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Abstract We develop particle Gibbs samplers for static-parameter estimation in
discretely observed piecewise deterministic process (PDPs). PDPs are stochastic
processes that jump randomly at a countable number of stopping times but other-
wise evolve deterministically in continuous time. A sequential Monte Carlo (SMC)
sampler for filtering in PDPs has recently been proposed. We first provide new insight
into the consequences of an approximation inherent within that algorithm. We then
derive a new representation of the algorithm. It simplifies ensuring that the importance
weights exist and also allows the use of variance-reduction techniques known as back-
ward and ancestor sampling. Finally, we propose a novel Gibbs step that improves
mixing in particle Gibbs samplers whose SMC algorithms make use of large collec-
tions of auxiliary variables, such as many instances of SMC samplers. We provide
a comparison between the two particle Gibbs samplers for PDPs developed in this
paper. Simulation results indicate that they can outperform reversible-jump MCMC
approaches.
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1 Introduction

Piecewise deterministic process (PDPs) are stochastic processes that jump randomly
at a countable number of stopping times but otherwise evolve deterministically in
continuous time. In this article, we employ sequential Monte Carlo (SMC)-based
methods to conduct inference on the static parameters in PDPs which are observed
only partially, noisily and in discrete time. Such models are more general than state-
space models and inference for them is often more difficult.

Simple particle filters for PDPs, based around the bootstrap approach and termed
variable rate particle filters (VRPFs), were introduced by Godsill and Vermaak (2004)
and a corresponding smoothing algorithm for non-degenerate models was suggested
by Bunch and Godsill (2013). In order to apply more sophisticated particle filtering
techniques to these models, an SMC filter for PDPs, based on the SMC-sampler
framework by Del Moral et al. (2006), was introduced in Whiteley et al. (2011).

However, methods for efficiently estimating the static parameters in such mod-
els still need to be developed. A few approaches have been proposed in the liter-
ature. A stochastic expectation-maximisation algorithm based on a reversible-jump
MCMC (RJMCMC) sampler (Green 1995) was introduced by Centanni and Minozzo
(2006a,b). A simple SMC sampler was attempted in Del Moral et al. (2007) to which
some improvements were made in Martin et al. (2013). In addition, Rao and Teh (2012)
developed a Gibbs sampler for the special case in which the state space is discrete.

Our approach is to employ a particle Gibbs sampler as introduced by Andrieu et al.
(2010), based around the SMC filter for PDPs from Whiteley et al. (2011), to estimate
the static parameters. Our methodological contributions are as follows.

(1) We provide new insight into the approximation induced by the SMC filter for
PDPs and by related algorithms used in Del Moral et al. (2006, 2007) and Martin
et al. (2013). We also suggest a way of ensuring the existence of the importance
weights.

(2) We derive a new representation of the algorithm that—for non-degenerate
models—permits the use of backward and ancestor sampling, essential variance-
reduction techniques for particle Gibbs samplers that were suggested by Whiteley
(2010), Whiteley et al. (2010) and Lindsten et al. (2012).

(3) We propose a novel way of rejuvenating the potentially large number of auxiliary
variables used in the SMC filter for PDPs (and more generally). This reduces their
impact on the overall mixing of the algorithm at virtually no extra computational
cost, even resulting in computational savings in many situations.

We demonstrate our method on two challenging examples. Our simulations indicate
that it can compete with both a VRPF-based particle Gibbs sampler and a RJMCMC
sampler, at a potentially lower computational cost. We also investigate the impact of
the approximation inherent within the algorithm.
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Piecewise deterministic processes 579

The structure of this paper is as follows. Section 2 defines PDPs and provides moti-
vating examples. Section 3 recapitulates SMC methods. Section 4 describes the SMC
filter for PDPs, investigates some of its properties, and proposes a novel representation
for it. Section 5 describes static-parameter estimation via particle Gibbs samplers and
introduces a novel Gibbs step. Section 6 provides simulation results.

2 Piecewise deterministic processes

2.1 Definition

In this section, we introduce discretely observed piecewise deterministic process, the
class of models with which the remainder of this article is concerned. They are sto-
chastic processes that jump randomly at an almost surely countable number of random
times but otherwise evolve deterministically in continuous time. Their description here
follows Whiteley et al. (2011). We also provide motivating examples.

First, we clarify some notational conventions used throughout this work. We denote
by Lθ ( · ) (or sometimes Lθ (dx)) the distribution of a random variable X indexed
by some parameter θ while Lθ (x) denotes its density with respect to some σ -finite
measure, dx , e.g. with respect to the Lebesgue or counting measure, evaluated at
some point x . In particular, δz denotes the Dirac measure or point mass at z. In addi-
tion, # A denotes the cardinality of some set A. For m, n ∈ N with m ≤ n, we
use the notation m :n := (m,m + 1, . . . , n) and �n� := {k ∈ N | k ≤ n}. For vec-
tors x = (x1, . . . , xn) and a = (a1, . . . , ak), where {a1, . . . , ak} ⊆ �n�, we write
xa := (xa1 , . . . , xak ). Finally, x−a = x \ xa denotes the vector that is identical to x ,
except that the components xa1 , . . . , xak have been removed.

Let (τ j , φ j ) j∈N∪{0} be a stochastic process such that 0 = τ0 < τ1 < τ2 < · · ·
and such that each φ j takes a value in some non-empty set �. In addition, define a
deterministic function Fθ : [0,∞)2 ×�→ � that satisfies Fθ (t, t, · ) = id for any
t ≥ 0. A piecewise deterministic process (PDP) is then a continuous-time stochastic
process ζ := (ζt )t≥0 with initial condition ζ0 = φ0 and such that

ζt = Fθ
(
t, τνt , φνt

)
,

for t > 0. Here, νt := sup{ j ∈ N ∪ {0} | τ j ≤ t}, so that τνt represents the time
of the last jump before time t . In other words, after time τ j−1, the PDP evolves
deterministically in continuous time according to Fθ until it reaches the next jump
time τ j , at which point the process randomly jumps to a new value given by the jump
size φ j . Here and throughout, θ denotes the ordered set of all static parameters present
in the model, that is, θ contains all the parameters that do not change over time and
which therefore cannot be estimated via standard (particle) filtering methods.

Let 0 = t0 < t1 < t2 < · · · be known (non-random) times and let Kn := νtn —
with realisations kn and convention k0 = 0—denote the number of jumps before time
tn , then ζ[0,tn ] := (ζt )t∈[0,tn ] is completely determined by (Kn, τ1:Kn , φ1:Kn , φ0). For
simplicity, as in Whiteley et al. (2011), we assume the following Markovian prior on
the number, times and sizes of jumps in the interval [0, tn] for any n ∈ N,
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pθn
(
kn, τ1:kn , φ0:kn

) = Sθ
(
tn, τkn

)
qθ0 (φ0)1(0,tn ]

(
τkn

)

×
kn∏

j=1

qθ (φ j |φ j−1, τ j , τ j−1) f θ (τ j |τ j−1),

where qθ (φ j |φ j−1, τ j , τ j−1) f θ (τ j |τ j−1) is the step- j transition kernel of (τ j ,

φ j ) j∈N∪{0} with the support of f θ (τ j |τ j−1) being (τ j−1,∞), qθ0 (φ0) is the distri-
bution of the initial jump size, and finally, Sθ (t, τ ) := 1− ∫ t

τ
f θ (ds|τ) denotes the

probability of no jump occurring in the interval (τ, t] (for τ ≤ t).
Inference for such models becomes necessary if we assume that ζ can be observed

only partially, at discrete times, and subject to some measurement error. Observations
may be recorded at fixed or random times. Let y(s,t] denote the vector of all observations
in the interval (s, t] for some 0 < s < t <∞, the density of which is represented by
gθ (y(s,t]|ζ(s,t]). Observations in disjoint time intervals are assumed to be conditionally
independent given the PDP. This implies that

gθ
(
y(0,tn ]|ζ(0,tn]

) = gθ
(
y[τkn ,tn ]|τkn , φkn

) kn∏

j=1

gθ
(
y[τ j−1,τ j )|τ j−1, φ j−1

)
,

where we sometimes use the notation gθ (y[τ j−1,τ j )|τ j−1,φ j−1) = gθ (y[τ j−1,τ j )|
ζ[τ j−1,τ j )) to stress that ζ[τ j−1,τ j ) is conditionally independent of all the other jump
times, jump sizes, and the total number of jumps, given (τ j , τ j−1, φ j−1) (and
given θ ).

The conditional independence of observations is reminiscent of state-space models.
However, as mentioned earlier, PDPs are more general than state-space models. Indeed,
state-space models may be viewed as PDPs in which f θ (τ j |τ j−1) is degenerate, i.e. in
which the number of jumps and the jump times are known. Hence, for the remainder
of this work, we assume that f θ (τ j |τ j−1) is non-degenerate.

The conditional posterior distribution of the jumps up to time tn (as well as their
number) may then be written as

π̃ θn
(
kn, τ1:kn , φ0:kn

) = γ̃ θn
(
kn, τ1:kn , φ0:kn

)
/Zθ

n

:= pθn
(
kn, τ1:kn , φ0:kn

)
gθ
(
y(0,tn ]|ζ(0,tn ]

)
/Zθ

n , (1)

where the normalising constant Zθ
n > 0 is typically unknown.

Explicitly including the dimensionality parameter Kn within the state space ensures
that for all n ∈ N, the step-n posterior distributions are defined on increasing subsets
of the same space, i.e. the support of π̃ θn is a subset of

Ẽn :=
∞⋃

k=0

(
{k} × T(0,tn ],k ×�k+1

)
,

where T(s,t],k := {(τ1, . . . , τk) ∈ (0,∞)k | s < τ1 < · · · < τk ≤ t}. This representa-
tion makes explicit the unknown number of jumps in any interval of time, (0, tn].
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Fig. 1 PDP and observations simulated from the elementary change-point model

2.2 Example I: elementary change-point model

This subsection introduces an elementary change-point model as a first example of a
PDP. We assume that the interjump times are distributed according to some parametric
family indexed by a parameter vector θτ . Conditional on the jump times, the jump sizes
follow a Gaussian AR(1)-process, i.e. qθ (φ j |φ j−1, τ j , τ j−1) = N(φ j ; ρφ j−1, σ

2
φ ),

for ρ ∈ R. The deterministic function is taken to be piecewise constant, i.e. given by
Fθ (t, τ, φ) :=φ. Observations are recorded at regular intervals of length Δ and are
formed by adding Gaussian noise with mean 0 and variance σ 2

y to the PDP.
Figure 1 shows data simulated from the model over a horizon of T = 1,000 time

units withΔ = 1, ρ = 0.9, σ 2
φ = 1 andσ 2

y = 0.5 using gamma-distributed interjump
times with shape and scale parameters θτ := (α, β) = (4, 10).

As ζ is only discretely and noisily observed, (particle) filtering methods are gen-
erally needed to conduct inference about the jump times and jump sizes. In addition,
the static parameters θ := (ρ, σ 2

φ , σ
2
y , θτ ) ∈ R× (0,∞)4 have to be estimated.

2.3 Example II: shot-noise Cox process

A second example of a PDP is a shot-noise-Cox-process model described in Whiteley
et al. (2011). The model assumes that observations are taken on a Cox process with
piecewise deterministic shot-noise intensity, ζ = (ζt )t≥0.

Such models have applications in finance, as described in Centanni and Minozzo
(2006a,b): in the modelling of ultra-high-frequency financial data, observations are
two-dimensional, comprising the time and size of the price movements of a stock. That
is, the stock price process (which can be fully observed) is piecewise constant since
the quoted price is only updated at a countable collection of random times. The times
at which the stock price changes are realisations of a Cox process with unobserved
shot-noise intensity ζ .

The latent intensity process ζ has the following interpretation. The j th stopping
time, τ j , corresponds to the arrival of the j th news item at the market. This causes a
positive jump in the intensity process, whose size,φ j > 0, depends on the ‘importance’
of the news item. Between τ j and τ j+1 the intensity gradually decays as the news is
absorbed by the market. The intensity process thus governs the amount of activity in
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Fig. 2 Data simulated from the shot-noise Cox process model. Top intensity process. Bottom histogram of
the observations using a bin width of 2.5

the market: each jump leads to an increase in the trading activity as measured by the
number of subsequent change points in the (observed) price process.

Such models are also used in insurance to price catastrophe insurance derivatives
as described in Dassios and Jang (2003). In this context, the observations are only
one-dimensional and represent the times at which claims are being recorded. In other
words, the claim arrival process is a Cox process with intensity process ζ . The j th
jump in the intensity process, at time τ j , thus corresponds to a catastrophic event. The
associated jump size φ j characterises the event’s severity.

More precisely, we have qθ (φ0) = λφ exp(−λφφ0)1[0,∞)(φ0), as well as

f θ (τ j |τ j−1) := λτ exp(−λτ (τ j − τ j−1))1(τ j−1,∞)(τ j ),

qθ (φ j |φ j−1, τ j , τ j−1) := λφ exp(−λφ(φ j − ζ−τ j
))1(ζ−τ j ,∞)(φ j ),

where ζ−τ j
:=φ j−1 exp(−κ(τ j − τ j−1)) is the intensity immediately before the j th

jump. Furthermore at any time t , the intensity is a deterministic function of t as well
as of the most recent jump time and jump size as follows,

ζt = Fθ
(
t, τνt , φνt

) := φνt exp
(−κ(t − τνt )

)
.

In addition, the likelihood of the observations in the interval (tn−1, tn] (the times at
which claims are recorded in this interval), denoted y(tn−1,tn ], is given by

gθ
(
y(tn−1,tn ]|ζ(tn−1,tn ]

) ∝ exp

(
−
∫ tn

tn−1

ζs ds

) ∏

i :yi∈(tn−1,tn ]
ζyi .

Figure 2 shows an example trajectory and observations simulated from the model
with κ = 1/100, λτ = 1/40, λφ = 2/3.

As the process ζ is not directly observed, (particle) filtering methods are needed
to conduct inference about the jump times and jump sizes in the intensity process. In
addition, the static parameters θ := (κ, λτ , λφ) ∈ (0,∞)3 must be estimated.
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2.4 Example III: object tracking

This subsection briefly mentions, as a third example of a PDP, a model for tracking
fighter aircraft from Whiteley et al. (2011).

In this model, the PDP represents the evolution of position, speed, and velocity of
the aircraft. The assumption is that the pilot accelerates or decelerates at a countable
collection of random times which correspond to the jumps in the PDP. Between jumps,
the aircraft’s location and speed are deterministic functions—given by the standard
equations of motion—of the location, speed, and acceleration at the most recent jump
time as well as of the time elapsed since the most recent jump. However, only countably
many noisy observations on the location of the aircraft are available.

While filtering for this model was shown to be feasible in Whiteley et al. (2011), it
exhibits a characteristic that makes static-parameter estimation difficult: the transitions
qθ (φ j |φ j−1, τ j , τ j−1) have degenerate components because the location and speed
components of the PDP evolve continuously, i.e. they only have trivial jumps.

In anticipation of Sect. 5.2 we note here that the variance-reduction techniques men-
tioned therein cannot be applied to such degenerate problems which makes particle-
Gibbs-sampler-based inference impractical. However, RJMCMC-based algorithms,
such as those from Centanni and Minozzo (2006a,b), Del Moral et al. (2007) and
Martin et al. (2013) will not be practical for such models either and the problem
remains generally unsolved.

3 Sequential Monte Carlo methods

3.1 Generic SMC algorithm

In this section, we recapitulate sequential Monte Carlo methods which can be used,
among other things, for filtering in PDPs. They are also at the heart of particle Markov
chain Monte Carlo methods which are discussed in Sect. 5.

Sequential Monte Carlo (SMC) methods are Monte Carlo algorithms for approx-
imating a sequence of related distributions, (πθn )n∈N, which are defined on spaces
of increasing dimension, (E(n))n∈N. They may be viewed as sequential importance
sampling with added resampling steps (e.g. Doucet et al. 2001; Doucet and Johansen
2011), as importance sampling on a suitably extended space (Andrieu et al. 2010) or
as interacting-particle approximations of Feynman–Kac flows (Del Moral 2004).

Here and throughout, we assume that only an unnormalised version of (the measure
or density) πθn , γ

θ
n :=πθn Zθ

n for some unknown normalising constant Zθ
n > 0, can be

evaluated. SMC algorithms approximate πθn−1(dx1:n−1) at step n − 1 with

π̂ θn−1(dx1:n−1) :=
N∑

i=1

W i
n−1 δXi

1:n−1
(dx1:n−1), (2)

which is the weighted empirical measure corresponding to a collection of N sam-
ples {Xi

1:n−1 : i ∈ �N�}, often referred to as ‘particle’ trajectories, and corresponding
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weights, {W i
n−1 : i ∈ �N�}, which are normalised to sum to 1. This approximation of

πθn−1 at step n− 1 is propagated to approximate πθn at step n. For this, the trajectories
are first extended by sampling additional particle locations {Xi

n : i ∈ �N�} from some
stochastic kernel K θ

n ( · |Xi
1:n−1). The extended trajectories X1

1:n, . . . , X N
1:n are then

reweighted to ensure that their weighted empirical measure approximates πθn .
The computational complexity of these algorithms is typically O(N ) at each itera-

tion. This important feature of SMC methods is one reason for their successful appli-
cation to the problem of (on-line) filtering in non-Gaussian or non-linear state-space
models (Gordon et al. 1993; Del Moral 1995; Kitagawa 1996). In this particular setting,
SMC methods are often called ‘particle filters’.

In the following, we write Xn := (X1
n, . . . , X N

n ) and Wn := (W 1
n , . . . ,W N

n ) for all
the particles and importance weights generated at the nth step of the SMC algorithm.
Realisations of these random vectors are denoted xn and wn . To ease the notational
burden, we adopt the convention that whenever actions or definitions are discussed for
the i th particle, it is intended that they should be applied for all i ∈ �N�.

Occasionally, the algorithm discards trajectories with small weights and multiplies
trajectories with large weights. This is known as resampling. It ensures that subsequent
iterations of the algorithm focus on propagating only those particle trajectories which
provide a good characterisation of the current target distribution. For this work, we
use the interpretation of resampling given by Andrieu et al. (2010): the i th particle at
step n, Xi

n , is viewed as an offspring of particle Ai
n−1 at step n − 1. To keep track of

the ancestral lineages of the particles, define Bi
n|n := i , and, for p ∈ �n − 1�,

Bi
p|n := A

Bi
p+1|n

p ,

so that Bi
p|n is the index of the step-p ancestor of the i th particle at step n. We also

use the convention that Xi
1:n refers to the i th particle trajectory at step n. Thus,

Xi
1:n :=

(
X

Ai
n−1

1:n−1, Xi
n

)
=
(

X
Bi

1|n
1 , . . . , X

Bi
n|n

n

)
.

The N particle trajectories X1
1:n, . . . , X N

1:n obtained after resampling, are associated
with an evenly-distributed set of (normalised) importance weights, i.e. W i

n = 1/N .
For this, it is required that the resampling scheme—the conditional distribution
r θ ( · |x1:n, a1:n−1) generating the parent indices An := (A1

n, . . . , AN
n )—is unbiased

in the sense that E[∑N
j=1 1{A j

n=i} | X1:n,A1:n−1] = N W i
n . Widely used unbiased

resampling schemes are multinomial (Gordon et al. 1993), residual (Liu and Chen
1998), stratified (Kitagawa 1996), and systematic resampling (Carpenter et al. 1999).
An extensive comparison can be found in Douc et al. (2005).

Due to resampling, all particles will eventually share a common ancestor, i.e. for
all p ∈ N, #{Bi

p|n : i ∈ �N�} ↓ 1 as n→∞. This is commonly referred to as sample
impoverishment. As a result, for some small integer m, the approximation of marginals
πθn (x1:m) =

∫
πθn (x1:n)dxm+1:n will be based on few distinct particles and will not be

reliable. The following steps alleviate (but usually do not prevent) this impoverishment.
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(a) Employing low-variance resampling schemes, such as residual, stratified or sys-
tematic resampling, and, in particular, avoiding multinomial sampling.

(b) Resampling only if the variation in the weights becomes too severe. A com-
monly used approach, theoretically justified by Del Moral et al. (2012), is to
resample only if the estimated effective sample size, ÊSSn := 1/[∑N

i=1(W
i
n)

2]
(Kong et al. 1994), has dropped below some threshold NESS. More formally, the
decision of whether or not to resample at step n may depend on n and the real-
isation (x1:n, a1:n−1). Not resampling at step n can then simply be treated as if
r θ ( · |x1:n, a1:n−1) = δ1:N (but without resetting the weights).

(c) Devising more efficient proposal kernels K θ
n .

For the remainder of this subsection, we provide details on the calculation of the
importance weights in Eq. 2. Assume that the particle trajectories Xi

1:n−1 are weighted

to target πθn−1, and that additional variables Xi
n ∼ K θ

n ( ·
∣
∣X

Ai
n−1

1:n−1) have been sam-
pled. Since Zθ

n is unknown, only the unnormalised i th incremental importance weight
Gn(Xi

1:n) can be evaluated. Here, Gθ
1(x1) := γ θ1 (x1)/K θ

1 (x1) and, for n > 1,

Gθ
n(x1:n) := γ θn (x1:n)

γ θn−1(x1:n−1)K θ
n (xn|x1:n−1)

.

The normalised i th weight at step n—needed to construct the weighted empirical
measure defined in Eq. 2—is given by W i

1 :=Gθ
1(X

i
1)/
∑N

j=1 Gθ
1(X

j
1) and

W i
n :=

Gθ
n

(
Xi

1:n
)

W
Ai

n−1
n−1

∑N
j=1 Gθ

n

(
X j

1:n
)

W
A j

n−1
n−1

,

if n > 1. In particular, if the algorithm has resampled at step n − 1,

W i
n =

Gθ
n

(
Xi

1:n
)

∑N
j=1 Gθ

n

(
X j

1:n
) . (3)

One of the strengths of SMC methods is that

Ẑθ
n (X1:n,A1:n−1) :=

n∏

p=1

[
1

N

N∑

i=1

Gθ
p

(
Xi

1:p
)]

,

assuming for simplicity that resampling occurs at every iteration, is an unbiased esti-
mator for the normalising constant, Zθ

n . This was first shown in Del Moral (1996).
A generic SMC algorithm is summarised in Algorithm 1. It admits almost all

other SMC algorithms, e.g. SMC samplers (Del Moral et al. 2006), auxiliary particle
filters (Pitt and Shephard 1999; Johansen and Doucet 2008) as well as the algorithms
presented in Sect. 4, as special cases.
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586 A. Finke et al.

Algorithm 1 (SMC)

(1) Sample Xi
1 ∼ K θ

1 , set W i
1 = Gθ

1(X
i
1)/
∑N

j=1 Gθ
1(X

j
1) and set n := 2.

(2) If r θ ( · |X1:n−1,A1:n−2) = δ1:N , set Ai
n−1 := i .

Otherwise, sample An−1 ∼ r θ ( · |X1:n−1,A1:n−2) and set W i
n−1 := 1/N .

(3) Sample Xi
1:n ∼ K θ

n

(
· |X Ai

n−1
1:n−1

)
and set Xi

1:n :=
(

X
Ai

n−1
1:n−1, Xi

n

)
.

(4) Set W i
n := Gθ

n

(
Xi

1:n
)

W
Ai

n−1
n−1 /

∑N
j=1 Gθ

n

(
X j

1:n
)

W
A j

n−1
n−1 .

(5) Set n← n + 1 and go back to Step 2.

So far, the SMC methods outlined above only generate samples weighted to target
the distribution of time-varying parameters X1:n , conditional on knowing any static
parameters θ , i.e. parameters that do not change over time. Various methods have been
proposed to also estimate θ by SMC methods, dating back to at least Kitagawa (1998).
Several likelihood-based approaches for estimating θ in the context of state-space
models have been developed (e.g. Poyiadjis et al. 2011); see also Kantas et al. (2009)
for a recent overview of parameter-estimation approaches in such models. Off-line
Bayesian methods for quite general settings are summarised in Sect. 5.

The following subsection describes the SMC-sampler framework of Del Moral et
al. (2006) around which Whiteley et al. (2011) and this paper develop algorithms for
inference in PDPs.

3.2 SMC samplers

Recall that at the beginning of the previous subsection, it was assumed that the target
distributions (πθn )n∈N were defined on spaces of increasing dimension. However, SMC
methods can actually be used to target distributions π̃ θn = γ̃ θn /Zθ

n defined on spaces Ẽn

of arbitrary dimension. To circumvent the calculation of marginal proposal densities—
these would be required to evaluate the importance weights—SMC methods target
‘extended’ distributions, πθn = γ θn /Zθ

n , which

(a) are defined on spaces (E(n))n∈N whose dimensions grow appropriately with n,
(b) have the property that for each n ∈ N, πθn admits π̃ θn as a marginal.

The SMC-sampler framework developed by Del Moral et al. (2006) provides a recipe
for constructing these extended target distributions. The idea is to define

πθn (x1:n) ∝ γ θn (x1:n) := γ̃ θn (xn)

n−1∏

p=1

Lθp(x p|x p+1),

on E(n) := ∏n
p=1 Ẽp, where Lθp(x p|x p+1) is a ‘backward’ Markov kernel from Ẽp+1

to Ẽp. The i th unnormalised incremental weight is then given by Gθ
n(X

i
1:n), where

Gθ
1(x1) = γ θ1 (x1)/K θ

1 (x1) and, for n > 1,

Gθ
n(x1:n) = γ θn (x1:n)

γ θn−1(x1:n−1)K θ
n (xn|x1:n−1)

= γ̃ θn (xn)Lθn−1(xn−1|xn)

γ̃ θn−1(xn−1)K θ
n (xn|x1:n−1)

.
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Del Moral et al. (2006) provide guidelines for the choice of efficient backward kernels.
Their approach also allows the use of a mixture of forward kernels by including the

index of the step-n mixture component, Mn , into Xn and targeting the further extended
distribution πθn (x1:n) ∝ γ θn (x1:n) on E(n) := ∏n

p=1 Ep. Here, Ep := (M× Ẽp), where
M is the countable set of all mixture component indices. Writing Xn = (Mn, Zn), the
unnormalised version of this further extended distribution is

γ θn (x1:n) := γ̃ θn (zn)β
θ
0 (m1|z1)

n−1∏

p=1

Lθp(z p,m p+1|z p+1). (4)

Backward mixture kernels

Lθp(z p,m p+1|z p+1) = βθp(m p+1|z p+1)L
θ
p,m p+1

(z p|z p+1),

need to be employed if the (forward) proposal kernels are mixture kernels of the form

K θ
p(x p|x1:p−1) = αθp(m p|z p−1)K

θ
p,m p

(z p|z p−1).

Here, αθp( · |z p−1) and βθp−1( · |z p) are distributions on M which determine the forward
and backward kernel mixture weights at step n. At step 1, it is common to sample from
a single distribution (not from a mixture), so that βθ0 (dm1|z1) = αθ1 (dm1) = δm(dm1)

for some m ∈ M.
We note that it is not usual to view these mixture component indices as forming a

permanent part of the state or to retain them through subsequent steps; in the present
context, we do so for reasons which will become apparent in the sequel.

4 SMC filter for piecewise deterministic processes

4.1 Variable rate particle filter

In this section, we describe filtering for PDPs via SMC methods. All three algorithms
presented in this section may be viewed as special cases the generic SMC algorithm
from Sect. 3. Hence, we always use the same symbols X1:n, πθn , γ θn , K θ

n and Gθ
n

to refer to the ‘states’, normalised and unnormalised target distributions, proposal
kernels and unnormalised incremental weights even though the particular form of
these quantities may change between the next three subsections. Throughout the entire
section, γ̃ θn , Ẽp and Zθ

n are defined as in Sect. 2.1.
The first particle filter for PDPs, termed variable rate particle filter (VRPF), was

proposed by Godsill and Vermaak (2004). The VRPF is simply an application of the
generic SMC algorithm to a slightly reparametrised model described in the following.

Let 0 = t0 < t1,< t2 < · · · , where tp, for p > 1, represents the time of the pth
SMC step. Moreover, let (τp,k, φp,k) denote the kth jump time in the interval (tp−1, tp]
and its associated jump size. Let kp ≥ 0 be the total number of jumps in this interval and
define the ‘states’ to be X1 := (k1, τ1,1:k1 , φ1,1:k1 , φ0) and Xn := (kn, τn,1:kn , φn,1:kn ),
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for n > 1. These take values in subsets of E1 := ⋃∞k=0({k} × T(0,t1],k ×�k+1) and
En := ⋃∞k=0({k} × T(tn−1,tn ],k ×�k), respectively.

Let ν(n) := sup{m ∈ �n − 1� | km > 0}with the convention that τν(n),kν(n)=τ0 = 0
and φν(n),kν(n)=φ0 if ν(n) = −∞. In other words, ν(n) represents the index of the last
interval of the form (tp−1, tp] before (tn−1, tn] in which the PDP has had a jump. The
target distribution is then given by πθn := γ θn /Zθ

n on E(n) := ∏n
p=1 Ep, where

γ θn (x1:n) := Sθ (tn, τν(n),kν(n) )q
θ
0 (φ0)g

θ (y(0,tn ]|ζ(0,tn ])

×
∏

p∈D̃n

⎡

⎣ f θ (τp,1|τν(p),kν(p) )qθ (φp,1|φν(p),kν(p) , τp,1, τν(p),kν(p) )

×1T(tp−1,tp ],k p
(τp,1:kp )

kp∏

j=2

qθ (φp, j |φp, j−1, τp, j , τp, j−1) f θ (τp, j |τp, j−1)

⎤

⎦.

Here, D̃n := {p ∈ �n� | kp > 0} is the collection of indices of intervals of the form
(tp−1, tp] that contain at least one jump. The PDP is ζt := Fθ (t, τν(n),kν(n) , φν(n),kν(n) ),
for t ∈ (tn−1, tn] if kn = 0, and for t ∈ (tn−1, τn,1) if kn > 0. In the latter case,
we also have ζt := Fθ (t, τn, j , φn, j ), for t ∈ [τn, j , τn, j+1), with the convention that
τn,kn+1 = tn . The distribution πθn admits π̃ θn as a marginal.

The algorithm proceeds by sampling values Xn ∼ K θ
n ( · |x1:n−1) at step n, where

K θ
n (xn|x1:n−1) := K θ

n,1(kn|x1:n−1)K
θ
n,2

(
τn,1:kn , φn,1:kn |kn, x1:n−1

)
.

In the above equation, the kernels on the right hand side are selected in such a way
that the usual absolute-continuity conditions are satisfied. At step 1, the kernel K θ

1,2
also samples a value for φ0.

An unnormalised incremental weight at step n is then given by the following expres-
sions. If kn = 0, then

Gθ
n(x1:n) =

Sθ
(
tn, τν(n),kν(n)

)

Sθ
(
tn−1, τν(n),kν(n)

)
gθ
(
y(tn−1,tn ]|φν(n),kν(n) , τν(n),kν(n)

)

K θ
n,1(kn|x1:n−1)

.

If kn ≥ 1, then

Gθ
n(x1:n) = Sθ

(
tn, τn,kn

)

Sθ
(
tn−1, τν(n),kν(n)

)
gθ
(
y(tn−1,τn,1)|φν(n),kν(n) , τν(n),kν(n)

)

K θ
n (xn|x1:n−1)

×
⎡

⎣
kn−1∏

j=1

gθ
(
y(τn, j ,τn, j+1)|φn, j , τn, j

)
⎤

⎦ gθ
(
y(τn,kn ,tn ]|φn,kn , τn,kn

)

× qθ
(
φn,1|φν(n),kν(n) , τn,1, τν(n),kν(n)

)
f θ
(
τn,1|τν(n),kν(n)

)

×
kn∏

j=2

qθ
(
φn, j |φn, j−1, τn, j , τn, j−1

)
f θ (τn, j |τn, j−1).
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As shown in Whiteley et al. (2011), the VRPF can suffer from severe sample impov-
erishment. This is because at step n, jumps are only proposed in the interval (tn−1, tn]
and only based on information available up to time tn . If subsequent observations are
highly informative about jumps in (tn−1, tn], as they usually are in PDPs, then this
information can only be incorporated through reweighting existing jumps.

The SMC filter from Whiteley et al. (2011), outlined below, can reduce sample
impoverishment because it allows new jumps to be sampled anywhere after the most
recent jump and also allows previously generated jumps to be adjusted.

4.2 SMC filter from Whiteley et al. (2011)

The SMC filter for PDPs from Whiteley et al. (2011) is based on the SMC-sampler
framework described in Sect. 3.2. That is, it is a ‘standard’ SMC algorithm that targets
a sequence of artificial extended distributions πθn := γ θn /Zθ

n (as in Eq. 4) defined on
E(n) := ∏n

p=1 Ep with Ep := (M× Ẽp), by means of mixture proposal kernels.
We now add an additional subscript to the model parameters to account for the fact

that for any particle, the j th jump time or jump size at the nth step of the algorithm
may be different from the j th jump time or jump size at step n−1. Thus, we hereafter
write Xn := (Mn, Kn, τn,1:kn , φn,0:kn ) for a particle at step n. To ease the notational
burden, we often write Zn := Xn \ Mn = (Kn, τn,1:kn , φn,0:kn ).

In the most basic form presented in this work, there are just two mixture components,
M = {a, b}. At step n, an adjustment move (Mn = a),

K θ
n,a(dzn|zn−1) = δkn−1(dkn) δτn−1,1:kn−1−1

(
dτn,1:kn−1

)
δφn−1,0:kn−1−1

(
dφn,0:kn−1

)

× ρθn,a
(
dτn,kn |zn−1

)
ηθn,a

(
dφn,kn |τn,kn , zn−1

)
,

moves the most recent stopping time to a new location according to a distribution
ρθn,a( · |zn−1) with support (τn−1,kn−1−1, tn] and samples a new value for the cor-
responding jump size from a distribution ηθn,a( · |τn,kn , zn−1) on �. A birth move
(Mn = b),

K θ
n,b(dzn|zn−1) = δkn−1+1(dkn) δτn−1,1:kn−1

(
dτn,1:kn−1

)
δφn−1,0:kn−1

(
dφn,0:kn−1

)

× ρθn,b
(
dτn,kn |zn−1

)
ηθn,b

(
dφn,kn |τn,kn , zn−1

)
,

adds a new stopping time by sampling it from a distribution ρθn,b( · |zn−1)with support
(τn−1,kn−1 , tn]. Additionally, a new jump-size parameter is sampled from a distribution
ηθn,b( · |τn,kn , zn−1) on �.

As proposed in Whiteley et al. (2011), the forward mixture weights may be set
to αθn (a|zn−1) := Sθ (tn, τn−1,kn−1) as well as αθn (b|zn−1) := 1 − αθn (a|zn−1), i.e. the
probability of a birth move grows as the time to the last jump increases. At step 1, a
birth move is enforced for each particle so that αθ1 (dm1) = δb(dm1).

The corresponding backward kernel component for an adjustment move is

Lθn−1,a(dzn−1|zn) := δkn (dkn−1) δτn,1:kn−1

(
dτn−1,1:kn−1−1

)
δφn,0:kn−1

(
dφn−1,0:kn−1−1

)

× Qθ
n−1,a

(
d[τn−1,kn−1 , φn−1,kn−1 ]|zn

)
,
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where Qθ
n−1,a( · |zn) is a distribution whose support is a subset of (τn−1,kn−1−1, tn−1]×

�. For a birth move, the corresponding backward kernel component is

Lθn−1,b(dzn−1|zn) = δkn−1(dkn−1) δτn,1:kn−1

(
dτn−1,1:kn−1

)
δφn,0:kn−1

(
dφn−1,0:kn−1

)
.

The adjustment and birth move kernels only affect the most recent jump time and
jump size. This is a reasonable approach as SMC filters can only be expected to work
for ergodic models and for these, this strategy should be adequate. Nonetheless, other
moves could easily be incorporated. For instance, the second, say, most recent jump
time or jump size may also be modified.

Indeed, as noted by Whiteley et al. (2011), a kernel for multiple-birth moves should
be included because otherwise, the above choice of forward/backward kernels induces
an approximation. However, the probability of such moves is typically so small that
this leads to computationally the same algorithm. To keep the presentation simple, we
refrain from including such moves here (as was done in Del Moral et al. 2006, 2007),
although there is no technical difficulty with so doing.

In the following, we characterise the approximation induced by the above choice
of forward/backward kernels. Let b j := inf{q ∈ N |∑q

l=1 1{b}(ml) = j} denote the
index of the SMC step at which the j th birth move occurs and let s(τ ) := inf{q ∈
N | tq ≥ τ } as well as s̃(τ1: j ) := sup{s(τ j−l+1)+ l − 1 | l ∈ � j�}. Throughout, we
assume that the number of jumps up to time t0 = 0 is set to zero. The proposal
distribution K θ

1 (x1)
∏n

p=2 K θ
p(x p|x p−1) then has support

Er,(n) :=
{

x1:n ∈ E(n)
∣∣ b1 = 1 and ∀ j ∈ {2, . . . , kn} : s̃(τn,1:k j−1) < b j ≤ n

}
.

In particular, the marginal distribution of Xn under the proposal distribution has support

Ẽr
n :=

{
(kn, τ1:kn , φ0:kn ) ∈ Ẽn

∣
∣ ∀ j ∈ �kn� : s(τ j ) ≤ n − kn + j

}
.

Recall that we write zn = xn \ mn = (kn, τ1:kn , φ0:kn ). To ensure that the importance
weights exist, the algorithm can therefore only target, as a marginal, the distribution

π̃ r,θ
n (zn) ∝ γ̃ r,θ

n (zn) ∝ γ̃ θn (zn)1Ẽr
n
(zn).

If the time between successive SMC steps, tn − tn−1, is short compared to the average
time between jumps, the difference between the distribution in Eq. 1 and the ‘actual’
target distribution π̃ r,θ

n should be negligible. We will consider the influence of this
approximation in Sect. 6.2

The extended target distribution of the algorithm is given by

π r,θ
n (x1:n) ∝ γ̃ r,θ

n (zn)β
θ
0 (m1|z1)

n−1∏

p=1

βθp(m p+1|z p+1)L
θ
p,m p+1

(z p|z p+1),
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where we assume, for the moment, that the backward mixture weights βθp( · |z p+1) can
be chosen such that this extended target distribution does not have probability mass
outside of Er,(n) to ensure that the importance weights exist. A detailed discussion of
the choice of backward mixture weights is given below.

We conclude this subsection by describing some implementation issues regarding
the above-mentioned SMC algorithm. To our knowledge, they have not been pointed
out in the literature. The point we wish to stress here is that backward and proposal
kernels need to be chosen carefully and in a manner that is consistent with each other
in order to avoid introducing biases resulting from a loss of absolute continuity, for
instance. Such biases may be small in the case of filtering (i.e. if the static parameters
are known). However, if the static parameters are to be estimated alongside the jump
times and jump sizes, even small biases in the filter can induce large biases in the
estimates of the static parameters.

Jump-size proposal kernels It was advocated in Whiteley et al. (2011) to sample
the jump sizes from their full conditional posterior distribution. However, given the
structure of the algorithm, this posterior distribution will often be based on observations
‘too far’ into the future, i.e. after another jump which will be added in subsequent
SMC steps with high probability. We therefore recommend to only take observations
from the interval (0, tn ∧ (τn,kn + λμτ ]) into account when sampling φn,kn . Here,
λ ∈ (0, 1) and μτ may be the mean interjump time or a quantile of the interjump-time
distribution.

Backward mixture weights As previously mentioned, the backward mixture weights
must be chosen such that the extended target distribution does not have probability
mass outside of Er,(n). The most obvious problem with a poor choice of backward
mixture weights is that the extended target distribution does not actually admit the
right marginal (in addition to having ill-defined importance weights).

There is a one-to-one correspondence between
∑n

p=1 1{b}(m p), the number
of birth moves, and kn , the number of jumps in the proposal distribution and
hence in the support of the truncated target distribution π̃ r,θ

n . Therefore we can-
not specify their distributions independently. The target already specifies a dis-
tribution over kn ; if the backward mixture weights βθp( · |z p+1) do not depend
on kp+1, then they implicitly specify a second distribution over kn and the mar-
ginal distribution of this quantity under the target distribution will not be what is
intended.

For instance, consider setting the backward mixture kernel weights to a uniform
distribution over M = {a, b}—a popular choice. Write An := {p ∈ �n − 1� | m p+1 =
a} and Bn := �n − 1� \ An , then the algorithm targets as a marginal

∫
π r,θ

n (x1:n)d[x1:n \ zn]

∝ π̃ r,θ
n (zn)

∫ ∑

m1:n∈{b}×Mn−1

⎡

⎣
∏

p∈An

Lθp,a(dz p|z p+1)

⎤

⎦

⎡

⎣
∏

p∈Bn

Lθp,b(dz p|z p+1)

⎤

⎦
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= π̃ r,θ
n (zn)

∫ ∑

m1:n∈{b}×Mn−1

⎡

⎣
∏

p∈An

δkp+1(dkp) δτp+1,1:k p+1−1(dτp,1:kp−1)

× δφp+1,0:k p+1−1(dφp,0:kp−1)Q
θ
p,a(d[τp,kp , φp,kp ]|z p+1)

⎤

⎦

×
⎡

⎣
∏

p∈Bn

δkp+1−1(dkp) δτp+1,1:k p+1−1(dτp,1:kp ) δφp+1,0:k p+1−1(dφp,0:kp )

⎤

⎦

= π̃ r,θ
n (zn) #

⎧
⎨

⎩
m1:n ∈ {b} ×Mn−1

∣∣∣∣

n∑

p=1

1{b}(m p) = kn

⎫
⎬

⎭

= π̃ r,θ
n (zn)

(
n − 1

kn − 1

)
.

For regular proposal kernels, a possible choice of backward kernels restricting the
support of the extended target distribution to Er,(n) is given by

βθp−1(b|z p) =

⎧
⎪⎨

⎪⎩

0, if kp = 1 and p > 1,

1, if kp = p or p = 1 or p = s̃(τp,1:kp−1)+ 1,

qp(z p), otherwise,

(5)

for some probability qp(z p) ∈ (0, 1) which may depend on z p.

Local adjustment moves Ideally, adjustment moves should direct jumps towards
regions of higher posterior probability. If such moves cannot be devised, it is prefer-
able to use local adjustment moves, e.g. small-scale Gaussian kernels centred around
the current location of the jump. This reduces the risk of moving jumps away from
regions of high posterior probability, which would add to sample impoverishment.
However, such local adjustment moves are unlikely to move a jump currently con-
tained in (tp−1, tp] out of such an interval. Therefore, even using Eq. 5 could result in
importance weights with infinite variance.

A simple remedy is to employ restricted adjustment moves, i.e. local moves that
are limited to the particular interval (tp−1, tp] currently containing the jump. More
formally, recall that s(τ ) = inf{q ∈ N | tq ≥ τ }. For restricted adjustment
moves, ρθn,a( · |zn−1) has support ((τn−1,kn−1−1 ∨ tsn−1−1), tsn−1 ], where sn−1 :=
s(τn−1,kn−1), rather than having support (τn−1,kn−1−1, tn]. Also recalling that s̃(τ1: j ) =
sup{s(τ j−l+1)+ l − 1 | l ∈ � j�}, the support of the joint proposal distribution is then
given by

Er,(n) =
{

x1:n ∈ E(n)
∣∣ b1 = s̃(τn,1) = 1 and ∀ j ∈ {2, . . . , kn} : s̃(τn,1:k j )≤b j ≤ n

}
.

To ensure that the target distribution does not have probability mass outside
of Er,(n), the distribution of τn−1,kn−1 under Qθ

n−1,a( · |zn) must have support
((τn,kn−1 ∨ tsn−1), tsn ], where sn := s(τn,kn ). In addition, the backward mixture
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weights might take the form presented in Eq. 5 but with s̃(τp,1:kp−1) replaced by
s̃(τp,1:kp )− 1.

4.3 A novel reformulation of the SMC filter

One problem with the SMC filter for PDPs from the previous subsection—henceforth
referred to a the ‘original’ SMC filter—is that it induces unnecessary degeneracy in
the transitions at step n because most jump times and jump sizes in Xn−1 coincide with
jump times and jump sizes in Xn . In other words, the algorithm works explicitly on the
path space by embedding a ‘standard’ SMC filter within the SMC-sampler framework
using (mostly) trivial degenerate backward transitions.

Unfortunately, these degenerate backward transitions prevent the use of many
backward-simulation methods and thus prevent the use of the essential variance-
reduction techniques described in Sect. 5.2. At the same time, the algorithm does
not gain any benefit from the path-space representation.

In the following, we present a novel representation of the algorithm whose alter-
native step-n extended target distribution also admits π̃ r,θ

n as a marginal but whose
‘states’ do not induce degenerate transitions, as long as qθ (φ j |φ j−1, τ j , τ j−1) is non-
degenerate. In addition, this algorithm makes it easier to ensure the existence of the
importance weights as it circumvents the problem of choosing sensible backward mix-
ture weights. Our representation may be viewed as a way of extracting the ‘standard’
SMC filter contained within the original SMC filter for PDPs. This yields an extended
target distribution whose structure is reminiscent of the product-space formulation
from Carlin and Chib (1995) (see also Godsill 2001).

The algorithm presented in this subsection targets an extended distribution (defined
further below) that contains all the ‘states’ X1:n , where Xn := (Mn, τn, φn), for n > 1,
takes values in a subset of En :=M × (0, tn] × � and X1 := (M1, τ1, φ1, φ0) takes
values in a subset of E1 :=M× (0, tn]×�2. In this subsection, τn and φn are the jump
time and associated jump size sampled at the nth step of the SMC algorithm as part of
a birth move or as part of an adjustment move. As before, Mn indicates an adjustment
move (Mn = a) or birth move (Mn = b) at step n. Again, the mixture kernel indices
are added to the state space as auxiliary variables.

The main idea is to use the mixture component indices M1:n to keep track of which
jumps (i.e. jump times and sizes) affect the ‘actual’ target distribution π̃ r,θ

n . These are
the jumps sampled in SMC steps p ∈ Hn , where

Hn := { j ∈ �n − 1� | m j+1 = b} ∪ {n}.

That is, Hn contains the indices of all jumps which have been sampled immediately
before a birth move in steps 1, . . . , n. We also define Vn := �n� \ Hn to be the set
of indices of the remaining jumps. For easier reference, we collect all elements of
Hn in the vector hn = (hn(1) . . . hn(#Hn)) and all the elements of Vn in the vector
vn = (vn(1) . . . vn(n − #Hn)), each in ascending order.

In the following, we present the extended target distribution of the algorithm.
To show that it admits the right marginal, some reparametrisation is required: write
kn := #Hn for the total number of birth moves in the first n steps and let i1:kn denote
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the SMC steps at which these birth moves occur, i.e. i1 := 1 and i j := hn( j − 1)+ 1
for j ∈ {2, . . . , kn}. This allows the one-to-one transformation

[m1:n, (τhn , φhn ), (τvn , φvn )] ←→
[(

n, kn, i1:kn

)
,
(
τ ′1:kn

, φ′1:kn

)
,
(
τ �1:n−kn

, φ�1:n−kn

)]
,

(6)

where we have implicitly used that Hn, Vn, hn and vn can be equivalently defined in
terms of m1:n or (n, kn, i1:kn ). The above one-to-one correspondence also allows us to
use the same symbol for the conditional distributions μθn(m1:n|#Hn, τhn , φhn , φ0) and
μθn(i1:kn |kn, τ

′
1:kn
, φ′1:kn

, φ0). More details on the choice of μθn are given below.
The alternative extended target distribution—the target distribution of the SMC

filter introduced in this subsection—is defined as πθn = γ θn /Zθ
n , where

γ θn (x1:n) := γ̃ r,θ
n

(
#Hn, τhn , φhn , φ0

)
μθn
(
m1:n|#Hn, τhn , φhn , φ0

)

×
∏

j∈Vn

Qθ
j,a

(
τ j , φ j |#Hj+1, τh j+1 , φh j+1 , φ0

)

= γ̃ r,θ
n

(
kn, τ

′
1:kn
, φ′1:kn

, φ0
)
μθn
(
i1:kn |kn, τ

′
1:kn
, φ′1:kn

, φ0
)

×
⎡

⎣
∏

j∈Dn

Qθ
vn( j),a

(
τ �j , φ

�
j

∣∣
∣k̄n( j),

(
τ ′

1:k̄n( j)−1
, τ �j+1

)
,

(
φ′

1:k̄n( j)−1
, φ�j+1

)
, φ0

)
⎤

⎦

×
∏

j∈�n−kn�\Dn

Qθ
vn( j),a

(
τ �j , φ

�
j |k̄n( j), τ ′

1:k̄n( j)
, φ′

1:k̄n( j)
, φ0

)
. (7)

Here, Dn := { j ∈ �n − kn� | vn( j) < n − 1 and ∀l ∈ �kn� : vn( j)+ 2 �= il}. More-
over, k̄n( j) := sup{p ∈ �n� | i p ≤ vn( j)} is the number of birth moves up to step
vn( j). In other words, j ∈ Dn if and only if the jumps sampled at steps vn( j) and
vn( j)+ 1 are not kept in the ‘actual’ target distribution. Similarly, j ∈ �n − kn� \ Dn

if and only if the jump sampled at step vn( j) is not kept in the ‘actual’ target but
the jump sampled at step vn( j) + 1 is kept and its jump time and size are given by
(τ ′̄

kn( j)
, φ ′̄

kn( j)
). Finally, Qθ

p,a is defined as in the previous subsection.

The second line in the above definition shows that this extended target distribution
admits π̃ r,θ

n as a marginal. In addition, under this extended target distribution, the
transitions from X1:n−1 to Xn will be free of degenerate components assuming that
qθ (φ j |φ j−1, τ j , τ j−1) is non-degenerate.

As proposal kernels we use K θ
n (xn|x1:n−1) = αn(mn|xn−1)K θ

n,mn
(xn \ mn|x1:n−1),

with birth and adjustment moves that are similar to the ones used in the original
formulation of the SMC filter for PDPs, except that they do not share the degenerate
components. A birth move,

K θ
n,b(τn, φn|x1:n−1) := ρθn,b

(
τn|#Hn−1, τhn−1 , φhn−1 , φ0

)

× ηθn,b
(
φn|τn, #Hn−1, τhn−1 , φhn−1 , φ0

)
,
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adds a new stopping time in (τn−1, tn] and samples a new jump size. Similarly,

K θ
n,a(τn, φn|x1:n−1) := ρθn,a(τn|#Hn−1, τhn−1 , φhn−1 , φ0)

× ηθn,a(φn|τn, #Hn−1, τhn−1 , φhn−1 , φ0),

is an adjustment move which shifts the most recent stopping time to a new location
in (τhn(#Hn−1), tn] and also samples a new value for the corresponding jump size. The
kernels ρθn,mn

and ηθn,mn
are defined as in the previous subsection and we again define

the forward ‘mixture weights’ by αθn (a|xn−1) := Sθ (tn, τn−1).
The support of the target distribution in Eq. 7 must be included in the support of

the proposal distribution. To ensure this, we propose to set

μθn
(
di1:kn |kn, τ

′
1:kn
, φ′1:kn

, φ0
) := νkn

(
dikn |n + 1, kn, τ

′
1:kn
, φ′1:kn

, φ0
)

× δ1(di1)

kn−1∏

j=2

ν j
(
di j |i j+1, kn, τ

′
1:kn
, φ′1:kn

, φ0
)
.

Here, ν j (i j |l, kn, τ
′
1:kn
, φ′1:kn

, φ0) has support {s̃(τ ′1: j−1) + 1, . . . , l − 1}, where we
recall that s(τ ) = inf{q ∈ N | tq ≥ τ } and that s̃(τ1: j ) = sup{s(τ j−l+1) + l − 1 | l
∈ � j�}.

If only restricted adjustment moves are used (see Sect. 4.2) then the support of
ν j (i j |l, kn, τ

′
1:kn
, φ′1:kn

, φ0) must be limited to {s̃(τ ′1: j ), . . . , l − 1}.
In the applications presented in Sect. 6 we employ such restricted adjustment moves.

Consequently, we may take ν j (i j |l, kn, τ
′
1:kn
, φ′1:kn

, φ0) to be a geometric distribution
truncated to {s̃(τ ′1: j ), . . . , l − 1} or simply a uniform distribution on this set. Such
a choice also ensures that the computational cost per SMC step of computing the
importance weights remains constant.

The incremental weights, Gθ
n(x1:n) = γ θn (x1:n)/[γ θn−1(x1:n−1)K θ

n (xn|x1:n−1)], are
computed as follows. For a birth move, i.e. mn = b,

Gθ
n(x1:n) = Sθ (tn, τn)

Sθ (tn−1, τn−1)

f θ (τn|τn−1)qθ (φn|φn−1, τn, τn−1)

αθn (b|xn−1)K θ
n,b(τn, φn|x1:n−1)

× μθn
(
m1:n|#Hn, τhn , φhn , φ0

)

μθn−1(m1:n−1|#Hn−1, τhn−1 , φhn−1 , φ0)

gθ
(
y[τn ,tn ]|τn, φn

)

gθ
(
y[τn ,tn−1]|τn−1, φn−1

) .

For an adjustment move, i.e. mn = a,

Gθ
n(x1:n) = Sθ (tn, τn)

Sθ (tn−1, τn−1)

Qθ
n−1,a

(
τn−1, φn−1|#Hn, τhn , φhn , φ0

)

αθn (a|xn−1)K θ
n,a (τn, φn|x1:n−1])

× μθn
(
m1:n|#Hn, τhn , φhn , φ0

)

μθn−1

(
m1:n−1|#Hn−1, τhn−1 , φhn−1 , φ0

)
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× f θ
(
τn|τhn(#Hn−1)

)
qθ (φn|φhn(#Hn−1), τn, τhn(#Hn−1))

f θ
(
τn−1|τhn(#Hn−1)

)
qθ
(
φn−1|φhn(#Hn−1), τn−1, τhn(#Hn−1)

)

× gθ
(
y[τn−1∧τn ,τn)|τhn(#Hn−1), φhn(#Hn−1)

)
gθ
(
y[τn ,tn ]|τn, φn

)

gθ
(
y[τn−1∧τn ,τn−1)|τhn(#Hn−1), φhn(#Hn−1)

)
gθ
(
y[τn−1,tn−1]|τn−1, φn−1

) .

Here, we use the convention gθ (y[s,t)|τ j , φ j ) := 1 if s ≥ t . To compute these weights,
it is preferable to switch to the parametrisation from the right hand side in Eq. 6.

For easier reference, we will hereafter refer to the algorithm presented in this sub-
section as the reformulated sequential Monte Carlo (RSMC) filter.

5 Static-parameter estimation using the particle Gibbs sampler

5.1 Particle Gibbs sampler

Bayesian approaches to static-parameter estimation based around the SMC approach
have been developed by many authors (e.g. Neal 2001; Chopin 2002). More recently,
Andrieu et al. (2010) and Chopin et al. (2013) demonstrated that SMC methods can
be incorporated within Markov chain Monte Carlo (MCMC) and SMC algorithms,
respectively, to provide Bayesian estimates of static parameters and latent states in
state-space models (and more generally).

In this section, we to conduct inference about the static parametersΘ in PDPs, given
observations y := y[0,tP ]. To that end, we employ the particle Gibbs sampler which
is one of the particle Markov chain Monte Carlo (PMCMC) methods for Bayesian
parameter estimation that were developed by Andrieu et al. (2010). These methods
can be applied to a broad class of problems and hence we keep the notation in this
section rather general.

Usually, the posterior distribution πP (θ) := p(θ |y) is intractable. However, intro-
ducing latent variables X1:P (i.e. the ‘states’ from Sects. 4.2 or 4.3, in the case of PDPs),
we can at least evaluate πP (θ, x1:P ) = p(θ)γ θP (x1:P )/Z = p(θ, x1:P |y) (the joint
posterior distribution) up to its unknown normalising constant p(y) = Z > 0. Here,
p(θ) denotes a prior density ofΘ . Recall that γ θP (x) :=πθP (x1:P )Zθ

P = p(x1:P , y|θ),
so that Zθ

P = p(y|θ) is the unknown normalising constant of πθP (x1:P ).
A popular approach is to employ MCMC algorithms to approximate πP (θ, x1:P )

which then yields an approximation of the marginal πP (θ). Knowledge of the normal-
ising constant Z is not required. However, efficient proposal distributions for the latent
variables X1:P are needed within the MCMC scheme. The use of SMC algorithms to
sample such latent variables is the motivation for PMCMC methods.

PMCMC methods can be seen as an extension of the pseudo-marginal approach
by Beaumont (2003) and Andrieu and Roberts (2009) which allows for the use of
importance sampling within MCMC algorithms. Indeed, the justification of PMCMC
methods in Andrieu et al. (2010) is based around a reinterpretation of SMC algorithms
as importance sampling on a suitably extended space.

More precisely, PMCMC methods are MCMC methods that target a distribution
which includes all the random variables generated by an SMC algorithm approx-
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imating πθP (x1:P ). These are all the particles X1:P and and all the parent indices
A1:P−1 sampled over the course of the algorithm of which Xn = (X1

n, . . . , X N
n ) and

An−1 = (A1
n−1, . . . , AN

n−1) are generated at the nth step.
For simplicity and clarity, we assume in this section that resampling takes place

at every iteration in the sense that r θ ( · |x1:n, a1:n−1) �= δ1:N for any (x1:n, a1:n−1)

and any n ∈ �P − 1� and that the resampling scheme is exchangeable in the sense
that any sample An ∼ r θ ( · |x1:n, a1:n−1) is exchangeable. As noted by Andrieu et al.
(2010), for resampling schemes that do not originally have this property, it can easily
be ensured by permuting An uniformly at random. However, we stress that we make
this assumption only to simplify the presentation: essentially any unbiased resampling
scheme can actually be used within the methods presented here (Lee et al. 2014).

Assuming that P > 1, the distribution of (X1:P ,A1:P−1) is given by

ψθP (x1:P , a1:P−1)

:=
[

N∏

i=1

K θ
1

(
xi

1

)][ P∏

n=2

r θ (an−1|x1:n−1, a1:n−2)

N∏

i=1

K θ
n

(
xi

n|x
ai

n−1
1:n−1

)]

.

For a ‘distinguished’ path X�1:P :=
(

X
B�1
1 , . . . , X

B�P
P

)
with indices B�1:P|P=:B�1:P ,

define

X−�1:P :=X1:P \
(

X
B�1
1, . . . , X

B�P
P

)
and A−�1:P−1 :=A1:P−1 \

(
A

B�2
1, . . . , A

B�P
P−1

)
,

as well as

ψθP (x
−�
1:P , a−�1:P−1‖x�1:P , b�1:P )

:= ψθP (x1:P , a1:P−1)

K θ
1

(
x�1
)∏P

n=2 r θ
(
b�n−1|x1:n−1, a1:n−2

)
K θ

n

(
x�n |x�1:n−1

) =
⎡

⎣
∏

i∈�N�\{b�1}
K θ

1 (x
i
1)

⎤

⎦

×
⎡

⎣
P∏

n=2

r θ
(

a−�n−1|x1:n−1, a1:n−2, a
b�n
n−1

) ∏

i∈�N�\{b�n}
K θ

n

(
xi

n|x
ai

n−1
1:n−1

)⎤

⎦ , (8)

where r θ
(

a−�n−1|x1:n−1, a1:n−2, a
b�n
n−1

)
= r θ (an−1|x1:n−1, a1:n−2)/r θ (b�n−1|x1:n−1,

a1:n−2) represents the conditional resampling distribution which at step n, ensures that
particle b�n has particle b�n−1 as its parent. Note that the denominator in Eq. 8 is not the
marginal density of (X�1:P , B�1:P ) under ψθP . Hence, the notation ‘‖’ is used to distin-
guish the density in Eq. 8 from the conditional density ψθP (x

−�
1:P , a−�1:P−1|x�1:P , b�1:P ).

Particle MCMC methods target an extended distribution which is given by

�πP
(
θ, x−�1:P , a−�1:P−1, x�1:P , b�1:P

)

:= πP (θ, x�1:P )
N P

ψθP
(
x−�1:P , a−�1:P−1‖x�1:P , b�1:P

)
(9)

= p(θ)

Z w
b�P
P Ẑθ

P (x1:P , a1:P−1) ψ
θ
P (x1:P , a1:P−1) . (10)
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Here, we recall that πP (θ, x1:P ) = p(θ)γ θP(x1:P )/Z . The factor N P is a result of
taking the marginal distribution of B�1:P to be uniform on �N�P . Equation 10 uses the
reparametrisation (x−�1:P , a−�1:P−1, x�1:P , b�1:P )←→ (x1:P , a1:P−1, b�P ), where

B�n = A
B�n+1
n , (11)

for n ∈ �P − 1�. The identity in Eq. 10 also follows from Eq. 3, as well as
from the unbiasedness and exchangeability of the resampling schemes which imply
r θ (i |x1:n, a1:n−1) = wi

n = Gθ
n(x

i
1:n)/

∑N
j=1 Gθ

n(x
j
1:n), and hence

γ θP

(
x�1:P

)
N−P

K θ
1

(
x�1
)∏P

n=2 r θ
(
b�n−1|x1:n−1, a1:n−2

)
K θ

n

(
x�n |x�1:n−1

)

=
∏P

n=1 Gθ
n

(
x�1:n
)

N P
∏P−1

n=1 w
b�n
n

= Gθ
P

(
x�1:P

)

N P

P−1∏

n=1

N∑

j=1

Gθ
n

(
x j

1:n
)
= wb�P

P Ẑθ
P (x1:P , a1:P−1) .

(12)

The extended target distribution in Eq. 9 clearly admits πP (θ, x1:P ), and
hence πP (θ), as a marginal. It can be targeted by exact MCMC algorithms. For
instance, employing a Metropolis–Hastings algorithm leads to the particle marginal
Metropolis–Hastings (PMMH) algorithm introduced by Andrieu et al. (2010). It can
also be targeted by a Gibbs sampler, leading to the particle Gibbs sampler introduced
by Andrieu et al. (2010) which is summarised in Algorithm 2. We use the convention
that we always condition on the most recently sampled value of any parameter.

Algorithm 2 (Particle Gibbs sampler) At each sweep, sample

(1)
(
Θ,X−�1:P ,A−�1:P−1

) ∼ �πP
(
d
[
θ, x−�1:P , a−�1:P−1

] |x�1:P , b�1:P
)
,

(2) B�P ∼ �πP
(
db�P |θ, x1:P , a1:P−1

)
.

Equation 9 shows that Step 1 can be performed by first samplingΘ ∼ πP (dθ |x�1:P )
and then sampling (X−�1:P ,A−�1:P−1) ∼ ψθP (dx−�1:P , da−�1:P−1‖x�1:P , b�1:P ). The latter
requires a so called ‘conditional’ SMC algorithm, i.e. an SMC algorithm targeting
πθP which enforces that the b�n th particle at step n is set to x�n . This necessitates condi-
tional versions of the resampling schemes mentioned in Sect. 3.1. These can be derived
via Andrieu et al. (2010, Appendix A) (see also Chopin and Singh 2013; Lee et al.
2014). Equation 10 shows that Step 2 amounts to selecting B�P = i with probability

W θ,i
P . Note the change of variables involved in going from Step 1 to Step 2. Algo-

rithm 2 is initialised by selecting initial values for θ and then obtaining (X�1:P , B�1:P )
from a standard SMC algorithm.

In the following, we focus on the particle Gibbs sampler for static-parameter esti-
mation via PMCMC methods in PDPs because they can enjoy good mixing properties
(Andrieu et al. 2013; Lindsten et al. 2014). In addition, in particle Gibbs samplers,
a Metropolis–Hastings kernel updating the static parameters can be applied m times
before performing the relatively computationally expensive SMC-based update of the
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states. The PMMH algorithm requires an SMC update every time a new static para-
meter is proposed. Finally, also in contrast to PMMH chains, mixing in particle Gibbs
chains can be further improved by the variance-reduction techniques on which we
elaborate in the next subsection.

5.2 Improving mixing of particle Gibbs chains

In this subsection, we describe variance-reduction techniques needed to make particle
Gibbs samplers work in practice. In particular, at the end of this subsection, we propose
a novel particle Gibbs step that allows us to rejuvenate the auxiliary variables generated
as part of the RSMC algorithm from Sect. 4.3.

Note that the particle Gibbs sampler is not a standard Gibbs sampler in that a single
sweep does not involve sampling from all full conditional distributions relative to�πP .
More precisely, a single sweep does not sample new values for the particles and parent
indices associated with the distinguished path from the previous iteration, i.e. for

X
B�1
1, . . . , X

B�P
P, A

B�2
1, . . . , A

B�P
P−1.

Nonetheless, the distinguished particle path and the corresponding particle indices can
still be changed by a single sweep. This is because a different value for B�P sampled in
Step 2 changes the particle indices B�1:P−1 and thus the particles X�1:P if we go back
to the parametrisation in Step 1, due to the recursive relationship given in Eq. 11.

The particle Gibbs sampler is justified by the idea that eventually, over sufficiently
many sweeps, all the components of �πθP are updated. However, this idea crucially
relies on the ability to alleviate sample impoverishment. If sample impoverishment
is severe, all step-P particles will share a common ancestor which, by construction,
is a particle from the distinguished path of the previous iteration. Thus, the variables
associated with the beginning of the distinguished trajectory are not updated.

Two methods for variance reduction in particle Gibbs samplers are summarised
below. An extensive review can also be found in Lindsten and Schön (2013). These
methods can only be used if the conditional distribution of X1:n under πθP is non-
degenerate and if the associated conditional density can be evaluated. They are there-
fore not applicable to state-space models with degenerate or intractable transitions nor
to the ‘original’ SMC filter from Sect. 4.2. For inference in PDPs, we instead employ
the RSMC filter presented in Sect. 4.3 which does not have such degeneracy as long
as the kernels qθ (φ j |φ j−1, τ j , τ j−1) are non-degenerate.

Backward sampling Recall that the particle Gibbs sampler samples the step-P index of
the conditioning path, B�P , and then recursively determines the particle indices B�1:P−1
via Eq. 11. Therefore one way of improving mixing of the Gibbs chain suggested by
Whiteley (2010) and Whiteley et al. (2010) is to add P − 1 steps to the Gibbs sweep
which explicitly sample new values for B�1:P−1. Variations of this approach are further
analysed by Lindsten and Schön (2012) and Chopin and Singh (2013).

Algorithm 3 (Particle Gibbs with backward sampling) At each sweep,

(1) sample (θ,X−�1:P ,A−�1:P−1) ∼ �πP (d[θ, x−�1:P , a−�1:P−1]|x�1:P , b�1:P ),
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(2) sample B�P ∼ �πP (db�P |θ, x1:P , a1:P−1),
(3) for n = P − 1, . . . , 1, sample B�n ∼ �πP (db�n|θ, x1:n, a1:n−1, x�n+1:P , b�n+1:P ).

As shown by Whiteley (2010), the conditional distributions in Step 3 take a simple
form for state-space models. However, all random variables generated by the condi-
tional SMC algorithm in Step 1 of Algorithm 3 need be stored to perform backward
sampling in Step 3.

Write (in+1, . . . , iP ) := (b�n+1, . . . , b�P ) and i p := a
i p+1
p , for p ∈ �n�. Step 3 can

then be performed by setting B�n := in with probability proportional to

�πP
(
in|θ, x1:n, a1:n−1, x�n+1:P , b�n+1:P

)

∝ �πP

(
xi1

1 , . . . , xiP
P , i1:P |θ, x1:n \ (xi1

1 , . . . , xin
n ), a1:n−1 \ (ai2

1 , . . . , ain
n−1)

)

∝ γ θP (x
iP
1:P )ψθn (x1:n, a1:n−1)

K θ
1 (x

i1
1 )
∏n

p=2 r θ
(
i p−1|x1:p−1, a1:p−2

)
K θ

p

(
x

i p
p |xi p−1

1:p−1

)

∝ wθ,in
n Ẑθ

n (x1:n, a1:n−1) ψ
θ
n (x1:n, a1:n−1) γ

θ
P

(
xiP

1:P
)
/γ θn

(
xin

1:n
)

∝ wθ,in
n γ θP

(
xiP

1:P
)
/γ θn

(
xin

1:n
)
. (13)

The first and second step in the above equation follows from Eq. 9 while the third step
in the above equation was derived in the same way as Eq. 12.

Note that Step 3 does not entail sampling from full conditional distributions of
�πP . Such schemes are formally justified as an application of the partially-collapsed-
Gibbs-sampler framework by Dyk and Park (2008) to the particle Gibbs sampler from
the previous subsection. More precisely, Steps 3 could formally be interpreted as
if the algorithm sampled the variables (B�n, [X−�n+1:P ,A−�n:P−1]) from their respective
full conditional distribution relative to �πP . Here, the quantities in square brackets
indicate random variables that can be discarded (‘trimmed’) right away as they are not
conditioned upon in subsequent steps. Due to the structure of�πP , they actually do not
need to be sampled in the first place.

Ancestor sampling An alternate variance-reduction method for particle Gibbs sam-
plers was proposed by Lindsten et al. (2012). Termed ancestor sampling, it achieves
an update of the ancestral lineage of the distinguished path using a single forward
pass.

Ancestor sampling is outlined in Algorithm 4. Again, we use the convention that
we always condition on the most recently sampled value of any parameter.

Algorithm 4 (Particle Gibbs with ancestor sampling) At each sweep,

(1) sample θ ∼ πP (dθ |x�1:P ),
(2) for n = 1, . . . , P , sample

(i) (X−�n ,A−�n−1) ∼ �πP (d[x−�n , a−�n−1]|θ, x−�1:n−1, a−�1:n−2, x�1:P , b�1:P ),
(ii) B�n ∼ �πP (db�n|θ, x1:n, a1:n−1, x�n+1:P , b�n+1:P ).
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The algorithm is initialised identically to Algorithm 2. Step 2i entails sampling
(X−�n ,A−�n−1) via the nth step of a conditional SMC algorithm with distinguished path
(x�1:P , b�1:P ) and step-n target distribution πθn . Step 2ii can be performed by setting
B�n := in with probability proportional to the expression in Eq. 13.

Again, Steps 1 and 2 do not entail sampling from full conditional distributions of
�πP and are justified as a partially collapsed Gibbs sampler. More precisely, Steps 1
could formally be interpreted as sampling the variables (θ, [X−�1:P ,A−�1:P−1]), Step 2i as
sampling the variables (X−�n , [X−�n+1:P ],A−�n−1, [A−�n:P−1]) and Step 2ii as sampling the
variables (B�n, [X−�n+1:P ,A−�n:P−1]) from their respective full conditional distributions
relative to �πP . Again, the quantities in square brackets indicate random variables that
need not actually be sampled.

Below, we derive the probabilities Gθ
n|P (x1:P ) := γ θP (x1:P )/γ θP (x1:n) needed for the

computation of the backward or ancestor sampling weights in Eq. 13 for the VRPF
and the RSMC filter.

For the VRPF, using the notation from Sect. 4.1, assume that n < P and let
μ(n) := inf{m ∈ {n + 1, . . . , P} | km > 0}. If

∑P
p=n+1 kp = 0 and kn > 0, then,

recalling that tP = T ,

Gθ
n|P (x1:P ) ∝ Sθ (T, τn,kn )g

θ (y(tn ,T ]|φn,kn , τn,kn )/Sθ (tn, τn,kn ).

If
∑P

p=n+1 kp > 0 and kn > 0 then

Gθ
n|P(x1:P ) ∝ gθ (y(tn ,τμ(n),1)|φn,kn , τn,kn ) f θ (τμ(n),1|τn,kn )

× qθ (φμ(n),1|φn,kn , τμ(n),1, τn,kn )/Sθ (tn, τn,kn ).

If kn = 0 then (τn,kn , φn,kn ) in the above equations is replaced by (τν(n),kν(n) , φν(n),kν(n) ).
For the RSMC filter, using the notation from Sect. 4.3 and assuming n < P , let

nb := inf{p ∈ {n+2, . . . , P} | m p = b} denote the iteration with the first birth move
after step n + 1, with the convention that nb := P + 1 if there is no further jump at
steps n + 2, . . . , P . If mn+1 = b,

Gθ
n|P (x1:P ) ∝ μθP

(
m1:P |#HP , τh P , φh P , φ0

)

μθn
(
m1:n|#Hn, τhn , φhn , φ0

)
f θ
(
τnb−1|τn

)
qθ
(
φnb−1|φn, τnb−1, τn

)

Sθ (tn, τn)

×
gθ
(

y(tn ,τnb−1)|τn, φn

)

gθ
(

y[τnb−1,tn ]|τn, φn

)
nb−1∏

j=n+2

Qθ
j−1,a

(
τ j−1, φ j−1|#Hj , τh j , φh j , φ0

)
.

If mn+1 = a,

Gθ
n|P (x1:P ) ∝ μθP (m1:P |#HP , τh P , φh P , φ0)

μθn(m1:n|#Hn, τhn , φhn , φ0)

f θ (τnb−1|τhn(#Hn−1))

Sθ (tn, τn) f θ (τn|τhn(#Hn−1))

× qθ (φnb−1|φhn(#Hn−1), τnb−1, τhn(#Hn−1))

qθ (φn|φhn(#Hn−1), τn, τhn(#Hn−1))
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×
gθ
(

y[τn∧τnb−1,τnb−1)

∣
∣τhn(#Hn−1), φhn(#Hn−1)

)

gθ
(

y[τn∧τnb−1,τn)

∣
∣τhn(#Hn−1), φhn(#Hn−1)

)
gθ
(
y[τn ,tn ]

∣
∣τn, φn

)

×
nb−1∏

j=n+1

Qθ
j−1,a

(
τ j−1, φ j−1|#Hj , τh j , φh j , φ0

)
.

Again, we use the convention that gθ (yI |τ j , φ j ) := 1, if I = ∅. To compute these
weights, it is again preferable to switch to the parametrisation from the right hand side
in Eq. 6.

Auxiliary variable rejuvenation The distribution πP (θ, x1:P ) marginally targeted by
the particle Gibbs sampler is sometimes itself an ‘artificially’ extended distribution in
the sense that it can be factorised as

πP (θ, x1:P ) = π̃P (θ, x̃)Lθ (z̃|x̃).

Here, π̃P (θ, x̃) is the marginal distribution of random variables that are actually of
interest while Lθ (z̃|x̃) is the conditional distribution of some auxiliary variables Z̃ .
Here, we assume that X1:P can be partitioned into X̃ and Z̃ . Further, we assume that
we can sample from Lθ (z̃|x̃).

Such a setting arises whenever auxiliary-variable-based SMC schemes, such as
SMC samplers with non-trivial backward kernels, are used within a particle Gibbs
algorithm. For instance when using the RSMC filter, we are actually only interested in
the distribution of X̃ = (#HP , τh P , φh P , φ0) andΘ , but for algorithmic purposes, the
particle Gibbs sampler targets a distribution that also includes Z̃ = (M1:P , τvP , φvP ).

Conditioning on these auxiliary variables when sampling Θ in a particle Gibbs
sweep can become computationally expensive and can induce slow mixing as soon as
Lθ depends on θ .

We propose an additional particle Gibbs step that overcomes these potential diffi-
culties. It is summarised in Algorithm 5, where x�1:P = (x̃�, z̃�) (with some abuse of
notation pertaining to the ordering within in both vectors) is the ‘distinguished’ path.

Algorithm 5 (Particle Gibbs with auxiliary variable rejuvenation) At each sweep,

(1) sample θ ∼ π̃P (dθ |x̃�),
(2) sample z̃� ∼ Lθ (dz̃�|x̃�) and set x�1:P = (x̃�, z̃�),
(3) sample (X−�1:P ,A−�1:P−1) ∼ ψθP (d[x−�1:P , a−�1:P−1]‖x�1:P , b�1:P ),
(4) sample B�P ∼ �πP (db�P |θ, x1:P , a1:P−1).

This algorithm is again justified as a partially collapsed Gibbs sampler. Of course, it
can be combined with backward sampling by including Step 3 from Algorithm 3 at the
end of the Gibbs sweep. Alternatively, ancestor sampling may be used. Steps 3 and 4
are then replaced by Step 2 from Algorithm 4.

Algorithm 5 comes at little or no extra computational cost. It can even offer compu-
tational savings compared to a standard particle Gibbs scheme, e.g. when each Gibbs
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sweep updates the static parameters using the m-fold convolution of a Metropolis–
Hastings kernel (as is often done in practice since static-parameter updates are rel-
atively computationally inexpensive compared to state updates). Algorithm 5 then
avoids m evaluations of Lθ at the cost of generating one sample from Lθ .

We conclude this section by detailing the implementation of Algorithm 5 for particle
Gibbs samplers using the RSMC filter from Sect. 4.3: Step 1 involves sampling Θ
from its full conditional distribution under p(θ)π̃θP (#HP , τh P , φh P , φ0), where p(θ)
denotes some prior distribution and the second term is defined in Eq. 1. Step 2 is
performed by sampling new values for Z̃ = (M1:P , τvP , φvP ) from

Lθ (z̃|x̃) = μθn
(
m1:n|#Hn, τhn , φhn , φ0

) ∏

j∈Vn

Qθ
j,a

(
τ j , φ j |#Hj+1, τh j+1 , φh j+1, φ0

)
.

The interaction between Step 2 of Algorithm 5, ancestor sampling, and the structure
of the distribution targeted by the RSMC filter is explored in Sect. 6.3.

6 Simulation study

6.1 General setup

In this section, we apply the particle Gibbs sampler with ancestor sampling and auxil-
iary variable rejuvenation—based on the RSMC filter from Sect. 4.3—to the elemen-
tary change-point model (Example I) from Sect. 2.2 and to the shot-noise-Cox-process
model (Example II) from Sect. 2.3. For easier reference, this algorithm is hereafter
called based particle Gibbs (RSMC-PG) sampler. We compare its performance with
that of a VRPF-based particle Gibbs (VRPF-PG) sampler also using ancestor sampling
and with a RJMCMC algorithm.

For the RSMC filter, a birth move at step n samples a new jump time τn uni-
formly in (τhn(#Hn−1), tn]. The jump size, φn , is then sampled from its full condi-
tional posterior distribution given the observations up to time tn ∧ 4μτ , with μτ being
the prior mean interjump time. We use restricted jump-time adjustment moves, i.e.
we use Gaussian kernels with variance 10−4, centred around τn−1 and truncated to
((τhn(#Hn−1) ∨ tsn−1−1), tsn−1 ]where sn−1 := s(τn−1). Gaussian kernels with this vari-
ance, centred around φn−1, are also used for the jump-size adjustments. For Exam-
ple II, they are truncated to (Fθ (τn, τhn(#Hn−1), φhn(#Hn−1)),∞). Likewise, the kernel
Qθ

n−1,a is a product of independent Gaussians, each with variance 10−4. Its first
component is centred around τn and truncated to ((τhn(#Hn−1) ∨ tsn−1), tsn ], where
sn := s(τn). The second component is centred around φn and in Example II, its sup-
port is restricted to (Fθ (τn−1, τhn(#Hn−1), φhn(#Hn−1)),∞). Finally, the conditional
distribution of i1:kn is taken to be a truncated geometric distribution with parameter
0.3 and with support (for restricted adjustment moves) as given in Sect. 4.3.

For the VRPF, we propose the number of jumps in (tn−1, tn] from a Poisson distri-
bution with mean (tn − tn−1)/μτ . The jump times are subsequently sampled indepen-
dently from a uniform distribution on (tn−1, tn] and are then ordered. The correspond-
ing jump sizes are proposed from their full conditional time-tn posterior distribution.
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The step size in both SMC algorithms is set to tn − tn−1 = 10. Throughout, we use
(conditional) systematic resampling and resample only when the effective sample size
falls below NESS := 0.8N . The moves that update jumps in the RJMCMC algorithm
are those used in Centanni and Minozzo (2006b) (except that for Example I, jump
sizes are always sampled from their full conditional posterior distributions).

Within all three algorithms, a new value for the vector of static parameters is pro-
posed using the m-fold convolution of a Gaussian random-walk Metropolis–Hastings
kernel with the same covariance matrix across algorithms. More sophisticated updates
for the static parameters could be constructed but we choose not to do so since this
paper’s focus is on updating the time-varying parameters.

In what follows, a single ‘iteration’ or ‘sweep’ of one of these algorithms refers to
first updating the static parameters (followed by the auxiliary-variable rejuvenation
step for the RSMC-PG algorithm) and then updating the jumps using either a condi-
tional SMC update or l RJMCMC updates. For Example I, we used m = l = 500 and
for Example II, we used m = l = 1,000.

Initial values for the static parameters are sampled from the prior. For Example II,
we then divide the first two static parameters by 100 to avoid starting in a region with
a very large number of jumps. This is done to reduce the computational cost for the
first iterations in the VRPF-PG and RJMCMC algorithms and also because we have
observed that the RSMC-PG sampler can get stuck if started in a region with close to
P jumps. A possible explanation of the latter phenomenon is provided in Sect. 6.3.

The algorithms are implemented in Matlab on a single 2.66 GHz Intel ‘Westmere’
core using 4 gigabytes of RAM. In each case, the presented results are based on 60,000
iterations of which the first 10,000 are discarded as burn-in.

6.2 Simulation results

Elementary change-point model For Example I, we used the simulated data set shown
in Fig. 1. We chose a Gaussian prior on the static parameters, with covariance matrix
diag(102, 102, 10, 103, 104) and truncated to R× (0,∞)4.

As shown in Fig. 3, all three algorithms yielded comparable estimates for the
marginal posterior distributions of the static parameters even when using only 25
particles. The bivariate correlation structure and sample autocorrelations were also
similar but are omitted due to limited space. However, we encountered RJMCMC
chains that seemed to get stuck in local modes for a considerable number of iterations.
Such a chain is represented by the dashed line in the bottom row of Fig. 3 and the
corresponding trace plot for the parameter β is shown in Fig. 4. We did not encounter
such a behaviour in any of the particle Gibbs samplers.

The computing time for the auxiliary-variable rejuvenation and conditional SMC
update (with ancestor sampling) in the RSMC-PG sampler was around 1.6 s on average,
the conditional SMC update (with ancestor sampling) for the VRPF-PG sampler took
around 2.5 s and l = 500 individual moves for the RJMCMC algorithm took around
2 s. The difference can partially be explained by the fact that the RSMC sampler is
more amenable to code vectorisation than the VRPF because at each SMC step, it
generates the same number of random variables for each particle.
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Fig. 3 Kernel density estimates for the marginal posterior densities of the static parameters in Example I.
Top row RSMC-PG algorithm with 100 particles (solid line), 50 particles (dashed line), 25 particles (dash-
dotted line). Middle row VRPF-PG sampler with 100 particles (solid line), 50 particles (dashed line), 25
particles (dash-dotted line). Bottom row two RJMCMC chains. Red lines indicate the true parameters; blue
lines show the prior densities
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Fig. 4 Trace plots for the scale-parameter estimates in Example I. Top RSMC-PG sampler with 100
particles. Middle VRPF-PG sampler with 100 particles. Bottom RJMCMC sampler. Red lines indicate the
true parameters

Shot-noise-Cox-process model For Example II, we used the simulated data set shown
in Fig. 2. We chose a Gaussian prior for the vector of static parameters, with covariance
matrix diag(10, 10, 102) and truncated to (0,∞)3. For the static-parameter updates
we switched to a non-centred parametrisation of the jump sizes to improve mixing of
the decay parameter κ .

As shown in Fig. 5, the estimated marginal posterior densities from all three algo-
rithms have similar modes. However, those obtained from the RSMC-PG sampler are
more concentrated. This difference is possibly due to the approximation described in
Sect. 4.2 which restricts the number of jumps in any particular interval. In this model, it
produces visibly different results because the exponential prior on the interjump times
allows large numbers of jumps to be placed close to each other with non-negligible

123



606 A. Finke et al.

Lag (λφ )Lag (λτ )

A
ut

oc
or

re
la

tio
n

Lag (κ)

λφλτ

D
en

si
ty

κ

0 25 500 25 500 25 50

0 1 2 30 0.05 0.10 0.01 0.02

0

1

0

1

0

20

40

0

150

300

Fig. 5 Static-parameter estimates for Example II. Based on the RSMC-PG algorithm with 100 particles
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line). Top row kernel density estimates of the marginal posterior densities. Red lines indicate true parameters;
blue lines represent priors. Bottom row autocorrelations

probability. Thus, the posterior distribution of this model has tail regions with large
numbers of jumps which the RSMC-PG algorithm rarely enters. This could also con-
tribute to the differences in the autocorrelations in Fig. 5. Note that the effect of this
approximation can be reduced by decreasing the step size tn − tn−1.

6.3 Rôle of the auxiliary-variable rejuvenation step

In our simulations, the extra Gibbs step from Algorithm 5 appeared to be crucial to
the performance of the RSMC-PG sampler: without it, the algorithm could get stuck
in local modes. Below, we give a possible explanation of this phenomenon.

Let x�n+1 = (m�
n+1, τ

�
n+1, φ

�
n+1)denote the (n+1)th component of the distinguished

path and let xi
n = (mi

n, τ
i
n, φ

i
n) denote the i th particle at step n. Then at the nth step of

the conditional SMC algorithm, note the following (for any i �= b�n).

(1) If m�
n+1 = a, and if we employ local adjustment moves, the distance |τ �n+1 − τ i

n|
tends to be so big that the i th ancestor sampling weight is close to zero.

(2) If m�
n+1 = b, the i th ancestor sampling weight is only non-zero if τ i

n < τ�n+1.

We conjecture that with only local adjustment moves and without Step 2 of Algo-
rithm 5, the algorithm can get stuck because ancestor sampling is relatively ineffec-
tive: it rarely changes the distinguished path in Situation 1 and mixing thus relies on
replacing the distinguished path in Situation 2. Here, however, if τ �n+1 is much smaller
than tn , the most recent jump in all other particle paths is likely to be located in the
interval (τ �n+1, tn] so that they have zero ancestor sampling weights.
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Step 2 of Algorithm 5 circumvents this problem because it can change the SMC
step of the birth move which is associated with a particular jump.

This reasoning might also explain why we observed that the RSMC-PG sampler
could get stuck in Example II when it was initialised in a region with P jumps: if the
distinguished path has only birth moves then Step 2 of Algorithm 5 cannot change the
SMC step of the birth move associated with any jump.

7 Summary

In this paper, we have demonstrated that particle Gibbs samplers can be applied to
piecewise deterministic processes and have presented a number of methodological
developments in doing so. Numerical studies provide a comparative illustration of the
performance of the proposed methods.
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