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Abstract This paper aims at investigating model checking for parametric models with
response missing at random which is a more general missing mechanism than missing
completely at random. Different from existing approaches, two tests have normal dis-
tributions as the limiting null distributions no matter whether the inverse probability
weight is estimated parametrically or nonparametrically. Thus, p values can be eas-
ily determined. This observation shows that slow convergence rate of nonparametric
estimation does not have significant effect on the asymptotic behaviors of the tests
although it may have impact in finite sample scenarios. The tests can detect the alter-
natives distinct from the null hypothesis at a nonparametric rate which is an optimal
rate for locally smoothing-based methods in this area. Simulation study is carried out
to examine the performance of the tests. The tests are also applied to analyze a data
set on monozygotic twins for illustration.

X. Guo
Department of Mathematics, Hong Kong Baptist University, Fong Shu-Chuen Library 1110,
Kowloon Tong, Hong Kong
e-mail: liushengjunyi@163.com

X. Guo
College of Economics and Management, Nanjing University of Aeronautics and Astronautics,
29 Jiangjun Avenue, 210016, Nanjing, China

W. Xu
School of Statistics, Center for Applied Statistics, Renmin University of China,
Zhongguancun Street 59, 100872 Beijing, China
e-mail: xwlbnu@163.com

L. Zhu (B)
Department of Mathematics, Hong Kong Baptist University, Fong Shu Chuen Library 1208 Waterloo
Road 224, Kowloon Tong, Hong Kong
e-mail: lzhu@hkbu.edu.hk

123



230 X. Guo et al.

Keywords Inverse probability weight · Response missing at random ·
Model checking

1 Introduction

The parametric regression model has received considerable attention, and relationship
between the scalar response Y and the covariates X of dimension m is described as

Y = f (X, θ0) + ε, (1)

where f (·, θ0) is a known parametric function, θ0 is an unknown parameter vector of
p-dimension. It is assumed that the conditional expectation of ε given X is zero.

To prevent wrong conclusion and improve estimation efficiency, it is important
to develop testing methods to ascertain whether the hypothetical parametric model
is satisfied. When the response measurements are all available, there are a number
of proposals available in the literature. For example, Härdle and Mammen (1993)
constructed a test statistic that is based on the L2 distance between parametric and
nonparametric estimators with the assistance from the wild bootstrap for critical value
determination. Zheng (1996) suggested a consistent test of functional form of nonlinear
regression models. Stute et al. (1998b) and Stute and Zhu (2002) considered to check
the parametric regression models by replacing the residual cusum processes by their
innovation martingale, and the resulting tests are asymptotically distribution free. Aerts
et al. (1999) constructed tests that are based on orthogonal series that involved selecting
a nested model sequence in the bivariate regression. Fan and Huang (2001) introduced
a method called Neyman threshold test using the fact that the Fourier transform of
the residuals compresses useful signals into low frequencies so that the power of the
adaptive Neyman test can be enhanced. Stute et al. (2008) constructed a test that is
based on the residual empirical process marked by proper functions of the regressors to
deal with large dimension of the regressor vector. Eubank et al. (2005) proposed data-
driven lack-of-fit tests using fit comparison statistics that are based on nonparametric
linear smoothers. All these tests can usually be classified into two categories: using
local smoothing methods (nonparametric function fitting) to construct test statistics
and using global smoothing methods (empirical process) to define tests. It is well
known that the two types of methodologies have their own pros and cons. The former
can be more sensitive to high-frequency alternative models than the tests based on the
latter methodology, whereas the latter is more sensitive to smooth alternatives, and
can detect the alternatives distinct from the null at faster convergence rate. Thus, both
methodologies have been the main methodologies popularly used in practice. In this
paper, we construct tests that can be classified into the first category in our setting. We
will see that the limiting null distributions are normal and thus determining p values
is easily implemented. We will also make a limited comparison with a test in the latter
category to see their advantages and disadvantages in the simulation study.

In practice, it is often the case that not all response measurements are observable.
For example, due to limited budget, only the responses for a part of subjects among
the fully cohort are measured. Individuals may refuse to answer certain questions,
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or investigators forget to write down the related information. Thus, it is of interest
for us to investigate model checking with missing response. Among others, González-
Manteiga and Pérez-González (2006) constructed a test that is based on the L2 distance
between the nonparametric and parametric fits. Xu et al. (2012) defined a residual-
marked empirical process to construct a test. Based on two completed samples, which
are constructed by imputation and inverse probability weighting methods, Sun and
Wang (2009) introduced two score-type tests and two empirical process-based tests
for the general linear models with missing response. Recently, Li (2012) proposed a
test that is based on minimum integrated square distances between the nonparametric
and parametric fits, which can be viewed as an extension of the minimum distance test
proposed by Koul and Ni (2004) to handle missing responses.

In this paper, we propose two tests for model (1). For a known parameter function
f (·, ·), almost surely, the null hypothesis is

H0: E(Y |X) = f (X, θ0), (2)

for some θ0 against alternative hypothesis

H1: E(Y |X) �= f (X, θ), (3)

for any θ . The interesting feature of the newly proposed tests is that although the tests
are also dependent on nonparametric smoothing, belonging to the category of local
smoothing methodologies, the limiting null distributions are tractable for p value deter-
mination. This advantage makes the tests easy to implement compared with existing
ones. The tests can be regarded as an extension of Zheng (1996)’s test. As discussed
above, there are many other possible approaches which can be used to handle the prob-
lem. We focus on the Zheng (1996)’s test in this article due to its technical tractability
and easy computation. Dette and von Lieres und Wilkau (2001) compared several tests
for additivity by kernel-based methods. They pointed out that, for realistic sample sizes,
the bias has to be taken into account. For Zheng (1996)’s method, its standardized ver-
sion has no bias converging to infinity and thus no bias-correction is needed. Gao et al.
(2011) argued that a major advantage of Zheng (1996)’s method over its competitors
is that an indirect estimator of the unknown nonparametric σ 2(X) = E(ε2|X) is used
to replace σ 2(X). They believed such a feature is attractive when the conditional vari-
ance function σ 2(X) is a generally smooth function. Further, no matter whether the
inverse probability is estimated parametrically or nonparametrically, the tests inter-
estingly have the same asymptotic properties although in finite sample scenarios, they
should have different performances. Compared with the test developed by Li (2012),
both higher-order kernel functions and trimming on the boundary of a density function
that are used in many applications of nonparametric regressions are not needed. Also
compared with Sun and Wang (2009), we do not need to construct the completed data
set first for test statistic construction.

The rest of this paper is organized as follows. In Sect. 2, we construct the test
statistics and derive their asymptotic properties under the null hypothesis and local
alternatives. In Sect. 3, simulation results are reported to examine the performance of
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the tests and a real data analysis is carried out for illustration. The proofs are presented
in the Appendix.

2 Test procedures

2.1 Construction of test statistics

For model (1), it is assumed that the response Y is missing at random (MAR), while
the observations for the covariate X are available. Let δ be the missing indicator for
the individual whether Y is observed (δ = 1) or not (δ = 0). Then, MAR implies

P(δ = 1|Y, X) = P(δ = 1|X) = π(X).

MAR is an usual missing mechanism in practice, which is more general than missing
completely at random (MCAR), see Little and Rubin (1987).

Denote ε = Y − f (X, θ0); under the MAR assumption, we have

E

(
δ

π(X)
ε|X

)
= E

[
εE

(
δ

π(X)
|X, Y

)
|X

]
= E[ε|X ].

Or equivalently

E(δε|X) = E[εE(δ|X, Y )|X ] = π(X)E(ε|X).

Consequently, under H0 of (2), we have

E

(
δ

π(X)
εE

(
δ

π(X)
ε|X

)
W (X)

)
= E

(
E2

(
δ

π(X)
ε|X

)
W (X)

)
= 0,

E(δεE(δε|X)W (X)) = E(E2(δε|X)W (X)) = 0, (4)

where W (X) is some positive weight function which will be discussed below. Under
the alternative hypothesis H1, E(ε|X) �= 0, we have

E

(
δ

π(X)
εE

(
δ

π(X)
ε|X

)
W (X)

)
= E

(
E2

(
δ

π(X)
ε|X

)
W (X)

)
> 0,

E(δεE(δε|X)W (X)) = E(E2(δε|X)W (X)) > 0. (5)

Thus, the null hypothesis H0 holds if and only if the Eq. (4) are zero. In other words,
both can be used to be the bases for constructing test statistics. The empirical version
of the left-hand side in (4) can then be used to define test statistics. We will discuss
their pros and cons later.

Let (x1, y1, δ1), . . . , (xn, yn, δn) be an i.i.d. sample from (X, Y, δ). Estimate the
terms E(δε/π(X)|X = x) and E(δε|X = x) by, respectively,
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Ê

(
δ

π(X)
ε|xi

)
= 1

n − 1

n∑
j �=i

δ j

π̂(x j )
Kh(xi − x j )ε̂ j/ p̂(xi ),

Ê(δε|xi ) = 1

n − 1

n∑
j �=i

δ j Kh(xi − x j )ε̂ j/ p̂(xi ).

where ε̂ j = y j − f (x j , θ̂N ) with θ̂N being an estimator of θ0, which will be specified
later, π̂(x) is a nonparametric estimator of π(x), Kh(·) = K (·/h)/hm with K (·) being
a kernel function and h being the bandwidth, and p̂(x) is the estimator of the density
of X p(x) defined as

p̂(xi ) = 1

n − 1

n∑
j �=i

δ j

π̂(x j )
Kh(xi − x j ).

Since our aim is to construct some efficient and simple tests, a natural selection of
the weight function will be the density function p(x) because it can eliminate the
boundary effect of the kernel estimation. Two test statistics are defined as follows,

T N
n = 1

n(n − 1)

n∑
i=1

δi

π̂(xi )
ε̂i

n∑
j �=i

δ j

π̂(x j )
Kh(xi − x j )ε̂ j

= 1

n(n − 1)

n∑
i=1

n∑
j �=i

δi

π̂(xi )

δ j

π̂(x j )
Kh(xi − x j )ε̂i ε̂ j ;

RN
n = 1

n(n − 1)

n∑
i=1

δi ε̂i

n∑
j �=i

δ j Kh(xi − x j )ε̂ j

= 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j Kh(xi − x j )ε̂i ε̂ j . (6)

In general, the function π(X) is unknown and we can estimate it by a kernel esti-
mator:

π̂(xi ) =
∑n

j=1 δ j Kh(xi − x j )∑n
j=1 Kh(xi − x j )

. (7)

When π(X) follows a parametric structure, that is, π(X) = π(X, α), we then only
need to estimate the parameter α. As an example, for the logistic regression expressed
as π(xi , α) = (1 + exp(−α0 − ατ

1 xi ))
−1, where α = (α0, α1)

τ is an unknown vector
parameter, we can obtain consistent estimators of the regression coefficients α̂ by the
maximum likelihood estimation. Then, the corresponding estimator of π(x, α) follows
as

π(xi , α̂) = (1 + exp(−α̂0 − α̂1xi ))
−1. (8)
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Below we analyze the estimation of the regression parameter θ0 using the inverse
probability weight least-squares method:

θ̂N = arg min
n∑

i=1

δi

π̂(xi )
{yi − f (xi , θ)}2,

when π(X) is estimated nonparametrically; and

θ̂P = arg min
n∑

i=1

δi

π(xi , α̂)
{yi − f (xi , θ)}2,

when π(X, α) is estimated parametrically. Correspondingly, when the parameter func-
tion π(X, α) is estimated by π(X, α̂), we denote the statistics in (6) as, respectively,

T P
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δi

π(xi , α̂)

δ j

π(x j , α̂)
Kh(xi − x j )ε̂i ε̂ j ,

R P
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j Kh(xi − x j )ε̂i ε̂ j , (9)

where ε̂ j = y j − f (x j , θ̂P ).

Remark 1 The proposed tests RN
n and R P

n are some modifications of the complete
case-based tests. Though we only use the completely observed units in the test con-
structions, an inverse probability weight method is adopted as seen on page 6 to
estimate the parameter θ0 and get ε̂i . Use of the inverse probability weight method
requires estimation of π(·) or π(·, α) by all the available data. Thus, the asymptotic
properties may not be directly derived from the transfer principle which was recently
developed by Koul et al. (2012). In that paper, they proved the efficiency of complete
case statistics in the situation of missing response at random situation, see also Müller
and Van Keilegom (2012) and Chown and Müller (2013) for more discussions about
the transfer principle. On the other hand, we note that the asymptotic properties of
RN

n and R P
n are easier to develop compared with those for T N

n and T P
n . Thus in the

appendix, we focus on the asymptotic properties of T N
n and T P

n .

2.2 Asymptotic behavior of the test statistics

Interestingly, we find that both the test statistics T N
n in (6) and T P

n in (9) have the same
asymptotic properties. Also, the asymptotic properties of RN

n in (6) and R P
n in (9) are

equivalent. To state the theorems, we introduce some notations that are related to the
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limiting variances of the test statistics. Let

	̂TN = 2

n(n − 1)

n∑
i=1

n∑
j �=i

1

hm

δiδ j

π̂2(xi )π̂2(x j )
K 2

(
xi − x j

h

)
ε̂2

i ε̂2
j ,

	̂RN = 2

n(n − 1)

n∑
i=1

n∑
j �=i

1

hm
δiδ j K 2

(
xi − x j

h

)
ε̂2

i ε̂2
j , (10)

	̂TP and 	̂RP are similarly defined as 	̂TN and 	̂RN respectively except for using
π(xi , α̂) and ε̂i = yi − f (xi , θ̂P ) instead of π̂(xi ) and ε̂i = yi − f (xi , θ̂N ) respectively.
The asymptotic normalities for T N

n , T P
n and RN

n , R P
n under H0 are stated below.

Theorem 1 Under H0 and the conditions in Appendix, we have

nhm/2T N
n → N (0, 	T ), and nhm/2T P

n → N (0, 	T ),

nhm/2 RN
n → N (0, 	R), and nhm/2 R P

n → N (0, 	R),

where

	T = 2
∫

K 2(u)du ·
∫

(σ 2(x))2 p2(x)

π2(x)
dx .

	R = 2
∫

K 2(u)du ·
∫

(σ 2(x))2 p2(x)π2(x)dx .

Moreover,	T can be consistently estimated by 	̂TN or 	̂TP, which depends on whether
π(xi ) is estimated parametrically or nonparametrically, and 	R can be consistently
estimated by 	̂RN or 	̂RP, that is, in probability

	̂TN → 	T , and 	̂TP → 	T ;
	̂RN → 	R, and 	̂RP → 	R .

When there are no missing data, that is, π(x) ≡ 1, 	T and 	R are identical to 	 in
Zheng (1996). Theorem 1 then is the same as Lemma 3.3 in Zheng (1996). Further
compared with the results in the models without missing data, we can see clearly that
the test statistics T N

n and T P
n induce larger asymptotic variances whereas RN

n and R P
n

can obtain smaller asymptotic variances. However, this does not mean that RN
n and

R P
n generally are more powerful compared with T N

n and T P
n , since the powers of the

tests also depend on the non-random drifts. We will discuss this point later. According
to Theorem 1, the standardized versions of the test statistics V TN

n , V TP
n , V RN

n and V RP
n

can be defined as follows

V TN
n = nhm/2T N

n /

√
	̂TN, and V TP

n = nhm/2T P
n /

√
	̂TP

V RN
n = nhm/2 RN

n /

√
	̂RN, and V RP

n = nhm/2 R P
n /

√
	̂RP.

123



236 X. Guo et al.

By Slusky Theorem, we have the following corollary.

Corollary 1 Under H0 and the conditions in Appendix, we have

V TN
n → N (0, 1), and V TP

n → N (0, 1);
V RN

n → N (0, 1), and V RP
n → N (0, 1).

Thus, different from existing ones, it is easy to determine p values when our tests are
applied. We now investigate the power behaviors of the tests under alternatives. We
consider the following local alternatives:

H1n : Y = f (X, θ0) + CnG(X) + η, (11)

where E(η|X) = 0, the function G(·) satisfies E(G2(X)) < ∞ and {Cn} is a constant
sequence. We have the following theorem.

Theorem 2 Assume the same conditions as Theorem 1. Under the local alternatives
H1n, we have when Cn = n−1/2h−m/4,

nhm/2T N
n → N (μT , 	T ), and nhm/2T P

n → N (μT , 	T )

nhm/2 RN
n → N (μR, 	R), and nhm/2 R P

n → N (μR, 	R),

where

μT = E
[
l2(X)p(X)

]
, and μR = E

[
l2(X)π2(X)p(X)

]
,

with 	1 = E( f ′(X, θ0) f ′τ (X, θ0)) and l(X) = G(X) − f ′τ (X, θ0)	
−1
1 E[G(X) f ′

(X, θ0)]. The definitions of 	T and 	R are the same as those in Theorem 1.
When n−1/2h−m/4 = o(Cn), the test statistics converge in probability to infinity.

Theorem 2 indicates that the proposed tests have asymptotic power 1 for the
local alternatives which are distinct from the null hypothesis at the rate slower than
n−1/2h−m/4. Also, the tests can still detect the alternatives converging to the null
hypothesis at the rate n−1/2h−m/4, which is the same rate as that in Li (2012). How-
ever, since the asymptotic variances in Li (2012) and the present paper are very dif-
ferent, it is not easy to tell which one can outperform the other in theory. Thus, a
comparison will be made through simulation studies. Denote D1 = μT /

√
	T and

D2 = μR/
√

	R , from the above theorems, it can be also shown that the asymptotic
powers of T N

n (or T P
n ) and RN

n (or R P
n ) are 2 − �(zα/2 − D1) − �(zα/2 + D1) and

2 −�(zα/2 − D2)−�(zα/2 + D2) respectively for the alternatives, which are distinct
from the null ones at rate n−1/2h−m/4. Here, �(·) is the standard normal distribution
function, and zα/2 is the α/2-th quantile. When the response is missing completely
at random, that is, 0 < π(X) = c ≤ 1, after some simple calculations, we have
D1 = D2. As a result, the test statistics T N

n (or T P
n ) and RN

n (or R P
n ) have the same

asymptotic power in this special case.
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When there are no missing data, we get similar results as Theorem 3 in Zheng (1996).
We should note that we model the local alternatives slightly different from Zheng
(1996). Zheng (1996) sets the alternative as m(X) = f (X, θ̃0)+ CnG(X). Here, θ̃0 is
the value of θ that minimizes S̃0n(θ) = E[(m(X)− f (X, θ))2] with m(X) = E(Y |X).
Under H0, θ̃0 = θ0. If the alternative hypothesis holds, θ̃0 will typically depend
on p(X). Note that under the local alternatives we design, m(X) = f (X, θ̃0) +
f (X, θ0) − f (X, θ̃0) + CnG(X) and θ̃0 − θ0 = Cn	

−1
1 E[G(X) f ′(X, θ0)]. Thus

m(X) = f (X, θ̃0)+Cnl(X). Here l(X) = G(X)− f ′τ (X, θ0)	
−1
1 E[G(X) f ′(X, θ0)].

Recall that θ̃0 is the value of θ that minimizes S̃0n(θ) = E[(m(X) − f (X, θ))2].
Thus, in Zheng’s setting, we can have E[G(X) f ′(X, θ̃0)] = 0. While, in our setting,
there is also an orthogonality condition, that is, E[l(X) f ′(X, θ0)] = 0. If we adopt
the setting used in Zheng (1996), μT and μR will be equal to E[G2(X)p(X)] and
E[G2(X)π2(X)p(X)] respectively. Compared with the situations with no missing
data, though the asymptotic variances of T N

n and T P
n are larger, the drift of them is the

same. That is, though the asymptotic variances of RN
n and R P

n are smaller, the drift of
them is also smaller.

Consider the fixed alternative, H1: m(X) = f (X, θ0)+G(X) = f (X, θ̃0)+�(X),
here �(X) = f (X, θ0)− f (X, θ̃0)+G(X). Note that even under the fixed alternative,
according to White (1981), θ̂N is still a root-n consistent estimator of θ̃0. It is easy to
see that T N

n = E[�2(X)p(X)] + op(1) and RN
n = E[π2(X)�2(X)p(X)] + op(1).

Similar results can be obtained for T P
n and R P

n . Thus, the consistencies of the proposed
tests are proved. Dette (1999) found an interesting phenomenon, that is, generally
for the local smoothing-based test procedures, the rate of convergence is different
under the null hypothesis and the fixed alternatives. To be precise, while the rate
is (n2hm)−1 under H0, it is of order n−1 under the fixed alternative. Dette and his
coauthors showed that this is generally true in many different testing problems, see
also Dette (2002), Dette and Spreckelsen (2003), Dette and Spreckelsen (2004) and
Dette and Hildebrandt (2012). We can prove that this is still true even when there are
some missing data. Specially, we can have

√
n(T N

n − E[�2(X)p(X)]) → N (0, σ 2
T )

and
√

n(RN
n − E[π2(X)�2(X)p(X)] → N (0, σ 2

R). This can be proven using Lemma
1 in appendix and the fact that

√
n(θ̂N − θ̃0) = Op(1). We omit the details for saving

space.

3 Numerical analysis

3.1 Simulation study

We now carry out simulations to examine the performance of the proposed test statistics
and to compare the proposed statistics with the tests proposed by Li (2012) and Sun
and Wang (2009) respectively. There are two statistics with the notations T S

n1 and T S
n2 in

Sun and Wang (2009) for checking the adequacy of general linear models with missing
response. Note that the behaviors of the T S

n1 and T S
n2 are very similar according to the

simulation results in Sun and Wang (2009), we then only consider T S
n2. As suggested

by a referee, it is also interesting to compare with the tests based on empirical process.
We note that Sun and Wang (2009) also developed two empirical process-based tests

123



238 X. Guo et al.

with notations T E
n1 and T E

n2 respectively. For the tests based on empirical process, see
also Sun et al. (2009) where one procedure is given for testing the general partial
linear model. Following their simulation studies, we know that T E

n1 and T E
n2 perform

similarly, and thus we only consider T E
n2 in the following.

Study 1 To make the simulations comparable, we consider the same setting as that
in Li (2012). The hypothetical model is linear as

Y = θτ l(X) + ε, (12)

where θ = (0.5, 0.8)τ and l(X) = X = (X1, X2). The covariates Xi =
(X1i , X2i ), i = 1, 2, . . . , n, are i.i.d. from bivariate normal distribution N (0, 	 j ), j =
1, 2 with

	1 =
(

0.36 0.00
0.00 1.00

)
, 	2 =

(
1.00 0.64
0.64 1.00

)
,

respectively. As for the random error term, we consider two distributions as Li (2012)
did: N (0, 0.32) and the double exponential distribution DE(0, 3/10

√
2) with density

f (x) = 5
√

2/3 exp (−10
√

2/3|x |). Two missing probability mechanisms are consid-
ered for model (12), that is,

Case 1. π1(x) = P(δ = 1|X = x) = 1/(1 + exp(−(0.8 + 0.5x1 + 0.5x2)).
Case 2. π2(x) = P(δ = 1|X = x) = 1/(1 + exp(−(0.2 + 0.3x1 + 0.3x2)).

For the above different cases, the missing rates are 0.320 and 0.450 respectively. Here,
we consider the power performance of the tests under certain alternatives as follows:

H11: Y = θτ l(X) + 0.5(X1 − 0.2)(X2 − 0.4) + ε;
H12: Y = θτ l(X) + 0.5(X1 X2 − 1) + ε;
H13: Y = θτ l(X) + 2(exp −0.4X2

1 − exp 0.6X2
2) + ε;

H14: Y = θτ l(X) + X1 IX2>0.2 + ε,

where IX2>0.2 is an indicator, which equals to one if X2 > 0.2 and otherwise zero.
The kernel function takes the form K (u, v) = K 1(u)K 1(v) with K 1(u) = 0.75(1 −
u2)I|u|≤1. The sample sizes are n = 50, 100 and 200. As for the bandwidth, we
set it to be n−1/4.5 which was used in Li (2012). Obviously, this bandwidth satisfies
the conditions in Appendix. All the simulations are based on 1,000 replications. The
nominal level is set to be α = 0.05. We denote the test proposed by Li (2012) as LI,
the tests T S

n2 and T E
n2 by Sun and Wang (2009) as SW S and SW E , and for our tests

T N
n as G X ZTN, T P

n as G X ZTP, RN
n as G X ZRN and R P

n as G X ZRP respectively.
Table 1 gives the empirical sizes and powers for testing H0 against H1i , i = 1, . . . , 4

with design X ∼ N (0, 	1), ε ∼ N (0, 0.32) when the data are randomly missing under
either of the two missing mechanisms. The empirical sizes of these tests are all very
close to the nominal level α = 0.05. It is reasonable that the larger the sample size
is, the closer the empirical sizes is to the nominal level. Among these tests, SW S and
SW E have the best control on empirical size. About the power performance, it can
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Table 1 Study 1: empirical sizes and powers for H0 vs H1i , i = 1, . . . , 4 with X ∼ N (0, 	1) and
ε ∼ N (0, 0.32)

n = 50 n = 100 n = 200

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

H0 LI 0.020 0.027 0.029 0.029 0.033 0.034

SW S 0.049 0.052 0.058 0.052 0.053 0.062

SW E 0.045 0.046 0.054 0.047 0.052 0.047

G X ZTN 0.029 0.036 0.043 0.041 0.042 0.042

G X ZTP 0.031 0.028 0.036 0.034 0.046 0.041

G X ZRN 0.035 0.041 0.045 0.039 0.050 0.042

G X ZRP 0.031 0.036 0.041 0.044 0.042 0.041

H11 LI 0.102 0.079 0.278 0.176 0.633 0.513

SW S 0.069 0.080 0.098 0.102 0.137 0.142

SW E 0.183 0.136 0.454 0.333 0.857 0.725

G X ZTN 0.151 0.096 0.351 0.228 0.745 0.508

G X ZTP 0.159 0.114 0.311 0.313 0.811 0.632

G X ZRN 0.139 0.115 0.396 0.291 0.786 0.673

G X ZRP 0.185 0.119 0.459 0.323 0.842 0.714

H12 LI 0.993 0.941 1.000 1.000 1.000 1.000

SW S 1.000 1.000 1.000 1.000 1.000 1.000

SW E 1.000 1.000 1.000 1.000 1.000 1.000

G X ZTN 0.989 0.937 1.000 1.000 1.000 1.000

G X ZTP 0.988 0.939 1.000 1.000 1.000 1.000

G X ZRN 0.992 0.943 1.000 1.000 1.000 1.000

G X ZTP 0.997 0.950 1.000 1.000 1.000 1.000

H13 LI 0.315 0.203 0.351 0.271 0.375 0.338

SW S 0.555 0.498 0.686 0.681 0.747 0.695

SW E 0.465 0.453 0.635 0.639 0.701 0.724

G X ZTN 0.811 0.717 0.911 0.878 0.929 0.931

G X ZTP 0.786 0.673 0.870 0.844 0.891 0.903

G X ZRN 0.799 0.661 0.861 0.817 0.884 0.853

G X ZTP 0.774 0.704 0.869 0.848 0.905 0.891

H14 LI 0.241 0.159 0.671 0.497 0.983 0.921

SW S 0.055 0.043 0.045 0.040 0.046 0.054

SW E 0.091 0.068 0.166 0.129 0.467 0.357

G X ZTN 0.208 0.132 0.588 0.386 0.950 0.828

G X ZTP 0.252 0.154 0.600 0.439 0.957 0.874

G X ZRN 0.241 0.153 0.634 0.501 0.968 0.894

G X ZTP 0.261 0.189 0.653 0.472 0.975 0.893
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be seen from Table 1 that all of our proposed tests are more powerful than LI and
SW S under all the designed alternative hypotheses except H14. Under H14, the most
powerful one is the test LI. However, our tests are still competitive, that is, the gains of
LI over our methods are limited. The power performance of SW S is the worst under
H11 and H14. However, we also note that SW E improves SW S greatly under H11 and
H14. Specifically, under H11, SW E has similar power performance as those of our
proposed tests. Under H14, though there is some improvement of SW E over SW S ,
SW E is still inferior to LI and our proposed tests. Further, under H13, LI is the worst and
our gain over LI, SW S and SW E is obvious. The impact of missing mechanisms on the
empirical powers is evident. Generally, with the first missing mechanism, all these tests
have greater powers. This is reasonable since there are less missing data with the first
mechanism. Comparing the test G X ZTN with G X ZTP, G X ZTP works better under
H11 and H14 with larger power, whereas G X ZTN is better under H13. It seems using a
parametric estimation of π gains not much compared with that using a nonparametric
estimation. When we compare Tn with Rn , we can have the following results: under
H11 and H14, generally, Rn has larger power; while under H13, Tn performs slightly
better. In other words, overall, Rn works better. This seems to suggest that Tn may be
affected by boundary effect more seriously to deteriorate its performance although in
theory, it does not have such an issue. However, these comparisons cannot firmly say
that among our proposed test statistics, which one is the best. But it seems that the
tests with parametric estimation of π(·) are recommendable although it may have a
misspecification issue.

Table 2 summaries the empirical sizes and powers for testing H0 against H1i , i =
1, . . . , 4 when X ∼ N (0, 	2), ε ∼ N (0, 0.32). In this case, X1 is dependent of
X2. The only difference from the previous example is that X is from N (0, 	2): the
components are correlated. However, we can see, by a comparison with Table 1, that
the performance on maintaining the nominal level is similar to that in the independent
case. We can also see that the powers of all our proposed tests increase under H11
and H14, while decrease under the other alternatives. Under H11, SW E is the most
powerful and SW S is also more powerful than our proposed tests and LI which is
much different from that in the previous example. However, the opposite phenomenon
happens under H12 for SW S and SW E . That is, the independence between X1 and X2
has a great influence on the behavior of SW S and SW E . LI is slightly more powerful
than our tests under H12 whereas the proposed statistics are the most powerful under
H13 and H14 in the most cases. Overall speaking, the proposed test is powerful under
all the scenarios, SW S and SW E is not robust to the distribution of the covariates, and
further SW E generally performs better than SW S .

We now report the results about the testing for H0 against H1i , i = 1, . . . , 4 with
ε ∼ DE(0, 3/10

√
2) and X ∼ N (0, 	1) in Table 3, and X ∼ N (0, 	2) in Table 4

respectively. The comparisons between those in Tables 1 and 3, or those in Tables 2
and 4, are made to see the impact from the distributions. The powers of the proposed
tests increase greatly under H11 and H14 in Table 3 when comparing with those in
Table 1, while the performance of SW S and SW E is slightly affected by the error
distribution. Compared with LI, SW S and SW E , our tests have highest power under
any alternatives in Table 3, and under H12, and H13 in Table 4. From all these four
tables, we can know that the proposed tests perform well and are the most powerful
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Table 2 Study 1: empirical sizes and powers for H0 vs H1i , i = 1, . . . , 4 with X ∼ N (0, 	2) and
ε ∼ N (0, 0.32)

n = 50 n = 100 n = 200

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

H0 LI 0.031 0.023 0.041 0.036 0.045 0.043

SW S 0.047 0.048 0.038 0.047 0.055 0.051

SW E 0.043 0.045 0.046 0.043 0.044 0.044

G X ZTN 0.045 0.033 0.042 0.037 0.041 0.056

G X ZTP 0.045 0.043 0.043 0.041 0.045 0.041

G X ZRN 0.032 0.031 0.046 0.035 0.049 0.047

G X ZRP 0.041 0.036 0.031 0.042 0.039 0.045

H11 LI 0.115 0.103 0.199 0.164 0.479 0.373

SW S 0.627 0.559 0.919 0.917 0.999 0.999

SW E 0.733 0.646 0.985 0.975 1.000 1.000

G X ZTN 0.334 0.248 0.762 0.676 0.993 0.968

G X ZTP 0.422 0.277 0.812 0.679 0.960 0.969

G X ZRN 0.381 0.269 0.783 0.703 0.961 0.985

G X ZRP 0.441 0.361 0.883 0.773 1.000 0.995

H12 LI 0.965 0.831 0.999 0.991 1.000 1.000

SW S 0.693 0.581 0.902 0.846 0.989 0.981

SW E 0.714 0.610 0.927 0.882 0.999 0.996

G X ZTN 0.923 0.783 1.000 1.000 1.000 1.000

G X ZTP 0.911 0.769 0.998 0.992 1.000 0.999

G X ZTN 0.956 0.809 1.000 0.995 1.000 1.000

G X ZTP 0.934 0.803 1.000 0.993 1.000 1.000

H13 LI 0.237 0.187 0.272 0.209 0.274 0.227

SW S 0.495 0.502 0.628 0.634 0.683 0.682

SW E 0.538 0.526 0.668 0.680 0.751 0.767

G X ZTN 0.770 0.654 0.897 0.862 0.936 0.910

G X ZTP 0.728 0.622 0.848 0.811 0.893 0.862

G X ZRN 0.765 0.624 0.868 0.804 0.887 0.870

G X ZRP 0.767 0.656 0.833 0.822 0.888 0.878

H14 LI 0.203 0.144 0.596 0.471 0.957 0.892

SW S 0.491 0.448 0.806 0.776 0.987 0.981

SW E 0.636 0.545 0.955 0.923 1.000 0.999

G X ZTN 0.448 0.315 0.890 0.785 1.000 0.993

G X ZTP 0.499 0.345 0.907 0.837 1.000 0.996

G X ZRN 0.465 0.337 0.908 0.839 1.000 0.997

G X ZRP 0.552 0.380 0.954 0.874 1.000 0.996
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Table 3 Study 1: empirical sizes and powers for H0 vs H1i , i = 1, . . . , 4 with X ∼ N (0, 	1) and
ε ∼ DE(0, 3/10

√
2)

n = 50 n = 100 n = 200

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

H0 LI 0.026 0.030 0.041 0.035 0.049 0.047

SW S 0.045 0.041 0.044 0.058 0.045 0.050

SW E 0.038 0.032 0.043 0.047 0.054 0.046

G X ZTN 0.032 0.029 0.039 0.025 0.043 0.041

G X ZTP 0.031 0.036 0.029 0.034 0.038 0.034

G X ZRN 0.032 0.034 0.038 0.039 0.051 0.042

G X ZRP 0.031 0.034 0.038 0.044 0.036 0.036

H11 LI 0.083 0.076 0.222 0.227 0.682 0.549

SW S 0.122 0.101 0.148 0.136 0.262 0.271

SW E 0.432 0.329 0.861 0.775 0.998 0.993

G X ZTN 0.745 0.544 0.991 0.951 1.000 1.000

G X ZTP 0.746 0.575 0.972 0.952 1.000 1.000

G X ZRN 0.752 0.562 0.996 0.954 1.000 1.000

G X ZRP 0.770 0.598 0.991 0.972 1.000 1.000

H12 LI 0.986 0.931 1.000 1.000 1.000 1.000

SW S 1.000 1.000 1.000 1.000 1.000 1.000

SW E 1.000 1.000 1.000 1.000 1.000 1.000

G X ZTN 1.000 0.986 1.000 1.000 1.000 1.000

G X ZTP 1.000 0.988 1.000 1.000 1.000 1.000

G X ZRN 1.000 0.994 1.000 1.000 1.000 1.000

G X ZRP 1.000 0.993 1.000 1.000 1.000 1.000

H13 LI 0.281 0.208 0.335 0.274 0.417 0.329

SW S 0.548 0.529 0.681 0.683 0.738 0.757

SW E 0.484 0.459 0.641 0.636 0.708 0.734

G X ZTN 0.814 0.683 0.896 0.875 0.942 0.922

G X ZTP 0.752 0.728 0.864 0.854 0.907 0.892

G X ZRN 0.777 0.712 0.852 0.814 0.984 0.880

G X ZRP 0.780 0.703 0.863 0.847 0.897 0.901

H14 LI 0.192 0.176 0.688 0.524 0.979 0.905

SW S 0.052 0.053 0.041 0.035 0.045 0.033

SW E 0.131 0.115 0.418 0.292 0.927 0.802

G X ZTN 0.741 0.581 0.994 0.956 1.000 1.000

G X ZTP 0.748 0.624 0.992 0.959 1.000 1.000

G X ZRN 0.776 0.602 0.994 0.969 1.000 1.000

G X ZRP 0.754 0.577 0.986 0.968 1.000 1.000
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Table 4 Study 1: empirical sizes and powers for H0 vs H1i , i = 1, . . . , 4 with X ∼ N (0, 	2) and
ε ∼ DE(0, 3/10

√
2)

n = 50 n = 100 n = 200

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

H0 LI 0.028 0.032 0.033 0.042 0.035 0.046

SW S 0.043 0.039 0.041 0.045 0.042 0.047

SW E 0.036 0.044 0.043 0.045 0.044 0.047

G X ZTN 0.026 0.027 0.053 0.042 0.067 0.048

G X ZTP 0.031 0.032 0.035 0.039 0.037 0.038

G X ZRN 0.035 0.027 0.046 0.043 0.049 0.040

G X ZRP 0.033 0.032 0.040 0.049 0.032 0.054

H11 LI 0.117 0.095 0.237 0.194 0.523 0.433

SW S 0.762 0.704 0.981 0.968 1.000 1.000

SW E 0.861 0.800 0.997 0.989 1.000 1.000

G X ZTN 0.714 0.561 0.957 0.901 1.000 0.998

G X ZTP 0.692 0.528 0.914 0.871 0.966 0.979

G X ZRN 0.717 0.565 0.969 0.916 1.000 0.992

G X ZRP 0.756 0.602 0.970 0.921 1.000 0.998

H12 LI 0.949 0.826 1.000 0.99 1.000 1.000

SW S 0.776 0.686 0.941 0.905 1.000 0.991

SW E 0.801 0.726 0.970 0.944 0.999 1.000

G X ZTN 0.993 0.958 1.000 1.000 1.000 1.000

G X ZTP 0.988 0.949 0.998 1.000 1.000 1.000

G X ZRN 0.993 0.955 1.000 1.000 1.000 1.000

G X ZRP 0.993 0.950 1.000 1.000 1.000 1.000

H13 LI 0.244 0.184 0.265 0.225 0.272 0.242

SW S 0.488 0.497 0.581 0.621 0.672 0.718

SW E 0.538 0.525 0.687 0.696 0.752 0.773

G X ZTN 0.799 0.661 0.891 0.861 0.914 0.919

G X ZTP 0.712 0.627 0.838 0.809 0.887 0.873

G X ZRN 0.768 0.615 0.852 0.828 0.888 0.872

G X ZRP 0.759 0.614 0.869 0.809 0.879 0.868

H14 LI 0.259 0.207 0.626 0.483 0.944 0.881

SW S 0.613 0.589 0.932 0.908 1.000 1.000

SW E 0.801 0.730 0.990 0.985 1.000 1.000

G X ZTN 0.782 0.599 0.998 0.988 1.000 1.000

G X ZTP 0.806 0.625 0.982 0.979 1.000 1.000

G X ZRN 0.793 0.654 0.994 0.975 1.000 1.000

G X ZRP 0.807 0.659 0.994 0.984 1.000 1.000
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under many scenarios. For Tn and Rn , it seems that the latter performs better over-
all.

In study 1, normal distribution is used to determine critical values such that the
empirical sizes and powers of the proposed tests can be conveniently computed. How-
ever, it is also well known that the rate of convergence to the normal limit is slow,
see also Härdle and Mammen (1993), Stute et al. (1998a) and González-Manteiga and
Crujeiras (2013). Thus, the use of the asymptotic normality may be inappropriate for
small sample sizes. This can also be seen from Tables 1, 2, 3 and 4 in study 1. To be
precise, though the simulated sizes are very close to the nominal level, they gener-
ally underestimate it. As an alternative for calibrating critical values, we consider the
residual-based bootstrap in the following. Let the bootstrap errors ε∗

1 , . . . , ε∗
n be an

independent sample from the empirical distribution function of the centered residuals
ε̃i = ε̂i − n−1 ∑n

l=1 ε̂l . Then, we generate the bootstrap observations:

y∗
i = f (xi , θ̂N ) + ε∗

i .

Let T N∗
n be defined similarly as T N

n , basing on the bootstrap sample (x1, y∗
1 ), . . . , (xn,

y∗
n ). The null hypothesis is rejected if T N

n is bigger than the corresponding quantile of
the bootstrap distribution of T N∗

n . We denote the bootstrap version of T N
n as G X Z∗

TN.
The bootstrap version of other proposed tests can be similarly developed and is denoted
as G X Z∗

TP, G X Z∗
RN and G X Z∗

RP respectively. The study of the asymptotic validity
of this procedure in the presence of missing response will be undertaken elsewhere.
Here, we investigate the empirical properties of this bootstrap procedure when the same
settings with X ∼ N (0, 	1) and ε ∼ N (0, 0.32) as in study 1 are considered. For
comparison, we use the same bandwidth n−1/4.5 first. The number of replications was
1,000 and for each replication 500 bootstrap samples were generated. The results are
presented in Table 5. From this table, we can see clearly that even with the sample size
n = 25, the resampling method can control the type I error very well. As for the power
performance, comparing Table 1 with Table 5, we can conclude that the bootstrap
performs better than the normal approximation under the alternatives H11, H12 and
H14. While under H13, the normal approximation is the winner. Overall, the resampling
method is recommendable for calibration especially when the sample size is small.
Due to the computational intensiveness, when we have sufficient observations, the
normal approximation is still recommendable.

Notice in the above study, we do not investigate the impact of the bandwidth on
the performance of our tests and the considered alternative hypothesizes are limited to
the fixed alternatives. In the following study, we aim to study the bandwidth selection
problem and the performances of our proposed tests under some local alternative.

Study 2 The local alternative is taken to be

H1n : Y = θτ l(X) + Cn(X1 − 0.2)(X2 − 0.4) + ε, (13)

here we adopt the same setting as that in study 1 except we consider the local alternative
indexed by Cn instead of the fixed alternative H11 in study 1. It is evident that the null
hypothesis H0: Y = θτ l(X) + ε is valid if and only if Cn = 0. In this study, we set
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Table 5 Simulated size and power under different sample sizes n =25, 50 and n =100, missing mechanisms
π1(x) and π2(x) for bootstrap calibration

n = 25 n = 50 n = 100

π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

H0 G X Z∗
TN 0.057 0.049 0.047 0.048 0.047 0.049

G X Z∗
TP 0.046 0.059 0.056 0.051 0.056 0.051

G X Z∗
RN 0.059 0.050 0.044 0.052 0.048 0.050

G X Z∗
RP 0.044 0.058 0.053 0.055 0.055 0.048

H11 G X Z∗
TN 0.129 0.124 0.269 0.175 0.481 0.366

G X Z∗
TP 0.144 0.115 0.251 0.216 0.526 0.455

G X Z∗
RN 0.137 0.131 0.293 0.192 0.531 0.427

G X Z∗
RP 0.142 0.118 0.271 0.228 0.559 0.455

H12 G X Z∗
TN 0.844 0.706 0.999 0.978 1.000 1.000

G X Z∗
TP 0.844 0.681 0.999 0.983 1.000 1.000

G X Z∗
RN 0.844 0.709 0.999 0.983 1.000 1.000

G X Z∗
RP 0.854 0.708 0.999 0.984 1.000 1.000

H13 G X Z∗
TN 0.509 0.382 0.598 0.585 0.682 0.598

G X Z∗
TP 0.445 0.393 0.580 0.542 0.632 0.574

G X Z∗
RN 0.491 0.358 0.576 0.557 0.648 0.565

G X Z∗
RP 0.454 0.382 0.588 0.538 0.654 0.565

H14 G X Z∗
TN 0.195 0.118 0.357 0.262 0.673 0.513

G X Z∗
TP 0.168 0.154 0.372 0.261 0.739 0.604

G X Z∗
RN 0.188 0.119 0.381 0.294 0.741 0.604

G X Z∗
RP 0.163 0.156 0.375 0.267 0.764 0.628

X ∼ N (0, 	1) and ε ∼ N (0, 0.32) for space considerations. We only consider the
first missing probability mechanism in study 1 to save space.

Zhu and Ng (2003) pointed out that it is still an open problem about how to select
optimal bandwidth in the testing problems. Though in nonparametric estimation lit-
erature the bandwidth selection has been discussed extensively, the selected optimal
bandwidth for estimation may not yard the optimal power and size performance under
different alternatives. To investigate the impact of bandwidth selection on our proposed
tests, we take the bandwidth h to be j/100 for j = 11, 15, 19, . . . , 99. Based on the
1,000 simulations, we plot the estimated size and power curve against the above band-
width sequences with the sample size 50, missing mechanism π1(x) and Cn = Cn−1/2

with C = 0, 2, 4, which is shown in Fig. 1. This strategy is also conducted by many
authors, such as Sun and Wang (2009) and Lopez and Patilea (2009). From Fig. 1, we
have the following observations: (1) with the sample size n = 50, the proposed tests
with different bandwidths can control the size reasonably. To be precise, the empirical
sizes are all contained in the range of (0.04,0.06). In one word, the bandwidth selec-
tion for the size control for our proposed tests is not too critical. (2) Generally, we
can get larger powers if we use a relatively larger bandwidth. However, when we take
the bandwidth not too small, the gain by employing a larger bandwidth is marginal.
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Fig. 1 The estimated size and power curves of the tests G X Z∗
TN, G X Z∗

RN, G X Z∗
TP, and G X Z∗

RP against
the bandwidth h with missing mechanisms π1(x) and sample size 50 under different choices of Cn for testing
problem (13). a G X Z∗

TN, Cn = 0; b G X Z∗
TN, Cn = 2n−1/2; c G X Z∗

TN, Cn = 4n−1/2. d G X Z∗
RN, Cn =

0; e G X Z∗
RN, Cn = 2n−1/2; f G X Z∗

RN, Cn = 4n−1/2. g G X Z∗
TP, Cn = 0; h G X Z∗

TP, Cn = 2n−1/2; i
G X Z∗

TP, Cn = 4n−1/2. j G X Z∗
RP, Cn = 0; k G X Z∗

RP, Cn = 2n−1/2; l G X Z∗
RP, Cn = 4n−1/2

As discussed by Sperlich (2014), most, if not all, of the known methods are computa-
tionally expensive and somewhat very complex. Based on the above observations and
suggestions by Lavergne and Vuong (2000), in the following simulations, we choose
h = 1.25 × n−1/6 which is at the same rate as the optimal bandwidth derived in non-
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Table 6 Simulated size and power under different sample sizes n = 25, 50 and n = 100, missing mechanisms
π1(x), and different Cn for Study 2

Cn G X Z∗
TP G X Z∗

RP G X Z∗
TN G X Z∗

RN

n = 25
0.0 0.045 0.049 0.050 0.051

0.2 0.076 0.071 0.074 0.075

0.4 0.136 0.140 0.126 0.132

0.6 0.232 0.231 0.205 0.215

0.8 0.314 0.321 0.305 0.322

1.0 0.386 0.394 0.396 0.410

n = 50
0.0 0.055 0.056 0.048 0.047

0.2 0.089 0.093 0.086 0.096

0.4 0.267 0.274 0.233 0.248

0.6 0.520 0.536 0.470 0.515

0.8 0.683 0.693 0.659 0.701

1.0 0.844 0.855 0.814 0.833

n = 100
0.0 0.056 0.055 0.052 0.057

0.2 0.149 0.157 0.126 0.138

0.4 0.537 0.543 0.481 0.541

0.6 0.893 0.903 0.852 0.879

0.8 0.983 0.987 0.972 0.978

1.0 0.994 0.997 0.997 0.997

parametric estimation. Also note in study 1, we set h = n−1/4.5 which is smaller than
the selected bandwidth h = 1.25×n−1/6. Further from Fig. 1, we know the powers of
our proposed tests with h = n−1/4.5 are smaller than that with h = 1.25 × n−1/6. In
other words, the power performance of the proposed tests in study 1 can be improved
using the selected bandwidth h = 1.25 × n−1/6.

We evaluate the performance of our proposed tests under the above-defined local
alternative (13) through varying the values of Cn , different sample sizes n = 25, 50
and 100, and missing mechanism π1(x). The simulation results are shown in Table 6.
From the table, we can have similar findings except the following observations. When
the local alternative hypothesis holds, that is, Cn �= 0, the powers of our tests increase
quickly as Cn in (13) increases. To be precise, the power of R P

n is 0.903 under the
sample size n = 100, missing mechanism π1(x) and Cn = 6n−1/2 = 0.6. In other
words, the tests are very sensitive to the alternatives. Moreover from these two tables,
we can also conclude that R P

n performs best among these four proposed tests.

3.2 Real data analysis

Consider the data set about monozygotic twins with the sample size 50. In this data
set, the response Y stands for birth-weight of a baby and two corresponding covariates
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Fig. 2 The plot for real data set: a for XAC and Y ; b for XBPD and Y

XAC (=AC) and XBDP (=BDP) respectively for abdominal circumference and biparietal
diameter. The data set has been used to test whether the nonparametric part in a partial
linear model with missing response is of parametric form by Xu et al. (2012). They
found that a parametric model is plausible. However, we got the residual plots and
found that a linear model would be further plausible. Thus, we make a further check
to see whether a linear model is adequate.

Consider the null hypothesis

H0: E(Y |X) = XBDPβBDP + XACβAC (14)

for some βBDP and βAC. First all the variables are centered and the same notations are
given without confusion. We illustrate our methods by missing 20 % of the response
randomly. Then, we try to obtain the results by 2,000 simulation runs in which each
time we use the kernel function in Sect. 3.1 for computation. We present the scatter plot
for the covariates and the outcome shown in Fig. 2. From our simulations in the study
2 in the Sect. 3.1, we set the bandwidth to std(xAC) × n−1/6. Under these settings, the
p values for T N

n , RN
n , T P

n and R P
n are 0.900, 0.865, 0.802 and 0.875 respectively. As

a result, the null hypothesis in (14) cannot be rejected.

4 Discussion

In this paper, we extend Zheng’s1996 method to adopt to missing response at ran-
dom due to its technical tractability and easy computation. The asymptotic properties
are developed for our proposed tests under null and local alternatives. The intensive
simulation studies suggest that our proposed tests can perform well. To better control
the empirical size, we also propose to use the residual-based bootstrap. Through our
simulations, we also find that the use of different bandwidth has almost no effect on
the empirical sizes of our proposed tests. On the other hand, the powers of the tests
can be improved if we use a slightly larger bandwidth. Based on these observations,
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we suggest to use a rule of thumb which may be not optimal in all directions. The
problem of choosing the bandwidth to optimize the power remains an open problem
faced by all smoothing-based tests due to the obstacle that there are infinitely many
alternatives. In this paper, we prefer to use the suggested simple method instead of
using other computation intensive and complex methodologies to find the optimal
bandwidth.

Another direction which needs more attention is the model checking with missing
covariates at random. We discuss this issue here briefly. Denote X = (U, V ), here U
and V are m11- and m2-dimensional random vectors with m1 +m2 = m. Consider the
situation that U is missing at random, whereas other variables Y and V are observed
completely. Let δ be the missing indicator for the individual whether U is observed
(δ = 1) or not (δ = 0). Assume that U is missing at random which implies

P(δ = 1|Y, X) = P(δ = 1|Y, V ) = π(Z),

here Z = (Y, V ). Note that in this situation, E(δε|X) = E[E(δε|X, Y )|X ] =
E(επ(Z)|X) may not be equal to zero. This further implies that

E(δεE(δε|X)W (X)) = E(E2(δε|X)W (X))

may not be zero even under the null hypothesis. Thus, we cannot construct test
statistics similarly as RN

n and R P
n . However, we note that E(δ/π(Z)ε|X) =

E[E(δ/π(Z)ε|X, Y )|X ] = E(ε|X) = 0 under the null hypothesis. This suggests
that test statistics could be constructed similarly as T N

n and T P
n . For the formal devel-

opment of the related results, we leave them to further studies.

Appendix: Proofs of Theorems

The following conditions are required for the theorems in Sect. 2.

(1) f (x, θ) is a Borel measurable function on Rm for each θ and a twice con-
tinuously differentiable real function on a compact subset of R p � for each
x ∈ Rm; θ̃0, the value of θ that minimizes S̃0n(θ) = E[(E(Y |X) − f (X, θ))2],
is an interior point of � and is the unique minimizer of the function S̃0n ;
	1 = E( f ′(X, θ0) f ′τ (X, θ0)) is nonsingular.

(2) π(x) has bounded partial derivatives up to order 2 almost surely and inf x π(x) >

0;
(3) sup E(ε4|X = x) < ∞, E |X |4 < ∞ and E |Y |4 < ∞;
(4) nh3m/2 → ∞ and h → 0;
(5) The density of X , say p(x) on support C, exists and has bounded derivatives up

to order 2 and satisfies

0 < inf
x∈C

p(x) ≤ sup
x∈C

p(x) < ∞;
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6) The continuous kernel function K (·) satisfies the following: (i) the support of K (·)
is the interval [−1, 1]; (ii) K (·) is symmetric about 0; (iii)

∫ 1
−1 K (u)du = 1 and∫ 1

−1 |u|K (u)du �= 0.

Remark 2 Conditions (4) and (6) are typical for obtaining convergence rates when
nonparametric estimation is applied. Condition (2) is a common assumption in miss-
ing data study, for example, Sun and Wang (2009). The conditions (1) and (3) are
necessary for the asymptotic normality of the least-squares estimator. Condition (5) is
aimed for avoiding tedious proofs of the theorems, see, e.g. Xue (2009). Without this
condition, we have to resort to some truncation techniques to control small values in
the denominators.

Lemma 1 Under the null hypothesis and conditions above, we have

Wn = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εi M(x j ) = Op(1/

√
n), (15)

where M(·) is continuously differentiable and |M(x)| ≤ b(x) for x ∈ Rm and some
b(x) satisfying E[b2(X)] < ∞.

This can be obtained following the same argument as Zheng (1996), so we omit
the details.

Lemma 2 Under the conditions in Appendix and the alternative H1n, the asymptotic
properties of

√
n(θ̂N − θ0) is as follows

√
n(θ̂N − θ0) = Cn

√
n	−1

1 E( f ′(X, θ0)G(X))

+	−1
1√
n

n∑
i=1

δi f ′(xi , θ̃0)(yi − f (xi , θ̃0))

π(xi )
+ op(1). (16)

where 	1 = E( f ′(X, θ0) f ′τ (X, θ0)).

Lemma 3 Under conditions in Appendix and the alternative H1n, the asymptotic
properties of

√
n(θ̂P − θ0) is

√
n(θ̂P − θ0) = Cn

√
n	−1

1 E( f ′(X, θ0)G(X))

+	−1
1√
n

n∑
i=1

δi f ′(xi , θ̃0)(yi − f (xi , θ̃0))

π(xi , α)
+ op(1). (17)

Lemmas 2 and 3 can be similarly obtained from the Lemma 4.2 in Van Keilegom
et al. (2008) and the Lemmas in Guo and Xu (2012) respectively, and we omit the
detailed proof here.

The proof for RN
n is similar to that for T N

n , so we omit the detail for RN
n in Theo-

rems 1 and 2. Below we give the proof for T N
n in Theorems 1 and 2.
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Proof of Theorem 1 For T N
n in (6), it can be decomposed as follows

T N
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ε̂i ε̂ j

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j (π̂(x j ) − π(x j ))

π̂(xi )π̂(x j )π(x j )
Kh(xi − x j )ε̂i ε̂ j

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j (π̂(xi ) − π(xi ))

π̂(x j )π̂(xi )π(xi )
Kh(xi − x j )ε̂i ε̂ j

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j (π̂(xi ) − π(xi ))(π̂(x j ) − π(x j ))

π̂(x j )π̂(xi )π(x j )π(xi )
Kh(xi − x j )ε̂i ε̂ j

=: Tn1 − Tn2 − Tn3 − Tn4. (18)

Below we analyze the term Tn1 in (18) first. It can be further divided as

Tn1 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εiε j

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εi ( f (x j , θ̂N ) − f (x j , θ0))

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ε j ( f (xi , θ̂N ) − f (xi , θ0))

+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

(
δiδ j

π(xi )π(x j )
Kh(xi − x j )( f (xi , θ̂N ) − f (xi , θ0))

×( f (x j , θ̂N ) − f (x j , θ0))

)

=: Tn1,1 − Tn1,2 − Tn1,3 + Tn1,4. (19)

Notice that Tn1,1 is a second-order degenerate U-statistic. By some tedious calcu-
lations and according to Theorem 1 of Hall (1984), we can have

nhm/2Tn1,1 → N (0, 	T ), (20)

where 	T = ∫
K 2(u)du · ∫

(σ 2(x))2 p2(x)π−2(x)dx .
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Below we prove that nhm/2Tn1,2 = op(1). It can be divided as

Tn1,2 = 1

n(n−1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εi

∂ f (x j , θ0)

∂θτ
(θ̂N − θ0)

+ (θ̂N −θ0)
τ 1

n(n−1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi −x j )εi

∂2 f (x j , θ̃ )

∂θ∂θτ
(θ̂N −θ0)

= Rn1,1(θ̂N − θ0) + (θ̂N − θ)τ Rn1,2(θ̂N − θ0),

where θ̃ lies between θ̂N and θ0.
Recalling Lemma 1, we have Rn1,1 = Op(1/

√
n). Let Ã j,st and A j,st denote the

(s, t) element of ∂2 f (x j , θ̃ )/∂θ∂θτ and ∂2 f (x j , θ0)/∂θ∂θτ respectively. Due to the
fact that θ̂N − θ0 = op(1) and the continuity of ∂2 f (x j , θ)/∂θ∂θτ as a function of θ ,
we can assert that

E

∣∣∣∣ δiδ j

π(xi )π(x j )
Kh(xi − x j )εi Ã j,st

∣∣∣∣
= E

(
δiδ j

π(xi )π(x j )
Kh(xi − x j )|εi ||A j,st |

)

+op(1) = E
(
Kh(xi − x j )|A j,st |E(|εi ||xi )

) = O(1).

Thus, we can have Rn1,2 = Op(1). According to Lemma 2, we can have
√

n(θ̂N −
θ0) = Op(1). Then, we can conclude that

Tn1,2 = Op(n
−1/2) · Op(n

−1/2) + Op(n
−1/2) · Op(n

−1/2) = Op(n
−1).

Thus

nhm/2Tn1,2 = Op(h
m/2) = op(1). (21)

Similarly as the derivation for Tn1,2, we have

nhm/2Tn1,3 = Op(h
m/2) = op(1). (22)

For Tn1,4 in (24), we have

Tn1,4 = (θ̂N − θ0)
τ 1

n(n − 1)

n∑
i=1

n∑
j �=i

(
δiδ j

π(xi )π(x j )
Kh(xi − x j )

∂ f (xi , θ̃1)

∂θ

×∂ f (x j , θ̃2)

∂θτ

)
(θ̂N − θ0)

=: (θ̂N − θ0)
τ Rn1,3(θ̂N − θ0).
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Similar to the argument for Rn1,2, we can conclude that Rn1,3 = O(1). We have

Tn1,4 = Op(n
−1/2) · Op(1) · Op(n

−1/2) = Op(n
−1).

Thus,

nhm/2Tn1,4 = Op(h
m/2) = op(1). (23)

Based on (24), (20), (21), (22) and (23), we have

nhm/2Tn1 = nhm/2Tn1,1 + op(1) → N (0, 	T ). (24)

Following the argument for Tn1, nhm/2Tn2 = op(1) can be proved by proving
nhm/2Tn2,1 = op(1), here

Tn2,1 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j (π̂(x j ) − π(x j ))

π̂(xi )π̂(x j )π(x j )
Kh(xi − x j )εiε j .

Note that by computing the variance of Tn2,1, we can have

Var(Tn2,1) = 1

n2(n − 1)2h2m

n∑
i=1

n∑
j �=i

n∑
k=1

n∑
l �=k

×E

[
δiδ jδkδl(π̂(x j ) − π(x j ))(π̂(xl) − π(xl))

π̂(xi )π̂(x j )π(x j )π̂(xk)π̂(xl)π(xl)

×K (
xi − x j

h
)K (

xk − xl

h
)εiε jεkεl

]
.

For the above summands, only the terms with i = k, j = l and i = l, j = k are
non-zero. When i = k, j = l, we can have

Var(Tn2,1) = 1

n2(n − 1)2h2m

n∑
i=1

n∑
j �=i

E

[
δiδ j (π̂(x j ) − π(x j ))

2

π̂2(xi )π̂2(x j )π2(x j )
K 2(

xi − x j

h
)ε2

i ε2
j

]
.

Further note that

E

[
δiδ j (π̂(x j ) − π(x j ))

2

π̂2(xi )π̂2(x j )π2(x j )
K 2

(
xi − x j

h

)
ε2

i ε2
j

]

= E

[
(π̂(x j ) − π(x j ))

2

π(xi )π3(x j )
K 2

(
xi − x j

h

)
σ 2(xi )σ

2(x j )

]
+ o(1)

≤ E

[
σ 2(xi )σ

2(x j )

π(xi )π3(x j )
K 2

(
xi − x j

h

)
× sup

x
(π̂(x) − π(x))2

]
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≤ E1/2
[

σ 4(xi )σ
4(x j )

π2(xi )π6(x j )
K 4

(
xi − x j

h

)]
× E1/2[sup

x
(π̂(x) − π(x))4]

=
[

hm
∫

K 4(u)du ·
∫

(σ 4(x))2 p2(x)π−8(x)dx

]1/2

× O

(√
ln(n)

nhm

2)
= o(hm).

For the last equation to hold, we need the condition that nh3m/2 → ∞. Thus, we can
have Var(Tn2,1) = o(n−2h−m). Similarly, for the term with i = l, j = k, we can also
obtain that Var(Tn2,1) = o(n−2h−m). Thus, Tn2,1 = op(n−1h−m/2) which is also true
for Tn2. Consequently,

nhm/2Tn2 = Op(1) · op(1) = op(1). (25)

Similarly, we can obtain that

nhm/2Tn3 = op(1) and nhm/2Tn4 = op(1). (26)

Combining the equations (18), (24), (25) and (26) together, we have

nhm/2Tn = nhm/2Tn1,1 + op(1) → N (0, 	T ). (27)

Note that

sup
a≤x≤b

|π(x, α̂) − π(x, α)| = Op(
1√
n
) = op(1),

by a similar derivation as T N
n , we have

nhm/2T P
n → N (0, 	T ). (28)

Below we prove the consistency of 	̂TN based on U-statistics theory. Similarly as
the derivation for T N

n , we can verify

	̂TN = 2

n(n − 1)

n∑
i=1

n∑
j �=i

1

hm

δiδ j

π2(xi )π2(x j )
K 2

(
xi − x j

h

)
ε2

i ε2
j + op(1).

Invoking the U-statistics theory, if

E

[
1

hm

δiδ j

π2(xi )π2(x j )
K 2

(
xi − x j

h

)
ε2

i ε2
j

]2

= o(n), (29)
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we can have

	̂TN = 2E

(
1

hm

δiδ j

π2(xi )π2(x j )
K 2

(
xi − x j

h

)
ε2

i ε2
j

)
+ op(1)

= 2
∫

K 2(u)du ·
∫

(σ 2(x))2 p2(x)

π2(x)
dx + op(1).

In fact, the equation (29) can be proved based on the following fact

E

[
1

h2m

δiδ j

π4(xi )π4(x j )
K 4(

xi − x j

h
)ε4

i ε4
j

]

= 1

h2m

∫ ∫
K 4((x1 − x2)/h)σ̃ 4(x1)σ̃

4(x2)

π3(x1)π3(x2)
p(x1)p(x2)dx1dx2

= 1

hm

∫ ∫
K 4(u)σ̃ 4(x)σ̃ 4(x − hu)

π3(x)π3(x − hu)
p(x)p(x − hu)dxdu

= 1

hm

∫
K 4(u)du ·

∫
(σ̃ 4(x))2 p2(x)

π6(x)
dx + o(1/hm)

= O(1/hm) = o(n),

here σ̃ 4(x) = E(ε4
1 |x1). The consistence of 	̂TP can be similarly derived when π(x, α)

is a parametric function. We finish the proof for Theorem 1. �


Proof of Theorem 2 Denote

T̄ N
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ε̂i ε̂ j .

Under the local alternatives (11) and recalling that εi = yi − f (xi , θ0), the term T N
n

can be decomposed as T N
n = T̄ N

n + op(T̄ N
n ). As for T̄ N

n , we have the expansion

T̄ N
n = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εiε j

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )εi ( f (x j , θ̂N ) − f (x j , θ0))

− 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ε j ( f (xi , θ̂N ) − f (xi , θ0))
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+ 1

n(n − 1)

n∑
i=1

n∑
j �=i

(
δiδ j

π(xi )π(x j )
Kh(xi − x j )( f (xi , θ̂N ) − f (xi , θ0))

×( f (x j , θ̂N ) − f (x j , θ0))
)

= T̄n1 − T̄n2 − T̄n3 + T̄n4 + op(1). (30)

For the term T̄n2 in (30), it follows that

T̄n2 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ηi f ′(x j , θ̃ )(θ̂N − θ0)

+Cn
1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )G(xi ) f ′(x j , θ̃ )(θ̂N − θ0)

= T̄n2,1(θ̂N − θ0) + CnT̄n2,2(θ̂N − θ0),

where θ̃ lies between θ̂N and θ0.
Based on the conclusion from Lemma 1, we have T̄n2,1 = Op(n−1/2). It can also

be proved that

T̄n2,2 = E(G(X1) f ′(X2, θ0)Kh(X1 − X2)) + op(1)

= E(G(X) f ′(X, θ0)p(X)) + op(1).

When Cn = n−1/2h−m/4, Lemma 2 implies that

nhm/2T̄n2 = nhm/2
[

Op(n
−1/2)Op(Cn)

+C2
n E(G(X) f ′(X, θ0)p(X))	−1

1 E(G(X) f ′(X, θ0))
]

= E(G(X) f ′(X, θ0)p(X))	−1
1 E(G(X) f ′(X, θ0)) + op(1). (31)

For T̄n3 in (30), we can similarly derive that

nhm/2T̄n3 = E(G(X) f ′(X, θ0)p(X))	−1
1 E(G(X) f ′(X, θ0)) + op(1). (32)

Using a similar argument as that for proving Theorem 1 and Lemma 2, we have the
expansion for T̄n4:

T̄n4 = (θ̂N − θ0)
τ E[ f ′(X, θ0) f ′τ (X, θ0)p(X)](θ̂N − θ0) + op(C

2
n )

= C2
n Eτ [G(X) f ′(X, θ0)]	−1

1 E[ f ′(X, θ0) f ′τ (X, θ0)p(X)]
×	−1

1 E[G(X) f ′(X, θ0)] + op(C
2
n ).
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As a result, when Cn = n−1/2h−m/4 , we can obtain

nhm/2T̄n4 = Eτ [G(X) f ′(X, θ0)]	−1
1 E[ f ′(X, θ0) f ′τ (X, θ0)p(X)]

×	−1
1 E[G(X) f ′(X, θ0)] + op(1). (33)

Now we turn to investigate the term T̄n1 in (30); it can be decomposed as follows

T̄n1 = 1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ηiη j

+ Cn
1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )ηi G(x j )

+ Cn
1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )η j G(xi )

+ C2
n

1

n(n − 1)

n∑
i=1

n∑
j �=i

δiδ j

π(xi )π(x j )
Kh(xi − x j )G(xi )G(x j )

= T̄n1,1 + CnT̄n1,2 + CnT̄n1,3 + C2
n T̄n1,4.

From the proof for Theorem 1 and the conclusion of Lemma 1, we know that

nhm/2T̄n1,1 → N (0, 	T );
T̄n1,2 = Op(n

−1/2);
T̄n1,3 = Op(n

−1/2);
T̄n1,4 = E(G2(X)p(X)) + op(1).

Consequently, when Cn = n−1/2h−m/4 , we can obtain that

nhm/2T N
n → N (μT , 	T ) (34)

where

μT = E

[(
G(X) − f ′τ (X, θ0)	

−1
1 E[G(X) f ′(X, θ0)]

)2
p(X)

]
.

Combining equations (31),(33) and (34), we can have

nhm/2T N
n → N (μT , 	T ).

It can be similarly verified for π(X, α) to be estimated as π(X, α̂). When Cn has
a slower convergence rate than n−1/2h−m/4, the above proof can show that the test
statistic goes to infinity in probability. We omit the details. Theorem 2 is proved. �


123



258 X. Guo et al.

Acknowledgments The authors thank the editor, the associate editor and two referees for their constructive
comments and suggestions which led a substantial improvement of an early manuscript. The research
described here was supported by a grant from the University Grants Council of Hong Kong, Hong Kong
and National Natural Science Foundation of China (No. 11071253).

References

Aerts, M., Claeskens, G., Hart, J. D. (1999). Testing lack of fit in multiple regression. Journal of the American
Statistical Association, 94, 869–879.

Chown, J., Müller, U. U. (2013). Efficiently estimating the error distribution in nonparametric regression
with responses missing at random. Journal of Nonparametric Statistics, 25, 665–677.

Dette, H. (1999). A consistent test for the functional form of a regression based on a difference of variance
estimators. Annals of Statistics, 27, 1012–1050.

Dette, H. (2002). A consistent test for heteroscedasticity in nonparametric regression based on the kernel
method. Journal of Statistical Planning and Inference, 103, 311–329.

Dette, H., Hildebrandt, T. (2012). A note on testing hypotheses for stationary processes in the frequency
domain. Journal of Multivariate Analysis, 104, 101–114.

Dette, H., Spreckelsen, I. (2003). A note on a specification test for time series models based on spectral
density estimation. Scandinavian Journal of Statistics, 30, 481–491.

Dette, H., Spreckelsen, I. (2004). Some comments on specification tests in nonparametric absolutely regular
processes. Journal of Time Series Analysis, 25, 159–172.

Dette, H., von Lieres und Wilkau, C. (2001). Testing additivity by kernel-based methods-what is a reasonable
test? Bernoulli, 7, 669–697.

Eubank, R. L., Li, C. S., Wang, S. J. (2005). Testing lack-of-fit of parametric regression models using
nonparametric regression techniques. Statistica Sinica, 15, 135–152.

Fan, J., Huang, L. (2001). Goodness-of-fit tests for parametric regression models. Journal of the American
Statistical Association, 96, 640–652.

Gao, J., Wang, Q., Yin, J. (2011). Specification testing in nonlinear time series with long-range dependence.
Econometric Theory, 27, 260–284.

González-Manteiga, W., Crujeiras, R. M. (2013). An updated review of Goodness-of-Fit tests for regression
models. Test, 22, 361–411.

González-Manteiga, W., Pérez-González, A. (2006). Goodness-of-fit tests for linear regression models with
missing response data. Canadian Journal of Statistics, 34, 149–170.

Guo, X., Xu, W. L. (2012). Goodness-of-fit tests for general linear models with covariates missed at random.
Journal of Statistical Planning and Inference, 142, 2047–2058.

Hall, P. (1984). Central limit theorem for integrated square error of multivariate nonparametric density
estimators. Journal of Multivariate Analysis, 14, 1–16.

Härdle, W., Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Annals of
Statistics, 21, 1926–1947.

Koul, H. L., Ni, P. P. (2004). Minimum distance regression model checking. Journal of Statistical Planning
and Inference, 119, 109–141.

Koul, H. L., Müller, U. U., Schick, A. (2012). The transfer principle: a tool for complete case analysis.
Annals of Statistics, 40, 3031–3049.

Lavergne, P., Vuong, Q. H. (2000). Nonparametric significance testing. Econometric Theory, 16, 576–601.
Li, X. Y. (2012). Lack-of-fit testing of regression model with response missing at random. Journal of

Statistical Planning and Inference, 142, 155–170.
Little, R. J. A., Rubin, D. B. (1987). Statistical analysis with missing data. New York: Wiley.
Lopez, O., Patilea, V. (2009). Nonparametric lack-of-fit tests for parametric mean-regression models with

censored data. Journal of Multivariate Analysis, 100, 210–230.
Müller, U. U., Van Keilegom, I. (2012). Efficient parameter estimation in regression with missing responses.

Electronic Journal of Statistics, 6, 1200–1219.
Sperlich, S. (2014). On the choice of regularization parameters in specification testing: a critical discussion.

Empirical Economics. doi:10.1007/s00181-013-0752-z.
Stute, W., Zhu, L. X. (2002). Model checks for generalized linear models. Scandinavian Journal of Statistics,

29, 535–546.

123

http://dx.doi.org/10.1007/s00181-013-0752-z


Model checking for parametric regressions 259

Stute, W., Gonzáles-Manteiga, W., Presedo-Quindimil, M. (1998a). Bootstrap approximation in model
checks for regression. Journal of American Statistical Association, 93, 141–149.

Stute, W., Thies, S., Zhu, L. X. (1998b). Model checks for regression: An innovation process approach.
Annals of Statistics, 26, 1916–1934.

Stute, W., Xu, W. L., Zhu, L. X. (2008). Model diagnosis for parametric regression in high-dimensional
spaces. Biometrika, 95, 451–467.

Sun, Z. H., Wang, Q. H. (2009). Checking the adequacy of a general linear model with responses missing
at random. Journal of Statistical Planning and Inference, 139, 3588–3604.

Sun, Z., Wang, Q., Dai, P. (2009). Model checking for partially linear models with missing responses at
random. Journal of Multivariate Analysis, 100, 636–651.

Van Keilegom, I., Gonzáles-Manteiga, W., Sánchez Sellero, C. (2008). Goodness-of-fit tests in parametric
regression based on the estimation of the error distribution. Test, 17, 401–415.

White, H. (1981). Consequences and detection of misspecified nonlinear regression models. Journal of the
American Statistical Association, 76, 419–433.

Xu, W. L., Guo, X., Zhu, L. X. (2012). Goodness-of-fitting for partial linear model with missing response
at random. Journal of Nonparametric Statistics, 24, 103–118.

Xue, L. G. (2009). Empirical likelihood for linear models with missing responses. Journal of Multivariate
Analysis, 100, 1353–1366.

Zheng, J. X. (1996). A consistent test of functional form via nonparametric estimation techniques. Journal
of Econometrics, 75, 263–289.

Zhu, L. X., Ng, K. W. (2003). Checking the adequacy of a partial linear model. Statistica Sinica, 13,
763–781.

123


	Model checking for parametric regressions with response missing at random
	Abstract
	1 Introduction
	2 Test procedures
	2.1 Construction of test statistics
	2.2 Asymptotic behavior of the test statistics

	3 Numerical analysis
	3.1 Simulation study
	3.2 Real data analysis

	4 Discussion
	Appendix: Proofs of Theorems
	Acknowledgments
	References


