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Abstract Partial linear single-index model (PLSIM) is a flexible and applicable model
when investigating the underlying relationship between the response and the multi-
variate covariates. Most previous studies on PLSIM concentrated on mean regression,
based on least square or likelihood approach. In contrast to this method, in this paper,
we propose minimizing average check loss estimation (MACLE) procedure to conduct
quantile regression of PLSIM. We construct an initial consistent quantile regression
estimator of the parametric part base multi-dimensional kernels, and further promote
the estimation efficiency to the optimal rate. We discuss the optimal bandwidth selec-
tion method and establish the asymptotic normality of the proposed MACLE estima-
tors. Furthermore, we consider an adaptive lasso penalized variable selection method
and establish its oracle property. Simulation studies with various distributed error and
a real data analysis are conducted to show the promise of our proposed methods.
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1 Introduction

Semi-parametric model has been popular in the literature recently due to the explana-
tory power and the flexibility of modeling with multivariate covariates. See Ruppert
et al. (2003) and the reference therein for more comprehensive review. Among the
semi-parametric modeling literature, the partial linear single-index model (PLSIM)
plays an important role, which has form

Y = g(XT θ)+ ZTβ + ε, (1)

where X ∈ Rp and Z ∈ Rq are covariates of the response variable Y, ε is the model
error. g(·) is an unknown differentiable function, θ and β are unknown parameters. For
identifiability, we assume ||θ || = 1 and the first nonzero element of θ is positive. For
convenience, we call θ index parameter, g(·) index function and β linear parameter.

Partial linear single-index model, as a combination of the single-index model (SIM),
the widely used dimension reduction approach to avoid the “curse of dimensionality”,
and the partial linear model, the most popular model in semi-parametric regression
(see Härdle et al. 2007), has attracted many researcher’s attention and various methods
have been proposed to estimate its unknown parameters and nonparametric function.
Carroll et al. (1997) proposed full iteration algorithm using local linear method. As
observed by Yu and Ruppert (2002), the full iteration approaches may unstable in
computation. Yu and Ruppert (2002) proposed penalized spline approach to alleviate
the computational difficulties, which is essentially a flexible parametric model. Xia
and Härdle (2006) proposed the well-known minimizing average variance estimation
(MAVE) method based on local linear approach, which gives the

√
n consistent estima-

tors of the parameters by constructive approach. Liang et al. (2010) investigate PLSIM
by profile likelihood, get efficient estimation of the parameters and also consider the
variable selection problem of PLSIM.

Most existing estimation procedures for PLSIM concentrate on mean regression,
based on either least squares or likelihood approach. In contrast to mean linear regres-
sion, quantile regression (QR) proposed by Koenker and Basset (1978) has been widely
used as a robust alternative to explore the underlying relationship between the covari-
ates and the response, see Koenker (2005) for comprehensive review. For nonpara-
metric regressions, Chaudhuri (1991) introduced local polynomial QR in a general
multivariate setting, which is flexible but usually inapplicable in practice due to the
“curse of dimensionality”. In order to avoid the “curse of dimensionality” in multi-
variate nonparametric QR, Chaudhuri et al. (1997) considered dimension reduction
by single-index modeling approach and developed the average derivative approach
(Härdle and Stoker 1989) to estimate the index parameters directly. Recently, Wu
et al. (2010) proposed a practical estimation procedure for SIM based on the initial
estimator provided by Chaudhuri et al. (1997). Jiang et al. (2012) consider the com-
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Quantile regression of partial linear single-index model 377

posite quantile regression [CQR, proposed by Zou and Yuan (2008)] of SIM. Kong
and Xia (2012) proposed an adaptive estimation procedure, and the estimator obtained
is consistent with probability 1. However, there has been little research on the QR of
PLSIM.

In real data analysis, the covariates of model (1) may include many irrelevant
covariates, especially for high-dimensional X and Z. In this case, sparse model is
often considered superior, due to the enhancements of model predictability and inter-
pretability. Since semi-parametric models, like (1), involve both nonparametric and
parametric parts need to be estimated precisely, it is challenging to perform variable
selection. Liang et al. (2010) proposed an variable selection method for mean regres-
sion of (1) by combining the profile likelihood method and the SCAD (Fan and Li
2001) penalized approach. In quantile regression of semi-parametric model, Kai et al.
(2011) considered the variable selection of partial linear varying coefficient model.
About the composite quantile regression of SIM, Fan et al. (2013) proposed an vari-
able selection method by SCAD penalized method. Although, there has also been little
research on the variable selection in QR PLSIM.

Motivated by the above observations, we extend the quantile regression methodol-
ogy of semi-parametric models to PLSIM and propose an variable selection method,
respectively. There are three major contributions of the present study. (1) We con-
struct an initial consistent quantile regression estimation of the parameters θ and β
based on multi-dimensional kernels, and then promote the estimation efficiency using
one-dimensional index kernels. The final estimators derived can reach the optimal
convergence rate. (2) The proposed estimation method is not sensitive to the band-
width selection and the common “under smoothing” problem is not necessary in out
estimation procedure. (3) We propose an variable selection method for quantile regres-
sion of PLSIM by combining the adaptive lasso penalized method with our proposed
estimation method, which enjoys the oracle properties defined by Zou (2006).

Monte Carlo simulations with various non-normal errors and parameters changing
with quantiles are conducted to show the performance of our estimation and variable
selection method. In real data analysis, we apply our method to Boston housing data.
Simulation and real data analysis validate the fine property of the minimizing average
check loss estimation (MACLE) procedure and the adaptive lasso penalized MACLE
variable selection method.

The paper is organized as follows. In Sect. 2, we introduce the estimation methodol-
ogy and the calculation procedure and present the asymptotic properties of the estima-
tors. In Sect. 3, adaptive lasso penalized quantile regression method is proposed and its
oracle property is presented. Monte Carlo simulations with various error distributions
are presented in Sect. 4. In Sect. 5, we apply the proposed estimation and variable
selection methods to Boston housing data. Regularity conditions and technical proofs
are given in the Appendix A and B.

2 Estimation methodology

In this section, we develop the semi-parametric quantile regression theory to PLSIM.
Let ρτ (u) = u[τ − I (u < 0)] be the check loss function at τ ∈ (0, 1). Quantile
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regression is often used to estimate the conditional quantile functions of Y , which is
defined as

qτ (x, z) = argmin
a

E {ρτ (Y − a)|(X,Z) = (x, z)} .

The partial linear single-index model assumes that the τ -th conditional quantile func-
tion of Y can be expressed as qτ (x, z) = gτ (xT θτ )+ zTβτ .

Suppose {Xi , Zi , Yi }n
i=1 is an independent and identically distributed sample from

the model

Y = gτ
(

XT θτ

)
+ ZTβτ + ετ , (2)

where the τ th conditional quantile of ετ is zero when given (X,Z). For notational
convenience, we abbreviate gτ (·) as g(·). Theoretically, the true parameter vector
(θτ , βτ ) satisfies that

(θτ , βτ ) = argmin
θ,β

||θ ||=1,θ1>0

E
[
ρτ

(
Y − g

(
XT θ

)
− ZTβ

)]
. (3)

Note that

E
[
ρτ

(
Y − g

(
XT θ

)
− ZTβ

)]
= E

{
E
[
ρτ (Y − g(XT θ)− ZTβ)|XT θ

]}
, (4)

where E[ρτ (Y −g(XT θ)−ZTβ)|XT θ ] is the conditional expected check loss on XT θ .
In the following context, we will construct an empirical form of (4), by minimizing
which we can derive our estimations of the unknown parameters and the unknown
index function.

For given (θ, β), when XT
i θ closed to u, g(XT

i θ) can be approximated linearly by

g
(

XT
i θ
)

� g(u)+ g′(u)
(

XT
i θ − u

)
.

Then the local linear approximate of E[ρτ (Y − g(XT θ)− ZTβ)|XT θ = u] will be

n∑
i=1

ρτ

(
Yi − g(u)− g′(u)

(
XT

i θ − u
)

− ZT
i β
)
ωi0,

where ωi0 are non-negative weights with
∑n

i=1 ωi0 = 1, typically centering at x
and xT θ . By averaging on u j = XT

j θ, j = 1, · · · , n, we can get an empirical
approximation of (4) by

1

n

n∑
j=1

n∑
i=1

ρτ (Yi − g(u j )− g′(u j )XT
i jθ − ZT

i β)ωi j , (5)

where Xi j = Xi − X j , and ωi j satisfies
∑n

i=1 ωi j = 1 for ∀ j = 1, · · · , n.
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Quantile regression of partial linear single-index model 379

We define the quantile regression estimates of (θτ , βτ ) as

(θ̂ , β̂) = argmin
θ,β

||θ ||=1,θ1>0

n∑
j=1

n∑
i=1

ρτ

(
Yi − g(u j )− g′(u j )XT

i jθ − ZT
i β
)
ωi j . (6)

The above estimation procedure can be called the MACLE method, which is parallel
to the MAVE method in mean regression of PLSIM. The weights ωi j can be firstly

chosen as ωi j = Hb(Xi j )∑n
l=1 Hb(Xl j )

, where H(·) is a p-dimensional kernel density function,

and Hb(·) = 1
bp H(·/b), b is the bandwidth. The initial estimations of (θτ , βτ ) can be

derived by following steps:

Step 1. For any given θ and β, g(XT
j θ), g′(XT

j θ) can be estimated by

(ā j , b̄ j ) = argmin
a j ,b j

n∑
i=1

ρτ

(
Yi − a j − b j XT

i jθ − ZT
i β
)
ωi j , (7)

for j = 1, . . . , n.
Step 2. The values of θ and β can be updated by

(θ̄ , β̄) = argmin
θ,β

||θ ||=1,θ1>0

n∑
j=1

n∑
i=1

ρτ

(
Yi − ā j − b j X T

i jθ − ZT
i β
)
ωi j . (8)

Step 3. Iterate Step 1 and Step 2 until convergence. Define the final estimation of
θτ and βτ by θ̃ and β̃.

Though the estimators θ̃ and β̃ based on multi-dimensional kernels may loose effi-
ciency, we can show that under some regular conditions they are consistent to the true
values.

Lemma 1 Let θ̃ and β̃ be the estimators derived above. Suppose that condition A.1–
A.6 in Appendix hold, b → 0, and nbp+2/ log n → ∞. If we start the estimation
procedure with θ satisfies that θT θτ 	= 0, then we have

θ̃ − θτ = op(1), β̃ − βτ = op(1).

Proof The proof of Lemma 1 will be presented in Appendix B. 
�
After we get the initial estimates of θ and β, we can improve the estimation efficiency
by choosing ωi j = Kh(XT

i j θ̃ )/
∑n

l=1 Kh(XT
l j θ̃ ), where K (·) is an one-dimensional

kernel function, Kh(·) = 1
h K ( ·

h ), h is the bandwidth. The estimation algorithm can
be divided as follows:

Step 4. Given (θ̃ , β̃). Standardize θ̃ s.t. ||θ̃ || = 1 and θ̃1 > 0. Let a j :=
g(XT

j θ̃ ), b j := g′(XT
j θ̃ ), j = 1, . . . , n. Given θ̃ , β̃, get the estimates of
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a j , b j , j = 1, . . . , n by

(ã j , b̃ j ) = argmin
a j ,b j

n∑
i=1

ρτ

[
yi − a j − b j XT

i j θ̃ − ZT
i β̃
]
ωi j for j = 1, . . . , n,

(9)

with the bandwidth h chosen by (13) in Sect. 3.
Step 5. Given ã j , b̃ j , j = 1, . . . , n, update the estimates (θ̃ , β̃) by

(θ̃ , β̃) = argmin
θ,β

n∑
j=1

n∑
i=1

ρτ

[
Yi − ã j − b̃ j (XT

i jθ)− ZT
i β
]
ωi j , (10)

with ωi j evaluated at θ̃ and h from step 1;
Step 6. Repeat Steps 4 and Step 5 until convergence. Let the final estimation of
(θτ , βτ ) by (θ̂ , β̂).

Remark 1 In the above algorithm, θ is standardized as follows: θ = sign(θ1)θ/||θ ||,
where sign(θ1) is the sign of the first component of θ .

Here, we can call the above estimation of the parameter (θτ , βτ ) as the refined mini-
mizing average check loss estimation (MACLE). This refined MACLE procedure was
initially proposed by Wu et al. (2010), which is similar as the refined MAVE method
proposed by Xia and Härdle (2006). After obtaining θ̂ , β̂, the g(u) can be estimated
by the solution of a j in (9) with XT

j θ̂ replaced by u, denoted by ĝ(u; h, θ̂ , β̂).
In the following, we present the asymptotic property of the proposed MACLE. Let

fY (·|XT θ) and FY (·|XT θ) be the density function and cumulative distribution function
of Y condition on XT θ , respectively. Let fUτ (·) be the marginal density function of
the index XT θτ . We choose the kernel K (·) as a symmetric density function, and let

μ j =
∫

u j K (u)du and ν j =
∫

u j K 2(u)du, j = 0, 1, 2, . . . .

Theorem 1 Suppose the conditions A.1–A.7 given in the Appendix hold, then we have

√
n

(
θ̂ − θτ

β̂ − βτ

)
L−→ N

(
0, τ (1 − τ)D−1

1 D0D−1
1

)
, (11)

where
L−→ stands for convergence in distribution, D0 = E(D), D1 = E[ fY (qτ (X,Z)|

XT θτ )D], D =
(

g′(XT θτ )X̃
Z̃

)⊗2

, X̃ = X − E(X|XT θτ ) and Z̃ = Z − E(Z|XT θτ ).

From Theorem 1, we can get
√

n-consistent estimators of (θτ , βτ ), then by (9), we can
get the estimation of the nonparametric function. We present the asymptotic properties
of the nonparametric part in the following:
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Theorem 2 Suppose u is an interior point of fUτ (·) and the regular conditions A.1–
A.7 in the Appendix hold, we have

√
nh

{
ĝ(u; h, θ̂ , β̂)− g(u)− 1

2
g′′(u)μ2h2

}
L−→ N (0, 	τ (u)), (12)

where 	τ (u) = τ(1−τ)ν0 fUτ (u)−1 fY (qτ (X,Z)|u)−2, fY (qτ (X,Z)|u) is the density
of Y at qτ (X,Z) condition on XT θτ = u.

According to Theorem 2, when the sample size is large, the optimal bandwidth could be
derived by minimizing the asymptotic mean squared error (AMSE) from Theorem 2,

hopt =
{

τ(1 − τ)

fY (qτ (X,Z)|u)2
}1/5

×
{ ∫

K 2(t)dt

n[∫ t2 K (t)dt]2[g′′(u)]2 fUτ (u)

}1/5

.

This calculation indicates that the MACLE estimator of g(·) enjoys the optimal rate
of convergence n−2/5. While the optimal bandwidth hopt depends on some unknown
values such as fY (qτ (X,Z)|u), g′′(u) and fUτ (u), whose estimations may be com-
putational intensive. Following the similar argument as Yu and Jones (1998), we take
the following rule-of-thumb bandwidth hτ in this algorithm,

hτ = hm

{
τ(1 − τ)

/
φ(�−1(τ ))2

}1/5
, (13)

whereφ(·) and�(·) are the probability density and the cumulative distribution function
of the standard normal distribution, respectively. hm is the optimal bandwidth used in
mean regression, which can be easily obtained by the plug-in method (see Ruppert et
al. 1995). The approximation by (13) provides an easy approach to get the optimal
bandwidth for quantile regression. We recommend Yu and Jones (1998) for detail
discussion of this bandwidth approximation method.

3 Variable selection

In practice, the true model is often unknown, which may include many variables in
the covariates. An under-fitted model will yield biased estimates and large residuals,
while an over-fitted model may reduce the estimation efficiency. This motivates us to
consider variable selection in QR of PLSIM.

We adopt the adaptive lasso idea from Zou (2006). Suppose we first fit the model
by including all the predictors. Theorem 1 says that MACLE estimator, denoted by
(θ̂Q R, β̂Q R), is

√
n consistent. Then, we use (θ̂Q R, β̂Q R) to construct the adaptively

weighted lasso penalized target function as

Gn(θ, β) =
n∑

j=1

n∑
i=1

ρτ

(
Yi − g

(
XT

i θ
)

− ZT
i β
)
ωi j

+λ1

p∑
j=1

|θ j |
|θ̂Q R

j |2 + λ2

q∑
m=1

|βm |
|β̂Q R

m |2 . (14)
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For the given tuning parameters (λ1, λ2), we obtain the penalized estimators by mini-
mizing G(θ, β) with respect to θ and β with constrains ||θ || = 1 and the first nonzero
element of θ is positive. For the sake of simplicity, we denote the resulting estimators
by θ̂ λ1 and β̂λ2 .

Remark 2 Throughout this paper, we can choose different regularization parameters
λ1 and λ2 to select the important variables of the index covariates and partial linear
covariates separately. For the purpose of selecting index covariates only, we can simply
set λ2 = 0. Similarly, if we have only interest in selecting partial linear covariates,
then we can set λ1 = 0.

Remark 3 Other variable selection methods such as SCAD proposed by Fan and Li
(2001) can be also used here, and the oracle property can be derived similarly. For the
sake of easy computation, we choose adaptive lasso method here, which can be solved
conveniently by linear programming.

Note that we need two tuning parameters in (14), λ1 and λ2, imposed on the linear part
and the single-index part, respectively. Following the approach of Fan and Li (2004),
we set λ1 = λ SE(XT θ̂ ) and λ2 = λ SE(β̂T Z), where λ is the tuning parameter,
and SE(XT θ̂ ) and SE(ZT β̂) are the standard errors of the unpenalized MACLE of θ
and β, respectively. The tuning parameters λ can be chosen optimally by BIC criteria.
Following Wang and Leng (2007), denote

BIC(λ) = log Pτ (λ)+ log(n)/nDFλ, (15)

where Pτ (λ) = ∑n
j=1
∑n

i=1 ρτ (Yi − ĝ(XT
i θ̂

λ1) − ZT
i β̂

λ2)ωi j ,DFλ is the number

of nonzero coefficients of both θ̂ λ1 and β̂λ2 . We let λ̂(BIC) = argmin λBIC(λ).
The performance of λ̂(BIC) will be examined in our simulation studies in the next
section.

Let Aθ = {
j : θ j 	= 0

}
and Aβ = {m : βm 	= 0}. Without loss of generality, it

is assumed that the correct model has regression coefficients θτ = (θ1τ , θ2τ ) and
βτ = (β1τ , β2τ ), where θ1τ and β1τ are p0 and q0 nonzero components of θτ and
βτ , respectively, and θ2τ and β2τ are p − p0 and q − q0 vectors with zeros. Thus,
Aθ = {1, · · · , p0} and Aβ = {1, · · · , q0}. In addition, we define X1 and Z1 in such
a way that they consist of the first p0 and q0 elements of X and Z, respectively. We
define X̃1 = X1 − E(X1|XT

1 θ1τ ) and Z̃1 = Z1 − E(Z1|XT
1 θ1τ ) similarly as in Sect. 3.

In what follows, we show the adaptive lasso penalized MACLE estimators enjoy the
oracle properties.

Theorem 3 (Oracle property). Under the regular condition A.1–A.8 in Appendix, if
λi/

√
n → 0 and λi → ∞ for i = 1, 2, then the adaptive lasso penalized estimators

θ̂ λ1 and β̂λ2 must satisfy

1. Consistency in selection: Pr({ j : θ̂ λ1
j 	= 0} = Aθ ) → 1 and Pr({m : β̂λ2

m 	= 0} =
Aβ) → 1.
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2. Asymptotic normality:

√
n

(
θ̂
λ1
1 − θ1τ

β̂
λ2
1 − β1τ

)
L→ N

(
0, τ (1 − τ)D−1

1∗ D0∗D−1
1∗
)
, (16)

where θ̂ λ1
1 and β̂λ2

1 denote the first p0 and q0 elements of θ̂ λ1 and β̂λ2 , respectively,

D1∗ = E[ f (0|XT
1 θ1τ )D∗],D∗ =

{
g′(XT

1 θ1τ )X̃1

Z̃1

}⊗2

and D0∗ = E (D∗).

4 Monte Carlo simulations

In this section, we consider three examples parameters changing with quantiles or
with various distributed errors to assess the finite sample performance of the proposed
estimation and variable selection methods, respectively.

Example 4.1 In this example, we generate 200 random samples, each consisting of
n = 100, 200 observations, from the model

Y = sin
(
π(XT θ − a)/(b − a)

)
+ ZTβ + σε, (17)

where X are all uniformly distributed on [0, 1]3 with correlation as cor(Xi ,X j ) =
0.5|i− j |,Z1,Z2 are standard normal distributed with cor(Z1,Z2) = 0.5,Z3 is discrete
distributed on [−1, 1] with probability (0.4, 0.6),X. (Z1,Z2) and Z3 are independent.
θ = (1, 1, 1)/

√
3, a = 0.3912, b = 1.3409, β = (2, 0.5, 1), σ = 0.1. This model is

similar as that in Carroll et al. (1997), while with more complicate linear covariates.
In this simulation, we consider four error distributions for ε: N (0, 1), t (3), standard
Cauchy and mixture of normals 0.9N (0, 1)+ 0.1N (0, 102). Assume X, Z and ε are
mutually independent. For each error distribution, the parameters (θτ , βτ ), and the
index function g(·) are estimated via series of quantile regression with τ = 0.3, 0.5
and 0.7, respectively. The bias and standard deviation (Std) of the estimates of (θτ , βτ )
are summarized in Tables 1, 2, 3 and 4. From the tables, we can see that the quantile
regression estimation of PLSIM is robust to different distributed error. Particularly,
when the error follows standard Cauchy and τ = 0.5, the box plots of the 200 estimates
of (θτ , βτ ) are presented in Fig. 1. The median of the index function estimates is
presented in Fig. 2. We can see that the estimates of the parameters are centered
around the true values, and the median of the 200 estimated curves (black dashed line)
is close to the true curve (green line).

Example 4.2 Consider the following model where the parametric part changes with
the quantile,

Y = 5 ∗ exp(−(XT θτ )
2)+ XT θτ + z1eτ + z2e1−τ + z3eτ(1−τ) + ετ ,

where X = (x1, . . . , x5)
T = �1/2(u1, . . . ,u5)

T with u1, . . . ,u5 mutually inde-
pendent withe each ui ∼ Uni f orm(0, 1) and � = (0.5|i− j |)1≤i, j≤5, θτ =
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Table 1 Monte Carlo study for Example 5.1 with normal distributed error

Estimator Bias and Std θ1 θ2 θ3 β1 β2 β3

n = 100

MAVE Bias −0.0010 −0.0012 0.0014 −0.0019 0.0004 −0.0002

Std 0.0177 0.0200 0.0156 0.0129 0.0126 0.0107

QR (0.5) Bias −0.0022 −0.0004 0.0015 −0.0019 0.0001 −0.0007

Std 0.0198 0.0230 0.0187 0.0146 0.0157 0.0134

QR (0.3) Bias −0.0021 −0.0004 0.0013 −0.0021 0.0007 −0.0004

Std 0.0201 0.0240 0.0187 0.0160 0.0163 0.0141

QR (0.7) Bias −0.0011 −0.0013 0.0013 −0.0022 −0.0001 −0.0013

Std 0.0201 0.0227 0.0184 0.0159 0.0169 0.0137

n = 200

QR (0.3) Bias −0.0051 −0.0027 0.0068 −0.0002 0.0018 0.0136

Std 0.0174 0.0201 0.0180 0.0144 0.0144 0.0130

QR (0.5) Bias −0.0051 −0.0050 0.0094 0.0002 −0.0001 0.0084

Std 0.0147 0.0171 0.0167 0.0128 0.0130 0.0124

QR (0.7) Bias −0.0048 −0.0045 0.0085 0.0009 0.0010 0.0072

Std 0.0139 0.0187 0.0176 0.0135 0.0131 0.0114

Table 2 Monte Carlo study for Example 5.1 with t(3) distributed error

Estimator Bias and Std θ1 θ2 θ3 β1 β2 β3

n = 100

MAVE Bias 0.0004 −0.0057 0.0023 −0.0002 −0.0002 0.0011

Std 0.0324 0.0375 0.0320 0.0216 0.0216 0.0187

QR (0.5) Bias −0.0003 −0.0043 0.0027 −0.0004 −0.0006 −0.0003

Std 0.0245 0.0313 0.0255 0.0184 0.0170 0.0156

QR (0.3) Bias −0.0021 −0.0040 0.0037 −0.0009 −0.0011 −0.0002

Std 0.0263 0.0355 0.0290 0.0206 0.0202 0.0176

QR (0.7) Bias 0.0003 −0.0047 0.0025 −0.0011 0.0008 −0.0007

Std 0.0249 0.0307 0.0258 0.0200 0.0180 0.0169

n = 200

QR (0.3) Bias −0.0021 −0.0067 0.0074 −0.0009 −0.0013 0.0164

Std 0.0202 0.0256 0.0229 0.0163 0.0184 0.0152

QR (0.5) Bias −0.0043 −0.0069 0.0101 −0.0027 0.0014 0.0082

Std 0.0170 0.0230 0.0180 0.0140 0.0141 0.0146

QR (0.7) Bias −0.0060 −0.0046 0.0095 −0.0007 −0.0013 0.0057

Std 0.0185 0.0233 0.0188 0.0156 0.0156 0.0140

(τ, 2τ, 0, 2τ − 1, τ − 1)T /
√

10τ 2 − 6τ + 2,Z = (z1, z2, z3)
T ∼ N (0, 1)3, βτ =

(eτ , e1−τ , eτ(1−τ))T , ετ ∼ Uni f orm(−τ, 1 + τ).
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Table 3 Monte Carlo study for Example 5.1 with standard Cauchy distributed error

Estimator Bias and Std θ1 θ2 θ3 β1 β2 β3

n = 100

MAVE Bias −0.0320 −0.1024 −0.0981 0.0896 −0.2025 −0.0798

Std 0.1974 0.3507 0.2922 1.2035 1.9508 0.8807

QR (0.5) Bias 0.0024 −0.0070 0.0010 −0.0012 −0.0016 −0.0029

Std 0.0324 0.0430 0.0351 0.0250 0.0283 0.0215

QR (0.3) Bias −0.0004 −0.0076 0.0028 −0.0024 −0.0021 −0.0025

Std 0.0373 0.0522 0.0431 0.0334 0.0370 0.0275

QR (0.7) Bias 0.0048 −0.0102 0.0010 0.0012 −0.0039 −0.0044

Std 0.0360 0.0480 0.0366 0.0311 0.0311 0.0265

n = 200

QR (0.3) Bias −0.0008 −0.0127 0.0003 −0.0009 0.0016 0.0230

Std 0.0401 0.0491 0.1054 0.0281 0.0285 0.0263

QR (0.5) Bias −0.0064 −0.0043 0.0011 0.0000 −0.0001 0.0074

Std 0.0263 0.0290 0.0981 0.0181 0.0201 0.0172

QR (0.7) Bias −0.0039 −0.0130 0.0053 −0.0009 0.0004 0.0050

Std 0.0262 0.0984 0.0533 0.0236 0.0213 0.0195

Table 4 Monte Carlo study for Example 5.1 with mixture of normals distributed error

Estimator Bias and Std θ1 θ2 θ3 β1 β2 β3

n = 100

MAVE Bias −0.0063 0.0002 −0.0040 −0.0008 0.0043 −0.0002

Std 0.0595 0.0713 0.0550 0.0410 0.0439 0.0342

QR (0.5) Bias −0.0028 0.0010 0.0003 −0.0004 0.0012 0.0006

Std 0.0222 0.0268 0.0229 0.0176 0.0162 0.0136

QR (0.3) Bias −0.0020 −0.0003 0.0005 −0.0004 0.0011 0.0006

Std 0.0245 0.0297 0.0237 0.0197 0.0181 0.0157

QR (0.7) Bias −0.0038 0.0026 −0.0004 0.0013 0.0008 0.0007

Std 0.0230 0.0270 0.0234 0.0174 0.0187 0.0160

n = 200

QR (0.3) Bias −0.0038 −0.0036 0.0062 −0.0001 −0.0014 0.0146

Std 0.0180 0.0235 0.0214 0.0157 0.0161 0.0140

QR (0.5) Bias −0.0045 −0.0047 0.0082 −0.0000 −0.0005 0.0087

Std 0.0168 0.0193 0.0163 0.0128 0.0133 0.0120

QR (0.7) Bias −0.0052 −0.0033 0.0076 −0.0006 0.0012 0.0068

Std 0.0141 0.0185 0.0176 0.0137 0.0149 0.0128

For the combinations of different sample size n and quantile level τ , the estimation
efforts of 200 times MACLE are summarized in Table 5. We can see that the MALCE
method performs similarly when the parameters varying with τ .
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Fig. 1 Box plot of parameter estimations for Example 5.1 with Cauchy distributed error when τ = 0.5
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Fig. 2 The QR (0.5) estimation of the index function in Example 5.1 with Cauchy distributed error

Example 4.3 We generate 200 random samples from model (17), with θ =
(3,1.5,0,0,2,0)T√

15.25
and β = (3, 1.5, 0, 0, 0, 0, 0, 2)T , σ= 0.1. X = (X1, . . . , X6) ∼

U [0, 1]6, with cor(Xi , X j ) = 0.5|i− j |,Z = (Z1, . . . , Z8), Zi ∼ N (0, 1), j =
1, . . . , 7 with cor(Zi , Z j ) = 0.5|i− j |, Z8 follows b(1, 0.4). ε follows four types of
error distribution described above. We assume X and (Z1 . . . , Z7), Z8 and ε are inde-
pendent. We conducted 250 times simulation and variable selection by adaptive lasso
method for each τ = 0.25, 0.5 and 0.75.

The results over 250 simulations are summarized in Table 6, where C(θ) denotes the
average number of the true zero coefficients of θ that are correctly set to zero and IC(θ)
be the average number of the true nonzero coefficients that are incorrectly set to zero,
C(β) and IC(β) denote the corresponding average numbers for linear parameter β. In
the column labeled “U-fit”, we show the proportion of trials excluding any nonzero
coefficient in 250 replications. We represent the probability of trials selecting the
exact subset model and the probability of trials including all six significant variables
and some noise variables in the columns “C-fit” (“correct-fit”) and “O-fit” (“over-fit”),
respectively. From Table 6, we can see that variable selection procedure can efficiently
choose the true subset, which clearly shows the virtue of the adaptive lasso penalized
MACLE proposed in Sect. 3.
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Table 5 Summary of 200 times estimation for Example 5.2

τ Bias and Std θ1 θ2 θ3 θ4 θ5 β1 β2 β3

n = 200

0.5 Bias −0.0002 −0.0030 0.0079 −0.0009 0.0085 0.0022 −0.0018 −0.0005

Std 0.0491 0.0323 0.0539 0.0575 0.0477 0.0339 0.0340 0.0357

0.8 Bias 0.0030 −0.0060 0.0049 −0.0035 0.0039 −0.0002 0.0009 0.0013

Std 0.0494 0.0324 0.0514 0.0487 0.0450 0.0264 0.0265 0.0266

0.9 Bias 0.0036 −0.0117 0.0083 −0.0064 0.0050 0.0036 −0.0006 −0.0001

Std 0.0616 0.0920 0.0595 0.0534 0.0535 0.0330 0.0263 0.0307

n = 400

0.5 Bias −0.0017 −0.0017 0.0050 0.0004 0.0028 −0.0009 −0.0003 0.0031

Std 0.0343 0.0217 0.0445 0.0440 0.0308 0.0239 0.0249 0.0239

0.8 Bias −0.0017 0.0005 0.0019 −0.0052 0.0029 0.0011 −0.0014 −0.0030

Std 0.0298 0.0201 0.0321 0.0343 0.0307 0.0192 0.0172 0.0170

0.9 Bias 0.0010 −0.0021 0.0035 −0.0064 0.0041 0.0015 0.0000 −0.0013

Std 0.0366 0.0239 0.0472 0.0452 0.0383 0.0206 0.0206 0.0224

Table 6 Variable selection results by adaptive lasso penalized MACLE of PLSIM

Methods MRME(θ ) C(θ ) IC(θ ) MRME(β) C(β) IC(β) U-fit O-fit C-fit

Standard normal

QR (0.5) 0.328 4.940 0 1.738 4.990 0 0 0.060 0.940

QR (0.25) 0.454 4.940 0 1.679 4.990 0 0 0.045 0.955

QR (0.75) 0.526 4.915 0 1.739 4.985 0 0 0.060 0.940

t-distribution with d f = 3

QR (0.5) 0.364 4.965 0 1.838 4.990 0 0 0.045 0.955

QR (0.25) 0.378 4.940 0 1.859 4.995 0 0 0.045 0.955

QR (0.75) 0.421 4.915 0.005 1.816 4.985 0 0.005 0.090 0.905

Standard Cauchy

QR (0.5) 0.328 4.920 0.005 1.364 4.990 0 0.005 0.090 0.905

QR (0.25) 0.371 4.680 0.055 1.819 4.950 0 0.055 0.255 0.690

QR (0.75) 0.387 4.765 0.015 1.691 4.970 0 0.015 0.205 0.780

0.9N (0.1)+ 0.1N (0, 102)

QR (0.5) 0.319 4.980 0 1.736 5 0 0 0.020 0.980

QR (0.25) 0.441 4.965 0 1.634 4.995 0 0 0.030 0.970

QR ( 0.75) 0.487 4.940 0.020 1.602 4.990 0 0.020 0.060 0.920

5 Real data analysis

In this section, we apply our estimation method to Boston housing data, which is avail-
able online at http://lib.stat.cmu.edu/datasets/bostoncorrected.txt, with some correc-
tions and augmentation by the latitude and longitude of each observation, called the
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Table 7 Parameter’s estimation for Boston Housing data by penalized MACLE

Predictors τ 0.1 0.3 0.5 0.7 0.9

RM 0.3668 0.4287 0.3393 0.2442 0

log(TAX) −0.3283 −0.2335 −0.1812 −0.1706 0

PTRATIO −0.1776 −0.1255 −0.1832 −0.1959 0.3590

log(LSTAT) −0.8521 −0.8637 −0.9047 −0.9343 0.9333

CRIM −1.4152 −0.9831 −0.8312 0 0

NOX −0.5768 0 0 0 0

DIS −0.9576 −0.7251 −0.8414 −0.9497 −1.0471

LON −0.6786 −0.8907 −0.8429 −0.8911 0

LAT 0 0 0 0 0

B 0.6118 0.7789 0.8497 1.0188 0

ZN 0 0 0 0 0

AGE 0 0 0 0 0

INDUS 0 0 0 0 0

CHAS 0 0 0.9193 0.7047 0

Corrected Boston House Price Data. There are 506 observations, 15 non-constant pre-
dictor variables and one response variable, corrected median value of owner-occupied
homes (CMEDV). Predictors include longitude (LON), latitude (LAT), crime rate
(CRIM), proportion of area zoned with large lots (ZN), proportion of non-retail busi-
ness acres per town (INDUS), Charles River as a dummy variable (= 1 if tract bounds
river; 0 otherwise) (CHAS), nitric oxides concentration (NOX), average number of
rooms per dwelling (RM), proportion of owner-occupied units built prior to 1940
(AGE), weighted distances to five Boston employment centers (DIS), index of acces-
sibility to radial highways (RAD), property tax rate (TAX), pupil-teacher ratio by town
(PTRATIO), black population proportion town (B), and lower status population pro-
portion (LSTAT). Following previous studies, we take logarithmic transformation on
TAX and LSTAT. For simplicity, we exclude the categorical variable RAD, standard-
ize the other covariates aside from CHAS, and recode the value of CHAS to − 1(when
CHAS = 0) and 1(when CHAS = 1).

Following previous studies, we construct index based on the following four predic-
tor: RM, log(TAX), PTRATIO and log(LSTAT) and compose the partial linear part by
the other ten predictors. The covariates of PLSIM may change for different τ , we rely
on the variable selection method in Sect. 3 to choose the preferred model. Note that the
response variable is censored from above, and therefore quantile regression is more
trustful than mean regression. Furthermore, we analyze the normality of the residuals
obtained by modeling the mean of CMDEV by PLSIM with index covariates and the
linear parts as described above. By Shapiro–Wilk test (Shapiro and Wilk 1965), we
find that the p value is less than 2.2 × 10−16. This reminds us further that the error
cannot be normal, and the mean regression based on least square is unsuitable here.

The estimation of the index and linear parameters by adaptive lasso penalized
MACLE is presented in Table 7, we can see that the predictors’ influence is different for
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Fig. 3 QQ plot of the residual for median regression

different condition quantile of CMDEC. The norm quantile–quantile of the residual,
when τ = 0.5, is presented in Fig. 3, from which we can see apparently that the
residuals cannot follow normal distribution. This also shows in some sense that, the
MACLE of PLSIM is robust and applicable in various real data analysis in social
research or scientific field with non-specific errors. In this real data analysis, we only
concentrate on the variable selection in quantile regression of PLSIM. The model
selection between quantile regression of single-index model and partial linear single-
index model based on model complexity is still an open question to be solved in future
research.

Appendix A

In order to derive the asymptotic properties, we need the following regularity condi-
tions:

A.1 The kernel K (·) ≥ 0 has a compact support and its first derivative is bounded,
satisfies

∫∞
−∞ K (z)dz = 1,

∫∞
−∞ zK (z)dz = 0,

∫∞
−∞ z2 K (z)dz < ∞ and∫∞

−∞ z j K 2(z)dz < ∞, j = 0, 1, 2;
A.2 The covariates X, Z are bounded. The marginal density function of XT θ , denoted

by fU (·), is uniformly continuous for θ in a neighborhood of θτ and bounded
away from 0 and ∞ on its compact support Uτ ;

A.3 The condition density of Y given XT θ = u, denoted by f (·|u) is positive and
continuous in u;

A.4 The function g(·) has a continuous and bounded second derivative;
A.5 The conditional expectations E [Z|X = x] ,E

[
ZZT |X = x

]
have bounded deriv-

atives. The conditional expectations E(X|XT θ = u),E(Z|XT θ = u),
E(X⊗2 fY (qτ (X,Z)|XT θ)))|XT θ = u),E(Z⊗2|XT θ = u) and E(XZT |XT θ =
u) are twice differentiable in u ∈ Uτ , where A⊗2 = AAT for any matrix or vector
A;
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A.6 E
[
g′(XT θτ )

2[X − E(X)]⊗2
]
,E
(
[Z − E(X|X)]⊗2) ,E([g′(XT θ)]2X̃⊗2) and E

(Z̃⊗2) are positive-definite matrix’s, where g′(·) is the first derivative of g(·);
A.7 Bandwidth h satisfies that, h ∼ n−δ and 1/6 < δ < 1/4;

Remark 4 These conditions above are common in the semi-parametric literature and
are satisfied in many applications. Condition A.1 simply requires that the kernel func-
tion is a proper density with finite second moment, which is required to derive the
asymptotic variance of estimators; Condition A.2 guarantees the existence of any ratio
terms with the density appearing as part of the denominator; Condition A.4 is a com-
mon assumption for an unknown differentiable function. Condition A.5 is common in
semi-parametric regression, which is needed to derive the asymptotic distribution of
(θ̂ , β̂). Condition A.6 is the same as the condition (vi) in Liang et al. (2010).

Lemma 2 Suppose An(s) is convex and can be represented as 1
2 sT V s +U T

n s +Cn +
rn(s), where V is symmetric and positive definite, Un is stochastically bounded, Cn is
arbitrary, and rn(s) goes to zero in probability for each s. Then αn, the argmin of An,
is only op(1) away from βn = −V −1Un, the argmin of 1

2 sT V s + U T
n s + Cn. If also

Un
L→ U, then αn

L→ −V −1U.

Proof This lemma comes from the basic corollary in Hjort and Pollard (1993). 
�

Lemma 3 Let (X1,Y1), . . . , (Xn,Yn) be independent and identically distributed
random vectors, where Yi is scalar random variable, Xi is p-dimensional random
vector. Assume further that E|y|s < ∞ and sup

x

∫ |y|s f (x, y)dy < ∞, s ≥ 3, where

f (·, ·) denotes the joint density of (X,Y ). Let K (·) be a bounded positive function
with a bounded support and satisfying a Lipschitz condition. Then

sup
x∈�

∣∣∣∣∣
1

n

n∑
i=1

[Kh(Xi − x)yi − E(Kh(Xi − x)yi )]
∣∣∣∣∣ = Op

[(
ln(1/h p)

nh p

)1/2
]
,

provided that n2ε−1h p → ∞ for some ε < 1 − s−1, where � is the compact support
of X.

Proof This follows from the result by Mack and Silverman (1982). 
�

For simplicity, we shorthand write δn = [ln(1/h)/nh]1/2 , δθ = |θ̃ − θτ |, δβ =
|β̃ − βτ |, δγ = δθ + δβ, μθ (x) = E(X |XT θ = xT θ), νθ (x) = E(Z |XT θ = xT θ)

and K θ
ih = K θ

i,h(x) = Kh(XT
i0θ), where Xi0 = Xi − x. For ease of expression, write

εi = Yi − qτ (Xi ,Zi ), whose τ th conditional quantile is zero when given (Xi ,Zi ).

Lemma 4 Let θd = θ̃ − θτ , βd = β̃ − βτ . Suppose the regular conditions A.1–A.7
hold, we have
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ĝ(xT θ̃ ) = g(xT θ̃ )+ 1

2
g′′(xT θ̃ )μ2h2 − g′(xT θ̃ )μθτ (x)

T θd − νθτ (x)
Tβd + Rθ̃n1(x)

+ O
(

h2(h2 + δθ + δn)+ δβδn + δθ δγ

)

ĝ′(xT θ̃ ) = g′(xT θ̃ )+ 1

h
Rθ̃n2(x)+ O(h2 + δγ ),

where Rθn1(x) = [
n fY (qτ (X,Z)|xT θ) fUτ (xT θ)

]−1∑n
i=1 K θ

i,hψτ (εi ), ψτ (u) =
u(τ− I (u < 0)) and Rθn2(x) = [nhμ2 fY (qτ (X,Z)|xT θ) fUτ (u)

]−1∑n
i=1 K θ

i,hψτ (εi )

XT
i0θ .

Proof of Lemma 4 Let xT θ = u for easy of expression, and write the estimation of
g(u) by ĝ(u; h, θ̃ , β̃) to indicate the dependence on h and (θ̃ , β̃). For given u, we
write â(θ̃ ,β̃) := ĝ(u; h, θ̃ , β̃) and b̂(θ̃ ,β̃) := ĝ′(u; h, θ̃ , β̃), which are the solutions of
the following minimization problem,

min
a,b

n∑
i=1

ρτ (yi − a − bXT
i0θ̃ − ZT

i β̃)K (X
T
i0θ̃/h).

Let

η̂n = (nh)1/2
(

â(θ̃ ,β̃) − g(u)

h[b̂(θ̃ ,β̃) − g′(u)]

)
, Mi =

(
1
XT

i0θ̃/h

)
,

ri (u) = −g(XT
i θ̃ )+ g(u)+ g′(u)XT

i0θ̃ + ZT
i (β̃ − βτ ), Ki = K (XT

i0θ̃/h).

Thus, η̂n minimizes

Qn(η) =
n∑

i=1

[
ρτ (εi − ri (u)− ηT Mi/

√
nh)− ρτ (εi − ri (u))

]
Ki .

Following the identity by Knight (1998),

ρτ (u − v)− ρ(u) = −vψ(u)+
∫ v

0
(I (u ≤ s)− I (u ≤ 0))ds,

we can write

Qn(η) = −ηT Wn + Bn(η), (18)
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where

Wn = 1√
nh

n∑
i=1

Ki Mi [ψτ (εi )+ ri (u)],

Bn(η) =
n∑

i=1

Ki

∫ ri (u)+MT
i η/

√
nh

ri (u)
(I (εi ≤ s)− I (εi ) ≤ 0))ds.

Let X̃ be the σ -field generated by {XT
1 θ̃ ,XT

2 θ̃ , · · · ,XT
n θ̃}. Consider the conditional

expectation of Bn(η), we have

E
(

Bn(η)|X̃
)

=
n∑

i=1

Ki

∫ ri (u)+MT
i η/

√
nh

ri (u)
E (I (εi ≤ s)− I (εi ≤ 0)|ui ) ds

= 1

2
fY (qτ (X,Z)|u)ηT

(
1

nh

n∑
i=1

Mi Mi
T Ki

)
η

+
(

fY (qτ (X,Z)|u)√
nh

n∑
i=1

Kiri (u)Mi

)T

η + op(1).

It can be shown that Var(Bn(η)|X̃ ) = o(1), therefore, we have

Bn(η) = 1

2
ηT

(
fY (qτ (X,Z)|u)

nh

n∑
i=1

Mi Mi
T Ki

)
η

+
(

fY (qτ (X,Z)|u)√
nh

n∑
i=1

Kiri (u)Mi

)T

η + op(1)

≡ Bn1(η)+ Bn2(η)+ op(1), (19)

where Bn1(η) = 1
2η

T
Snη, Bn2(η) =

(
fY (qτ (X,Z)|u)√

nh

n∑
i=1

Kiri (u)Mi

)T

η and Sn =
fY (qτ (X,Z)|u)

nh

∑n
i=1 Mi Mi

T Ki . By using Lemma 3, we can easily get that

Sn = S + Op(h
2 + δn + δθ ), (20)

where S = fY (qτ (X,Z)|u) fUτ (u)
(

1 0
0 μ2

)
.

Now, consider the Bn2(η). Since

ri (u)=
(

g′(XT
i θ̃ )X

T
i ,ZT

i

)(
θd

βd

)
− 1

2
g′′(u)

(
XT

i θ̃−u
)2+O

[(
XT

i θ̃−u
)3+|θd |2

]
,
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we have

1√
nh

n∑
i=1

fY (qτ (X,Z)|u)Kiri (u) = √
nh fY (qτ (X,Z)|u) fUτ (u)

×
(

−1

2
g′′(u)μ2h2 + g′(u)μθτ (x)T θd + νθτ (x)

Tβd + O(h4 + δ2
θ + h2δθ + δθ δβ)

)
,

and
1√
nh

n∑
i=1

fY (qτ (X,Z)|u)Kiri (u)
XT

i0θ̃

h
= √

nh[O(h3 + hδγ )]. (21)

Combining (18), (19), (20) and (21), we have

Qn(η) = 1

2
ηT

Sη − W T
n η + √

nh fY (qτ (X,Z)|u) fUτ (u)

×
(− 1

2 g′′(u)μ2h2 + g′(u)μθτ (x)T θd + νθτ (x)
T βd + O(h4 + δ2

θ + h2δθ + δθ δβ)

O(h3 + hδγ )

)T

η + op(1).

By using Lemma 2, the argmin of Qn(η) can be expressed as

η̂n = S
−1Wn − √

nh

×
(− 1

2 g′′(u)μ2h2 + g′(u)μθτ (x)T θd + νθτ (x)
T βd + O(h4 + δ2

θ + h2δθ + δθ δβ)

O(h3 + hδγ )

)
+ op(1).

Note the definition of η̂n and Wn , we complete the proof. 
�

Proof of Theorem 1 Given ĝ
(

XT
j θ̃
)
, ĝ′

(
XT

j θ̃
)

, the estimation of g
(

XT
j θ̃
)

and

g′
(

XT
j θ̃
)

for j = 1, . . . , n, we obtain θ̂ , β̂ by

(θ̂ , β̂) = argmin
||θ ||=1, β

n∑
j=1

n∑
i=1

ρτ

(
yi − ĝ

(
XT

j θ̃
)

− ĝ′ (XT
j θ̃
)

XT
i jθ − ZT

i β
)
ωi j .

Let

γ̂ ∗ = √
n

(
θ̂ − θτ

β̂ − βτ

)
, Mi j =

(
ĝ′(XT

j θ̃ )Xi j

Zi

)
,

ri j = −g
(

XT
i θτ

)
+ ĝ

(
XT

j θ̃
)

+ ĝ′ (XT
j θ̃
)

Xi jθτ ,

then γ̂ ∗ minimizes

Qn(γ
∗) =

n∑
j=1

n∑
i=1

ωi jρτ

[(
εi − ri j − MT

i jγ
∗/

√
n
)

− ρτ (εi − ri j )
]
.
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Using the Knight’s identity, we can write

Qn(γ
∗) = − 1√

n

n∑
j=1

n∑
i=1

ωi jψτ (εi )M
T
i jγ

∗

+
n∑

j=1

n∑
i=1

ωi j

∫ ri j +MT
i j γ

∗/√n

ri j

[I (εi ≤ s)− I (εi ≤ 0)]ds,

≡ Q1n(γ
∗)+ Q2n(γ

∗),

where

Q1n(γ
∗) = − 1√

n

n∑
j=1

n∑
i=1

ωi jψτ (εi )M
T
i jγ

∗,

Q2n(γ
∗) =

n∑
j=1

n∑
i=1

ωi j

∫ ri j +MT
i j γ

∗/√n

ri j

(I (εi ≤ s)− I (εi ≤ 0))ds.

Take Q2n(γ
∗) first. We shorthand write Ũi = XT

i θ̃ , Ũ j = XT
j θ̃ . Let us calculate the

conditional expectation of Q2n(γ
∗):

E
(
Q2n(γ

∗)|X̃
)

=
n∑

j=1

n∑
i=1

∫ ri j +MT
i j γ

∗/√n

ri j

ωi j

[
s fY (qτ (X,Z)|Ũi )(1 + o(1))

]
ds

= 1

2
γ ∗T

⎛
⎝1

n

n∑
j=1

n∑
i=1

fY (qτ (X,Z)|Ũi )Mi j MT
i jωi j

⎞
⎠ γ ∗

+
⎛
⎝ 1√

n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )ri j Mi j

⎞
⎠

T

γ ∗ + op(1).

Define Rn(γ
∗) = Q2n(γ

∗)− E(Q2n(γ
∗)|X̃ ). It can be shown that Rn(γ

∗) = op(1).
Therefore, we have

Q2n(γ
∗) ≡ Q2n1(γ

∗)+ Q2n2(γ
∗)+ op(1),

where

Q2n1(γ
∗) = 1

2
γ ∗T

⎛
⎝1

n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi j MT
i j

⎞
⎠ γ ∗,

Q2n2(γ
∗) =

⎛
⎝ 1√

n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi jri j

⎞
⎠

T

γ ∗.
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Consider Q2n1(γ
∗). Denote G θ̃n = 1

n

∑n
j=1
∑n

i=1 fY (qτ (X,Z)|Ũi )Mi j MT
i jωi j . By

using Lemma 3, we can easily get that G θ̃n = G + O(h2 + δn + δγ ), where

G =
(

2W̃0 C̃12

C̃T
12 E( fY (qτ (X,Z)|XT θτ )ZZT )

)
,

W̃0 = E
(

fY (qτ (X,Z)|XT θτ ){g′(XT θτ )}2(X − μθτ (X))(X − μθτ (X))
T
)
,

C̃12 = E
(

fY (qτ (X,Z)|XT θτ )g
′(XT θτ )(X − μθτ (X))Z

T
)
.

Thus, we have

Q2n1(γ
∗) = 1

2
γ ∗T Gγ ∗ + op(1). (22)

Now consider Q2n2(γ
∗). Note that

ri j = g
(

XT
i θ̃
)

− g
(

XT
i θτ

)
−
(

g
(

XT
i θ̃
)

− g
(

XT
j θ̃
)

− g′ (XT
j θ̃
)

XT
i j θ̃
)

+
[
ĝ
(

XT
j θ̃
)
−g
(

XT
j θ̃
)]

+
[
ĝ′ (XT

j θ̃
)
−g′ (XT

j θ̃
)

XT
i j

]
θ̃− ĝ′ (XT

j θ̃
)

XT
i j

(
θ̃−θτ

)

= (1,XT
i j θ̃/h)

(
ĝ(XT

j θ̃ )− g(XT
j θ̃ )

h(ĝ′(XT
j θ̃ )− g′(XT

j θ̃ ))

)

+g′ (XT
i θ̃
)

XT
i θd − ĝ′ (XT

j θ̃
)

XT
i jθd − 1

2
g′′ (XT

j θ̃
) (

XT
i j θ̃
)2 + O

[
δ2
θ +

(
XT

i j θ̃
)3
]
,

Q2n2(γ
∗) as

Q2n2(γ
∗) ≡ (Q2n21 + Q2n22)

T γ ∗ + O(δ2
θ + h3),

where

Q2n21 = 1√
n

n∑
j=1

n∑
i=1

fY (qτ (X,Z)|Ũi )ωi j Mi j

(
1,XT

i j θ̃/h
)( ĝ(XT

j θ̃ )− g(XT
j θ̃ )

h(ĝ′(XT
j θ̃ )− g′(XT

j θ̃ ))

)
,

Q2n22 = 1√
n

n∑
j=1

n∑
i=1

fY (qτ (X,Z)|Ũi )ωi j Mi j

×
(

g′(XT
i θ̃ )X

T
i θd − ĝ′(XT

j θ̃ )X
T
i jθd − 1

2
g′′(XT

j θ̃ )(X
T
i j θ̃ )

2
)
.
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Consider Q2n21 and Q2nn2 separately. Note the expression of ĝ(xT θ̃ ) and ĝ′(XT θ̃ ) in
Lemma 4, we have

Q2n21 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi j (1,XT
i j θ̃ )

(
Rθ̃n1(X j )

Rθ̃n2(X j )

)

+ 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi j

×
(

1

2
g′′(xT θ̃ )μ2h2 − g′(xT θ̃ )μθ (x)T θd − νθ (x)Tβd

)

+Op(h
2(h2 + δθ + δn)+ δβδn + δθ δγ )

≡ T1 + T2 + op(1),

where

T1 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi j (1,XT
i j θ̃ )

(
Rθ̃n1(X j )

Rθ̃n2(X j )

)

T2 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )Mi j

×
(

1

2
g′′(xT θ̃ )μ2h2 − g′(xT θ̃ )μθ (x)T θd − νθ (x)Tβd

)
.

By direct calculation, we have

T1 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (X,Z)|Ũi )

n fU (Ũ j ) fY (qτ (X,Z)|Ũ j )
Mi j (1, XT

i j θ̃/h)
n∑

k=1

(
1

XT
k jθ/h

)
Kh(XT

k j θ̃ )ψτ (εk)

= 1√
n

n∑
k=1

n∑
j=1

ψτ (εk)ωk j

(
ĝ′(Ũ j )(μθτ (X j )− X j )

ν(X j )

)
+ op(1).

Combining T1 with Q1n(γ
∗), we have

Q1n(γ
∗)+T T

1 γ
∗ =

⎡
⎣− 1√

n

n∑
i=1

n∑
j=1

ψτ (εi )ωi j

(
ĝ′(Ũ j )[Xi −μθτ (X j )]

Zi −νθτ (X j )

)⎤
⎦

T

γ ∗+op(1)

= −√
nWT

n γ
∗+op(1), (23)

where Wn = 1
n

∑n
i=1
∑n

j=1 ψτ (εi )ωi j

(
ĝ′(Ũ j )(Xi − μθτ (X j ))

Zi − νθτ (X j )

)
.

Combining T2 with Q2n22, we have
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Q2n22 + T2

= 1√
n

n∑
j=1

n∑
i=1

fY

(
qτ (X,Z) |Ũ j

)
ωi j Mi j

(
g′ (XT

j θ̃
) (
μθτ (X j )− XT

j

)T
θd − νθτ (X j )

T βd

)

+op(1)

= 1√
n

n∑
j=1

n∑
i=1

fY (qτ (X,Z)|Ũ j )ωi j

(
ĝ′(XT

i j θ̃ )Xi j

Zi

)(
g′(XT

j θ̃ )(μθτ (X j )− X j )

−νθτ (X j )

)T (
θd

βd

)

+op(1)

= − 1√
n

n∑
j=1

fY (qτ (X,Z)|Ũ j )

(
g′(XT

j θ̃ )(X j − μθτ (X j ))

νθτ (X j )

)⊗2 (
θd

βd

)

+op(1).

It is easy to show that

Q2n22 + T2 = −√
nC0

(
θd

βd

)
+ op(1), (24)

where C0 =
(

W̃0 0
0 E

[
fY (qτ (X,Z)|XT θτ )νθτ (X)νθτ (X)

T
]
)

.

Hence, combining (22), (23) and (24), we have

Qn(γ
∗) = 1

2
γ ∗T Gγ ∗ −

[
Wn + √

nC0

(
θd

βd

)]T

γ ∗ + op(1).

Following Lemma 2, γ̂ ∗, the minimizer of Qn(γ
∗) can be expressed as

γ̂ ∗ = G−1Wn + √
nG−1C0

(
θd

βd

)
+ op(1).

Note that γ̂ ∗ = √
n

(
θ̂ − θτ

β̂ − βτ

)
, we have

(
θ̂ − θτ

β̂ − βτ

)
= G−1Wn + G−1C0

(
θ̃ − θτ

β̃ − βτ

)
+ op(1/

√
n). (25)

Note the expressions of G,C0 and by condition A.6, we can get that G, C0 and G −C0
are all positive symmetric matrices. Therefore, G̃ = G−1/2C0G−1/2 is also a positive
matrix with all eigenvalues less than 1. Let (θ̃k, β̃k) be the estimation results of the
k-th iteration in the algorithm. For each k, Eq. (25) hold with (θ̂ , β̂) replaced by

(θ̃k+1, β̃k+1) and (θ̃ , β̃) by (θ̃k, β̃k). Let γ̃ k = G̃−1/2
(
θ̃k

β̃k

)
, we have

γ̃ k+1 = G−1/2Wn + G̃γ̃ k + op(1/
√

n).
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Since all the eigenvalues of G̃ are less than 1, by similar analysis as Xia and Härdle
(2006), the convergence of the algorithm can be easily obtained. Thus, for sufficient
large k, we have

G−1/2
(
θ̂ − θτ

β̂ − βτ

)
= G−1/2Wn + G̃G1/2

(
θ̂ − θτ

β̂ − βτ

)
+ o(1/

√
n).

It follows that

(G − G1/2G̃G1/2)

(
θ̂ − θτ

β̂ − βτ

)
= Wn + o(1/

√
n).

By the Cramér–Wald device and CLT, the proof of Theorem 1 is completed. 
�

Proof of Theorem 2 When the parameters θτ and βτ are known, given u be an inner
point of Uτ , similar as the proof in Lemma 4, we have

ĝ(u; h, θτ , βτ ) = g(u)+ 1

2
g′′(u)μ2h2 + Rθτn1 + O(h3),

and

√
nh

[
ĝ(u; h, θτ , βτ )− g(u)− 1

2
g′′(u)μ2h2

]
L→ N (0, 	(u)).

From Lemma 4, we have ĝ(u; h, θ̃ , β̃)− ĝ(u; h, θτ , βτ ) = −E(X |XT θτ = u)T θd −
E(Z |XT θτ = u)Tβd + Rθ̃n1 − Rθτn1 + O(δθ + hδn + h3). Since now we have θd =
Op(1/

√
n) and βd = Op(1/

√
n), we need only to show

√
nh
(

Rθ̂n1 − Rθτn1

)
= op(1). (26)

By direct calculation, we can easily get Var
(√

nh(Rθ̂n1−Rθτn1)
)
=o(1) when θ̂−θτ =

Op(1/
√

n) and nh4 → ∞. Thus, (26) is hold and we complete the proof of Theorem 2.

�

Proof of Theorem 3 Denote the adaptive lasso MACLE estimator of (θτ , βτ ) by

γ̂ AQ R , let γ τ =
(
θτ
βτ

)
,
√

n(γ̂ AQ R − γ τ ) = û, θ̂d = θ̂Q R − θτ and β̂d = β̂Q R −βτ ,

then û is the minimizer of the following criterion:

Gn(u) =
n∑

j=1

n∑
i=1

ωi j

(
ρτ (εi + ri j + MT

i j u/
√

n)− ρτ (εi + ri j )
)
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+
p∑

j=1

λ1√
n|θ̂Q R

j |2
√

n

[
|θτ j + u j√

n
| − |θτ j |

]

+
q∑

m=1

λ2√
n|β̂Q R

m |2
√

n

[
|βτm + u p+m√

n
| − |βτm |

]
. (27)

Following the proof of Theorem 3, we write Gn(u) as follows:

Gn(u) = 1

2
uT Gu − WT

n u + √
n
(
θ̂T

d , β̂
T
d

)
CT

0 u + op(1)

+
p∑

j=1

λ1√
n|θ̂Q R

j |2
√

n

[
|θτ j + u j√

n
| − |θτ j |

]

+
q∑

m=1

λ2√
n|β̂Q R

m |2
√

n

[
|βτm + u p+m√

n
| − |βτm |

]
. (28)

For 1 ≤ j ≤ p0, θτ j 	= 0, then |θ̂Q R
j |2 →p |θτ j |2, and

√
n(|θτ j +u j/

√
n|− |βτ j |) →

u j sgn(θτ j ). By Slusky’s theorem, λ1√
n|θ̂Q R

j |2
√

n(|θτ j + u j/
√

n| − |θτ j |) →p 0. For

p0 < j ≤ p, θτ j = 0, then
√

n(|θτ j + u j/
√

n| − |θτ j |) →p ∞. Similar results can
be derived for β. Therefore, we have

λ1√
n|θ̂Q R

j |2
√

n

[
|θτ j + u j√

n
| − |θτ j |

]
→p W (θ j , u j )

=
⎧⎨
⎩

0, if θτ j 	= 0,
0, if θτ j = 0, and u j = 0,
∞, if θτ j = 0, and u j 	= 0.

and

λ2√
n|β̂Q R

m |2
√

n

[
|βτm + um√

n
| − |βτm |

]
→p W (βm, u p+m)

=
⎧⎨
⎩

0, if βτm 	= 0,
0, if βτm = 0, and u p+m = 0,
∞, if βτm = 0, and u p+m 	= 0.

Corresponding to γ 0 = (θT
10, θ

T
20, β

T
10, β

T
20)

T , write u = (uT
10,uT

11,uT
20,uT

21)
T . Then

it follows that

Gn(u) → 1

2
uT Gu − W T

n u +
(
θ̂T

d , β̂
T
d

)
CT

0 u
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+
p∑

j=1

W (θ j , u j )+
q∑

m=1

W (βm, u p+m)+ op(1)

→ L(u) =
{

1
2 uT Gu − W T

n u +
(
θ̂T

d , β̂
T
d

)
CT

0 u when u11 = 0,u21 = 0;
∞ otherwise.

Note that Gn(u) is convex in u, and L(u) has an unique minimizer. By the epi-
convergence results of Geyer (1994) and the same arguments in the proof of Theorem
1, the asymptotic normality can be easily established. Next, consider the consistency
property of model selection. Firstly, for any j ∈ Aθ , θ̂

λ
j →p θτ j by the asymptotically

normality results, and then we have j ∈ Âθ . Thus, Pr(Aθ ⊂ Âθ ) →p 1. Then it is
suffice to show that ∀ j ′ /∈ Aθ , Pr( j ′ ∈ Âθ ) → 0.

Note that the minimization on (θ, β) of (14) is equal to the minimization of (27)
on u. Suppose j ′ ∈ Âθ . By the KKT optimality condition of the minimization of (28),
we have

∣∣∣∣∣G
( j ′)u − W j ′

n + √
n

(
θ̂d

β̂d

)T

C ( j ′)
0

∣∣∣∣∣ =
∣∣∣∣∣∣

λn√
n|θ̂Q R

j ′ |2

∣∣∣∣∣∣
,

where G( j ′) is the j ′th row of G, and C ( j ′)
0 is the j ′th row of C0, respectively,W j ′

n is the
j ′-th element of Wn . By the above asymptotical normality of Wn , we can easily get

that u = Op(1),W j ′
n = Op(1). By Theorem 1, we have

√
n

(
θ̂d

β̂d

)
= Op(1). Since

by condition A.2, G( j ′) and C ( j ′)
0 are all bounded by those definitions. Combining

above results, we have

G( j ′)u − W j ′
n + √

n

(
θ̂d

β̂d

)T

C ( j ′)
0 = Op(1). (29)

Now, consider λn√
n|θ̂Q R

j ′ |2 . Since j ′ /∈ Aθ , θτ j ′ = 0, by Theorem 1, we have θ̂Q R
j ′ →p

0,
√

nθ̂Q R
j ′ = √

n(θ̂Q R
j ′ − θτ j ′) = Op(1). Combined this with λ → ∞, we have

λn√
n|θ̂Q R

j ′ |2 →p ∞ and that

Pr( j ′ ∈ Âθ )

= Pr

⎡
⎣
∣∣∣∣∣G
( j ′)u − W j ′

n + √
n

(
θ̂d

β̂d

)T

C ( j ′)
0

∣∣∣∣∣ =
∣∣∣∣∣∣

λn√
n|θ̂Q R

j ′ |2

∣∣∣∣∣∣

⎤
⎦→p 0.

We complete the proof of Pr(Âθ = Aθ ) →p 1. Similarly, Pr(Âβ = Aβ) →p 1 can
be also derived. 
�
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Appendix B

In this Appendix, we outline the proof of Lemma 1 in Sect. 2. Given any θ and
β, denote βd = β − βτ , θd = θ − θτ , δβ = |β − βτ |, δθ = |θ − θτ |. δpn =
{log n/(nbp)}1/2 , τpn = b2 + δpn .

Proof of Theorem 1 For any inner point x ∈ �, the values of g(xT θ), g′(xT θ) can be
estimated by

(ā, b̄) = argmin
a,b

n∑
i=1

ρτ (Yi − a − bXT
i0θ − ZT

i β)Hb(Xi0), (30)

where, Hb(Xi0) = 1
bp H(Xi −x

b ). Then the estimation of θτ and βτ can be updated by

(θ̄ , β̄) = argmin
θ,β

n∑
j=1

n∑
i=1

ρτ (Yi − ā j − b̄ j (Xi − X j )
T θ − ZT

i β)Wi j , (31)

where ā j , b̄ j is the estimated values of g(XT
j θτ ), g′(XT

j θτ ) by (30) respectively, Wi j =
Hb(Xi j )∑n

l=1 Hb(Xl j )
.

For convenience, denote εi = Yi − g(XT
i θτ )−ZT

i β, thus the τ th quantile of εi will

equal zero when given Xi ,Zi . Denote

(
θ̄ − θτ
β̄ − βτ

)
= ζ̄ , then ζ̄ will be the minimizer

of

Vn(ζ ) = 1

n

n∑
j=1

n∑
i=1

[
ρτ (εi − r̄i j − N T

i j ζ )− ρτ (εi − r̄i j )
]

Wi j (32)

where Ni j =
(

b̄ j Xi j

Zi

)
,Xi j = Xi − X j , r̄i j = ā j + b̄ j XT

i jθτ − g(XT
i θτ ).

Using the Knight’s identity, we can write

Vn(ζ ) = −1

n

n∑
j=1

n∑
i=1

Wi jψτ (εi )N
T
i j ζ

+1

n

n∑
j=1

n∑
i=1

Wi j

∫ r̄i j +N T
i j ζ

r̄i j

[I (εi ≤ s)− I (εi ≤ 0)]ds,

≡ V1n(ζ )+ V2n(ζ ),
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where

V1n(ζ ) = −1

n

n∑
j=1

n∑
i=1

Wi jψτ (εi )N
T
i j ζ,

V2n(ζ ) = 1

n

n∑
j=1

n∑
i=1

Wi j

∫ r̄i j +N T
i j ζ

r̄i j

(I (εi ≤ s)− I (εi ≤ 0))ds.

Firstly, consider V2n(ζ ). Denote X be the σ−field generated by {X1, · · · ,Xn}, then
the conditional expectation of V2n(ζ ) will be:

E (V2n(ζ )|X ) = 1

n

n∑
j=1

n∑
i=1

∫ r̄i j +N T
i j ζ

r̄i j

Wi j [s fY (qτ (X,Z)|Xi )(1 + o(1))] ds

= 1

2
ζ T

⎛
⎝1

n

n∑
j=1

n∑
i=1

fY (qτ (X,Z)|Xi )Ni j N T
i j Wi j

⎞
⎠ ζ

+
⎛
⎝1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )r̄i j Ni j

⎞
⎠

T

ζ + op(1).

Define Rn(ζ ) = V2n(ζ ) − E(V2n(ζ )|X ). It can be shown that Rn(ζ ) = op(1).
Therefore, we have

V2n(ζ ) ≡ V2n1(ζ )+ VT
2n2ζ + op(1),

where

V2n1(ζ ) = 1

2
ζ T

⎛
⎝1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )Ni j N T
i j

⎞
⎠ ζ,

V2n2 = 1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )Ni j r̄i j .

Consider V2n1(ζ ). Denote Lθn = 1
n

∑n
j=1
∑n

i=1 fY (qτ (X,Z)|Xi )Ni j N T
i j Wi j , we have

Lθn = Lθ , (33)

where

Lθ =
(

b2(θT θτ )
2E
[
g′(Xtθτ )

2 fY (qτ (X,Z)|X)] Ip×p + O(bδpn + b2δβ) O(b2 + bδpn)

O(b2 + bδpn) E
[

fY (qτ (X,Z)|X)ZZT
]+ O(b + δpn)

)
.
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Now consider V2n2. We can get

V2n2 = 1

n

n∑
j=1

n∑
i=1

Wi j Ni j r̄i j fY (qτ (X,Z)|Xi )

=

⎧
⎪⎨
⎪⎩
θT θτ (θ

T θτ − 1)θτE

[(
g′(XT θτ )

)2
fY (qτ (X,Z)|X)

]
+ O(b3 + bδpn + b2δβ)

E
[
ν(X)νT (X) fY (qτ (X,Z)|X)

]
(β − βτ )+ O(b + δpn)

⎫
⎪⎬
⎪⎭
.

(34)

The proof of (33) and (34) can be found in the latter part of this Appendix.
Then for the new value of βτ , denoted by β̄, we have

β̄ − βτ =
{

E
[
ZZT fY (qτ (X,Z)|X)

]}−1
E
[
ν(X)ν(X)T fY (qτ (X,Z)|X)

]
(β − βτ )

+ O(b + b−1δpn).

Note that multidimensional kernel is used in this algorithm, the above equation does
not depend on the choice of θ . Replacing β as β̄k and β̄ as β̄k+1, we have

β̄k+1 − βτ =
{

E
[
ZZT fY (qτ (X,Z)|X)

]}−1
E

×
[
ν(X)ν(X)T fY (qτ (X,Z)|X)

]
(β̄k − βτ )+ O(b + b−1δpn).

By using the regular condition A.6, E
[
ZZT fY (qτ (X,Z)|X)] − E

[
ν(X)ν(X)T fY (qτ

(X,Z)|X)] = E
[
(Z − ν(X))(Z − ν(X))T fY (qτ (X,Z)|X)] is a positive matrix, sim-

ilar conclusion can be derived for E
[
ZZT fY (qτ (X,Z)|X)] and E

[
ν(X)ν(X)T fY (qτ

(X,Z)|X)]. Thus, all the eigenvalues of
{
E
[
ZZT fY (qτ (X,Z)|X)]}−1

E
[
ν(X)ν(X)T

fY (qτ (X,Z)|X)] are less than 1. After sufficiently many iterations, we have

β̄k − βτ = O(b + b−1δpn) →p 0.

If θT θτ 	= 0, then following the previous results, we have

θ̄k − θτ = (θT θτ )
−1(1 − θT θτ )θτ + O(δβ + b + b−1δpn).

Since δβ →p 0, we have

θ̄ := Sgn1θ̄/|θ̄ | = θτ + O(b + b−1δpn).

The proof is completed. 
�
For the estimated ā and b̄ derived by (30), we have following results.
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Lemma 5 Suppose b → 0, and nbp+2/ log n → ∞ and the regular conditions A.1–
A.6 hold, we have

ā = g(xT θτ )+ ν(x)Tβd + O(b + δpn), (35)

b̄ = θT θτ g′(xT θτ )+ O
{
δβ + b−1δpn + b

}
, (36)

uniformly for x ∈ �.

Proof of lemma 5 For convenience, let εi = Yi − g(XT
i θτ ) − ZT

i βτ , then the condi-

tional mean ofψτ (εi ) is zero when given (Xi ,Zi ). Denote ξ̄ =
(

ā − g(xT θτ )

(b̄ − g′(xT θτ ))b

)
,

Ni =
(

1
b−1(Xi − x)T θ

)
, then ξ̄ is the minimizer of

Vn(ξ) = 1

n

n∑
i=1

Hb(Xi0)
[
ρτ (εi − r̄i − N T

i ξ)− ρτ (εi − r̄i )
]
, (37)

where r̄i = g(xT θτ )+ g′(xT θτ )(Xi − x)T θ − g(XT
i θτ )+ ZT

i (β − βτ ).
By using Knight’s identity, we can rewrite Vn(ξ) as

Vn(ξ) = V T
1nξ + V2n(ξ), (38)

where

V1n = −1

n

n∑
i=1

Hb(Xi0)Niψτ (εi )

V2n(ξ) = 1

n

n∑
i=1

Hb(Xi0)

∫ r̄i +N T
i ξ

r̄i

[I (ε ≤ s)− I (ε ≤ 0)] . (39)

By calculating the conditional expectation on X , we can get

E(V2n(ξ)|X ) = 1

n

n∑
i=1

Hb(Xi0)

∫ r̄i +N T
i ξ

r̄i

E [I (ε ≤ s)− I (ε ≤ 0)] ds.

= 1

2
ξ T

{
1

n

N∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )Ni N T
i

}
ξ

+
{

1

n

N∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )r̄i Ni

}T

ξ

≡ V2n1(ξ)+ V T
2n2ξ,
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where

V2n1(ξ) = 1

2
ξ T

{
1

n

N∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )Ni N T
i

}
ξ,

V2n2 = 1

n

N∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )r̄i Ni .

Let Rn = V2n1(ξ)− E(V2n1(ξ)|X ), it is easy to show that Rn = op(1), and then we
have V2n(ξ) = V2n1(ξ)+ V T

2n2ξ.

Firstly, consider V2n1(ξ). Denote Ln(x) = 1
n

∑N
i=1 Hb(Xi0) fY (qτ (X,Z)|Xi )

Ni N T
i , note that θT θ = 1, by Lemma 3, we can easily get that

Ln(x) = fX(x) fY (qτ (X,Z)|x)I2(1 + O(τpn)),

where fX(x) is the marginal density function of X at x. Thus,

V2n1(ξ) = 1

2
fX(x) fY (qτ (X,Z)|x)ξ T I2ξ(1 + O(τpn)). (40)

Now consider V2n2. Note that

r̄i =g(xT θτ )+ g′(xT θτ )(Xi − x)T θ − g(XT
i θτ )+ ZT

i (β − βτ )

= − 1

2
g′′(xT θτ )(XT

i0θτ )
2 + g′(xT θτ )XT

i0(θ − θτ )+ o((XT
i0θτ )

2)+ ZT
i βd .

By using Lemma 3 and similar calculation, we can get that

1

n

n∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )r̄i = fX(x) fY (qτ (X,Z)|x)ν(x)Tβd + O(b2 + δpn),

1

n

n∑
i=1

Hb(Xi0) fY (qτ (X,Z)|Xi )r̄i b
−1XT

i0θ

= fX(x) fY (qτ (X,Z)|x)g′(xT θτ )θ
T (θ − θτ )b + O(bδβ + τpn).

Thus, we have

V2n2 = fX(x) fY (qτ (X,Z)|x)
(
ν(x)Tβd + O(b2 + δpn)

g′(xT θτ )bθT (θ − θτ )+ O(bδβ + τpn)

)
. (41)

Combining (38), (40) and (41), we have

Vn(ξ) = 1

2
ξ T Ln(x)ξ − V1n(ξ)+ fX(x) fY (qτ (X,Z)|x)

×
(
ν(x)Tβd + O(b2 + δpn)

g′(xT θτ )bθT (θ − θτ )+ O(bδβ + τpn)

)
.
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By using Lemma 2, the minimizer of (32) can be expressed as

ξ̄ = L(x)−1V1n −
(
ν(x)Tβd + O(b2 + δpn)

g′(xT θτ )bθT (θ − θτ )+ O(bδβ + τpn)

)
. (42)

Note that the mean of ψτ (εi ) is zero, by using Lemma 3, V1n = O(b2 + δpn). Note
the definition of ξ̄ , and combining the result of V1n with (42), we complete the proof.


�
Proof of 33 To proof (33), it is sufficient to show that

1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )b̄
2
j Xi j Xi j

= b2(θT θτ )
2E
[
g′(X)2 fY (qτ (X,Z)|X)

]
Ip×p + O(bτpn + b2δβ),

1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )b̄ j Xi j ZT
i = O(b2 + bδpn),

1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )Zi ZT
i = E

[
fY (qτ (X,Z)|X)ZZT

]
+ O(b + bδpn).

Here, we give the details for the first equation. Let κ0(x) = 1
n

n∑
i=1

H(Xi − x), then by

Lemma 3, we can get that

κ0(x) = fX(x)+ O(τpn).

By Lemma 5, we have b̄ j = θT θτ g′(XT
j θτ )+ O(δβ + b−1δpn + b), thus,

1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )b̄
2
j Xi j Xi j

=1

n

n∑
j=1

(θT θτ )
2g′(X j )

2 fY (qτ (X,Z)|X j )b
2 Ip×p + O(b2δβ + bδpn)

=(θT θτ )
2E
[
g′(X)2 fY (qτ (X,Z)|X)

]
b2 Ip×p + O(b2δβ + bδpn).


�
Proof of 34 To proof (34), it is sufficient to show that

1

n

n∑
j=1

n∑
i=1

Wi j b̄ j Xi j r̄i j fY (qτ (X,Z)|Xi )
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= θT θτ (θ
T θτ − 1)θτE

[(
g′(XT θτ )

)2
fY (qτ (X,Z)|X)

]

+ O(b3 + bδpn + b2δβ),

1

n

n∑
j=1

n∑
i=1

Wi j Zi r̄i j fY (qτ (X,Z)|Xi )

= E
[
ν(X)νT (X) fY (qτ (X,Z)|X)

]
(β − βτ )+ O(b + δpn).

Here, we give the details for the second equation. By Lemma 5, we have

r̄i j = ā j + b̄ j XT
i jθτ − g(XT

i θτ )

= ā j − g(XT
j θτ )+

(
b̄ j − g′(XT

j θτ )
)

X T
i jθτ + g′(XT

j θτ )X
T
i jθτ

−
(

g(XT
i θτ )− g(XT

j θτ )
)

= ν(X j )
Tβd + (θT θτ − 1)g′(XT

j θτ )X
T
i jθτ + 1

2
g′′(XT

j θτ )(X
T
i jθτ )

2 + O
(
(XT

i jθτ )
3
)
.

Denote

C0(x) = 1

n

n∑
i=1

Hb(Xi − x) fY (qτ (X,Z)|Xi )Zi ,

C1(x) = 1

n

n∑
i=1

Hb(Xi − x) fY (qτ (X,Z)|Xi )Zi (Xi − x)T ,

C2(x) = 1

n

n∑
i=1

Hb(Xi − x) fY (qτ (X,Z)|Xi )Zi (Xi − x)T (Xi − x).

By Lemma 3, it is easy to show that

C0(x) = fX(x) fY (qτ (X,Z)|x)ν(x)+ O(τpn),

C1(x) = O(b2 + bδpn), C2(x) = O(b2τpn).

Then we have

1

n

n∑
j=1

n∑
i=1

Wi j Zi r̄i j fY (qτ (X,Z)|Xi )

= 1

n

n∑
j=1

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )Zi

×
[
ν(X j )

Tβd + (θT θτ − 1)g′(XT
j θτ )X

T
i jθτ + O

(
(XT

i jθτ )
2
)]
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= 1

n

n∑
j=1

κ0(X j )
−1
[

C0(X j )ν(X j )
Tβd + (θT θτ − 1)g′(XT

j θτ )C1(X j )θ

+ O(θT
τ C2(X j )θτ )

]

= 1

n

n∑
j=1

ν(X j )
Tβd

n∑
i=1

Wi j fY (qτ (X,Z)|Xi )Zi + O(b + δpn)

= E
[
ν(X)νT (X) fY (qτ (X,Z)|X)

]
βd + O(b + δpn)

= E
[
ν(X)νT (X) fY (qτ (X,Z)|X)

]
(β − βτ )+ O(b + δpn).

The proof of the first equation is similar. 
�
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