.1N (0O, 102). Assume X, Z and ¢ are
mutually independent. For each error distribution, the parameters (6;, 8;), and the
index function g(-) are estimated via series of quantile regression with r = 0.3, 0.5
and 0.7, respectively. The bias and standard deviation (Std) of the estimates of (6, B;)
are summarized in Tables 1, 2, 3 and 4. From the tables, we can see that the quantile
regression estimation of PLSIM is robust to different distributed error. Particularly,
when the error follows standard Cauchy and t = 0.5, the box plots of the 200 estimates
of (6;, Br) are presented in Fig. 1. The median of the index function estimates is
presented in Fig. 2. We can see that the estimates of the parameters are centered
around the true values, and the median of the 200 estimated curves (black dashed line)
is close to the true curve (green line).

Example 4.2 Consider the following model where the parametric part changes with
the quantile,

Y =5xexp(—(X70:)%) +XT0; +z1e” + 22" 77 + 23671 4y,

where X = (x, ...,x5)T = El/z(ul, ...,ll5)T with uy, ... ;U5 mutually inde-
pendent withe each w; ~ Uniform(0,1) and £ = (0.5l 5,0, =
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Table 1 Monte Carlo study for Example 5.1 with normal distributed error

Estimator Biasand Std  6; (%)) 03 B1 B2 B3
n =100
MAVE Bias —0.0010  —0.0012 0.0014  —0.0019 0.0004  —0.0002
Std 0.0177 0.0200 0.0156 0.0129 0.0126 0.0107
QR (0.5)  Bias —0.0022  —0.0004 0.0015  —0.0019 0.0001 —0.0007
Std 0.0198 0.0230 0.0187 0.0146 0.0157 0.0134
QR (0.3)  Bias —0.0021 —0.0004 0.0013  —0.0021 0.0007  —0.0004
Std 0.0201 0.0240 0.0187 0.0160 0.0163 0.0141
QR (0.7)  Bias —0.0011 —0.0013 0.0013  —0.0022  —0.0001 —0.0013
Std 0.0201 0.0227 0.0184 0.0159 0.0169 0.0137
n =200
QR (0.3) Bias —0.0051 —0.0027 0.0068  —0.0002 0.0018 0.0136
Std 0.0174 0.0201 0.0180 0.0144 0.0144 0.0130
QR (0.5)  Bias —0.0051 —0.0050 0.0094 0.0002  —0.0001 0.0084
Std 0.0147 0.0171 0.0167 0.0128 0.0130 0.0124
QR (0.7)  Bias —0.0048  —0.0045 0.0085 0.0009 0.0010 0.0072
Std 0.0139 0.0187 0.0176 0.0135 0.0131 0.0114

Table 2 Monte Carlo study for Example 5.1 with #(3) distributed error

Estimator Bias and Std 6 22 03 Bi B B3
n =100
MAVE Bias 0.0004  —0.0057 0.0023  —0.0002  —0.0002 0.0011
Std 0.0324 0.0375 0.0320 0.0216 0.0216 0.0187
QR (0.5) Bias —0.0003  —0.0043 0.0027  —0.0004  —0.0006  —0.0003
Std 0.0245 0.0313 0.0255 0.0184 0.0170 0.0156
QR (0.3)  Bias —0.0021 —0.0040 0.0037  —0.0009  —0.0011 —0.0002
Std 0.0263 0.0355 0.0290 0.0206 0.0202 0.0176
QR (0.7)  Bias 0.0003  —0.0047 0.0025  —0.0011 0.0008  —0.0007
Std 0.0249 0.0307 0.0258 0.0200 0.0180 0.0169
n =200
QR (0.3)  Bias —0.0021 —0.0067 0.0074  —0.0009  —0.0013 0.0164
Std 0.0202 0.0256 0.0229 0.0163 0.0184 0.0152
QR (0.5) Bias —0.0043  —0.0069 0.0101 —0.0027 0.0014 0.0082
Std 0.0170 0.0230 0.0180 0.0140 0.0141 0.0146
QR (0.7)  Bias —0.0060  —0.0046 0.0095  —0.0007  —0.0013 0.0057
Std 0.0185 0.0233 0.0188 0.0156 0.0156 0.0140

(t,27,0,2t — 1,t = DT /102 =61 +2,Z = (21,22, 23)7 ~ N(O, 1), B, =

(€, e 7, TN o ~ Uniform(—t, 1+ 1).
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Table 3 Monte Carlo study for Example 5.1 with standard Cauchy distributed error

Estimator Biasand Std  6; (%)) 03 B1 B2 B3
n =100
MAVE Bias —0.0320 —0.1024  —0.0981 0.0896  —0.2025  —0.0798
Std 0.1974 0.3507 0.2922 1.2035 1.9508 0.8807
QR (0.5)  Bias 0.0024  —0.0070 0.0010  —0.0012  —0.0016  —0.0029
Std 0.0324 0.0430 0.0351 0.0250 0.0283 0.0215
QR (0.3)  Bias —0.0004  —0.0076 0.0028  —0.0024  —0.0021 —0.0025
Std 0.0373 0.0522 0.0431 0.0334 0.0370 0.0275
QR (0.7)  Bias 0.0048  —0.0102 0.0010 0.0012  —0.0039  —0.0044
Std 0.0360 0.0480 0.0366 0.0311 0.0311 0.0265
n =200
QR (0.3) Bias —0.0008  —0.0127 0.0003  —0.0009 0.0016 0.0230
Std 0.0401 0.0491 0.1054 0.0281 0.0285 0.0263
QR (0.5)  Bias —0.0064  —0.0043 0.0011 0.0000  —0.0001 0.0074
Std 0.0263 0.0290 0.0981 0.0181 0.0201 0.0172
QR (0.7)  Bias —0.0039  —0.0130 0.0053  —0.0009 0.0004 0.0050
Std 0.0262 0.0984 0.0533 0.0236 0.0213 0.0195

Table 4 Monte Carlo study for Example 5.1 with mixture of normals distributed error

Estimator Bias and Std 6 0> 63 Bi B B3
n =100
MAVE Bias —0.0063 0.0002  —0.0040  —0.0008 0.0043  —0.0002
Std 0.0595 0.0713 0.0550 0.0410 0.0439 0.0342
QR (0.5) Bias —0.0028 0.0010 0.0003  —0.0004 0.0012 0.0006
Std 0.0222 0.0268 0.0229 0.0176 0.0162 0.0136
QR (0.3)  Bias —0.0020  —0.0003 0.0005  —0.0004 0.0011 0.0006
Std 0.0245 0.0297 0.0237 0.0197 0.0181 0.0157
QR (0.7)  Bias —0.0038 0.0026  —0.0004 0.0013 0.0008 0.0007
Std 0.0230 0.0270 0.0234 0.0174 0.0187 0.0160
n =200
QR (0.3)  Bias —0.0038  —0.0036 0.0062  —0.0001 —0.0014 0.0146
Std 0.0180 0.0235 0.0214 0.0157 0.0161 0.0140
QR (0.5) Bias —0.0045  —0.0047 0.0082  —0.0000  —0.0005 0.0087
Std 0.0168 0.0193 0.0163 0.0128 0.0133 0.0120
QR (0.7)  Bias —0.0052  —0.0033 0.0076  —0.0006 0.0012 0.0068
Std 0.0141 0.0185 0.0176 0.0137 0.0149 0.0128

For the combinations of different sample size n and quantile level 7, the estimation
efforts of 200 times MACLE are summarized in Table 5. We can see that the MALCE
method performs similarly when the parameters varying with t.
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Boxplots of Index Coefficient Estimates (200 reptications) Boxplots of Linear Coefficient Estimates (200 reptications)
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Fig. 1 Box plot of parameter estimations for Example 5.1 with Cauchy distributed error when 7 = 0.5
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Fig. 2 The QR (0.5) estimation of the index function in Example 5.1 with Cauchy distributed error

Example 4.3 We generate 200 random samples from model (17), with 8 =

% and B = (3,1.5,0,0,0,0,0,2)7, 6= 0.1. X = (X1,..., Xe) ~

Ulo, 118, with cor(X;, X;) = 050/ Z = (Z,...,Z3),Z; ~ N(@©O,1),j =
1,...,7 with cor(Z;, Z;) = 0.5I=J1, Zg follows b(1, 0.4). ¢ follows four types of
error distribution described above. We assume X and (Z; ..., Z7), Zg and ¢ are inde-
pendent. We conducted 250 times simulation and variable selection by adaptive lasso
method for each T = 0.25, 0.5 and 0.75.

The results over 250 simulations are summarized in Table 6, where C(6) denotes the
average number of the true zero coefficients of 6 that are correctly set to zero and IC(9)
be the average number of the true nonzero coefficients that are incorrectly set to zero,
C(B) and IC(B) denote the corresponding average numbers for linear parameter . In
the column labeled “U-fit”, we show the proportion of trials excluding any nonzero
coefficient in 250 replications. We represent the probability of trials selecting the
exact subset model and the probability of trials including all six significant variables
and some noise variables in the columns “C-fit” (“correct-fit”’) and “O-fit” (“over-fit”),
respectively. From Table 6, we can see that variable selection procedure can efficiently
choose the true subset, which clearly shows the virtue of the adaptive lasso penalized
MACLE proposed in Sect. 3.
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Table 5 Summary of 200 times estimation for Example 5.2

T Biasand Std 6, 0, 03 04 05 b1 B> B

n =200

0.5 Bias —0.0002 —0.0030 0.0079 —0.0009 0.0085  0.0022 —0.0018 —0.0005
Std 00491  0.0323 0.0539  0.0575 0.0477 00339  0.0340  0.0357

0.8 Bias 0.0030 —0.0060 0.0049 —0.0035 0.0039 —0.0002  0.0009  0.0013
Std 0.0494  0.0324 00514  0.0487 0.0450 0.0264 0.0265  0.0266

09 Bias 0.0036 —0.0117 0.0083 —0.0064 0.0050  0.0036 —0.0006 —0.0001
Std 00616  0.0920 0.0595  0.0534 00535 0.0330 0.0263  0.0307

n =400

0.5 Bias —0.0017 —0.0017 0.0050  0.0004 0.0028 —0.0009 —0.0003  0.0031
Std 0.0343  0.0217 00445  0.0440 0.0308 0.0239 0.0249  0.0239

0.8 Bias —0.0017  0.0005 0.0019 —0.0052 0.0029 0.0011 —0.0014 —0.0030
Std 00298  0.0201 00321 0.0343 00307 00192 00172  0.0170

09 Bias 0.0010 —0.0021 0.0035 —0.0064 0.0041  0.0015  0.0000 —0.0013
Std 0.0366  0.0239 00472  0.0452 0.0383  0.0206 0.0206 0.0224

Table 6 Variable selection results by adaptive lasso penalized MACLE of PLSIM

Methods MRME(@) C@) IC() MRME@pB) C(B) ICPB) Uit O-fit C-fit

Standard normal

QR (0.5) 0.328 4940 O 1.738 4990 0 0 0.060  0.940

QR (0.25) 0.454 4940 O 1.679 4990 0 0 0.045 0.955

QR (0.75) 0.526 4915 0 1.739 4985 0 0 0.060 0.940
t-distribution with df =3

QR (0.5) 0.364 4965 O 1.838 4990 O 0 0.045  0.955

QR (0.25) 0.378 4940 O 1.859 4995 0 0 0.045  0.955

QR (0.75) 0.421 4915 0.005 1.816 4985 0 0.005 0.090 0.905
Standard Cauchy

QR (0.5) 0.328 4920 0.005 1.364 4990 0 0.005 0.090 0.905

QR (0.25) 0.371 4.680 0.055 1.819 4950 O 0.055 0.255 0.690

QR (0.75) 0.387 4765 0.015 1.691 4970 0 0.015 0.205 0.780
0.9N(0.1) 4+ 0.1N(0, 10%)

QR (0.5) 0.319 4980 O 1.736 5 0 0 0.020 0.980

QR (0.25) 0.441 4965 O 1.634 4995 0 0 0.030 0.970

QR (0.75) 0.487 4940 0.020 1.602 4990 0 0.020 0.060 0.920

5 Real data analysis
In this section, we apply our estimation method to Boston housing data, which is avail-

able online at http://lib.stat.cmu.edu/datasets/bostoncorrected.txt, with some correc-
tions and augmentation by the latitude and longitude of each observation, called the
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Table 7 Parameter’s estimation for Boston Housing data by penalized MACLE

Predictors 7 0.1 0.3 0.5 0.7 0.9
RM 0.3668 0.4287 0.3393 0.2442 0
log(TAX) —0.3283 —0.2335 —0.1812 —0.1706 0
PTRATIO —0.1776 —0.1255 —0.1832 —0.1959 0.3590
log(LSTAT) —0.8521 —0.8637 —0.9047 —0.9343 0.9333
CRIM —1.4152 —0.9831 —0.8312 0 0
NOX —0.5768 0 0 0 0
DIS —0.9576 —0.7251 —0.8414 —0.9497 —1.0471
LON —0.6786 —0.8907 —0.8429 —0.8911 0
LAT 0 0 0 0 0
B 0.6118 0.7789 0.8497 1.0188 0
ZN 0 0 0 0 0
AGE 0 0 0 0 0
INDUS 0 0 0 0 0
CHAS 0 0 0.9193 0.7047 0

Corrected Boston House Price Data. There are 506 observations, 15 non-constant pre-
dictor variables and one response variable, corrected median value of owner-occupied
homes (CMEDV). Predictors include longitude (LON), latitude (LAT), crime rate
(CRIM), proportion of area zoned with large lots (ZN), proportion of non-retail busi-
ness acres per town (INDUS), Charles River as a dummy variable (= 1 if tract bounds
river; O otherwise) (CHAS), nitric oxides concentration (NOX), average number of
rooms per dwelling (RM), proportion of owner-occupied units built prior to 1940
(AGE), weighted distances to five Boston employment centers (DIS), index of acces-
sibility to radial highways (RAD), property tax rate (TAX), pupil-teacher ratio by town
(PTRATIO), black population proportion town (B), and lower status population pro-
portion (LSTAT). Following previous studies, we take logarithmic transformation on
TAX and LSTAT. For simplicity, we exclude the categorical variable RAD, standard-
ize the other covariates aside from CHAS, and recode the value of CHAS to — 1(when
CHAS = 0) and 1(when CHAS = 1).

Following previous studies, we construct index based on the following four predic-
tor: RM, log(TAX), PTRATIO and log(LSTAT) and compose the partial linear part by
the other ten predictors. The covariates of PLSIM may change for different t, we rely
on the variable selection method in Sect. 3 to choose the preferred model. Note that the
response variable is censored from above, and therefore quantile regression is more
trustful than mean regression. Furthermore, we analyze the normality of the residuals
obtained by modeling the mean of CMDEV by PLSIM with index covariates and the
linear parts as described above. By Shapiro—Wilk test (Shapiro and Wilk 1965), we
find that the p value is less than 2.2 x 107!, This reminds us further that the error
cannot be normal, and the mean regression based on least square is unsuitable here.

The estimation of the index and linear parameters by adaptive lasso penalized
MACLE is presented in Table 7, we can see that the predictors’ influence is different for
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Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Fig. 3 QQ plot of the residual for median regression

different condition quantile of CMDEC. The norm quantile—quantile of the residual,
when 7 = 0.5, is presented in Fig. 3, from which we can see apparently that the
residuals cannot follow normal distribution. This also shows in some sense that, the
MACLE of PLSIM is robust and applicable in various real data analysis in social
research or scientific field with non-specific errors. In this real data analysis, we only
concentrate on the variable selection in quantile regression of PLSIM. The model
selection between quantile regression of single-index model and partial linear single-
index model based on model complexity is still an open question to be solved in future
research.

Appendix A

In order to derive the asymptotic properties, we need the following regularity condi-
tions:

A.1 The kernel K(-) > 0 has a compact support and its first derivative is bounded,
satisfies [0 K(z2)dz = 1, [% zK(z)dz = 0, [% z°K(z2)dz < oo and
2, K3 (2)dz < o0, j=0,1,2;

A.2 The covariates X, Z are bounded. The marginal density function of XT9, denoted
by f/(+), is uniformly continuous for 6 in a neighborhood of 6; and bounded
away from 0 and oo on its compact support Uy ;

A.3 The condition density of ¥ given X7 6 = u, denoted by f(-|u) is positive and
continuous in u;

A.4 The function g(-) has a continuous and bounded second derivative;

A.5 The conditional expectations E [Z|X = x], E[ZZ" |X = x] have bounded deriv-
atives. The conditional expectations E(X|XT0 = u),EZ|XT0 = u),
EX®? fy (g X, Z)|IXT))|XT0 = u), E(Z®*|XT0 = u) and EXZT X709 =
u) are twice differentiable in u € Uy, where A®% = AAT for any matrix or vector
A;
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A6 E[¢/ (X762 X — E(X)1®?], E (IZ — E(XIX)]®?) , E(g'(X"6)1’X®?) and E
(Z®2) are positive-definite matrix’s, where g’(-) is the first derivative of g(-);
A.7 Bandwidth h satisfies that, # ~ n~® and 1/6 <8 < 1/4;

Remark 4 These conditions above are common in the semi-parametric literature and
are satisfied in many applications. Condition A.1 simply requires that the kernel func-
tion is a proper density with finite second moment, which is required to derive the
asymptotic variance of estimators; Condition A.2 guarantees the existence of any ratio
terms with the density appearing as part of the denominator; Condition A.4 is a com-
mon assumption for an unknown differentiable function. Condition A.5 is common in
semi-parametric regression, which is needed to derive the asymptotic distribution of
(é, B). Condition A.6 is the same as the condition (vi) in Liang et al. (2010).

Lemma 2 Suppose A, (s) is convex and can be represented as %ST Vs+ UnTs +C,+
ry(s), where V is symmetric and positive definite, U, is stochastically bounded, C,, is
arbitrary, and ry, (s) goes to zero in probability for each s. Then «,, the argmin of A,,,
is only 0, (1) away from B, = —v~-1U,, the argmin of%sTVs + UnTs + Cp. If also

Up 5 U, then ey, 5 —v-1U.
Proof This lemma comes from the basic corollary in Hjort and Pollard (1993). O

Lemma 3 Let (X1, Y)),..., Xy, Yy) be independent and identically distributed

random vectors, where Y; is scalar random variable, X; is p-dimensional random

vector. Assume further that E|y|* < oo and supf [yI* f(x, y)dy < oo, s > 3, where
X

f(, ) denotes the joint density of (X, Y). Let K(-) be a bounded positive function
with a bounded support and satisfying a Lipschitz condition. Then

LS In(1/hP)\'/?
sup |— Z[Kh(xi —x)yi — E(Kp(X; —X)yi)]‘ =0, [(M) j| 7

=|n nh?
Xex i=1

provided that n*¢~'h? — oo for some ¢ < 1 — s~ where B is the compact support
of X.

Proof This follows from the result by Mack and Silverman (1982). m|

For simplicity, we shorthand write 8, = [In(1/h)/nh]"/?,8¢ = |6 — 6.|, 85 =
1B — Bel. 8y = 8o + 8p. 1o (®) = BXIXT0 = x70), vy (x) = E(ZX"60 = x70)
and th = K?h x) = Kp, (XiTOG), where X;o = X; — x. For ease of expression, write

ei =Y —q.(X;, Z;), whose tth conditional quantile is zero when given (X;, Z;).

Lemmad4 Let6; = 6 — Or, Ba = ,3 — Br. Suppose the regular conditions A.1-A.7
hold, we have
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- ~ 1 ~ ~ =
g1 0) = g(x"0) + J8" (" D)pah® — &' " D) pag, (07 0 — v, (0 B + Ry (%)
+ O (2% + 8 + 80) + 8580 + 805, )
1
§xT6) =g x"0) + — an(x) +0h*+35,),
where R = [nfy(q:(X. D)IXT0) fyr, &7 0)] ™ S0 KO e (i), Yre(w) =
u(t—1(u < 0)) and R (%) = [nhpa fr (q: (X, Z)XT0) fig, )]~ X0y KE ) e (&)

T
x76.

Proof of Lemma 4 Let xT 9 = u for easy of expression, and write the estimation of
gu) by g h,6,p) to indicate the dependence on h_and (@, B). For given u, we
write a(g,ﬂ) =g(u;h,0 ,3) and b(g j = =g (u;h,0 ,3) which are the solutions of
the following minimization problem,

mmZpT(y,—a—bX G—ZT,B)K(X G/h)
i=1

Let

a5 — &) 1
in = (nh) (h[bw) &' w)] X260/ h

riu) = —g(X!'6) 4+ gw) + ¢ X460 + 21 (B — o), Ki = K(X,0/h).

Thus, 7),, minimizes

n

0u(m) = D | pelei = riw) = 0" Mi//nh) = peer = riw) | K

i=1
Following the identity by Knight (1998),
v
Pt — v) = p(u) = —vyr () +/ (I < 5)— I < 0))ds,
0
we can write

0. (n) = —n" W, + B, (), (18)
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where

W, = J_ ZK Mi[¥e (e1) + ri ()],
ri)+MI n//nh
B,(n) = Z Ki / (I(si <) = I(s;) < 0))ds.

i=1 ri(u)

Let X be the o-field generated by {xX74,x%4, ... ,XI'd}). Consider the conditional
expectation of B, (1), we have

B n r,-(u)+MiT77/«/nh
E(mon®) =3k | E L < 5)— [(er < O)lup) ds
i= riu

1 1 &
= S frig(X, Z)Iu)nT(E ZMl-M,-TKi)n

X,Z
N (fY(CIr( )lu) ZKz ,(u)M) 240yl
It can be shown that Var(B;, (1) |)E ) = o(1), therefore, we have

B, (1) = %nT (—fY(q’ oW MiMiTKi) n

nh
i=1

n T
(g (X. Z)|u)
+ (MT“;Km(u)Mi) n+0,(1)

= Bn1(n) + Bu2(n) +0,(1), 19)

X,2)[0) < !
where B (1) = 31" Sy, Buia(n) = (% ZKir,(u)Mi) nand S, =

M > MiM; TK;. By using Lemma 3, we can easily get that

Su =S+ 0,(h* + 8, + 8), (20)

where S = fy (¢ (X, Z)|u) fy4, (1) ((1) ;?2)

Now, consider the B> (n). Since

i = (g XTOX! 2] ) (Zj) - %g”(u) (X,Té—u)2+0 [(XiTé_M)3+|9d|2:| ,

@ Springer



Quantile regression of partial linear single-index model 393

we have
\/_ ny(qu Z)|w)Kiri () = /nh fy (qe (X, Z)|u) fuy, (u)

1
x (——g”(u)mhz + g () eg, ()70 + vo, )T Ba + O(h* + 8] + h?8g + 896,5)) ,

and —— ny(qr(X Z)|u)K;r; (u) = V/nh[O(h® + h8))]. Q1)

Combining (18), (19), (20) and (21), we have

0, (n) = fnTSn—WT'H-f I fy (qe (X, Z) 1) fug, ()

o (—jg”(u)uzhz + &' e, )04 + v, T By + O(h* + 8% + W85 + 895p)

T
0(h3+h8y) ) n+op(l).

By using Lemma 2, the argmin of Q, () can be expressed as

ﬁn = S_IWH —~/nh

— 38" Wpah® + g W) pe, ()04 + vo, ()T By + O(h* + 83 + h?8 + 845p)
“\ow? +ns,) +op(D).
Note the definition of 7),, and W,,, we complete the proof. O

Proof of Theorem 1 Given g’(XJT@N), g (X]Té), the estimation of g (XjTé) and
g (XjTé) for j =1,...,n, we obtain 8, ,éby

=g 3550 o5 879) - (5) 15
Let
(i) ()
ri=—g (X +3 (X 9) ¢ (x19) xi0.,

then p* minimizes

Qu(y™) = iiwszr [(&' —rij — Mﬂy*/«/ﬁ) — pe (8 — rij)].

j=li=l1
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Using the Knight’s identity, we can write

Qu(y™) = — Zzwtﬂ/’r(& MT *

]111

Ti +M,V/[
+ZZw,,/’ T e <9 — 166 = 0)1ds,

j=1i=1

= an(y ) + QZn(V ),

where

Qun(y*) = ——ZZw,jw,(sZ)M,,y ,

]111

r1/+M,,V /\/7
Qo () = ZZw,,/ (e = 5) — 1 < 0)ds.

j=li=1

Take Qp, (™) first. We shorthand write U; = Xl.Té LU ;= XJT.é . Let us calculate the
conditional expectation of Oy, (y*):

r1/+M”V /\f
> / oij [3/v @r X, DITH( +0(1)] ds

j=1li=1

E(Qan(r")1)

I 1 <
=7 ;ZZﬁ(qT(X 2|0 Mi;Mjwi; | v*

T

IZZw,,fﬂqf(X D\U)rijMij | v* +0,(1).

j=1li=1

Define R, (¥*) = Qon(y*) — E(Q2,(y*)|X). It can be shown that R, (y*) = op().
Therefore, we have

D2, (¥*) = Qo1 (¥*) + Q22 (¥™) + 0, (1),

where

Qan(V*) =3

§|>—~

ZZw,,fﬂqf(X )|U)MiM; | v*,

T

Qo (™) = TZzwijfy(qr(X,Z)Iﬁi)Mijrij AR
—1i=1
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Consider Q,1(y*). Denote G = 377 > fr(g:(X, Z)|Ui)Mi,-M,§w,-j. By
using Lemma 3, we can easily get that gff =G+ OMh>+6,+ dy), where

g _ (2~W0 C12 )
~\ &L, E(fy(¢: (X, 2)X76,)2Z7) )
Wo = E (fr (4e X, Z)IX700) (8/ (X7 612X = pug, (X0 (X = 1o, X)) .

Cr2 = E (fr(ae(X, DIXT 008 (X6 (X — puo, (XDZT ).

Thus, we have

Qo1 (y*) = *Tgy +0,(1). (22)

Now consider Q»,,2(y*). Note that
rij=g (XZTON) —g (XiTQT) ( ( 5) 8 (X]T
+[& (x70)-g (X]0) | +[& (x78) ¢’ (X]0) x,.Tj] i-¢ (X7a) X7, (5-0:)
(X7 h)( §(XT0) — g(X79) )
B h(”(XTG) 8 (XTO))
¢ (XI) X6y — & (XT0) X0, — %g” (x74) (ijé)z +0 [55 + (X,.Tjg)3] :
Qon2(y™) as

Qo2 (y®) = (Qan21 + Qo) v + 082 + 1),

where

- §(XT0) — g(XTd)
o2l = [ ZZfY(q:(X Z)|Ul)wl]Ml] (1 X e/h)(h(g/](xj"é) _g{(XZ"é)) s

j=1i=l

Qo = IZnywt(X 2)|Up)wij Mij

j=1li=1

X (g/(xfé)xl?ed - & XI0)X];04 — fg”(XTG)(XTQ) )
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Consider Q»,,21 and Qo2 separately. Note the expression of g(xTé) and g’(XTé) in
Lemma 4, we have

1 & - - RV, (X;)
1 =—= > > i fr(qe (X, 2)[U)M;; (1, X[ “n™
o2l ﬁjﬂ i:1w.,fy(6] X, DIUHM;; (1, X5 )(RZZ(XJ))

l n n -
+\/_ﬁ DD wij fr(q: (X, D)) M;

j=li=1
1, 7~ -
X (Eg "L puah® — g’ (x 0 (x)T 6y — V@(X)T,Bd)

+0, (W (h* + 89 + 82) + 8484 + 808y)
=T +T+ Op(1)9

where

1= LSS rtae o 2wt X (B
ﬁj:l i=1 ' an(Xj)

1 n n 5
n=— D> wij frqe (X, DU Mj;
n j=1i=1

1 ~ -
x (Eg’%xTe)mhz — <" pex)" 0, — VG(X)T,Bd) :

By direct calculation, we have

| & i fr (X 2)|0)) SN I ;
T = J. —M;;(1, X%6/h) ( )Kl(XT»G)wr(S)
= 2 sy X 2 xgon ) KOO

n n

1 5/ (1] : ) X
= 7 Zzlllr(Sk)wkj (g (UJ)(/?&%) XJ)) +o,(D).

k=1 j=1

Combining 7 with Qp,,(y*), we have

T
* * 1 - - g’ 17 Xi_ X; *
QuuyH+T1{ y* = _EZZ%(S")”""(&)( ]Z)i[—vergg;g j)]) v rop)
i=1 j=I
= — Wy 4o,(1), (23)

n n §'(U; X; — X
where Wy = 3 37, 2 i1 Ve (& (3 ( ]Z)i(— Vo, &935 j)))-

Combining 7> with Q»,22, we have
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O+ 1

n n

= % > fr (4 X210 ) i M (g/ (X78) (0. %) = XT) 60— v (X_,-)Tﬁd)

j=li=l1
+op(1)

_ % > @ X, B)l0)e; (

j=li=1
+op(1)

g/(X?ﬁ)Xu) (g/(Xjré)(,uer X)) - X,))T (ed )
Z; —vg, (X;) Ba

i

1 < - (§XTHX; — g <Xj>>)®2(ed>
= —— X, Z i I ’
ﬁ;fy(q ( )|U./)( j o, (X)) iy
+o,(1).

It is easy to show that

Quar + Tr = —/iCo (Z‘; ) +o,(1), (24)
o Wo 0
where Co ‘( 0 E[fy(g:(X. 2)[X"0;)vp, (X)ua,(xﬂ])'

Hence, combining (22), (23) and (24), we have

1 T
Q,(y" = EV*TQJ/* - [Wn + /nCy (Z”;)] v +op().

Following Lemma 2, *, the minimizer of Q,(y*) can be expressed as

P* =G W, + VG (Z) +op(D).

Note that p* = ﬁ(%:% ),we have
é_er -1 —1 é_er
A — 1 o /). 25
(ﬁ—ﬁf) Wi+ 6 o(ﬂ_ﬁr)+0p( /~/n) (25)

Note the expressions of G, Cy and by condition A.6, we can get that G, Cpand G — Cy
are all positive symmetric matrices. Therefore, G=G"12CyG "% isalsoa positive
matrix with all eigenvalues less than 1. Let (ék, /§k) be the estimation results of the
k-th iteration in the algorithm. For each k, Eq. (25) hold with @, B) replaced by

(B+1, Bes1) and (8, B) by (G, Br). Let ¥ = G1/2 (%" ) we have
k

P = G7I2W, + G7F 4 0, (1/ /).
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Since all the eigenvalues of G are less than 1, by similar analysis as Xia and Hérdle
(2006), the convergence of the algorithm can be easily obtained. Thus, for sufficient
large k, we have

~

G- (;:% ) _ g1y, 4 GG (%— Or ) +o(1/y/n).

It follows that

6 — 6,

G —G'/2Gg'? (
( ) B — B:

) =Wy + 0(1/\/%)

By the Cramér—Wald device and CLT, the proof of Theorem 1 is completed. O

Proof of Theorem 2 When the parameters 6; and B, are known, given u be an inner
point of U, similar as the proof in Lemma 4, we have

R 1
§Gus b 0c, B) = g () + 38" (puah” + Ry + O,
and

Vnh [g(u; h, 6, Br) — g(u) — %g”(u)uzhz] L N©O.T@w)).

From Lemma 4, we have §(u; h, 0, B) — §(u; h, 07, Br) = —E(X|XT0, = )76, —
E(ZIXT6, = )" Ba + R, — R%, + O(8y + hd, + h). Since now we have 6; =
0,(1//n) and By = O,(1/4/n), we need only to show

nh (Rfl — RZ’I) = 0,(1). (26)

By direct calculation, we can easily get Var (\/nh(Rf 1= szl )) =o0(1) when 0 —0; =

0,1/ J/n) and nh* = oo. Thus, (26) is hold and we complete the proof of Theorem 2.
O

Proof of Theorem 3 Denote the adaptive lasso MACLE estimator of (6;, ;) by

N 0 R LA A - -

PACR letyT = (ﬁf )»ﬁ(yAQR —y?) =10, =0 — 6. and p; = 2R — g,
T

then 1 is the minimizer of the following criterion:
n

Gow) = > > wij (eler +rij + MTu/Vn) = pelei + 1)

j=1i=lI
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P
1 uj
+ D oV | 16 + —= 1 16y
;me?“vﬁ[" 1]
q
A2 Up+m :|
+ T " A0OR .~ i+ — IPtml |- 27
%ﬁ|ﬂ3R|zﬁ[|ﬁ S| = 1B 27)

Following the proof of Theorem 3, we write G, (u) as follows:

1 o
G, (u) = EuTgu—WnTu—i—\/ﬁ(OdT, ,BdT) Clu+o0,(1)

p
1 uj
+ A—ﬁ[|91'+—|—|9 '|:|
j=l1 \/E|OJ'QR|2 ! vn Y
q
)\.2 Up+m
+ f\/ﬁ[|ﬂm+_|_lﬂ m|i|~ (28)
,; NZl e VTR

For1 < j < po, 0;j # 0, then |9A]'QR|2 —p |9rj|2a and \/ﬁ(|9rj +”j/«/ﬁ| — 1B —
ujsgn(fy;). By Slusky’s theorem, %«/ﬁﬂ@g +uj//n| —10:;]) —p 0. For
n|o:
J

po < j < p,0; =0, then /n(|0:; + uj//n| — |0:;|) =, oo. Similar results can
be derived for 8. Therefore, we have

Al
N
0, if6;; #0,

= O, if91j=0, anduj=0,
00, if 0r; =0, and u; # 0.

u
ﬁ|:|9rj + 7%| - |9tj|:| —p W(Oj,uj)

and

A2
NIl
0, if Bem #0,

=10, ifByy =0, andupy, =0,
0o, if By =0, andupy, #0.

ﬁ[m + %| - |ﬂm|} ey WBs ttppm)

Corresponding to yO = (GITO, 92T0, /31T0’ ﬂzTO)T, write u = (ulTO, ulTl, uzTO, uZTl)T. Then

it follows that

1 o
Gulw — su"Gu— W/ u+ (7. 87) G u
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p q
+D WO u)+ D W B ttprm) +0p(1)
j=1 m=1
& L(u) = %uTgu — WnTu + (édT, 35) COTu whenuj; =0, up; =0;
00 otherwise.

Note that G, (u) is convex in u, and L(u) has an unique minimizer. By the epi-
convergence results of Geyer (1994) and the same arguments in the proof of Theorem
1, the asymptotic normality can be easily established. Next, consider the consistency
property of model selection. Firstly, for any j € Ay, 9} — p 07; by the asymptotically
normality results, and then we have j € f(@. Thus, Pr(Ag C /Alg) —p 1. Then it is
suffice to show that V" ¢ Ay, Pr(j’ € Ag) — 0.

Note that the minimization on (6, B) of (14) is equal to the minimization of (27)
onu. Suppose ;' € Ay. By the KKT optimality condition of the minimization of (28),
we have

G — W + (%d ) i
d

‘ﬂeg’ﬂz ’

where G is the j'throw of G, and C; U is the Jj'throw of Cy, respectlvely,Wn is the
J'-th element of W,, By the above asymptotlcal normality of W,,, we can easily get

thatu = O, (1), W = = Op(1). By Theorem 1, we have Jn (%d ) = Op(1). Since
d

by condition A.2, G(;,) and C; (") are all bounded by those definitions. Combining
above results, we have

Gu— Wi + Vi (Zf;) ey = 0,(1). (29)

Now, consider — 1 Since j ¢ Ag, 0.j = 0, by Theorem 1, we have éng =,

NI
0, af?* = yn@3" —6:;) = 0,(1). Combined this with 2 — o0, we have
m —p oo and that
j/
Pr(j’ € Ap)

=Pr Q(j/)u—W;{/—i-\/ﬁ(%d) (j)
¥

—,0
‘ﬂeQ’WZ !

We complete the proof of Pr(Ag = Ay) — p 1. Similarly, Pr(A;; = Ag) —p lcan
be also derived. O
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Appendix B

In this Appendix, we outline the proof of Lemma 1 in Sect. 2. Given any 6 and
B, denote By = B — Br.0s = 0 — 0,88 = |B— Bcl.So = 10 — 0. 8pn =
{logn/(mbP)}'/? , Tpy = b% + 8 pn.

Proof of Theorem 1 For any inner point x € &, the values of g(x 8), g/(x” §) can be
estimated by

(a, b) = argmin Z pe(Y; —a —bX,0 — ZT B)Hy(Xy0), (30)
a,b i=1

where, H,(X;0) = L&

= b 5 can be updated by

(6, B) = argmin Zzp,(y —a;j—b;X;i =Xplo—2I'pyw;;, (31
0. j=1li=1

where a;, b is the estimated values of g(XTGT) g (XTQI) by (30) respectively, W;; =
H, (Xij)

S Hp (X))
For convenience, denote &; = Y; — g(XTOI) ZiT B, thus the tth quantile of &; will

equal zero when given X;, Z;. Denote (
of

— 0 ) = ¢, then ¢ will be the minimizer
B — Be

IGE [peei =7y = NFO = peei = 7ip| Wy (32)

jltl

biX;: B B -
where N;; = (Zf_ ”) Xij = Xi = X, 7ij = aj + b;X[ 6. — g(X[60).
1

Using the Knight’s identity, we can write

Va() = —% DD Wik (eNNSe

j=1i=l1

r1/+N ¢
+- ZZWU/ [1(ei <) — I(ei < 0)]ds,

j=1li=1
= V1, () + Vo (8),
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where

Vin(0) = —% DD Wi ()N,

j=l1i=l1

Vo (§) = %ZZWU/_

j=1i=1 Tij

Fij+Nie
(I(ei <) —1(&i <0))ds.

Firstly, consider V5, (¢). Denote X be the o —field generated by {X{, - - - , X,,}, then
the conditional expectation of 1, (¢) will be:

1 n.on fij+Ni§§
EWVn@IX) == > / | Wij [sfr (g (X, Z)[Xi) (1 + 0(1))] ds

j=1i=I

1 1 n n
= ¢ - 22 20 fr@e (X DIXONNGWij | €
j=li=l1

T
171 n

DD Wi fr (@ X D)X Nij | ¢+ o0p(1),

j=1i=1

+ | -
n

Define R, (¢) = V2,u(¢) — E(V2,(8)|X). It can be shown that R, (§) = op(1).
Therefore, we have

Van(§) = Vou1(§) + Vi 5¢ +0,(1),
where

1 1 n n
Vant (€)= 587 | =27 > Wi fr (e X, D)X Ny N | €.

j=li=l1

l — _
Vona = - ZZ Wi fr (g X, Z)|X;) N;jrij.

j=1i=I
Consider V2,1 (¢). Denote £ = %Z?:l > fr(g (X, Z)|Xi)Njj N; Wij, we have
£h=r, 33)

where

o _ (OO E [ KOy G K DIX)] Ly + OWbpn +b%8p) - OB + b3pn)
OB® + bS ) E[fr(g: X, Z)IX)ZZT ]| + OB + 8pn) '
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Now consider V,,,2. We can get

l n n B
Vanr =" D> WijNijiij fr (g (X, Z)X;)
j=li=1

2
076, (07 6, — 1)6,E [(g’(XTQT)) fy (g (X, Z)|X)] + O3 + b3 pn + b25p)

E [v (00T (%) fy (g: (X, 2)IX) | (B = Bo) + OB+ 8pm)

(34)

The proof of (33) and (34) can be found in the latter part of this Appendix.
Then for the new value of f;, denoted by 8, we have

B~ b= [E[22" fria. X D)) E[vOv07 fr (X DIX)] 6 B
+ OB +b""8,).

Note that multidimensional kernel is used in this algorithm, the above equation does
not depend on the choice of 8. Replacing g as B and B as Bi+1, we have

B — B = [E[227 frigex. px)]) B

x [v VT fy (ge (X, DIX) | (B = Br) + OB+ 57" 8,).

By using the regular condition A.6, E [ZZ fy (¢:(X, Z)IX)] — E[p(X)v(X)” fy (g«
X, 2D)IX)| =E[(Z - vX))(Z —vX)T fy(q: (X, Z)|X)] is a positive matrix, sim-
ilar conclusion can be derived for E [ZZT fy (¢ (X, Z)|X)] and E[p(X)v(X)” fy (g-

X, 7Z) |X)]. Thus, all the eigenvalues of {E [ZZT fr(g- (X, Z)|X)]}_1 E[v(X)v(X)T
frg: X, Z) |X)] are less than 1. After sufficiently many iterations, we have

Br— B =0 +b""8p) =, 0.
If 670, # 0, then following the previous results, we have
O —6: = 070:)7 (1 —0T60:)0: + O +b+b7'5,).
Since g — p 0, we have
6 :=Sgn0/|0] =6, + O(b+b""'5,,).

The proof is completed. O

For the estimated a and b derived by (30), we have following results.
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Lemma 5 Suppose b — 0, and nb?*?/logn — oo and the regular conditions A.1—
A.6 hold, we have

a=gx"0)+vx) By+ OB+ 8,m), (35)

b=0"0.8'x"00) + 0[5 + 5718, + b} (36)

uniformly forx € &

Proof of lemma 5 For convenience, let &; = Y; — g(Xl.T 0;) — ZiT Bz, then the condi-
a—g(x"6y) )

tional mean of v, (¢;) is zero when given (X;, Z;). Denote £ = ( (5 g/(xTQ )b
- T

1 -, L.
N; = (bl X; — x)TQ)’ then & is the minimizer of

l n
Va(®) = = > Hy(Xio) [prler = Fi = N[ &) = peei = )] . (D)
i=1

where 7; = g(x"0;) + ¢'(x" 00)(Xi —=%)"0 — g(X[0:) + Z] (B — Br).
By using Knight’s identity, we can rewrite V,,(§) as

V(&) = VT E + Vo, (), (38)

where

] n
Vip = =~ > Hp(Xio)Ni e (&)

i=1

1 n T +Nl‘T§
Vau(€) = = D Hy(Xio) / [I(e <s)—I(e <0)]. (39)
e i
By calculating the conditional expectation on X', we can get

r,+N &
E(Van(£)|X) = ZHb<X,o> / E[l(e <s)—I(e < 0)]ds.
1 1
= st [; ;Huxio)fy(qf(x, z>|Xi>NiN,~T] £

T

1 N
+ [; > H(Xio) fr (g= (X, Z)|Xl-)f,-Ni] 3

i=1
= Van1 (€) + V3,
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where

P
Vani (§) = 587 [; > H,(Xio) fr (- (X, Z>|Xi>N,-N,~T] £,

i=1

N
1 _

Vono = — E H, (Xi0) fr (g (X, Z)|X;)F; N;.
-

Let R, = V2,1(8) — E(V2u1(8)|X), it is easy to show that R, = 0,(1), and then we
have V,,(§) = Van1 (€) + Vy €.

Firstly, consider V;,1(§). Denote L,(x) = % ZlNzl H, (Xio0) fy (g: (X, Z)|X;)
N; NZ.T, note that 679 = 1, by Lemma 3, we can easily get that

Ly(x) = fx(X) fy (g (X, Z)[xX) [2(1 + O (7)),

where fx(x) is the marginal density function of X at x. Thus,

1
Van (§) = 3 fx () fr (4= (X, 2)X)ET LE + O(tpn)). (40)
Now consider V5,,>. Note that
Fi=g(x'0:) + g xT0)X; —x)T0 — g(XT6,) + 2T (B — B2)

1
=— Eg”(xTea(X%et)Z + ¢ x0)X1(0 — 0;) + o(XIy6)H) + Z] Ba.

By using Lemma 3 and similar calculation, we can get that

1 n
- > Hy(Xi0) fr (g: X, Z)X)F: = fx(X) fr (g X, D))" Ba + OB + 8 ,n),

i=1

1 « L
=D Hy(Xio) fr (g (X, Z)X))7ib ™ X[y

i=1

= 1xX) fr(g:(X, 2)[x)g' (x"0:)07 (0 — 0:)b + O (bSg + Tpn).
Thus, we have

v®)" g+ OB + 8pn) ) Cwn

V2n2 = fX(X)fY(qT(Xv Z)|X) (g/(XTQ-E)bQT(Q _ 91) + O(b(SIB + Tpn)

Combining (38), (40) and (41), we have

1
V() = EETLn(X)S — Vin() + [xX) fr(g: X, Z)[x)

(YOI Ba+ O®? +8p)
g’ (xT0)bOT (6 — 6;) + O(bdg + Tpn) )
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By using Lemma 2, the minimizer of (32) can be expressed as

Z el v(x)" Ba + O(b* + 8pn)
§ =L Vin - (g/(XTOT)bQT(Q - ef)p+ 0 (bép + t,,,,)) ' “42)

Note that the mean of Y¥;(&;) is zero, by using Lemma 3, Vi,, = O(b2 + 8pn)- Note
the definition of &, and combining the result of V1, with (42), we complete the proof.
O

Proof of 33 To proof (33), it is sufficient to show that

1 n n _
=2 2 Wiifr (@ (X, DIX0biX Xy
j=li=1

= 520700 E ¢/ (0 fy (4 (X, D)X | Ly + 0T + b75p),

1 n n _
=22 Wi fr(qe (X, 2)X)b X Z] = O + bdpn).
j=1i=1

1 n n
SO0 Wi frar X DIXDLZ] = E| fr (@ (X DIXNZZT | + 0k +b8p).
j=1i=1

n
Here, we give the details for the first equation. Let ko (Xx) = % > H(X; — x), then by
i=1

Lemma 3, we can get that
ko(X) = fx(x) + O(tpn).

By Lemma 5, we have l;j = BTth’(XJTGt) + 0@ + b_18p,, + b), thus,

1 n n B
=2 2 Wiifr (@ (X, DIXDbi XXy
j=1i=1

] n
== D (0708 X))y (q: X, D)X L + O B8 + bSpn)
j=1

=67 60)%E [ ¢/ (0 fr (qr (X, DIX) | B2 + O 626 + bSpn).

Proof of 34 To proof (34), it is sufficient to show that

1 n n _ ~
- ZZ WijbiXijrij fr (g (X, Z)|X;)

j=1i=1
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= 670,076 — )6.E [(g/(XTea)2 frig=(X, Z)|X)}

+ OB 4 b8y + b8p),
1 n n

=20 2 WijZiij fr (g (X, 2)X0)
j=1i=1

= E[vO0VT (X0 fr (@ (X, Z2)IX) | (B = o) + Ob +8,).
Here, we give the details for the second equation. By Lemma 5, we have
Fij = aj +b;X[,6: — g(X] 6r)
= ;- g(X[0) + (B; — ' X[ 60)) X[j6c + ¢ XT00)XT 0,
— (exTon) - gxT00))

1
= (X)) Bu + 676 = Dg (X[ 60)X[0; + 58" X[ 0) (X[;60)? + 0 (XF;600°)

Denote

1 n
Cox) =— > Hp(Xi —x) fy(q: (X, D)|Xi)Z;,
" i=1

1 n
Cl0) =~ > Hp(Xi = %) fy (g: X, DIXDZi (X = %),
i=1

1 n
G =~ ZHb(Xi — %) fr (qe X, DIXNZi X — )" (X; —x).
i=1

By Lemma 3, it is easy to show that

Co(x) = fxX) fr(g: (X, Z)[x)v(x) + O (Tpn),
Ci(x) = O(B* +b8,,), Ca(x) = OB tpn).

Then we have
1 n n
=2 D WiiZifij fy (g (X, D)IX)
j=li=1

1 n n
= - D> D> Wi frlar (X D)IX)Z;
j=1i=1

@ Springer



408 Y. Lvetal.

_IS -1 (X AT To. _ 1yo/(xT .
== 2 ko(X)~H CoXv(X)T fa + 076 — g/ X[ 0)C1(X))0
j=1
+o©]! cz(X;)(ar)]

| « “
= Z;wx,ﬂﬁd Zl; Wij fr (e (X, Z)IX)Zi + O(b + 8p0)
J= i=

= E[v0v" (X0 £ (4 (X, Z)X) | B + OB+ 8,0)

= E[v®0v" (X0 £ (@ (X, Z)X) | (B = Bo) + O + 8pn).

The proof of the first equation is similar. O
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