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Abstract Many statistical data are imprecise due to factors such as measurement
errors, computation errors, and lack of information. In such cases, data are better rep-
resented by intervals rather than by single numbers. Existing methods for analyzing
interval-valued data include regressions in the metric space of intervals and symbolic
data analysis, the latter being proposed in a more general setting. However, there has
been a lack of literature on the parametric modeling and distribution-based inferences
for interval-valued data. In an attempt to fill this gap, we extend the concept of nor-
mality for random sets by Lyashenko and propose a Normal hierarchical model for
random intervals. In addition, we develop a minimum contrast estimator (MCE) for
the model parameters, which is both consistent and asymptotically normal. Simulation
studies support our theoretical findings and show very promising results. Finally, we
successfully apply our model and MCE to a real data set.
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1 Introduction

In classical statistics, it is often assumed that the outcome of an experiment is precise
and the uncertainty of observations is solely due to randomness. Under this assumption,
numerical data are represented as collections of real numbers. In recent years, however,
there has been increased interest in situations when exact outcomes of the experiment
are very difficult or impossible to obtain, or to measure. The imprecise nature of the data
thus collected is caused by various factors such as measurement errors, computational
errors, loss or lack of information. Under such circumstances and, in general, any other
circumstances such as grouping and censoring, when observations cannot be pinned
down to single numbers, data are better represented by intervals. Practical examples
include interval-valued stock prices, oil prices, temperature data, medical records, and
mechanical measurements among many others.

In the statistical literature, random intervals are most often studied in the frame-
work of random sets, for which the probability-based theory has been developed since
the publication of the seminal book (Matheron 1975). Studies on the corresponding
statistical methods to analyze set-valued data, while still at the early stage, have shown
promising advances. See Stoyan (1998) for a comprehensive review. Specifically, to
analyze interval-valued data, the earliest attempt probably dates back to 1990, when
Diamond (1990) published his paper on the least-squares fitting of compact set-valued
data and considered interval-valued input and output as a special case. Due to the
embedding theorems started by Brunn and Minkowski and later refined by Rȧdström
(1952) and Hörmander (1954), K(Rn), the space of all nonempty compact convex sub-
sets of R

n , is embedded into the Banach space of support functions. Diamond (1990)
defined an L2 metric in this Banach space of support functions and found the regres-
sion coefficients by minimizing the L2 metric of the sum of residuals. This idea was
further studied in Gil et al. (2002), where the L2 metric was replaced by a generalized
metric on the space of nonempty compact intervals, called “W-distance”, proposed
earlier by Körner and Näther (1998). Separately, Billard and Diday (2003) introduced
the central tendency and dispersion measures and developed the symbolic interval data
analysis based on those [see also Carvalho et al. (2004)]. However, none of the exist-
ing literature considered distributions of the random intervals and the corresponding
statistical methods.

It is well known that normality plays an important role in classical statistics. But
the normal distribution for random sets remained undefined for a long time, until
the 1980s when the concept of normality was first introduced for compact convex
random sets in the Euclidean space by Lyashenko (1983). This concept is especially
useful in deriving limit theorems for random sets. See, Puri et al. (1986) and Norberg
(1984), among others. Since a compact convex set in R is a closed bounded interval,
by the definition of Lyashenko (1983), a normal random interval is simply a Gaussian
displacement of a fixed closed bounded interval. From the point of view of statistics,
this is not enough to fully capture the randomness of a general random interval.

In this paper, we extend the definition of normality given by Lyashenko (1983) and
propose a Normal hierarchical model for random intervals. With one more degree of
freedom on “shape”, our model conveniently captures the entire randomness of random
intervals via a few parameters. It is a natural extension from Lyashenko (1983) yet a
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A normal hierarchical model and MCE 315

highly practical model accommodating a large class of random intervals. In particular,
when the length of the random interval reduces to zero, it becomes the usual normal
random variable. Therefore, it can also be viewed as an extension of the classical
normal distribution that accounts for the extra uncertainty added to the randomness.
In addition, there are two interesting properties regarding our Normal hierarchical
model: (1) conditioning on the first hierarchy, it is exactly the normal random interval
defined by Lyashenko (1983), which could be a very useful property in view of the
limit theorems; (2) with certain choices of the distributions, a linear combination
of our Normal hierarchical random intervals follows the same Normal hierarchical
distribution. An immediate consequence of the second property is the possibility of
a factor model for multi-dimensional random intervals, as the “factor” will have the
same distribution as the original intervals.

For random set models, it is important, in the stage of parameter estimation, to take
into account the geometric characteristics of the observations. For example, Tanaka et
al. (2008) proposed an approximate maximum likelihood estimation for parameters in
the Neyman–Scott point processes based on the point pattern of the observation win-
dow. For another model, Heinrich (1993) discussed several distance functions (called
“contrast functions”) between the parametric and the empirical contact distribution
functions that are used towards parameter estimation for Boolean models. Bearing
this in mind, to estimate the parameters of our Normal hierarchical model, we pro-
pose a minimum contrast estimator (MCE) based on the hitting function (capacity
functional) that characterizes the distribution of a random interval by the hit-and-
miss events of test sets. See Matheron (1975). In particular, we construct a contrast
function based on the integral of a discrepancy function between the empirical and
the parametric distribution measures. Theoretically, we show that under certain condi-
tions our MCE satisfies a strong consistency and asymptotic normality. The simulation
study is consistent with our theorems. We apply our model to analyze a daily tem-
perature range data and, in this context, we have derived interesting and promising
results.

The use of an integral measure of probability discrepancy here is not new. For
example, the integral probability metrics (IPMs), widely used as tools for statistical
inferences, have been defined as the supremum of the absolute differences between
expectations with respect to two probability measures. See, e.g., Zolotarev (1983),
Müller (1997), and Sriperumbudur et al. (2012), for references. Especially, the empir-
ical estimation of IPMs proposed by Sriperumbudur et al. (2012) drastically reduces
the computational burden, thereby emphasizing the practical use of the IPMs. This idea
is potentially applicable to our MCE and we expect similar reduction in computational
intensity as for IPMs.

The rest of the paper is organized as follows. Section 2 formally defines our Nor-
mal hierarchical model and discusses its statistical properties. Section 3 introduces
a minimum contrast estimator for the model parameters and presents its asymptotic
properties. A simulation study is reported in Sect. 4, and a real data application is
demonstrated in Sect. 5. We give concluding remarks in Sect. 6. Proofs of the the-
orems are presented in Sect. 7. Useful lemmas and other proofs are provided in the
supplementary material.
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2 The normal hierarchical model

2.1 Definition

Let (�,L, P) be a probability space. Denote by K the collection of all non-empty
compact subsets of R

d . A random compact set is a Borel measurable function A :
�→ K, K being equipped with the Borel σ -algebra induced by the Hausdorff metric.
If A(ω) is convex for almost all ω, then A is called a random compact convex set.
[See Molchanov (2005), p. 21, p. 102.] Denote by KC the collection of all compact
convex subsets of R

d . By Theorem 1 of Lyashenko (1983), a compact convex random
set A in the Euclidean space R

d is Gaussian if and only if A can be represented as the
Minkowski sum of a fixed compact convex set M and a d-dimensional normal random
vector ε, i.e.,

A = M + {ε} . (1)

As pointed out in Lyashenko (1983), Gaussian random sets are especially useful in view
of the limit theorems discussed earlier in Lyashenko (1979). That is, if the conditions
in those theorems are satisfied and the limit exists, then it is Gaussian in the sense of
(1). Puri et al. (1986) extended these results to separable Banach spaces.

In the following, we will restrict ourselves to compact convex random sets in R
1,

that is, bounded closed random intervals. They will be called random intervals for ease
of presentation.

According to (1), a random interval A is Gaussian if and only if A is representable
in the form

A = I + {ε} , (2)

where I is a fixed bounded closed interval and ε is a normal random variable. Obvi-
ously, such a random interval is simply a Gaussian displacement of a fixed interval, so
it is not enough to fully capture the randomness of a general random interval. In order
to model the randomness of both the location and the “shape” (length), we propose
the following Normal hierarchical model for random intervals:

A = I + {ε} , (3)

I = ηI0, (4)

where η is another random variable and I0 = [a0, b0] is a fixed interval in R. Here,
the product ηI0 is in the sense of scalar multiplication of a real number and a set. Let
λ(·) denote the Lebesgue measure of R

1. Then,

λ(A) = λ(ε + ηI0) = λ(ηI0) = |η| λ(I0). (5)

That is, η is the variable that models the length of A. In particular, if η → 0, then A
reduces to a normal random variable.

Obviously, ε and η are “location” and “shape” variables. We assume that η > 0.
Then, the Normal hierarchical random interval is explicitly expressible as

A = [ε + a0η, ε + b0η] .
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The parameter b0 is indeed unnecessary, as the difference b0− a0 can be absorbed by
η. As a result,

A = [ε + a0η, ε + (a0 + 1) η] . (6)

Compared to the “naive” model A = [ε − 1
2η, ε + 1

2η], for which ε is precisely the
center of the interval, (6) has an extra parameter a0. Notice that the center of A is
ε + (a0 + 1

2

)
η, so a0 controls the difference between ε and the center, and therefore

is interpreted as modeling the uncertainty that the Normal random variable ε is not
necessarily the center.

Remark 1 There are some existing works in the literature to model the randomness
of intervals. For example, a random interval can be viewed as the “crisp” version
of the LR-fuzzy random variable, which is often used to model the randomness of
imprecise intervals such as [approximately 2, approximately 5]. See Körner (1997)
for detailed descriptions. However, as far as the authors are aware, models with dis-
tribution assumptions for interval-valued data have not been studied yet. Our Normal
hierarchical random interval is the first statistical approach that extends the concept
of normality while modeling the full randomness of an interval.

An interesting property of the Normal hierarchical random interval is that its linear
combination is still a Normal hierarchical random interval. This is seen by simply
observing that

n∑

i=1

ai Ai =
n∑

i=1

ai (εi + ηi I0) =
n∑

i=1

aiεi + I0

(
n∑

i=1

aiηi

)

, (7)

for arbitrary constants ai , i = 1, . . . , n, where “+” denotes the Minkowski addition.
This is very useful in developing a factor model for the analysis of multiple random
intervals. Especially, if we assume ηi ∼ N (μi , σ

2
i ), i = 1, . . . , n, then the “factor”∑n

i=1 ai Ai has exactly the same distribution as the original random intervals. We will
elaborate more on this issue in Sect. 4.

Without loss of generality, we can assume in the model (3–4) that Eε = 0. We will
make this assumption throughout the rest of the paper.

2.2 Model properties

According to the Choquet theorem (Molchanov 2005, p.10), the distribution of a
random closed set (and random compact convex set as a special case) A is completely
characterized by the hitting function T defined as

T (K ) = P(K ∩ A �= ∅), ∀K ∈ KC . (8)

Writing I0 = [a0, b0] with a0 ≤ b0, the Normal hierarchical random interval in
(3–4) has the following hitting function: for K = [a, b]:
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TA([a, b])
= P([a, b] ∩ A �= ∅)
= P([a, b] ∩ A �= ∅, η ≥ 0)+ P([a, b] ∩ A �= ∅, η < 0)

= P(a − ηb0 ≤ ε ≤ b − ηa0, η ≥ 0)+ P(a − ηa0 ≤ ε ≤ b − ηb0, η < 0).

The expectation of a compact convex random set A is defined by the Aumann
integral [see Aumann (1965), Artstein and Vitale (1975)] as

E A = {Eξ : ξ ∈ A almost surely} .

In particular, the Aumann expectation of a random interval A is given by

E A = [E Al , E Au], (9)

where Al and Au are the interval ends. Therefore, the Aumann expectation of the
Normal hierarchical random interval A is

E A = E(ε + ηI0) = Eε + E(ηI0) = E(ηI0)

= E
{[a0η, b0η]I(η≥0) + [b0η, a0η]I(η<0)

}

= E
[
a0ηI(η≥0) + b0ηI(η<0), b0ηI(η≥0) + a0ηI(η<0)

]

= [
a0 Eη+ + b0 Eη−, b0 Eη+ + a0 Eη−

]
,

where

η+ = ηI(η≥0),

η− = ηI(η<0).

Notice that η+ can be interpreted as the positive part of η, but η− is not the negative
part of η, as η− < 0 when η < 0.

The variance of a compact convex random set A in R
d is defined via its support

function. In the special case when d = 1, it is shown by straightforward calculations
that

V ar(A) = 1

2
V ar(Al)+ 1

2
V ar(Au), (10)

or equivalently,
V ar(A) = V ar (Ac)+ V ar (Ar ) , (11)

where Ac and Ar denote the center and radius of a random interval A. See Körner
(1995). Again, as we pointed out in Remark 1, a random interval can be viewed as
a special case of the LR-fuzzy random variable. Therefore, formulae (10) and (11)
coincide with the variance of the LR-fuzzy random variable, when letting the left and
right spread both equal to 0, i.e., l = r = 0. See Körner (1997). For the Normal
hierarchical random interval A,
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V ar(Al)

= V ar (ε + a0η+ + b0η−)

= E (ε + a0η+ + b0η−)2 − [E (ε + a0η+ + b0η−)
]2

= Eε2 + a2
0 V ar(η+)+ b2

0V ar(η−)

+2 (a0 Eεη+ + b0 Eεη− − a0b0 Eη+Eη−) ,

and, analogously,

V ar(Au)

= Eε2 + b2
0V ar(η+)+ a2

0 V ar(η−)

+2 (b0 Eεη+ + a0 Eεη− − a0b0 Eη+Eη−) .

The variance of A is then found to be

V ar(A) = 1

2
V ar(Al)+ 1

2
V ar(Au)

= Eε2 + 1

2

(
a2

0 + b2
0

) [
V ar(η+)+ V ar(η−)

]

+(a0 + b0)Eεη − 2a0b0 Eη+η−.

Remark 2 Assuming η > 0, we have

V ar(A) = Eε2 + 1

2
(a2

0 + b2
0)V ar(η)+ (a0 + b0)Eεη

= V ar(ε)+ 1

2
(a2

0 + b2
0)V ar(η)+ (a0 + b0)Cov(ε, η),

with Eε = 0. This formula certainly includes the special case of the “naive” model
A = [ε − 1

2η, ε + 1
2η], by letting a0 = − 1

2 and b0 = 1
2 . It is more general because

it also accounts for the covariance between “location” and “length” in calculating the
total variance of the random interval, while the “naive” model simply has V ar (A) =
V ar (ε)+ V ar (η).

3 The minimum contrast estimation

3.1 Definitions

We study MCE of the parameters of the Normal hierarchical random interval (3–4) as
well as its asymptotic properties. Since d = 1, from now on we let K be the space of all
non-empty compact subsets in R restrictively, and let F be the Borel σ -algebra on K
induced by the Hausdorff metric. Let KC denote the space of all non-empty compact
convex subsets, i.e., bounded closed intervals, in R. As mentioned in the previous
section, a random interval X is a Borel measurable function from a probability space
(�,L, P) to (K,F) such that X ∈ KC almost surely.
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Throughout this section, we assume observing a sample of i.i.d. random intervals
X (n) = {X1, X2, . . . , Xn}. Let θ denote a p× 1 vector containing all the parameters
in the model, which takes on a value from a parameter space 	 ⊂ R

p. Here, p is the
number of parameters. Let θ0 denote the true value of the parameter vector. Denote
by Tθ ([a, b]) the hitting function of Xi with parameter θ .

In order to introduce the MCE, we will need some extra notations. Let X be a basic
set and A be a σ -field over it. Let B denote a family of probability measures on (X,A)
and τ be a mapping from B to some topological space T . τ(P) denotes the parameter
value pertaining to P , ∀P ∈ B. The classical definition of MCE given in Pfanzagl
(1969) is quoted below.

Definition 1 (Pfanzagl 1969) A family of A-measurable functions ft : X→ R, t ∈ T
is a family of contrast functions if

EP [ ft ] <∞, ∀t ∈ T,∀P ∈ B (12)

and
EP

[
fτ(P)

]
< EP [ ft ] , ∀t ∈ T,∀P ∈ B, t �= τ(P). (13)

In other words, a contrast function is a measurable function of the random vari-
able(s) whose expected value reaches its minimum under the probability measure that
generates the random variable(s). From the view of probability, with the true parame-
ters, a contrast function tends to have a smaller value than with other parameters.

Adopting notation from Pfanzagl (1969), we let B denote a family of probability
measures on (KC,F) and τ be a mapping from B to some topological space T .
Similarly, τ(P) denotes the parameter value pertaining to P , ∀P ∈ B. In a similar
fashion to the contrast function in Heinrich (1993) for Boolean models, we give our
definition of contrast function for random intervals in the following. And then the
MCE is defined as the minimizer of the contrast function.

Definition 2 A family of Fn-measurable functions M(X (n); θ): Kn
C → [−∞,+∞],

n ∈ N, θ ∈ � is a family of contrast functions for B, if there exists a function N (·, ·):
�×�→ R such that

Pθ

({
ω : lim

n→∞M(X (n); ζ ) = N (θ, ζ )
})
= 1, ∀ θ , ζ ∈ �, (14)

and
N (θ , θ) < N (θ, ζ ) ∀ θ , ζ ∈ �, θ �= ζ . (15)

Definition 3 A Fn-measurable function θ̂n : Kn
C → τ(B), which depends on X (n)

only, is called a minimum contrast estimator (MCE) if

M(X (n); θ̂n) = inf {M(X (n); θ) : θ ∈ τ(B)} . (16)

3.2 Theoretical results

We make the following assumptions to present the theoretical results in this section.
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Assumption 1 	 is compact, and θ0 is an interior point of 	.

Assumption 2 The model is identifiable.

Assumption 3 Tθ ([·, ·]) is continuous with respect to θ .

Assumption 4
∂Tθ0
∂θi

([·, ·]), i = 1, . . . , p, exist and are finite on a bounded region

S0 ⊂ R
2.

Assumption 5 ∂Tθ
∂θ j

([·, ·]), ∂2Tθ
∂θ j ∂θk

([·, ·]), and ∂3Tθ
∂θ j ∂θk∂θl

([·, ·]), i, j, k = 1, . . . , p, exist

and are finite on S0 for θ ∈ 	.

Assumptions 4 and 5 are essential to establish the asymptotic normality for the
MCE θ̂n . They are rather mild and can be met by a large class of capacity functionals.
For example, if S0 is closed, then each Tθ0 with continuous up to third-order partial
derivatives satisfies both assumptions, as a continuous function on a compact region is
always bounded. The following theorem gives sufficient conditions under which the
minimum contrast estimator θ̂n defined above is strongly consistent.

Theorem 1 Let M(X (n); θ) be a contrast function as in Definition 2 and let θ̂n be
the corresponding MCE. Under the hypothesis of Assumption 1 and in addition if
M(X (n); θ) is equicontinuous w.r.t. θ for all X (n), n = 1, 2, . . ., then,

θ̂n → θ0 a.s., as n→∞.

Let [a, b] ∈ KC . Define an empirical estimator T̂ ([a, b]; X (n)) for T ([a, b]) as

T̂ ([a, b]; X (n)) = # {Xi : [a, b] ∩ Xi �= ∅, i = 1, . . . , n}
n

. (17)

Extending the contrast function defined in Heinrich (1993) (for parameters in the
Boolean model), we construct a family of functions:

H(X (n); θ) =
∫∫

S

[
Tθ ([a, b])− T̂ ([a, b]; X (n))

]2
W (a, b)dadb, (18)

for θ ∈ �, where S ⊂ S0 ⊂ R
2, and W (a, b) is a weight function on [a, b] satisfying

0 < W (a, b) < C , ∀[a, b] ∈ KC .
We show in the next Proposition that H(X (n); θ), θ ∈ � defined in (18) is a family

of contrast functions for θ . This, together with Theorem 1, immediately yields the
strong consistency of the associated MCE. This result is summarized in Corollary 1.

Proposition 1 Suppose that Assumptions 2 and 3 are satisfied. Then H(X (n); θ),
θ ∈ �, as defined in (18), is a family of contrast functions with limiting function

N (θ , ζ ) =
∫∫

S

[
Tθ ([a, b])− Tζ ([a, b])]2

W (a, b)dadb. (19)

In addition, H(X (n); θ) is equicontinuous w.r.t. θ .
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Corollary 1 Suppose that Assumptions 1, 2, and 3 are satisfied. Let H(X (n); θ) be
defined as in (18), and

θ H
n = arg min

θ∈	
H (X (n); θ) . (20)

Then

θ H
n → θ0, a.s.,

as n→∞.

Next, we show the asymptotic normality for θ H
n . As a preparation, we first prove the

following proposition. The central limit theorem for θ H
n is then presented afterwards.

Proposition 2 Assume the conditions of Lemma 1 (in the supplementary material).
Define

∂ H

∂θ
(X (n); θ) :=

[
∂ H

∂θ1
(X (n); θ) , . . . ,

∂ H

∂θp
(X (n); θ)

]T

,

as the p × 1 gradient vector of H (X (n); θ) w.r.t. θ . Then,

√
n

[
∂ H

∂θ
(X (n); θ0)

]
D→ N (0, ) ,

where  is the p × p symmetric matrix with the (i, j)th component

(i, j) = 4
∫∫∫∫

S×S
{P (X1 ∩ [a, b] �= ∅, X1 ∩ [c, d] �= ∅)

−Tθ0 ([a, b]) Tθ0 ([c, d])}
∂Tθ0

∂θi
([a, b]) ∂Tθ0

∂θ j
([c, d]) W (a, b)W (c, d)dadbdcdd. (21)

Theorem 2 Let H(X (n); θ) be defined in (18) and θ H
n be defined in (20). Assume the

conditions of Corollary 1. If additionally Assumption 5 is satisfied, then

√
n
(
θ H

n − θ0

) D→ N
(

0, C(Tθ0)
−1C(Tθ0)

−1
)

, (22)

where C(Tθ0) = 2
∫∫

S

(
∂Tθ0
∂θ

) (
∂Tθ0
∂θ

)T
([a, b])W (a, b)dadb, and  is defined in (21).

4 Simulation

We carry out a small simulation to investigate the performance of the MCE introduced
in Definition 3. Assume, in the Normal hierarchical model (3–4), that

[
ε

η

]
∼ BVN

([
0
μ

]
, � =

[
σ 2

1 σ12

σ12 σ 2
2

])
, (23)
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and
b0 = a0 + 1. (24)

The bivariate normal distribution conveniently takes care of the variances and covari-
ance of the location variable ε and the shape variable η. The removal of the freedom
of b0 is for model identifiability purposes; it is seen that the hitting function TA is
defined via ηa0 and ηb0 only. For the simulation, we assign the following parameter
values:

a0 = 1, μ = 20, � =
[

10 1
1 10

]
. (25)

4.1 Hitting function

Under the bivariate normal distribution assumption, the hitting function of our Normal
hierarchical model is found to be

Tθ ([a, b])
= P(a − ηb0 ≤ ε ≤ b − ηa0, η ≥ 0)+ P(a − ηa0 ≤ ε ≤ b − ηb0, η < 0)

= P (ε ≤ b − ηa0, η ≥ 0)− P (ε < a − ηb0, η ≥ 0)

+P (ε ≤ b − ηb0, η < 0)− P (ε < a − ηa0, η < 0)

= P

([
1 a0
0 −1

] [
ε

η

]
≤
[

b
0

])
− P

([
1 b0
0 −1

] [
ε

η

]
≤
[

a
0

])

+P

([
1 b0
0 1

] [
ε

η

]
≤
[

b
0

])
− P

([
1 a0
0 1

] [
ε

η

]
≤
[

a
0

])

= �

([
b
0

]
; D1

[
0
μ

]
, D1�D

′
1

)
−�

([
a
0

]
; D2

[
0
μ

]
, D2�D

′
2

)

+�

([
b
0

]
; D3

[
0
μ

]
, D3�D

′
3

)
−�

([
a
0

]
; D4

[
0
μ

]
, D4�D

′
4

)
, (26)

where �(x;μ,�) is the bivariate normal cdf with mean μ and covariance �, and

D1 =
[

1 a0
0 −1

]
, D2 =

[
1 b0
0 −1

]
, D3 =

[
1 b0
0 1

]
, D4 =

[
1 a0
0 1

]
.

After linear transformation of variables, the terms in formula (26) is calculated via the
standard bivariate normal cdf. By absolute continuity, Tθ ([a, b]) in this case is contin-
uous and also infinitely continuously differentiable. Therefore, all the assumptions are
satisfied and the corresponding MCE achieves the strong consistency and asymptotic
normality.
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According to the assigned parameter values given in (25), P(η < 0) < 10−10.
Therefore, the hitting function is well approximated by

Tθ ([a, b])
≈ P(a − ηb0 ≤ ε ≤ b − ηa0, η ≥ 0)

≈ P(a − ηb0 ≤ ε ≤ b − ηa0)

= P

([
1 a0
−1 −a0 − 1

] [
ε

η

]
≤
[

b
−a

])

= �

([
b
−a

]
; D

[
0
μ

]
, D�D

′
)

,

where

D =
[

1 a0
−1 −a0 − 1

]
.

We use this approximate hitting function to simplify the computation in our simulation
study.

4.2 Parameter initialization

The model parameters can be estimated by the method of moments. In most cases it
is reasonable to assume η− ≈ 0, and consequently, η ≈ |η|. So the moment estimates
for μ and a0 are approximately given by

μ̃← X̄u − X̄l , (27)

ã0 ← X̄l/μ̃, (28)

where X̄u and X̄l denote the sample means of Au and Al , respectively. Denoting by Ac

the center of the random interval A, we further notice that Ac = ε + 1
2 (a0 + b0) η =

ε + (a0 + 1
2

)
η. By the same approximation, we have ε ≈ Ac −

(
a0 + 1

2

) |η|. Define
a random variable

Aδ = Ac −
(

a0 + 1

2

)
|η|.

Then, the moment estimate for � is approximately given by the sample variance–
covariance matrix of Aδ and Au − Al , i.e.,

�̃← �s (Aδ, Au − Al) . (29)
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4.3 Performance of MCE

Our simulation experiment is designed as follows: we first simulate an i.i.d. random
sample of size n from model (3–4) with the assigned parameter values, then find
the initial parameter values by (27–29) based on the simulated sample, and lastly
the initial values are updated to the MCE using the function fminsearch.m in Matlab
2011a. The process is repeated 10 times independently for each n, and we let n =
100, 200, 300, 400, 500, successively, to study the consistency and efficiency of the
MCE’s.

Figure 1 shows one random sample of 100 observations generated from the model.
We show the average biases and standard errors of the estimates as functions of the
sample size in Fig. 2. Here, the average bias and standard error of the estimates of
� are the L2 norms of the average bias and standard error matrices, respectively.
As expected from Corollary 1 and Theorem 2, both the bias and the standard error
reduce to 0 as sample size grows to infinity. The numerical results are summarized in
Table 1.

Finally, we point out that the choice of the region of integration S is important.
A larger S usually leads to more accurate estimates and could also result in more
computational complexity. We do not investigate this issue in this paper. However,
based on our simulation experience, an S that covers most of the points (a, b) ∈ R

2,
such that [a, b] hits some of the observed intervals, is a good choice as a rule of thumb.
In our simulation, E(A) ≈ [20, 40], by ignoring the small probability P(η < 0).
Therefore, we choose S = {(x − y, x + y) : 20 ≤ x ≤ 40, 0 ≤ y ≤ 10}, and the
estimates are satisfactory.

0 20 40 60 80 100
0

10

20

30

40

50

60
A simulated random sample of Model (1)−(3)

Fig. 1 Plot of a simulated sample from model (3–4) with n = 100
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Fig. 2 Average bias and standard error of the MCE’s for a0 (top left), μ (top right), and � (bottom), as a
function of the sample size n

Table 1 Average biases and standard errors of the MCE’s of the model parameters in the simulation study

n a0=1 μ=20 �

bias ste bias ste bias ste

100 0.0683 0.1289 1.1648 1.7784 4.1166 5.7951
200 0.0387 0.0457 0.4569 0.5924 3.8581 4.0558
300 0.0274 0.0326 0.1831 0.2598 3.0317 3.9042
400 0.0157 0.0227 0.1575 0.2044 2.8210 3.5128
500 0.0128 0.0161 0.1197 0.1790 2.1494 2.4973

5 A real data application

In this section, we apply our Normal hierarchical model and minimum contrast estima-
tor to analyze the daily temperature range data. We consider two data sets containing
10 years of daily minimum and maximum temperatures in January, in Granite Falls,
Minnesota (latitude 44.81241, longitude 95.51389) from 1901 to 1910, and from 2001
to 2010, respectively. Each data set, therefore, is constituted of 310 observations of the
form: (minimum temperature, maximum temperature). We obtained these data from
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Fig. 3 Plots of daily January temperature range 1901–1910 (left) and 2001–2010 (right). On each plot, the
model fitted mean is the interval between the two horizontal lines, and the moment estimate of mean is the
interval between the two dashed horizontal lines

the National Weather Service, and all observations are in Fahrenheit. The plot of the
data is shown in Fig. 3. The obvious correlations of the data play no roles here.

Same as in the simulation, we assume a bivariate normal distribution for (ε, η) and
I0 = [a0, a0 + 1] has length 1. The initial parameter values are computed according
to (27–29), and the weight function W ≡ 1. The minimum contrast estimates for the
model parameters are

• Data set 1 (1901–1910):

â0,1 = 0.2495, μ̂1 = 19.8573, �̂1 =
[

207.1454 −44.8547
−44.8547 102.5263

]
,

• Data set 2 (2001–2010):

â0,2 = 0.2614, μ̂2 = 20.4722, �̂2 =
[

318.9283 −84.0892
−84.0892 68.4783

]
.

Recall that the center and the length of the Normal hierarchical random interval
are ε + (a0 + 1

2 )η and |η|(≈ η for the two considered data sets), respectively. There-
fore, they are assumed to follow Normal distributions with means (a0 + 1

2 )μ and μ,

and variances σ 2
1 +

(
a0 + 1

2

)2
σ 2

2 + (2a0 + 1) σ 2
12 and σ 2

2 , respectively. To assess the
goodness-of-fit, we compare the fitted Normal distributions with the corresponding
empirical distributions for both the center and the length of the two data sets. The
results are shown in Fig. 4. For the interval length of data 2 (2001–2010), the fitted
Normal distribution is slightly more deviated from the empirical distribution, due to
the skewness and heavy tail of the data. All the other three plots show very good
fittings of our model to the data.
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Fig. 4 Plots of the kernel smoothing density and the fitted Normal probability density for the centers and
the lengths of the two data sets

Denote by A1 and A2 respectively the random intervals from which the two data
sets are drawn. The model fitted mean and variance for A1 and A2 are found to be

Ê(A1) = [4.8590, 24.9071] , V̂ar(A1) = 221.2313;
Ê(A2) = [5.3335, 25.8416] , V̂ar(A2) = 247.3275.

Both mean and variance of the recent data are larger than those of the data 100 years
ago. The two model fitted means are also shown on the data plots in blue as the intervals
between the solid horizontal lines in Fig. 3. In addition, the correlation coefficient of
(ε, η) is −0.3078 for data set 1 and −0.5690 for data set 2, suggesting a negative
correlation between the location and the length for the January temperature range
data in general. That is, colder days tend to have larger temperature ranges, and this
relationship is stronger in the more recent data.

Finally, we point out that some of the parameters can be easily estimated by simple
traditional methods. For example, by averaging the two interval ends respectively, we
get the moment estimates for the two means:

ÊM (A1) = [3.5323, 22.1968] ,

ÊM (A2) = [3.8323, 23.6903] .
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They are shown in Fig. 3 as the intervals between the dashed horizontal lines, in
comparison with our model fitted means. Further, the sample correlations between the
interval centers and lengths are computed as−0.1502 and−0.3148 for data sets 1 and
2, respectively. These estimates can be viewed as a preliminary analysis. Our model
and the MCE of the parameters refine it and provide a more systematic understanding
of the data, by examining their geometric structure in the framework of random sets.

6 Conclusion

In this paper, we introduced a new model of random sets (specifically for random
intervals). In many practical situations, data are not completely known, or are only
known with some margins of error, and it is a very important issue to consider a model
which extends normality for ordinary (numerical) data. Our hierarchical normal model
extends normality for point-valued random variables, and is quite flexible in the sense
that it is well suited for both theoretical investigations and for simulations and real
data analysis. To these goals, we have defined a minimum contrast estimator for the
model parameters and proved its consistency and asymptotic normality. We carry
out simulation experiments, and finally, apply our model to a real data set (daily
temperature range data obtained from the National Weather Service). Our approach
is suitable for extensions to models in higher dimensions, e.g., a factor model for
multiple random intervals, or more general random sets, including possible extensions
to spherical random sets.

7 Proofs

7.1 Proof of Theorem 1

Assume by contradiction that θ̂n does not converge to θ0 almost surely. Then, there
exists an ε > 0 such that

P

({
ω : lim sup

n→∞

∥∥∥θ̂n(ω)− θ0

∥∥∥ ≥ ε

})
> 0.

Let F :=
{
ω : lim supn→∞

∥∥∥θ̂n(ω)− θ0

∥∥∥ ≥ ε
}

and � := 	 ∩ {θ : ‖θ − θ0‖ ≥ ε}.
By the compactness of �, for every ω ∈ F , there exists a convergent subsequence{
θ̂ni (ω)

}
of
{
θ̂n(ω)

}
such that

θ̂ni (ω)→ θ̃ (ω) ∈ �,

as i → ∞. Since θ0 is the true underlying parameter vector that generates X (n),
from Definition 2, M (X (n); θ0) converges to N (θ0, θ0) almost surely, and any sub-
sequence converges too. So we have

lim
i→∞M(X (ni ); θ0) = N (θ0, θ0).
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On the other hand, almost surely,

lim
i→∞M(X (ni ); θ0) (30)

= lim inf
i→∞ M(X (ni ); θ0)

≥ lim inf
i→∞ M(X (ni ); θ̂ni )

= lim inf
i→∞

{
M(X (ni ); θ̂ni )− M(X (ni ); θ̃)+ M(X (ni ); θ̃)

}

≥ lim inf
i→∞

{
M(X (ni ); θ̂ni )− M(X (ni ); θ̃)

}
+ lim inf

i→∞

{
M(X (ni ); θ̃)

}

= lim inf
i→∞

{
M(X (ni ); θ̃)

}

= lim
i→∞

{
M(X (ni ); θ̃)

}

= N (θ̃; θ0). (31)

Equation (31) follows from the equicontinuity of M(X (n); θ).
Therefore,

P
({

ω : N (θ0, θ0) ≥ N (θ̃(ω), θ0)
})

> 0, (32)

where θ̃(ω) ∈ � and consequently θ̃ �= θ0. But from the assumptions, N (θ0, θ0) <

N (θ̃(ω), θ0),∀ω. This contradicts (32). Hence, the desired result follows.

7.2 Proof of Theorem 2

From Taylor’s Theorem, we have

0 = ∂ H

∂θi

(
X (n) ; θ H

n

)
=∂ H

∂θi
(X (n) ; θ0)+

p∑

j=1

(
θ H

n, j − θ0, j

) ∂2 H

∂θ j∂θi
(X (n) ; θ0)

+1

2

⎡

⎣
p∑

j=1

(
θ H

n, j − θ0, j

) ∂

∂θ j

⎤

⎦

2
∂ H

∂θi
(X (n) ; εn)

= ∂ H

∂θi
(X (n) ; θ0)+

p∑

j=1

(
θ H

n, j − θ0, j

)

×
[

∂2 H

∂θ j∂θi
(X (n); θ0)+ 1

2

p∑

l=1

(
θ H

n,l − θ0,l

) ∂3 H

∂θl∂θ j∂θi
(X (n) ; εn)

]

,
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for i = 1, . . . , p, where εn lies between θ0 and θ H
n . Writing the above equations in

matrix form, we get

∂ H

∂θ
(X (n); θ0)

+
⎡

⎣∂2 H

∂θ2 (X (n); θ0)+ 1

2

p∑

j=1

(
θ H

n, j − θ0, j

)( ∂

∂θ j

(
∂2 H

∂θ

)
(X (n); εn)

)
⎤

⎦

(
θ H

n − θ0

)
= 0. (33)

Observe, by taking derivatives under the integral sign, that ∀i, j ,

∂2 H

∂θ j∂θi
(X (n); θ0)

= ∂2 H

∂θ j∂θi

∫∫

S

[
Tθ ([a, b])− T̂ ([a, b]; X (n))

]2
W (a, b)dadb,

= ∂

∂θ j
2
∫∫

S

[
Tθ ([a, b])− T̂ ([a, b]; X (n))

] ∂Tθ0

∂θi
([a, b])W (a, b)dadb,

= 2
∫∫

S

[
Tθ ([a, b])− T̂ ([a, b]; X (n))

] ∂2Tθ0

∂θ j∂θi
([a, b])W (a, b)dadb

+2
∫∫

S

(
∂Tθ0

∂θ j

∂Tθ0

∂θi

)
([a, b])W (a, b)dadb

:= I + I I.

The first term is

I = 2
∫∫

S

(

Tθ0 ([a, b])− 1

n

n∑

k=1

Yk (a, b)

)
∂2Tθ0

∂θ j∂θi
([a, b])W (a, b)dadb

= 2

n

n∑

k=1

∫∫

S

[
Tθ0 ([a, b])− Yk (a, b)

] ∂2Tθ0

∂θ j∂θi
([a, b])W (a, b)dadb

= oP (1),

according to the strong law of large numbers for i.i.d. random variables. Therefore,

∂2 H

∂θ j∂θi
(X (n); θ0) = oP (1)+ 2

∫∫

S

(
∂Tθ0

∂θ j

∂Tθ0

∂θi

)
([a, b])W (a, b)dadb, ∀i, j.

In matrix form,

∂2 H

∂θ2 (X (n); θ0) = oP (1)+ 2
∫∫

S

(
∂Tθ0

∂θ

)(
∂Tθ0

∂θ

)T

([a, b])W (a, b)dadb. (34)
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Observe again that ∀ j, k, l,

∣∣∣∣
∂3 H(X (n); εn)

∂θ j∂θk∂θl

∣∣∣∣

≤ 2
∫∫

S

∣∣∣∣
[
Tεn ([a, b])− T̂ ([a, b]; X (n))

] ∂3Tεn

∂θ j∂θk∂θl
([a, b])W (a, b)dadb

∣∣∣∣

+2

∣
∣∣∣

∫∫

S

[(
∂Tεn

∂θ j

∂2Tεn

∂θk∂θl

)
+
(

∂2Tεn

∂θ j∂θk

∂Tεn

∂θl

)
+
(

∂2Tεn

∂θ j∂θl

∂Tεn

∂θk

)]

× ([a, b])W (a, b)dadb

∣∣∣∣ ≤ 4
∫∫

S

∣∣∣∣
∂3Tεn

∂θ j∂θk∂θl
([a, b])W (a, b)dadb

∣∣∣∣

+2

∣∣
∣∣

∫∫

S

[(
∂Tεn

∂θ j

∂2Tεn

∂θk∂θl

)
+
(

∂2Tεn

∂θ j∂θk

∂Tεn

∂θl

)
+
(

∂2Tεn

∂θ j∂θl

∂Tεn

∂θk

)]

× ([a, b])W (a, b)dadb

∣∣
∣∣ := C1(εn) ≤ C2,

∀εn ∈ 	, by the compactness of 	. This, together with the strong consistency of θ H
n ,

gives

1

2

p∑

j=1

(
θ H

n, j − θ0, j

)( ∂

∂θ j

(
∂2 H

∂θk∂θl

)
(X (n); εn)

)

= 1

2

p∑

j=1

oP (1)
∂3 H(X (n); εn)

∂θ j∂θk∂θl

= oP (1),

∀k, l. Equivalently, in matrix form,

1

2

p∑

j=1

(
θ H

n, j − θ0, j

)( ∂

∂θ j

(
∂2 H

∂θ

)
(X (n); εn)

)
= oP (1). (35)

By the multivariate Slutsky’s theorem, Proposition 2, together with Eqs. (33), (34),
and (35), yields the desired result.
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