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Abstract This paper discusses the problem of estimating the population spectral dis-
tribution from high-dimensional data. We present a general estimation procedure that
covers situations where the moments of this distribution fail to identify the model
parameters. The main idea is to use generalized functional expectations as a substitute
for the moments. Beyond the consistency, we also prove a central limit theorem for
the proposed estimator. Simulation experiments illustrate the implementation of the
estimation procedure. An application to the analysis of the eigenvalues of the sample
correlation matrix of S&P 500 daily stock returns is proposed.

Keywords Large sample covariance matrix · Eigenvalues distribution · Population
spectral distribution · Empirical spectral distribution · Generalized expectation
estimation

1 Introduction

Let x1, . . . , xn be a sequence of i.i.d. zero-mean random vectors in R
p or C

p, with a
common population covariance matrix �p. When the population size p is not negli-
gible with respect to the sample size n, modern random matrix theory indicates that
the sample covariance matrix Sn = ∑n

i=1 xi x∗
i /n does not approach �p. Therefore,
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360 W. Li, J. Yao

classical statistical procedures based on an approximation of �p by Sn become incon-
sistent in such high-dimensional data situations.

The spectral distribution (SD) F A of an m×m Hermitian (or real symmetric) matrix
A is the measure generated by its eigenvalues {λA

i },

F A = 1

m

m∑

i=1

δλA
i

,

where δb denotes the Dirac point measure at b. Let (σi )1≤i≤p be the p eigenvalues of
the population covariance matrix �p. We are particularly interested in the SD

Hp := F�p = 1

p

p∑

i=1

δσi .

This SD or its limit H (see below) is referred as the population spectral distribution
(PSD) of the observation model.

The main observation is that for high-dimensional data, the observed SD Fn := F Sn

of the sample covariance matrix is far from the PSD Hp. Indeed, under reasonable
assumptions, when both dimensions p and n grow proportionally, almost surely, the
empirical SD Fn weakly converges to a deterministic distribution F , called limiting
spectral distribution (LSD), which in general has no explicit form but is expressed via
an implicit equation (Marčenko and Pastur, 1967; Silverstein, 1995; Silverstein and
Bai, 1995).

A natural question here is the recovery of the PSD Hp (or its limit H ) from the
sample covariance matrix Sn . This question has a central importance in such statistical
methodologies as principal component analysis (Johnstone, 2001) and factor analysis
that rely on an efficient estimation of some population covariance matrices.

Mestre (2008) introduces a method based on contour integration under an eigen-
value splitting condition. The estimation method has been employed in a so-called
“information plus noise” model in Hachem et al. (2012). Most recently, Li and Yao
(2013) has provided an extension of Mestre’s method to situations where the eigen-
value splitting condition cannot be met. A consistent estimator of the PSD H is derived
by solving a system of approximated moment equations. An interesting finding from
this work is that when sample eigenvalues form a unique cluster, the generalized esti-
mator is equivalent to a homogeneous estimator in Yao et al. (2012) and a full moment
estimator in Bai et al. (2010). Some related references include El Karoui (2008), Rao
et al. (2008), Chen et al. (2011), and Li et al. (2013).

However, except El Karoui (2008) and Li et al. (2013), all the cited estimation
methods are based on the moments of the PSD H . It may happen and that has been
a surprise, that these moments can not help to identify model parameters. Such an
example is provided in Sect. 5 with the sample correlation matrix of stock returns,
for which the underlying PSD H has a normalized unit mean and infinite variance
whatever the values of the model parameter. Clearly, any estimation procedure based
on the moments of H fails in such situations.

The main motivation of this work is to propose a new estimator to cover these
intriguing situations. Inspired by the generalized method of moments, we consider
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Estimation of population spectral distributions 361

empirical statistics linked to a class of general test functions. These test functions are
usually smaller than the monomials x j and thus expected to have a finite expectation
with respect to the unknown PSD H . In the example of stock returns data, H has a
infinite variance but test functions like sin(x) do have a finite integral with respect to
H , which makes its estimation possible.

The rest of the paper is organized as follows. In the next section, we put forward
a general estimator of a PSD H based on its functional expectations in a parametric
setup. Asymptotic properties of the proposed estimator are discussed in Sect. 3, includ-
ing consistency and asymptotic normality. In Sect. 4, a specific parametric model is
investigated through simulation experiments. In the next section, our method is applied
to analyze a correlation matrix of stock returns. Proofs of main theorems are collected
in the last section.

2 Generalized expectation estimation

Let G be a measure on the real line, the support of G is denoted by SG . The Stieltjes
transform of G is

sG(z) =
∫

1

x − z
dG(x), z ∈ C

+,

which is a one-to-one map defined on the upper half complex plane C
+ = {z ∈

C : �(z) > 0}. The transform can be trivially extended to C\SG by using the same
functional form, which will be adopted throughout the paper.

Suppose that the underlying PSD H belongs to a parametric family:

H = {H(θ) : θ ∈ � ⊂ R
q}.

Denote by c the limiting ratio of p/n, and F the LSD with respect to H and c. Let f
be an analytic function on an open region containing the support SF of F , and H( f )

be the expectation of f with respect to H , i.e.

H( f ) =
∫

f (t)dH(t).

We call this integral generalized expectation of the PSD H . It will be shown that
H( f ) connects to F through the Stieltjes transform s(z) of cF +(1−c)δ0 by a contour
integral:

H( f ) = K (c, f ) + 1

2π ic

∮

C
zs′(z) f (−1/s(z))dz, (1)

where s′(z) stands for the derivative of s(z), K (c, f ) is a constant related to c and
f , and C is a positive oriented contour enclosing the support SF (see Theorem 1).
The analyticity assumption on f is necessary for this formula, since it is obtained by
calculating the contour integral using the Cauchy integral theorem. When an empirical
SD Fn is obtained, we may use the Stieltjes transform sn(z) of (p/n)Fn +(1− p/n)δ0
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and its derivative s′
n(z) to estimate s(z) and s′(z), respectively, in the formula (1), and

then get an estimate

Ĥ( f ) := K (p/n, f ) + n

p

1

2π i

∮

C
zs′

n(z) f (−1/sn(z))dz. (2)

Now with the help of H( f ) and its estimate Ĥ( f ), we consider the estimation
of the PSD H . Let f1, . . . , fq be analytic functions on an open region containing
SF , γ = (H( f j ))1≤ j≤q be a q dimensional vector of generalized expectations. In
order to make θ identifiable from γ , we assume that the vector function g from R

q

to R
q : θ �→ γ is invertible in �. Under this assumption, the generalized expectation

estimator (GEE) of θ is

θ̂n = g−1(γ̂ n),

where γ̂ n = (Ĥ( f j ))1≤ j≤q with the elements defined in (2).
There are several closely related estimators in the literature. In Mestre (2008), the

author discussed a simple case where f (z) = z. In this case, H( f ) and its estimator
become

H( f ) = − 1

2π ic

∮

C
zs′(z)/s(z)dz, Ĥ( f ) = − n

p

1

2π i

∮

C
zs′

n(z)/sn(z)dz,

respectively, where the second contour integral can be figured out by residue theorem.
In the special case with monomials f j (z) = z j ( j = 0, 1, . . . q) and H is discrete
with a finite support, the GEE has been discussed in Bai et al. (2010) and Yao et al.
(2012), and has been extended by a localization method in Li and Yao (2013).

The generalization from monomials to general analytic functions proposed in this
paper has important significance, in that it provides us a much wider class of statistics
useful to the inference about H . A real data analysis presented in Sect. 5 is built on
this generalization.

3 Asymptotic properties

In this section, we study the asymptotic properties of the expectations {Ĥ( f j )} and
the GEE θ̂n . All these properties are based on the following assumptions.

Assumption (a). The sample and population sizes n, p both tend to infinity, and
in such a way that p/n → c ∈ (0,∞).

Assumption (b). There is a doubly infinite array of i.i.d. complex-valued random
variables (wi j ), i, j ≥ 1 satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4) < ∞,

such that for each p, n, letting Wn = (wi j )1≤i≤p,1≤ j≤n , the observation vectors can

be represented as x j = �
1/2
p w. j where w. j = (wi j )1≤i≤p denotes the j-th column of

Wn .
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Assumption (c). The PSD Hp of �p weakly converges to a probability distribution
H on [0,∞) as n → ∞. Moreover, the sequence of spectral norms (||�p||) is bounded
in p.

Assumptions (a)–(c) are classical conditions for the central limit theorem (CLT) of
linear spectral statistics, see Bai and Silverstein (2004, 2010).

Theorem 1 Under the assumptions (a)–(c), for each j (1 ≤ j ≤ q),

(i) the generalized expectation H( f j ) can be re-expressed as

H( f j ) = K (c, f j ) + 1

2π ic

∮

C
zs′(z) f j (−1/s(z))dz,

where C is a positively oriented contour, taking values in C\(SF ∪ {0}) and
enclosing the support SF of F, and K (c, f j ) = (1 − 1/c) f j (0) if C enclosing 0,
and zero otherwise;

(ii) the empirical expectation Ĥ ( f j ) based on sn(z) converges almost surely to H( f j ).

Theorem 2 Under the assumptions (a)–(c),

(i) the random vector
n

(
Ĥ( f j ) − Hp( f j )

)
1≤ j≤q (3)

forms a tight sequence in n, where the centralization term Hp( f j ) stands for the
generalized expectation of Hp.

(ii) If w11 and �p are real and E(w4
11) = 3, then (3) converges weakly to a Gaussian

distribution Nq(μ,	), with mean vector

μ =
(

− 1

2π i

∮

C
f j (−1/s(z))

∫
t2s′(z)2dH(t)

s(z)(1 + s(z))3 dz

)

1≤ j≤q

and covariance matrix 	 = (φi j )q×q with

φi j = −1

4π2c2

∮

C

∮

C ′
fi (−1/s(z1)) f j (−1/s(z2))k(z1, z2)dz1dz2,

where k(z1, z2) = 2s′(z1)s′(z2)/(s(z1) − s(z2))
2 − 2/(z1 − z2)

2. The contours
C and C ′ share the same properties and are assumed non-overlapping.

(iii) If w11 is complex with E(w2
11) = 0 and E(|w11|4) = 2, then (ii) also holds, except

the mean vector is zero and the covariance matrix is 	/2.

Proofs of Theorems 1 and 2 are presented in the last section.
Note that the centralization term in the above CLT conclusion is a quantity based

on Hp, but not on its limit H , which is consistent with the main result in Bai and
Silverstein (2004).

When applying the CLT, we may need to estimate the limiting mean vector (for
real case) and the covariance matrix (for both real and complex cases). From the
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strong consistency of sn(z), their natural estimators, denoted as μ̂ = (μ̂ j )1≤ j≤q and
	̂ = (φ̂i j )q×q , are respectively given by

μ̂ j = − 1

2π i

∮

C
f j (−1/sn(z))

s′
n(z)2 Ĥ( f0)

sn(z)(1 + sn(z))3 dz, f0(z) = z2,

φ̂i j = −1

4π2c2

∮

C

∮

C ′
fi (−1/sn(z1)) f j (−1/sn(z2))̂k(z1, z2)dz1dz2,

where k̂(z1, z2) = 2s′
n(z1)s′

n(z2)/(sn(z1)− sn(z2))
2 − 2/(z1 − z2)

2. The consistency
of the estimators follow immediately from the dominated convergence theorem.

Theorem 3 In addition to the assumptions (a)–(c), suppose that the true value of
the parameter θ0 is an inner point of �. Also, suppose that the function g(θ) is
differentiable in a neighborhood of θ0 and the Jacobian matrix J (θ) = ∂g/∂θ is
invertible at θ0. Then,

(i) the GEE θ̂n is strongly consistent, i.e.

θ̂n → θ0, a.s.,

(ii) moreover, if the assumptions in (ii) or (iii) of Theorem 2 on w11 hold, then

n(θ̂n − g−1(γ p))
D−→ Nq(J−1(θ0)μ(θ0), �(θ0)),

where γ p = (Hp( f j ))1≤ j≤q and �(θ0) = J−1(θ0)	(θ0)(J−1(θ0))
′ with μ and

	 defined in Theorem 2.

This theorem follows from Theorems 1 and 2 by standard arguments: consistency
of a method of moments type estimator for the first conclusion and application of the
delta method for the second conclusion. Its proof is thus omitted.

4 A small Monte-Carlo study

In this section, we study a continuous PSD H which has a density of beta distribution,
that is,

h(t |θ) = 1

B(α, β)
tα−1(1 − t)β−1, 0 < t < 1, θ ∈ �,

:= beta(t, α, β),

where B(·, ·) is the beta function and � = {(α, β) : α > 0, β > 0}.
By considering the relationship between the density and its shape parameters, we

take f1(z) = z and f2(z) = z(1 − z) for simplicity. Let γ = (H( f1), H( f2)), we
have
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Table 1 Estimates for beta distribution with α = 0.3, β = 0.4

Method GEE BCY LSE

Parameter α β α β α β

Mean 0.3003 0.4005 0.3002 0.4004 0.3002 0.4003

S.E. 0.0028 0.0041 0.0028 0.0041 0.0018 0.0028

0.285 0.290 0.295 0.300 0.305 0.310 0.315

20
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140

0.38 0.39 0.40 0.41 0.42

20
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Fig. 1 The histogram estimates of α and β compared to the corresponding density curves of asymptotic
normal distributions

g(θ)=
(

α

α + β
,

αβ

(α + β)(1 + α + β)

)

, J (θ)=
⎛

⎝

β

(α+β)2 − α
(α+β)2

β(β+β2−α2)

(α+β)2(1+α+β)2
α(α+α2−β2)

(α+β)2(1+α+β)2

⎞

⎠.

It is easy to verify the invertibility of g and J , and hence the GEE is strongly
consistent and asymptotically normal.

We numerically evaluate the performance of the GEE under this continuous model
with (α, β) = (0.3, 0.4). Sample is drawn from standard complex normal distribution
with the sample size n = 1000. The population eigenvalues are chosen as the (p +1)-
quantiles of H with p = 2000. The independent replications are 5000.

For the purpose of comparison, we also calculate two other estimates, one is the
moment estimator in Bai et al. (2010) (referred as BCY), and the other is the least-
squares type estimator in Li et al. (2013) (referred as LSE). We also examine the CLT
of the GEE by comparing the histograms of estimates with their theoretical asymptotic
distributions. The results are collected in Table 1 and Fig. 1, respectively.

Results in Table 1 show that, with the chosen functions f1(z) and f2(z), the GEE and
BCY are almost equivalent for the studied model, while the LSE is better from the view
point of standard errors. All the three estimates are slightly, but systematically, biased
as shown in the table, which is due to the fact Hp 
= H . The biases are inevitable for a
finite p and will vanish when p approaches to infinity. Results in Figure 1 demonstrate
that the histogram estimates match their asymptotic normal distributions very well.
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5 Application to S&P 500 daily stocks data

We consider an empirical correlation matrix of daily returns from stocks listed in the
Standard & Poor Index, and analyze the distribution of its eigenvalues. The time period
is from September, 2007 to September 2011 covering 1001 trading days. As 12 stocks
listed as by September 2011 do not have a complete history, they are removed from
the analysis and in total 488 US stocks have been included. The total data matrix of
the returns is then with data dimension p = 488 and sample size n = 1000. Next the
488 × 488 sample correlation matrix of these returns is computed and we obtain its
488 sample eigenvalues.

One may object that daily stock returns are commonly known to be uncorrelated
but dependent in time, so that in a strict sense, our theoretical results where temporal
independence has been assumed do not cover such situations. However, we will provide
evidence below that the theory developed in this paper applies as well: indeed, the
structure of the correlations between returns predicted by the theory matches very
well the empirically observed one. Therefore, the present theory seems applicable to
a wider class of high-dimensional data than the one assumed in the theoretical results
(Theorems 1 and 3).

It is well known that for correlation matrices from stock returns or macro-economic
time series, a few large eigenvalues detach from the bulk of the eigenvalues and they
are termed as spikes, see Johnstone (2001). For the matrix under hands, we list below
the eight largest eigenvalues and the eight smallest ones:

237.96, 17.763, 14.003, 8.7635, 5.2994, 4.8569, 4.3945, 3.5001,
.... .... ....

0.0198, 0.0194, 0.0190, 0.0178, 0.0174, 0.0164, 0.0155, 0.0147.

Several spike eigenvalues are clearly presented here and the largest has a highly
dominant value describing the general tendency over the time period of the US stock
market (“market mode”). Moreover, analysis of these spike eigenvalues is definitely
different from that of the bulk eigenvalues. Interested readers are referred to Johnstone
(2001), Baik and Silverstein (2006), and Bai and Yao (2008) for theoretic backgrounds,
and to Kritchman and Nadler (2008) and Passemier and Yao (2012) for recent advances
on related inference theory.

We concentrate ourselves on the analysis of the bulk eigenvalues by removing the
first 6 largest ones which are deemed as spike eigenvalues. The question we address
here is: what is the structure of the eigenvalues at the population level that has led to
these observed eigenvalues. To this end and following Bouchaud and Potters (2011)
and Li et al. (2013), an inverse cubic density is assumed for the PSD H associated to
the bulk eigenvalues, that is,

h(t |α) = c

(t − a)3 I (t ≥ α), 0 ≤ α < 1,

where c = 2(1 − α)2 and a = 2α − 1.
As already noticed, moment-based methods fail to estimate the parameter α in that

the moments of H(α) can not identify the parameter: H has infinite variance and unit
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Fig. 2 Curves of H( f, α) (left) and ∂ H( f, α)/∂α (right)
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Fig. 3 The empirical distribution function of the sample eigenvalues (plain black) compared with the
predicted LSD functions corresponding to H (̂α) (left, dashed blue) and H (̂α′) (right, dashed blue) (color
figure online)

mean whatever the values of α. However, expectations of a suitably-chosen “test”
function with respect to H can help to identify α.

Here, we provide an example with the test function f (z) = sin(z), that is, we
consider the expectation

H( f, α) =
∫

sin(t)h(t |α)dt,

which exists and is increasing with respect to α (although H( f, α) has no analytic
expression), see Fig. 2.

The estimate of the expectation is Ĥ( f, α) = 0.5546 which indicates α̂ = 0.3205.
Recall that the same data set has been analyzed in Li et al. (2013) and the LSE estimate
is α̂′ = 0.4380. To assess these two estimates, we employ the Wasserstein distance
W = ∫ |Q H (t) − Q Ĥ (t)|dt where Qμ(t) is the quantile function of distribution μ.
We calculate the distance between the ESD of the bulk eigenvalues and the predicted
LSD derived from the estimate of H(α). It turns out that the distance is d = 0.0824
for H (̂α) and is d ′ = 0.1062 for H (̂α′). The ESD function and the predicted LSD
functions are plotted in Fig. 3. The distances as well as the figure show that our method
yields a better fit to the ESD.

Potential applications in the future of these findings can be done through an explicit
factor modeling where factor scores and loadings, once estimated, will provide impor-
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tant information on the correlations, at the population level, between returns of the
listed stocks.

6 Proofs

6.1 Lemmas

We present two lemmas where the conclusions will be used in the proof of our main
theorem.

Lemma 1 Under Assumptions (a)–(c),

(i) the empirical spectral distribution Fn converges in distribution to a non-random
distribution F, and the Stieltjes transform s(z) of cF + (1 − c)δ0 satisfies the
following equation:

z = − 1

s(z)
+ c

∫
t

1 + ts(z)
dH(t) , z ∈ C

+, (4)

(ii) for any z ∈ C\(SF ∪ {0}) and sufficient large n, the Stieltjes transform sn(z) of
(p/n)Fn +(1− p/n)δ0 converges almost surely to s(z), which solves the equation
(4).

Proof The first conclusion is from Silverstein (1995) and the second is from Li et al.
(2013). ��

Let scn ,Hp
(z) be the finite dimensional version of the Stieltjes transform s(z), which

solves the following equation:

z = − 1

s(z)
+ cn

∫
t

1 + ts(z)
dHp(t), z ∈ C

+,

with cn = p/n. We are going to establish limiting results on

(Yn(z), Zn(z)) = n(sn(z) − scn ,Hp
(z), s′

n(z) − s′
cn ,Hp

(z)),

when viewed as a random process defined on a contour C of the complex plane. The
contour is described as follows. Let v0, xl , xr be any real numbers satisfying v0 > 0,

xl < lim infn λ
�p
min I(0,1)(c)(1 − √

c)2 and xl 
= 0, and xr > lim infn λ
�p
max(1 + √

c)2.
Then

C ≡ {xl + iv : v ∈ [0, v0]} ∪ Cu ∪ {xr + iv : v ∈ [0, v0]},

where Cu = {x + iv0 : x ∈ [xl , xr ]}.
As sn(z) and its derivative s′

n(z) may both converge to infinite when z is close to
the real line. We introduce a truncated version {(Ŷn(z), Ẑn(z))} of the original process
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following the same idea as in Bai and Silverstein (2004). More precisely, choose a
sequence εn decreasing to zero satisfying for some α ∈ (0, 1)

εn ≥ n−α.

Let

Cl =
{ {xl + iv : v ∈ [n−1εn, v0]}, if xl > 0;

{xl + iv : v ∈ [0, v0]}, if xl < 0,

and

Cr = {xr + iv : v ∈ [n−1εn, v0]}.

Write Cn = Cl ∪ Cu ∪ Cr , for z = x + iv we define

Ŷn(z) =
{

Yn(z), for z ∈ Cn;
Yn(x + in−1εn), for z ∈ C\Cn;

and

Ẑn(z) =
{

Zn(z), for z ∈ Cn;
Zn(x + in−1εn), for z ∈ C\Cn .

Obviously, (Yn(z), Zn(z)) agrees with (Ŷn(z), Ẑn(z)) on Cn .

Lemma 2 If the assumptions (a)–(c) hold, then:

(i) The process {(Ŷn(z), Ẑn(z))} forms a tight sequence on C.
(ii) If w11 and �p are real and E(w4

11) = 3, then (Ŷn(z), Ẑn(z)) converges weakly
to a Gaussian process (Y (z), Z(z)), with means

EY (z) =
∫

ct2s′(z)2dH(t)

s(z)(1 + s(z))3 , EZ(z) = d

dz

∫
ct2s′(z)2dH(t)

s(z)(1 + s(z))3 , (5)

and covariance functions

Cov(Y (z), Y (z̃)) = 2s′(z)s′(z̃)
(s(z) − s(z̃))2 − 2

(z − z̃)2 := k(z, z̃), (6)

Cov(Y (z), Z(z̃)) = ∂

∂ z̃
k(z, z̃), (7)

Cov(Z(z), Z(z̃)) = ∂2

∂z∂ z̃
k(z, z̃), (8)

where Cov(X, Y ) ≡ E(X − EX)(Y − EY ).
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(iii) If w11 is complex with E(w2
11) = 0 and E(|w11|4) = 2, then (i) also holds, except

the means are zero and the covariance functions are 1/2 the function given in
(6)–(8).

Proof Firstly consider (i). According to Lemma 1.1 in Bai and Silverstein (2004),
we know that the process {Ŷn(z)} forms a tight sequence on C. Thus for any sub-
sequence {Ŷnk (z)}, there exists a further sub-sequence {Ŷnk( j) (z)} converging weakly
to a limit, say Ŷnk(0)

(z), as j → ∞. From the strong representation theorem (Sko-
rohod, 1956; Dudley, 1985), there is a probability space on which we can define a
sequence {Ỹnk( j) (z)} such that Ỹnk( j) (z) is identical in distribution to Ŷnk( j) (z) for each
j = 0, 1, . . . , and Ỹnk( j) (z) converges almost surely to Ỹnk(0)

(z). Now using
Vitali’s convergence theorem (see Lemma 2.3 in Bai and Silverstein (2004)),
we obtain that Ỹ ′

nk( j)
(z) converges almost surely to Ỹ ′

nk(0)
(z) for all z ∈ C.

Therefore, (Ŷnk( j) (z), Ŷ ′
nk( j)

(z)) converges weakly to (Ŷnk(0)
(z), Ŷ ′

nk(0)
(z)), and thus

{(Ŷn(z), Ẑn(z))} = {(Ŷn(z), Ŷ ′
n(z))} forms a tight sequence.

Considering (ii) and (iii), the convergence and the limiting covariance functions
follow from the above arguments and Lemma 1.1 in Bai and Silverstein (2004), and
thus we only need to calculate the mean function EY (z) in (5).

In Bai and Silverstein (2004), it has been proved that

EY (z) = c
∫

s3(z)t2(1 + s(z))−3dH(t)

(1 − c
∫

t2s2(z)(1 + ts(z))−2dH(t))2
. (9)

On the other hand, taking the derivative of z on both sides of the equation (4), we have

s2(z)

s′(z)
= 1 − c

∫
t2s2(z)

(1 + ts(z))2 dH(t).

Substitute this to (9), we get

EY (z) =
∫

ct2s′(z)2dH(t)

s(z)(1 + s(z))3 .

Then, the proof of the lemma is complete. ��

Proof of Theorem 1 Let un(z) = −1/sn(z), ucn ,Hp (z) = −1/scn ,Hp
(z), and u(z) =

−1/s(z). Note that as n → ∞, both un(z) and ucn ,Hp (z) converge to u(z) almost
surely.

Write D = {u(z) : z ∈ C}. From the equation (4) and the fact that D encloses 0 if
and only if C encloses 0, we have
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∮

D
z f j (u(z))ds(z) =

∮

D

f j (u)

u
du + c

∫ ∮

D

t f j (u)

u(u − t)
dudH(t)

= (1 − c)
∮

D

f j (u)

u
du + c

∫ ∮

D

f j (u)

u − t
dudH(t)

= −2π icK (c, f j ) + 2π icH( f j ),

for j = 1, . . . , q, where the last equation follows the residue theorem. Therefore, we
get

H( f j ) = K (c, f j ) + 1

2π ic

∮

D
z f j (u(z))ds(z)

= K (c, f j ) + 1

2π ic

∮

C
zs′(z) f j (−1/s(z))dz, (10)

which is the first conclusion of the theorem.
The second conclusion follows from Lemma 1 and the dominated convergence

theorem. ��
Proof of Theorem 2 For simplicity, we prove the theorem by using the integral

contour C = C ∪ C where C = {x − iv : x + iv ∈ C}. Then Lemma 2 holds on C .
From the formula (10),

Hp( f j ) = K (cn, f j ) + 1

2π icn

∮

C
zs′

cn ,Hp
(z) f j (ucn ,Hp (z))dz,

for j = 1, . . . , q. By the mean value theorem (Evard and Jafari, 1992),

Ĥ( f j ) − Hp( f j )

= 1

2π icn

∮

C
z(s′

n(z) f j (un(z)) − s′
cn ,Hp

(z) f j (ucn ,Hp (z)))dz

= 1

2π icn

∮

C
z
(
(s′

n(z) − s′
cn ,Hp

(z)) f j (un(z))

+ s′
cn ,Hp

(z)
{
�[ f ′

j (ξ1(z))] + �[ f ′
j (ξ2(z))]

}
(un(z) − ucn ,Hp (z))

)
dz,

where ξ1(z), ξ2(z) are two points on the segment connecting un(z) and ucn ,Hp (z).
Notice that, with probability one, for all n large,

∣
∣
∣
∣

∮

C
Yn(z) − Ŷn(z)dz

∣
∣
∣
∣ < K1εn and

∣
∣
∣
∣

∮

C
Zn(z) − Ẑn(z)dz

∣
∣
∣
∣ < K2εn
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for some constants K1 and K2, which both converge to zero as n → ∞. In addition,
for every z ∈ C,

un(z), ξ1(z), ξ2(z), ucn ,Hp (z) → u(z),

sn(z), scn ,Hp
(z) → s(z),

s′
cn ,Hp

(z) → s′(z),

almost surely, as n → ∞. From Lemma 2, we have

n(Ĥ( f j ) − Hp( f j )) = 1

2π ic

∮

C
z
(

Ẑn(z) f j (u(z)) + Ŷn(z)u′(z) f ′
j (u(z))

)
dz + δn,

with δn → 0 almost surely. Applying Lemma 2 again and the continuous mapping
theorem, we get that the random vector

n
(
Ĥ( f j ) − Hp( f j )

)
1≤ j≤q

forms a tight sequence.
Moreover, under the assumptions in (ii) or (iii),

n(Ĥ( f j ) − Hp( f j ))
D−→ 1

2π ic

∮

C
z
(

Z(z) f j (u(z)) + Y (z)u′(z) f ′
j (u(z))

)
dz

= − 1

2π ic

∮

C
Y (z) f j (u(z))dz

:= Vj , j = 1, . . . , q. (11)

where (11) is derived from the fact Z(z) = Y ′(z) and integration by part. It follows
that

n
(
Ĥ( f j ) − Hp( f j )

)
1≤ j≤q

D−→ (Vj )1≤ j≤q (12)

which is a Gaussian vector from the fact that Riemann sums corresponding to these
integrals are multivariate Gaussian, and that weak limits of Gaussian vectors can only
be Gaussian.

Applying the formulae (5), (6), and (11), for the real case, the limiting mean of
(12) is given by

E(Vj ) = − 1

2π i

∮

C
f j (−1/s(z))

∫
t2s′(z)2dH(t)

s(z)(1 + s(z))3 dz,

and the limiting covariance matrix is given by

Cov(Vi , Vj ) = − 1

4π2c2

∮

C

∮

C ′
fi (u(z1)) f j (u(z2))Cov(Y (z1), Y (z2))dz1dz2

= − 1

4π2c2

∮

C

∮

C ′
fi (u(z1)) f j (u(z2))k(z1, z2)dz1dz2,
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while for the complex case, E(Vj ) = 0 and Cov(Vi , Vj ) is half of that in the real case.
The proof of the theorem is complete. ��
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