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Abstract Discrete-time stochastic volatility (SV) models have generated a consid-
erable literature in financial econometrics. However, carrying out inference for these
models is a difficult task and often relies on carefully customized Markov chain Monte
Carlo techniques. Our contribution here is twofold. First, we propose a new SV model,
namely SV–GARCH, which bridges the gap between SV and GARCH models: it
has the attractive feature of inheriting unconditional properties similar to the stan-
dard GARCH model but being conditionally heavier tailed. Second, we propose a
likelihood-based inference technique for a large class of SV models relying on the
recently introduced continuous particle filter. The approach is robust and simple to
implement. The technique is applied to daily returns data for S&P 500 and Dow Jones
stock price indices for various spans.

Keywords Stochastic volatility · Particle filter · Simulated likelihood · State space ·
Leverage effect · Jumps

1 Introduction

Statistical models for time-varying conditional volatility fall broadly within two com-
peting categories: (i) autoregressive conditional heteroscedasticity (ARCH) model,
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originally proposed by Engle (1982) and the generalized version (GARCH) surveyed
by Bollerslev et al. (1992); and (ii) stochastic volatility (SV) models as considered
by Harvey et al. (1994) and Jacquier et al. (1994). Whereas the former category of
models make conditional variance a deterministic function of past squared returns,
SV models allow the variance to evolve according to some latent stochastic process.
These are natural discrete-time versions of continuous-time models on which much
of modern financial economics relies, see for example Hull and White (1987). It can
also be intuitively more appealing to consider information flow, especially at higher
frequencies as being governed by a stochastic process. In a similar vein, the rapidly
increasing usage of high frequency intraday data for constructing so-called, realized
volatility measures is intimately linked to the SV framework in financial economics
(see Barndorff-Nielsen and Shephard 2002).

A major reason for the popularity of the ARCH family of models in describing the
dynamics of financial market volatility is the fact that the likelihood of parameters can
be explicitly written. Estimation of SV models is however greatly complicated by the
stochastic evolution of volatility which implies that, unlike ARCH counterparts, the
likelihood cannot be obtained in closed form. There have been different methodolo-
gies proposed in the context of parameter estimation for such models. Harvey et al.
(1994) advocate a quasi maximum likelihood estimation (QMLE) procedure, whereas
Jacquier et al. (1994) propose a Markov chain Monte Carlo (MCMC) method to con-
struct a Markov chain that can be used to draw directly from the posterior distributions
of the model parameters and unobserved volatilities (see also Shephard and Pitt 1997).

Over recent years, numerous SV models have been proposed to extend the standard
SV model by including leverage and jumps components. A leverage effect refers to the
increase in future expected volatility following bad news. The underlying reasoning is
that bad news tends to decrease price, thus leading to an increase in debt-to-equity ratio
(i.e. financial leverage). The firms are hence riskier and this translates into an increase
in expected future volatility as captured by a negative relationship between volatil-
ity and return. In the finance literature, empirical evidence supportive of a leverage
effect has been provided by Black (1976) and Christie (1982). Jumps can basically be
described as rare events: large, infrequent movements in returns which are an important
feature of financial markets (see Merton 1976). These have been widely documented
to be important in characterizing the non-Gaussian tail behaviour of conditional distri-
butions of returns. However, conducting inference in the resulting SV leverage jump
models is an intricate task and requires the design of sophisticated MCMC schemes;
see for example Eraker et al. (2003) and Omori et al. (2007).

We contribute to this literature in two ways. From a modelling viewpoint, we intro-
duce a new SV model which is characterized by a non-linear non-Gaussian state-space
form. The essential point is that the proposed hybrid model, namely SV–GARCH,
attempts to bridge elements of SV and GARCH specifications. This model nests the
standard GARCH model as a special case. It has the attractive feature of inherit-
ing the same extensively well-documented unconditional properties of the standard
GARCH model, but being conditionally heavier tailed. From a computational view-
point, likelihood-based inference in non-linear non-Gaussian state-space models can
be performed using particle filtering as first proposed by Kitagawa (1993, 1996). How-
ever, the resulting simulated likelihood function is not continuous, which hinders its
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maximization. We design here a continuous particle filter in the spirit of Malik and Pitt
(2011) for a general class of SV models to obtain a continuous simulated likelihood
function. The approach is simple to implement and relatively fast on a standard PC or
laptop. We demonstrate the speed and robustness of the methodology by examining
simulated data arising from the specified data-generating process. The generality of
the method is highlighted by the fact that the standard SV or SV with leverage speci-
fications is nested within the SV leverage with jumps model, and can thus straightfor-
wardly be recovered imposing restrictions on the latter complete model. We also show
how diagnostics, filtered volatilities, quantile plots of filtered volatilities and filtered
probability of jumps can be easily estimated. It is demonstrated how simulated like-
lihood via particle filtering can be employed to estimate this model. Its robustness to
jumps/outliers relative to GARCH is demonstrated and we also investigate its perfor-
mance relative to the other three SV models mentioned, which have a comparatively
deeper theoretical underpinning in the financial econometrics literature.

The structure of the paper is as follows. In Sect. 2 we describe the standard SV
model, the SV with leverage model, the SV with leverage and jumps model and the SV–
GARCH model. In Sect. 3 we first describe how parameter estimation can be carried
out using particle filters generally, and then specifically in the context of the SV with
leverage and jumps model. This methodology of course allows for no jumps or leverage
as special cases. We also describe the relevant diagnostic tests for the general case.
Section 4 provides results for simulation experiments testing estimator performance
in the case of both SV with leverage and jumps model and SV–GARCH. Section 5
provides empirical examples using daily returns data for S&P500. We conclude in
Sect. 6.

2 Volatility models

The four models to be considered in this paper are detailed in Sects. 2.1 and 2.2. There
are three models in Sect. 2.1 which are the standard stochastic volatility (SV) model,
the SV model with leverage (SVL) and the SV model with leverage and jumps (SVLJ).
The SVL model nests the SV model, and the SVLJ model nests the other two models
subject to restrictions on the parameters. In Sect. 2.2, we introduce the SV–GARCH
model which nests both the standard SV model and the standard GARCH model as
special cases.

2.1 Stochastic volatility specifications

The standard stochastic volatility (SV) model, see Taylor (1986), with uncorrelated
measurement and state equation disturbances is given by

yt = εt exp(ht/2)

ht+1 = μ(1 − φ) + φht + σηηt , t = 1, . . . , T, (1)

where the shocks to returns and log-volatility are standard Gaussian so that

εt
i.i.d.∼ N (0, 1) and ηt

i.i.d.∼ N (0, 1). Here, yt is the observed return, {ht } are the
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unobserved log-volatilities, μ is the drift in the state equation, σ 2
η is the volatility

of log-volatility and φ is the persistence parameter. Typically, we would impose that
|φ| < 1, so that h0 ∼ N {0, σ 2

η /(1 − φ2)} yields a stationary process. This is in
fact the Euler–Maruyama discretization of the continuous-time Orstein–Uhlenbeck
(log-OU) process. Within the financial econometrics literature, this model is seen as a
generalization of the Black–Scholes model for option pricing that allows for volatility
clustering in returns.

We can take the standard SV model just described and adapt it to incorporate a
leverage effect, the SVL model. We retain the form of (1), but allow for the disturbances
to be correlated as

(
εt

ηt

)
i.i.d.∼ N (0, �), � =

(
1 ρ

ρ 1

)
. (2)

Due to the timing of the disturbances, the typically negative correlation in disturbances
does not affect the unconditional distribution of yt (see Yu 2005). For example, the
unconditional skewness of the returns, yt , remains zero. Note that we can write ηt =
ρ εt + √

1 − ρ2ξt , where ξt
i.i.d.∼ N (0, 1) so the state equation can then be reformulated

as

ht+1 = μ(1 − φ) + φht + σηρεt + ση

√
1 − ρ2ξt . (3)

We note that εt in (3) is defined as εt = yt exp(−ht/2) and so the evolution of the state
is non-linear. This complicates the procedure for inference using many techniques,
including MCMC, but is straightforward to address using particle filter methods; see
Sect. 3. It is a particularly effective scheme based on the evolution given by (3). In
particular, it will be seen that the approach performs increasingly well as |ρ| becomes
close to unity.

The SV model with leverage which allows for jumps (SVLJ) in the returns process
is now described. This is a simple extension where

yt = εt exp(ht/2) + Jt	t

ht+1 = μ(1 − φ) + φht + σηηt , t = 1, . . . , T
(4)

with (εt ηt ) as in (2). Here, Jt ∈ {0, 1} is the time-t jump arrival modelled as a
Bernoulli random variable with parameter p where 	t ∼ N (0, σ 2

J ) dictates the jump
size when Jt = 11. The jump formulation, without leverage, has been proposed by
Eraker et al. (2003) who use MCMC techniques to perform inference.

We note that for the SVLJ model, the transition density of the state process ht can
be expressed as

f (ht+1| ht ; yt ) =
∫

f (ht+1| ht ; εt ) f (εt | ht , yt ) dεt . (5)

1 This model can be considered a discrete-time counterpart to a general, continuous-time jump-diffusion
model (see Duffie et al. 2000). In brief, assume log of stock price y(t) and the underlying state variable,
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where f (ht+1| ht ; εt ) is given by (3). In the leverage model without jumps, we have
f (εt | ht , yt ) = δyt exp(−ht /2) (εt ) , whereas in the presence of jumps f (εt | ht , yt ) is
a mixture of this Dirac-delta mass and of a regular density; see (14) in Sect. 3.3. The
rather involved transition density of (5) makes this model complicated to estimate
using MCMC but the proposed particle filter scheme of Sect. 3 is straightforward
to apply as it is only necessary to be able to simulate forward from this transition
density.

2.2 SV–GARCH

In the spirit of studying heavier tailed volatility models we propose a new model for
volatility, the SV–GARCH. If we denote the observed return yt , and lagged conditional
variance σ 2

t ≡ vt , then the generalized ARCH (GARCH) model as put forth by
Bollerslev (1986) can be written as:

yt = √
vtεt

vt+1 = γ + αvt + βy2
t , t = 1, . . . , T, (6)

where εt
i.i.d.∼ N (0, 1). Parameter restrictions γ > 0, α ≥ 0, β ≥ 0 are set to ensure

that conditional variances are uniformly positive, and for the existence of stationarity
of the process we require the condition α + β < 1 to hold. The initial condition is
typically given by the unconditional expectation of the variance process

v1 = γ /(1 − α − β).

The GARCH specification implies that the conditional variance depends on the pre-
vious squared return, i.e. y2

t = vtε
2
t . Let us define a disturbance term ζt as

ζt = ϕεt +
√

1 − ϕ2ξt where ξt
i.i.d.∼ N (0, 1). (7)

Replacing ε2
t by ζ 2

t in the GARCH specification yields the non-linear transition
equation:

Footnote 1 continued
i.e. the volatility X (t), jointly solve:

dy(t) = ay(X (t))dt + σ y(X (t))dB(t) + d

⎛
⎜⎝

N y
t∑

n=1

Z y
n

⎞
⎟⎠ ,

dX (t) = gx (X (t))dt + σ x (X (t))dW (t) + d

⎛
⎝

N x
t∑

n=1

Z x
n

⎞
⎠ .

Here, B(t) and W (t) are correlated Brownian motions, and N y
t and N X

t are homogenous (or non-
homogenous) Poisson processes with Z y

n and Z x
n being the jump sizes for stock returns and volatility,

respectively. The functions ay(.), σ y(.), gx (.) and σ x (.) are general functions subject to certain constraints.
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vt+1 = γ + αvt + βvtζ
2
t

= γ + αvt + βvt

(
ϕεt +

√
1 − ϕ2ξt

)2
. (8)

Here, as in GARCH, parameter restrictions γ > 0, α ≥ 0, β ≥ 0, α + β < 1 apply
and additionally |ϕ| ≤ 1. In the case of ϕ = 1, the model collapses to the standard
GARCH specification with linear transition function as in (6), whereas ϕ = 0 yields a
specification which is ‘stochastic’ in nature, in that the feedback effect via the observed

standardized return εt = ytv
− 1

2
t is eliminated.

The SV–GARCH model has some attractive features in that it inherits all the same
unconditional properties of the well-established standard GARCH model, i.e. skew-
ness, kurtosis and autocorrelation structure (see Bollerslev 1986), but the stochastic
nature of the transition equation (8) renders the conditional distribution of returns a
mixture,

f (yt+1|Yt ) =
∫

f (yt+1|vt+1) f (vt+1|Yt )dvt+1, (9)

where Yt = {y1, . . . , yt }. The implication of this is that the model displays con-
ditional leptokurtosis, so long as ϕ �= 1. In the standard GARCH, the predictive
density f (vt+1|Yt ) would be (degenerate) with Dirac-delta mass concentrated upon
a single value. This suggests that in principle the SV–GARCH model is more robust
to jumps/outliers relative to conditionally Gaussian counterparts. Authors such as
Bollerslev (1987) have assumed heavier-tailed distributions such as standardized Stu-
dent’s t (GARCH-t) and generalized error distributions (GED), respectively, to pro-
vide robustness to outliers. The advantage of employing the SV–GARCH approach in
incorporating heavier-tailed behaviour is that, unlike GARCH-t and GED, which pos-
tulate (fixed) heavier-tailed unconditional (and conditional) distribution for the returns
process, this formulation with a latent stochastic process driving volatility is far less
dependent on possible misspecification brought about by assuming a fixed distribu-
tion. Essentially, the path of SV–GARCH volatility can thus adjust after encountering
an outlier, since in essence it remains centred on the GARCH volatility path in nor-
mal times. This feature also enables us to quantify the contribution to volatility of
deviations brought about by abnormal (jumps) returns.

3 Likelihood inference via particle filtering

All the SV models described in the previous section can be formulated as non-linear
state-space models. In this context, online state inference relies on the so-called filter-
ing density f (ht |Yt,), t = 1, . . . , T where Yt is contemporaneously available infor-
mation. For linear Gaussian state-space models the density is Gaussian and its statistics
can be computed using the Kalman filter. In the SV context, we cannot obtain a closed
form expression for the required conditional density and it needs to be approximated
numerically. A powerful deterministic numerical approach for non-linear state-space
models is provided by Kitagawa (1987). This shares some similarities with the method-
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ology advocated in this paper, as the aim is again to provide an approximation to the
likelihood which is continuous as a function of the parameters. We focus here on
particle filters which is a powerful class of simulation-based methods introduced by
Gordon et al. (1993) and Kitagawa (1993, 1996).

The great advantage of the basic particle filtering scheme discussed in Gordon et al.
(1993) and Kitagawa (1993, 1996) is that it only requires having to simulate forward
in time from the transition density of the unobserved states. This is typically straight-
forward, whereas Bayesian imputation via Markov chain Monte Carlo (MCMC) is
usually much more complicated. In the presence of highly informative measurements,
this basic scheme can be inefficient and various improved sampling strategies have
been proposed in Pitt and Shephard (1999) and Doucet et al. (2000). However the bene-
fits of using these sophisticated techniques in the SV context is limited as observations
are not typically individually very informative.

We begin by providing a description of a particle filter and then describe how
this framework can be adapted to facilitate parameter estimation for a variety of SV
models. In particular, we use a scheme which results in a likelihood estimator which is
continuous as a function of the parameters. This allows simulated maximum likelihood
methods (SML) to be employed.

3.1 Particle filtering algorithm

The basic particle filter, known as the Bootstrap filter, requires the ability to simu-
late from the transition density f (ht+1|ht ; yt ) and compute the measurement density
f (yt |ht ). Suppose we have a set of random samples, ‘particles’, h1

t , . . . , hM
t with asso-

ciated discrete probability masses λ1
t , . . . , λ

M
t , approximating the density f (ht |Yt ).

The principle of Bayesian updating implies that the density of the state conditional on
all available information can be constructed by combining a prior with a likelihood,
recursive implementation of which forms the basis for particle filtering. The particle
filtering algorithm thus propagates and updates these particles to yield a sample which
is approximately distributed as f (ht+1|Yt+1); i.e. the true filtering density:

f (ht+1|Yt+1) ∝ f (yt+1|ht+1)

∫
f (ht+1|ht ; yt ) f (ht |Yt )dht . (10)

The basic SIR algorithm is outlined below. We start at t = 0 with samples from
hi

0 ∼ f (h0), i = 1, . . . , M which is generally the stationary distribution, if it exists.
Algorithm: particle filter (PF) for t = 0, . . . , T − 1:
We have samples hi

t ∼ f (ht |Yt ) for i = 1, . . . , M.

1. For i = 1 : M, sample h̃i
t+1 ∼ f

(
ht+1|hi

t ; yt
)
.

2. For i = 1 : M calculate normalized weights,

λi
t+1 = ωi

t+1∑M
k=1 ωk

t+1

, where ωi
t+1 = f

(
yt+1 |̃hi

t+1

)
.

3. For i = 1 : M , sample (from the mixture) hi
t+1 ∼ ∑M

k=1 λk
t+1δh̃k

t+1
(ht+1).
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This will yield an approximation of the desired posterior density, f (ht+1|Yt+1), as
t varies. Here, δ(.) is a Dirac-delta function. Sampling in Step 3 can be done using
a multinomial sampling scheme and is computationally O(M). However, a stratified
scheme is typically much more efficient at Step 3, see Kitagawa (1996).

3.2 Likelihood evaluation

Assume that the model is indexed by a vector of fixed parameters θ . To carry out
parameter estimation we estimate the log-likelihood function, which is given by

log L(θ) = log f (y1, . . . , yT |θ) =
T∑

t=1

log f (yt |θ; Yt−1), (11)

where

f (yt+1|θ; Yt ) =
∫

f (yt+1|ht+1; θ) f (ht+1|Yt ; θ)dht+1. (12)

As the particle filter delivers samples
{
h̃i

t+1

}
from f (ht+1|Yt ; θ) after Step 1 of

Algorithm : PF, we may estimate the predictive density (12) as

f̂ (yt+1|θ; Yt ) = 1

M

M∑
k=1

f
(

yt+1 |̃hk
t+1; θ

)
= 1

M

M∑
k=1

ωk
t+1.

The termsωk
t+1 are simply the unnormalized weights computed in Step 2 of Algorithm

: PF. The estimation of the likelihood is therefore a by-product of a single run of the
particle filter. The estimator for the log-likelihood would therefore be

log L̂ M (θ) =
T∑

t=1

log f̂ (yt |θ; Yt−1) =
T∑

t=1

log

(
1

M

M∑
k=1

ωk
t

)
. (13)

This was first proposed by Kitagawa (1993, 1996) which uses it to perform (approx-
imate) maximum likelihood parameter estimation. One drawback of this approach
is that the estimated likelihood function will not be continuous as a function of θ .
This hinders the maximization of the associated simulated likelihood function and the
computation of standard errors using conventional techniques. This non-continuity
problem arises because of the resampling step, i.e. Step 3 of the Algorithm : PF.
Even if we generate the same uniforms at each time step, the resampled particles will
not be close as we are sampling from the following discontinuous empirical distribu-
tion function,

F̂(ht+1) =
M∑

k=1

λk
t+1 I

(
ht+1 − h̃k

t+1

)
,
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where I (•) is an indicator function which takes a value of unity when the argument
is positive and zero otherwise. An alternative proposed recently consists of using
the continuous resampling procedure described in Malik and Pitt (2011). We simply
replace this empirical distribution function by an approximation F̃(ht+1), which is
essentially constructed to be continuous in ht+1. It is important to note that as M →
∞, F̃(ht+1) → F̂(ht+1) → F(ht+1|Yt ), with F(ht+1|Yt ) being the true predictive
distribution function. In practice the difference between F̃(ht+1) and F̂(ht+1)becomes
negligible for moderate M . For the precise form of F̃(ht+1) and details about the
method of continuous resampling from this distribution function, we refer the reader
to Malik and Pitt (2011).2

The computational overhead is in O(T × M × log M) due to the necessary sort-
ing of the sampled ht+1. The random numbers (or equivalently the random numbers
seed) used in Step 1 of Algorithm : PF are fixed. If it is possible to sample from
f (ht+1|ht ; yt , θ) continuous way, then we obtain a continuous, in θ , estimator of
the likelihood function which can be maximized numerically. We now describle the
method for simulating from f (ht+1|ht ; yt , θ) in a continuous manner for the models
of Sect. 2.

3.3 Implementation of stochastic volatility with leverage and jumps model

Given the replacement of the resampling step (Step 3) of the basic SIR algorithm
with a continuous resampling scheme, implementing the particle filter for parameter
estimation in the context of the standard SV model (see Sect. 2) is straightforward. Our
method only requires sampling from expression (5). The simpler models, standard SV
and SV with leverage, may of course be estimated in exactly the same way imposing the
necessary restrictions. In Step 1 of Algorithm : PF, we sample from f (ht+1| ht ; yt )

given in (5) as follows:

Step1.

{
(1a) For i = 1 : M, sample εi

t ∼ f (εt |hi
t , yt ).

(1b) For i = 1 : M, sample h̃i
t+1 ∼ f (ht+1|hi

t ; εi
t ).

The density of Step (1a) is a mixture of the form

f (εt |ht , yt ) = Pr(Jt = 0|ht , yt ) × δyt exp(−ht /2) (εt )

+Pr(Jt = 1|ht , yt ) × N (εt |υε1, σ
2
ε1

) (14)

with a singular component at yt exp(−ht/2), corresponding to no jump, and a regular
component corresponding to a jump. The expressions of υε1 , σ 2

ε1
, Pr(Jt = 1|ht , yt )

are given in Appendix A. This distribution function can be inverted easily allowing
simple continuous simulation by using fixed uniform random variates. The simulation
from the density f (ht+1|hi

t ; εi
t ) for Step (1b) may be performed straightforwardly by

2 The generality and robustness of the methodology described in Malik and Pitt (2011) have been demon-
strated by Duan and Fulop (2009) on credit risk models and Christoffersen et al. (2010) on affine and
non-affine volatility models.
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applying (3). The non-normalized weights for Step 2 in the SIR algorithm are of the
form:

f
(

yt+1 |̃hi
t+1

)
= (1 − p)

{
2π exp

(
h̃i

t+1

)}− 1
2

exp

(
−1

2
y2

t+1 exp
(
−h̃i

t+1

))

+ p
{

2π
[
exp(̃hi

t+1) + σ 2
J

]}− 1
2

exp

(
−1

2
y2

t+1

[
exp(̃hi

t+1) + σ 2
J

]−1
)

.

3.4 Diagnostics

Standard approaches involved in specification analysis of time-series models is to
investigate the properties of residuals in terms of their dynamic structure and uncon-
ditional distributions. This is infeasible given the latent dimension of the model under
consideration. Alternatively, therefore, to test the hypothesis that the prior and model
are true, we require the distribution function

ut = F(yt |Yt−1) =
∫

F(yt |ht ) f (ht |Yt−1)dht .

In the specific case of SV with leverage and jumps, the distribution function can be
estimated by

ût = (1 − p)

{
1

M

M∑
i=1

�
(

yt exp
(
−h̃i

t/2
))}

+p

{
1

M

M∑
i=1

�

(
yt

[
exp(̃hi

t ) + σ 2
J

]−1/2
)}

,

where �(.) denotes the standard normal distribution function and h̃i
t arise from Step

1b of Algorithm : PF. If the parameters and model are true, then the estimated
distribution functions should be independently uniformly distributed through time, so
ût ∼ U I D(0, 1), for t = 1, . . . , T , as M → ∞ [see Rosenblatt (1952)].

3.5 Model comparison

We have concentrated on maximum likelihood approaches for inference. However, we
can also conduct model comparison, in a Bayesian context, by computing marginal
likelihoods of competing models. We have the marginal likelihood,

f (y|Mk) =
∫

f (y|θk; Mk) f (θ; Mk)dθk,

where f (y|θk; Mk) is our likelihood approximation via the particle filter for model
Mk (k = 1, . . . , K ) given the model specific maximum likelihood estimate of the
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parameter vector θk resulting from the optimization of the likelihood function. We
may express this as

f (y|Mk) =
∫

f (y|θk; Mk) f (θk; Mk)

g(θk |y, Mk)
g(θk |y, Mk)dθk,

where g(θk |y, Mk) is a multivariate Gaussian or t-distribution centred at the maximum
likelihood estimate [or the mode of f (y|θk; Mk) f (θk; Mk)] with the variance given
by the inverse of the observed information matrix. This importance sampling scheme
leads to an approximation:

f̂ (y|Mk) = 1

S

S∑
j=1

f̂
(

y|θ j
k ; Mk

)
f
(
θ

j
k ; Mk

)

g
(
θ

j
k |y, Mk

) ,

where θ
j

k ∼ g(θk |y, Mk). In practice this may only take a small number of draws
as the posterior may be close to being log-quadratic (asymptotically under the usual
assumptions this will be the case). Once the appropriate prior density f (θk; Mk) is
selected, this model comparison scheme based on the ratios of marginal likelihoods
between competing models can be implemented. Given the fact that we integrate out
the parameter vector and the states, through particle filtering, when computing the mar-
ginal likelihoods, we do not suffer from the nuisance parameter problem encountered
in similar contexts using likelihood ratio tests.

3.6 Implementation of SV–GARCH model

We apply the same general methodology described above for the estimation for the
SV–GARCH model. The procedure is similar and is conducted relatively straightfor-
wardly, within the standard Algorithm: PF framework. In this case, we require only
to simulate forward from the transition equation (8) in conjunction with continuous
resampling at Step 3. Thus, no additional modifications are required, as in the case of
SV with leverage and jumps. As before, output such as filtered volatilities, quantiles
and diagnostics are again obtained as a by-product of the procedure. This is briefly
described in Appendix B.

We note the particle filter method has particular advantages for the initialization
at time t = 0 for the SV–GARCH process. In Algorithm : PF the state (variance)
at time t = 0 is denoted as v0. Rather than setting v0 in line with the unconditional
expectation of the variance which is γ /(1 − α − β), see Sect. 2.2, we can attempt to
draw v0 from the unconditional distribution of vt . For the initialization of Algorithm:
PF, we require that at t = 0, we have vi

0 ∼ f (v0), where i = 1, . . . , M for a
particular parameter ordinate θ . To do this, we can simply start by simulating (or
deterministically choosing) values vi

−l for i = 1, . . . , M . That is, we start with M
values at l lags in the past and simply iterate through the transition equation, in this
case given by (2.8), to obtain vi

−l+1 then vi
−l+2 until we obtain M values vi

0 ∼ f (v0),
where i = 1, . . . , M . The forgetting property in the GARCH model (if stationarity
is satisfied) will lead to vi

0 arising from the invariant distribution of the time series,
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provided that the number of lags l is sufficiently large. By choosing the random variates
(standard Gaussian variables) to be constant as θ changes, the continuity of the resulting
estimated likelihood is preserved. The particle filter approach therefore provides a
simple and numerically fast solution for the initialization problem for stationary time
series.

4 Simulation experiments

4.1 Stochastic volatility with leverage and jumps

Now, we investigate parameter estimation in the case of SV with leverage and
jumps model. We run the smooth particle filter and maximize the estimated log-
likelihood with respect to the parameter vector θ = (μ, φ, σ 2

η , ρ, σ 2
J , p).We begin

by simulating two time series of length 1000 and 2000, setting parameters θ =
(μ, φ, σ 2

η , ρ, σ 2
J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10). These values for parame-

ters are in line with those that have been adopted in similar contexts in the literature.
The smooth particle filter is run 50 times using a different random number seed, but
keeping the dataset fixed. The estimated log-likelihood is maximized with respect to θ

for each run. In Table 1, the average of the resulting 50 maximum likelihood estimates
(MLs) and 50 variance estimates (Var), along with the variance for the sample of max-
imum likelihood estimates Var(MLs),are reported for different cases considered. The
variance covariance matrix is again estimated using the OPG estimator.

We examine the ratio of the variance of the maximum likelihood estimates to
the variance of each parameter with respect to the data. These are, for M =

Table 1 Fixed dataset

MLs Var × 102 Var(MLs) × 102 MLs Var × 102 Var(MLs) × 102

M = 300, T = 1,000 M = 300, T = 2,000
μ 0.5595 3.0020 0.0602 μ 0.4770 1.2653 0.03098

φ 0.9648 0.0103 0.0002 φ 0.9680 0.00522 0.00013

σ 2
η 0.0458 0.0186 0.0002 σ 2

η 0.0338 0.00661 0.00012

ρ −0.7072 1.0326 0.0162 ρ −0.7419 0.7275 0.01352

σ 2
J 10.176 813.98 6.9054 σ 2

J 7.7568 207.71 1.19598

p 0.0769 0.0754 0.0012 p 0.11263 0.0659 0.00079

M = 600, T = 1,000 M = 600, T = 2,000

μ 0.5650 2.9623 0.03853 μ 0.4830 1.2760 0.01097

φ 0.9648 0.0103 0.00013 φ 0.9681 0.0052 0.00005

σ 2
η 0.0461 0.0192 0.00012 σ 2

η 0.0338 0.0067 0.00008

ρ −0.7026 1.0333 0.00665 ρ −0.7396 0.7425 0.00622

σ 2
J 10.174 823.13 2.5625 σ 2

J 7.7929 216.21 0.87021

p 0.0764 0.0771 0.00045 p 0.1115 0.0667 0.00047

Performance of the smooth particle filter for the stochastic volatility model with leverage and jumps for
two cases, T = 1,000 and 2,000, considering M = 300, 600 for each case
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Table 2 50 different datasets.
Analysis of the maximum
likelihood estimator for
stochastic volatility with
leverage and jumps model for
cases, M = 200, 500 and 900.
T = 2,000 in all cases

MLs Var × 102 Var(MLs) × 102

M = 200
μ 0.49151 2.0908 1.7937

φ 0.97101 0.0140 0.0181

σ 2
η 0.02211 0.0087 0.0072

ρ −0.8468 1.3943 1.1835

σ 2
J 9.8470 954.42 621.81

p 0.10458 0.1300 0.0699

M = 500

μ 0.5000 2.2045 1.5714

φ 0.9719 0.0153 0.0107

σ 2
η 0.0224 0.0097 0.0065

ρ −0.8371 1.4793 1.1215

σ 2
J 9.8013 1018.7 637.60

p 0.1036 0.1367 0.0631

M = 900

μ 0.4972 2.1724 1.6280

φ 0.9720 0.0146 0.0100

σ 2
η 0.0225 0.0090 0.0075

ρ −0.8450 1.5008 1.1664

σ 2
J 9.8524 1007.0 648.20

p 0.1037 0.1350 0.0653

300, T = 1000:(0.0201, 0.0209, 0.0108, 0.01578, 0.0085, 0.0159); M = 600, T =
1000:(0.0131, 0.0132, 0.0062, 0.0064, 0.0032, 0.0059); M = 300, T = 2000 :(0.0245,
0.0251, 0.0186, 0.0186, 0.0058, 0.0121) and M = 600, T = 2000 :(0.0086, 0.0095,
0.0121, 0.0084, 0.0040, 0.0070). These ratios suggest that the variance of the simulated
estimates is small in comparison to the variance induced by the data.

Next, we generate 50 different time series each of length T = 2000, setting values of
parameters θ = (μ, φ, σ 2

η , ρ, σ 2
J , p) = (0.5, 0.975, 0.02,−0.8, 10, 0.10). Keeping

the random number seed fixed, we run the smooth particle filter in turn for each of the
time series and maximize the estimated log-likelihood with respect to θ for each run.
The average of 50 maximum likelihood estimates (MLs) and 50 variance estimates
(Var) along with mean-squared errors Var(MLs) are reported in Table 2, for each of
the three cases considered. Variance estimates are computed using the OPG estimator
for the variance covariance matrix.

In testing for bias we find very encouraging results. We find that all parameters,
except the leverage parameter ρ (which is estimated with slight bias), are either within
or on the boundary of their 95 % confidence limits. It should be pointed out that
unbiasedness is an asymptotic property associated with the likelihood and there is no
reason for us not to expect some degree of bias given a time series of moderate length,
such as what we are considering for purposes of our experiments. The results are stable
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Table 3 50 different datasets.
Analysis of the maximum
likelihood estimator for
stochastic volatility with
leverage and jumps model

We set parameter values
μ = 0.25, φ = 0.975, σ 2

η =
0.025, ρ = −0.8, σ 2

J = 0.5 and
p = 0.10. M = 500 and T =
2,000

Small jump–high intensity

MLs Var × 102 Var(MLs) × 102

μ 0.21240 3.4545 2.7098

φ 0.97290 0.0066 0.0073

σ 2
η 0.02917 0.0132 0.0148

ρ −0.85641 0.7031 0.6688

σ 2
J 0.63322 95.170 60.103

p 0.23544 4.3614 6.8037

Table 4 50 different datasets.
Analysis of the maximum
likelihood estimator for
stochastic volatility with
leverage and jumps model

We set parameter values
μ = 0.25, φ = 0.975, σ 2

η =
0.025, ρ = −0.8, σ 2

J = 10 and
p = 0.01. M = 500 and T =
2,000

Large jump–low intensity

MLs Var × 102 Var(MLs) × 102

μ 0.25359 1.9024 1.3926

φ 0.97293 0.0063 0.0074

σ 2
η 0.02673 0.0067 0.0071

ρ −0.82253 0.5556 0.4225

σ 2
J 9.6201 2162.1 3884.2

p 0.01325 0.0756 0.0202

across different values of M . We note that the settings for this experiment were one of
a large jump variance σ 2

J with very high intensity, p. One would expect the additional
noise induced by these settings to render the estimation of the SV components less
accurate (see Eraker et al. 2003). Our findings suggest that in spite of having large
jumps with high intensity, our procedure delivers highly reliable estimates for all the
parameters.3

We proceed to investigate how the error in estimation is affected by varying the
intensity and jump size. The results in Table 3 suggest that having smaller jumps
occurring with high intensity induces a slight amount of bias is estimating σ 2

η , ρ

and p. In sharp contrast, if large jumps occur at a very low frequency, i.e. setting
p = 0.01, the accuracy of our estimates is greatly enhanced; see Table 4. In this case,

all parameters fall well within their 95 % confidence limits. Using simulated data
generated with large jump–low intensity calibration for θ , we provide the diagnostic
check (see Sect. 3.4) for the SV with leverage and jumps model in addition to a plot
of the data, filtered standard deviation and filtered jump probabilities in Fig. 1.4 The
diagnostic test illustrated by the QQ plot and autocorrelation function (acf) indicate
the prior and model are correct.

3 E(θ̂ ) − θ = Bias � N (0, M SE
50 ) where the mean squared error (M SE) is E[(θ̂ − θ)2] .

4 Note that the plots in each of these figures illustrate output generated by a single run of the smooth particle
filter.
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Fig. 1 Fixed simulated dataset. Parameters μ = 0.25, φ = 0.975, σ 2
η = 0.025, ρ = −0.8, σ 2

J = 10,

p = 0.01 and a single run of the continuous particle filter. Left panel (i) Plot of data, (ii) filtered standard
deviation, (iii) estimated jump probabilities. Right panel (i) QQ-plot of estimated distribution functions, ût
(ii) correlogram of ût . M = 500, T = 2,000

Table 5 50 different datasets. Analysis of the maximum likelihood estimator for SV–GARCH model

MLs Var × 102 Var(MLs) × 102 MLs Var × 102 Var(MLs) × 102

ϕ = 0.05 ϕ = 0.50
μ 0.0132 0.0034 0.0041 μ 0.0138 0.0033 0.0049

α 0.9210 0.0253 0.0231 α 0.9208 0.0243 0.0204

β 0.0707 0.0178 0.0138 β 0.0701 0.0179 0.0141

ϕ 0.0785 4.4531 1.4143 ϕ 0.4208 8.1521 7.5707

ϕ = 0.10 ϕ = 0.90

μ 0.0114 0.0027 0.0033 μ 0.0131 0.0033 0.0036

α 0.9252 0.0221 0.0249 α 0.9218 0.0198 0.0189

β 0.0674 0.0164 0.0184 β 0.0697 0.0159 0.0141

ϕ 0.1529 9.988 4.2387 ϕ 0.8695 5.2917 3.2639

M = 500 and T = 2,000. Parameters μ = 0.010, α = 0.925, β = 0.069 and ϕ is varied

4.2 SV–GARCH

We now consider the performance of the estimator in the case of the SV–GARCH
model. We generated 50 different time series each of length T = 2000. Keeping
the random number of seed fixed, we run the smooth particle filter in turn for each
of the time series and maximize the estimated log-likelihood with respect to θ =
(μ, α, β, ϕ) for each run. We conduct four different experiments keeping the values
of μ, α, β fixed at 0.010, 0.925 and 0.069, respectively, and taking the values of
ϕ ∈ {0.05, 0.10, 0.50, 0.90}. The average of 50 maximum likelihood estimates (MLs)

and 50 variance estimates (Var) along with mean-squared errors Var(MLs) are reported
in Table 5 for each of the four cases considered. In all cases we find that biases are not
significantly different from zero and the true values of the parameters lie well within
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their 95 % confidence limits. In unreported results, we repeated this experiment taking
M = 300 and 600. There was no substantial variability in the results and the finding
of unbiasedness remained unaltered an all cases.

5 Empirical examples

We now employ the described methodology to estimate four models: (i) stochastic
volatility (SV), (ii) stochastic volatility with leverage (SVL), (iii) stochastic volatility
with leverage and jumps (SVLJ) and (iv) SV–GARCH model, using daily returns S&P
500 over three different spans. Returns are continuously compounded and scaled by
100; holidays and weekends are excluded. This is a prominent index with actively
traded futures and European option contracts. The spans we consider cover the well-
documented episodes of market stress, October 1987, October 1997, late summer–fall
1998 as well as the most recent episode in fall 2008. For each of the series, the
parameter estimates and standard errors, log-likelihood, Akaike information criterion
(AIC) and Bayesian information criterion (BIC) values for these four specifications
are reported in Tables 6, 7, 8 and 9; see Sakamoto et al. (1986) for a review. The
AIC and BIC values are employed for purposes of model comparison given that the
specifications are characterized by differing levels of complexity. We illustrate the
actual returns data, along with the quantiles of filtered standard deviation and filtered
jump probabilities for SVLJ specification for the spans considered in Figs. 2, 3, 4 and 5.
These figures suggest that the path of the estimated filtered standard deviation captures
adequately the underlying volatility of the returns process in addition to identifying
periods which may be described as market stress, i.e. short periods of time with clusters
of large movements in returns. In addition, the filtered probabilities adequately identify
jump times.

Estimates of the jump probabilities (times) and average jumps size allow us to better
understand the contribution of these components to volatility, especially during periods
of market stress. Understanding this contribution is extremely important because jump
risk can typically not be hedged away and thus investors demand higher premia to
carry this risk.5 From our estimates of the jump components (p and σ 2

J ), it is revealed
that jumps over the three spans considered can indeed be rare events which occur
(approximately) between 1.3 and 2 times per year. The average jumps sizes across
the three spans in Tables 6, 7 and 8 do tend to differ, with the largest being over
the span containing the October 19, 1987 crash (Table 6). The diagnostics do not
reveal any evidence of potential misspecification of the SVLJ model for any series.
For the spans considered in Tables 7 and 8, we find that the magnitude of the estimated
leverage parameter is high, ρ > |0.8|. In contrast we find a relatively lower estimate
of ρ = −0.33 for the earlier span (see Table 6). Furthermore, it is for this span that we
find the highest gain of SVLJ in log-likelihood terms over the SVL model. We find that
the inclusion of a leverage effect in general is extremely important when modelling
SV. This is indicated by the substantial gain in the log-likelihood over the standard
SV model in all cases.

5 Evidence of large jump risk premia is found by Pan (2002) (see also Eraker et al. 2003).
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Table 6 Parameter estimates
for S&P500 daily returns data
for the period
02/02/1982–29/12/1989

M = 500. GARCH: log-lik
= −2738.1, AIC = 5482.2,
BIC = 5499.0

ML estimate Standard error

SV: log-lik value = −2654.6, AIC = 5312.2, BIC = 5332.0

μ −0.2476 0.1052

φ 0.9492 0.0120

σ 2
η 0.0639 0.0099

SVL: log-lik value = −2645.4, AIC = 5298.8, BIC = 5321.2

μ −0.1781 0.1018

φ 0.9436 0.0098

σ 2
η 0.0693 0.0093

ρ −0.3170 0.0647

SVLJ: log-lik value = −2621.1, AIC = 5254.2, BIC = 5287.8

μ −0.1376 0.1363

φ 0.9804 0.0064

σ 2
η 0.0147 0.0043

ρ −0.3315 0.0957

σ 2
J 34.749 15.037

p 0.0061 0.0026

SV–GARCH: log-lik value = −2632.5, AIC = 5273.0, BIC = 5295.4

γ 0.0703 0.0123

α 0.6744 0.0345

β 0.2568 0.0280

ϕ 0.0565 0.2235

In Table 9, a longer time series from 31/03/1987 to 13/01/2011 is considered, which
covers all the spans analysed above including the financial turmoil in fall 2008. We
find that the SVLJ model describes well the evolution of S&P 500 volatility over
this longer span with 6,000 observations. The estimate of leverage ρ = −0.67 falls
between those found in the previous examples. Although jumps occur with roughly
the same frequency found in the smaller samples, the average jump size is higher than
that found in Tables 7 and 8, but lower as compared to that in Table 6. As a comparison
we also fit the model to daily Dow Jones Composite returns (Fig. 6). We find that the
leverage effect is of a comparable magnitude to that found for S&P 500 over the same
span, but jumps arrive 1.5 times less often and tend to be larger, i.e. the average jumps
size was found to be greater by a factor of 1.7 relative to S&P 500.

In terms of model comparison, it is found that for the spans considered in Tables 7
and 8, SVL is the preferred specification given that it yields the lowest BIC values. In
terms of AIC, the SVLJ appears to be the preferred specification. This disagreement
in model selection is driven by the fact that the BIC places a much larger penalty
on additional parameters in models in comparison to the AIC. In contrast, the cases
considered in Table 6 and Table 9 indicate that the SVLJ specification is the one
where both the AIC and BIC values are minimized. Focusing on SV–GARCH, we
find that it is generally outperformed by the SVL (indicated by an approximately 30
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Table 7 Parameter estimates
for S&P 500 daily returns data
for the period
16/05/1995–24/04/2003

M = 500. GARCH:
log-likelihood = −3074.5,

AIC = 6155.0, BIC = 6171.8

ML estimate Standard error

SV: log-lik value = −3044.7, AIC = 6095.4, BIC = 6112.2

μ 0.1318 0.1819

φ 0.9821 0.0059

σ 2
η 0.0226 0.0048

SVL: log-lik value = −2994.0, AIC = 5996.0, BIC = 6018.4

μ 0.2424 0.0977

φ 0.9737 0.0046

σ 2
η 0.0304 0.0049

ρ −0.8106 0.0435

SVLJ: log-lik value = −2991.5, AIC = 5995.0, BIC = 6028.6

μ 0.2548 0.1000

φ 0.9765 0.0040

σ 2
η 0.0269 0.0047

ρ −0.8288 0.0432

σ 2
J 6.1967 0.4483

p 0.0089 0.0035

SV–GARCH: log-lik value = −3045.5, AIC = 6099.0, BIC = 6121.4

γ 0.0098 0.0033

α 0.8878 0.0123

β 0.1041 0.0110

ϕ 0.0112 0.8464

log-likelihood point gain and according to the information criteria) when leverage is
relatively high, whereas interestingly it outperforms SVL for the example of the span
considered in Table 6. In this case, we found a relatively less pronounced estimate
of leverage and significantly larger contribution of incorporating jump components.
In all cases, SV–GARCH decisively gains over the standard GARCH model. This is
reinforced furthermore by the finding that ϕ is found to be close to zero in all cases, thus
suggesting a stochastic as opposed to GARCH-type evolution for volatility. For the
span considered in Table 6, we illustrate the returns, filtered standard deviation paths
and quantiles in Fig. 7. Moreover, the robustness of SV–GARCH to jumps/outliers
relative to the standard GARCH model is demonstrated in terms of the log-likelihood
error which captures the predictive gain of the SV–GARCH when such events occur.

6 Conclusion

This paper has attempted to provide a unified particle filter-based methodology to
conduct likelihood-based inference on the unknown parameters of discrete-time SV
models, incorporating both a leverage effect and jumps in the returns process. An
advantage of this unified methodology over MCMC is that it delivers the filtered path of
the states, jump probabilities (i.e. in the case of SV with leverage and jumps) and output
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Table 8 Parameter estimates
for S&P 500 daily returns data
for the period
19/12/2000–12/12/2008

M = 500. GARCH: log-lik
= −2909.1, AIC = 5824.2, BIC
= 5841.06

ML estimate Standard error

SV: log-lik value = −2866.0, AIC = 5738.0, BIC = 5754.0

μ 0.5006 0.4821

φ 0.9937 0.0027

σ 2
η 0.0168 0.0035

SVL: log-lik value = −2806.5, AIC = 5621.0, BIC = 5643.4

μ 0.5858 0.1473

φ 0.9878 0.00386

σ 2
η 0.0229 0.00228

ρ −0.8438 0.03773

SVLJ: Log-lik value = −2800.2, AIC = 5612.4, BIC = 5646.0

μ 0.5852 0.14901

φ 0.9877 0.00248

σ 2
η 0.0245 0.00422

ρ −0.8634 0.03825

σ 2
J 3.8493 0.03825

p 0.0079 0.00309

SV–GARCH: log-lik value = −2844.3, AIC = 5696.6, BIC = 5718.0

γ 0.0076 0.0018

α 0.8963 0.0129

β 0.1009 0.0126

ϕ 0.0099 0.8884

Table 9 Left: Parameter estimates for S&P 500 daily returns for 31/03/1987–13/01/2011. GARCH log-lik
= −8318, AIC = 16642, BIC = 16662. Right:Parameter estimates for Dow Jones Composite daily returns
for 3 1/03/1987–13/01/2011. GARCH log-lik = −8134, AIC = 16273, BIC = 16293. M = 500

ML estimate Standard error ML estimate Standard error

SV: log-lik = −8,163, AIC = 16,331, BIC = 16,351 SV: log-lik = −7,970, AIC = 15,946, BIC = 15,966

μ −0.0994 0.1488 μ −0.2153 0.1112

φ 0.9864 0.0025 φ 0.9802 0.0033

σ 2
η 0.0283 0.0022 σ 2

η 0.0337 0.0026

SVL: log-lik = −8,078, AIC = 16,164, BIC = 16,191 SVL: log-lik = −7,905, AIC = 15,818, BIC = 15844

μ −0.0088 0.0840 μ −0.1080 0.0751

φ 0.9771 0.0024 φ 0.9725 0.0030

σ 2
η 0.0377 0.0027 σ 2

η 0.0380 0.0026

ρ −0.6381 0.0324 ρ −0.5616 0.0374

SVLJ: log-lik = −8,046.1, AIC = 16,104, BIC = 16,144 SVLJ: log-lik = −7,866, AIC = 15,743, BIC = 15,784

μ 0.0112 0.0905 μ −0.1080 0.0805

φ 0.9831 0.0020 φ 0.9725 0.0023

σ 2
η 0.0268 0.0027 σ 2

η 0.0233 0.0026

ρ −0.6724 0.0327 ρ −0.6794 0.0374
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Table 9 continued

ML estimate Standard error ML estimate Standard error

σ 2
J 16.992 2.3341 σ 2

J 27.330 4.3646

p 0.0055 0.0016 p 0.0036 0.0011

SV–GARCH: log-lik = −8,147, AIC = 16,305,
BIC = 16,332

SV–GARCH: log-lik = −7,952, AIC = 15,912,
BIC = 15,939

γ 0.0103 0.0013 γ 0.0157 0.0022

α 0.8620 0.0068 α 0.8369 0.0091

β 0.1338 0.0055 β 0.1543 0.0080

ϕ 0.0112 0.0155 ϕ 0.0012 0.2461
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Fig. 2 Daily S&P 500 returns over the period 02/02/1982–29/12/1989. SV with leverage and jumps model.
(i) Returns data, (ii) quantiles of filtered standard deviation and (iii) estimated jump probabilities (iv) QQ-
plot of estimated distribution functions, ût and (v) associated correlograms of ût . M = 500
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Fig. 3 Daily S&P 500 returns over the period 16/05/1995–24/04/2003. SV with leverage and jumps model.
(i) Returns data, (ii) quantiles of filtered standard deviation, (iii) estimated jump probabilities, (iv) QQ-plot
of estimated distribution functions, ût and (v) associated correlograms of ût . M = 500
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Fig. 4 Daily S&P 500 returns over the period 19/12/2000–12/12/2008. SV with leverage and jumps model.
(i) Returns data, (ii) quantiles of filtered standard deviation, (iii) estimated jump probabilities, (iv) QQ-plot
of estimated distribution functions, ût and (v) associated correlograms of ût . M = 500
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Fig. 5 Daily S&P 500 returns over the period 31/03/1987–13/01/2011. SV with leverage and jumps model.
(i) Returns data, (ii) quantiles of filtered standard deviation and (iii) estimated jump probabilities, (iv) QQ-
plot of estimated distribution functions, ût and (v) associated correlograms of ût . M = 500

required to perform diagnostics. Implementation is easy and has the benefit of being
both faster is terms of computation time and more general than many alternatives in the
literature. With regard to generality, note that the standard SV and SV with leverage
models (SVL) are restricted forms of the SV with leverage and jumps model (SVLJ).
It was highlighted how the proposed methodology can easily facilitate parameter
estimation for all three types of models without any alteration in the basic structure
of the algorithm and as a consequence also allow for model comparison. The Monte
Carlo experiments indicate that the method is both robust and statistically efficient.
When examining finite sample bias in parameters, very encouraging results are found,
even when considering very high jump intensity.
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Fig. 6 Daily S&P 500 returns over the period 02/02/1982–29/12/1989. SV–GARCH model. (i) Returns
data, (ii) filtered standard deviation, (iii) quantiles of filtered standard deviation,(iv) error in log-likelihood
components between SV–GARCH and GARCH and (v) cumulative error. M = 500
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Fig. 7 Daily Dow Jones Composite returns over the period 31/03/1987–13/01/2011. SV with leverage
and jumps model. (i) Returns data, (ii) quantiles of filtered standard deviation and (iii) estimated jump
probabilities, (iv) QQ-plot of estimated distribution functions, ût and (v) associated correlograms of ût .
M = 500

The proposed methodology was used to estimate four models (SV, SVL, SVLJ
and SV–GARCH) for daily S&P 500 returns and compare their relative performance
over various time spans considering log-likelihood values and corresponding Akaike
and Bayesian information criteria. The SVLJ model did very well in identifying
jumps times and adequately detecting periods of market stress. Of particular inter-
est in these applications was assessing how leverage, frequency of jumps and average
jump size differed over the various spans. The inclusion of leverage was found to
be very important in modelling stochastic volatility in all cases. The inclusion of the
jump components provided a further gain in predictive ability which varied in mag-
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nitude over the different spans we considered. Moreover, considering a long span
(T = 6,000), covering all the well-documented episodes of market stress (i.e. 1987,
1997, 1998 and 2008), it was found that allowing for jumps led to a substantial gain
in excess of 30 log-likelihood points after having incorporated leverage. In the com-
parative example of Dow Jones, this gain was close to 40 log-likelihood points. The
SVLJ thus comprehensively outperformed all the other competing models in this
case and was favoured by both Akaike and Bayesian information criteria. Addition-
ally, the SV–GARCH model consistently outperformed the standard GARCH and SV
models. By considering the error in the predictive log-likelihood components, the
robustness of the SV–GARCH model to outliers relative to GARCH was illustrated.
It was found that the estimated value of ϕ was generally closer to zero than unity,
which given the structure of the model would imply a more stochastic evolution for
volatility rather than purely deterministic process implied by the boundary case of
ϕ = 1.

7 Appendix A

Appendix A deals with the specific implementation of the particle filter for the case
of leverage and jumps. This relates to Sect. 3.3. Specifically, we are concerned with
Step (1a) of Algorithm: PF. We describe how to sample continuously (via inversion
of the cumulative distribution function) from the mixture,

f (εt |ht , yt ) =
1∑

j=0

f (εt |Jt = j; ht , yt ) Pr(Jt = j |ht , yt )

where the conditional probability of a jump is given by

Pr(Jt = 1|ht , yt ) = Pr(yt |ht , J = 1)Pr(J = 1)

Pr(yt |ht , J = 1)Pr(J = 1) + Pr(yt |ht , J = 0)Pr(J = 0)
,

= N(yt |0; exp(ht ) + σ 2
J )p

N(yt |0; exp(ht ) + σ 2
J )p + N(yt |0; exp(ht ))(1 − p)

.

and

f (εt |J = 1; ht , yt ) ∝ f (yt |J = 1, ht , εt ) f (εt ).

As we have f (εt |J = 1; ht , yt ) ∝ N(yt |εt exp(ht/2); σ 2
J )×N(εt |0; 1), it follows that

f (εt |Jt = 1; ht , yt ) = N
(
υε1, σ

2
ε1

)
where υε1 = yt exp(ht/2)

exp(ht ) + σ 2
J

and σ 2
ε1

= σ 2
J

exp(ht ) + σ 2
J

.
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If the process does not jump, there is a Dirac-delta mass at the point εt =
yt exp(−ht/2). We therefore have the expression (14). If we denote p∗

t ≡ Pr(Jt =
j |ht , yt ), then this mixture is

f (εt |ht , yt ) = (1 − p∗
t ) δyt exp(−ht /2) (εt ) + p∗

t N
(
εt |υε1, σ

2
ε1

)
. (15)

We may invert the corresponding distribution function F(εt |ht , yt ) straightforwardly
allowing for draws which are continuous as a function of our parameters.

Assume we have generated a uniform random variate U ∼ UID(0, 1). We
show how to generate a single sample εt = F−1(U |ht , yt ) accordingly, where
ε∗

t = yt exp(−ht/2),

K = �

(
ε∗

t − υ1
ε1

σ 1
ε1

)
p∗

t ,

p∗
t ≡ Pr(Jt = j |ht , yt ) again, and �(.) denotes the standard normal distribution

function. The following scheme is applied:

• If U ≤ K , set εt = υε1 + σε1�
−1

(
u
p∗

t

)
.

• If K < U ≤ K + (1 − p∗
t ), set εt = yt exp(−ht/2).

• If U > K + (1 − p∗
t ), set εt = υε1 + σε1�

−1
(

U−(1−p∗
t )

p∗
t

)
.

The above probability integral transform procedure is repeated for each of the
uniform u1, . . . , uM to obtain the required sample εi

t ∼ f (εi
t |hi

t , yt ), i = 1, . . . , M .

8 Appendix B

Particle filter estimation of SV–GARCH model
We start at t = 0 with samples from the stationary distribution of GARCH, vi

0 ∼
f (v0), i = 1, . . . , M .

Algorithm : PF for t = 0, . . . , T − 1:
We have samples vi

t ∼ f (vt |Yt ) for i = 1, . . . , M .

1. For i = 1 : M , sample ṽi
t+1 ∼ f (vt+1|vi

t ).

2. For i = 1 : M calculate normalized weights,

λi
t+1 = ωi

t+1∑M
k=1 ωk

t+1

, where ωi
t+1 = f

(
yt+1 |̃vi

t+1

)

=
{

2πṽi
t+1

}− 1
2

exp

⎛
⎝−1

2

y2
t+1√
ṽi

t+1

⎞
⎠ .

3. For i = 1 : M , sample vi
t+1 ∼ ∑M

k=1 λk
t+1δṽk

t+1
(vt+1).
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As in the case of SV with leverage and jumps, we replace Step 3 with the con-
tinuous resampling scheme described in Malik and Pitt (2011). Parameters of the
SV–GARCH θ = (μ, α, β, ϕ) can be estimated by maximizing the simulated
log-likelihood function.
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