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Abstract In estimation of the normal covariance matrix, finding a least favorable
sequence of prior distributions has been an open question for a long time. This paper
addresses the classical problem and accomplishes the specification of such a sequence,
which establishes minimaxity of the best equivariant estimator. This result is extended
to the estimation of scale parameter matrix in an elliptically contoured distribution
model. The methodology based on a least favorable sequence of prior distributions is
applied to both restricted and non-restricted cases of parameters, and we give some
examples which show minimaxity of the best equivariant estimators under restrictions
of scale parameter matrix.

Keywords Bayesian inference · Equivariance · Least favorable prior ·
Minimax estimation · Restricted parameter space · Statistical decision theory

1 Introduction

In statistical decision theory of point estimation, minimaxity is a crucial principle, and
it is used as an intelligible criterion for measuring quality of estimators. There are two
well-known approaches to finding a minimax estimator or establishing minimaxity of
a specific estimator: one is the invariance approach and the other is the least favorable
prior approach (Strawderman 2000).
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262 H. Tsukuma, T. Kubokawa

The invariance approach is based on invariance under a group transformation. A
relationship between invariance and minimaxity is often referred to as the Hunt–Stein
theorem. It is an elegant theorem and requires invariance of the estimation problem
and amenability of the group. For more details and generalizations of the Hunt–Stein
theorem, see (Kiefer 1957). Equivalent conditions for amenability of groups were
extensively reviewed by Bondar and Milnes (1981).

On the other hand, the least favorable prior approach is a Bayesian method with
a least favorable prior distribution or a least favorable sequence of prior distributions
(see Berger 1985). A valuable merit of the least favorable prior approach is that it
has a wide range of applications. For instance, this approach is of use in the case
of a restricted parameter space. Actually, Kubokawa (2004) applied this approach to
show that minimaxity of the best equivariant and unrestricted estimators holds true
even in the case of restricted location and scale parameters. See also Marchand and
Strawderman (2005a, b), who gave the same results as in Kubokawa (2004).

Although the invariance approach is quite general, the least favorable approach
gives an alternative and possibly more direct approach. In estimation of covariance
matrix of a multivariate normal distribution, the best equivariant estimator under the
group transformation of lower triangular matrices with positive diagonal elements,
which is also called the James–Stein estimator, is known to be minimax by the
Hunt–Stein theorem from the invariance approach. It is noted that other minimax
estimation problems related to the covariance matrix have been studied in Selliah
(1964), Eaton and Olkin (1987), Krishnamoorthy and Gupta (1989) and others. How-
ever, no least favorable sequence of prior distributions has been found since Stein
(1956) and James and Stein (1961). This is a most interesting issue in statistical
decision theory. Moreover, in the case that the parameter space is restricted, it is
not clear whether the best equivariant estimator maintains the minimax property. In
this paper, we address these problems and succeed in constructing least favorable
sequences of prior distributions in restricted and non-restricted cases of the covariance
matrix.

The outline of this paper is as follows. Section 2 addresses the important issue on
minimaxity in estimation of the covariance matrix of a multivariate normal distribution
model from the least favorable prior approach. An explicit formula of a least favorable
sequence of prior distributions is presented in Sect. 2. The result under the normal
model is extended to a class of elliptical distribution models including the matrix-
variate F distribution.

Section 3 deals with the case that the covariance matrix is limited to a restricted
parameter space, which is motivated by Pourahmadi (1999). Then, we construct a
least favorable sequence of prior distributions, and establish minimaxity of the best
equivariant estimator by applying the same arguments given in Sect. 2. It is shown
that the best equivariant estimator is further improved on by the isotonic regression
method.

The methods given in Sects. 2 and 3 have the potential to be applied to various
restrictions of scale parameter matrix. In Sect. 4, we provide an example of restriction
based on determinant of scale parameter matrix, and state concluding remarks. Some
proofs are given in the appendix.
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2 A least favorable sequence of prior distributions in estimation of covariance
matrix

We here construct a least favorable sequence of prior distributions in estimation of the
normal covariance and precision matrices. Also, the interesting result is extended to
an elliptically contoured distribution model.

2.1 Estimation of normal covariance and precision matrices

Consider the estimation of � based on a p × p random matrix V having the Wishart
distribution Wp(n,�). Let T + be the set of p × p lower triangular matrices with
positive diagonal entries. By the Cholesky decomposition, �−1 and V can be written
as �−1 = �t� and V = TT t for � = (θi j ) ∈ T + and T = (ti j ) ∈ T +. The
probability density function of T is

fW (T|�)γ (dT) = C |�T|n exp

[
−1

2
tr [(�T)(�T)t ]

]
γ (dT),

where C is a normalizing constant and γ (dT) = (
∏p

i=1 t−i
i i )dT, which is left-invariant

measure on T +.
Let L(A) be a continuous scalar-valued function of a p × p matrix A. Assume

that L(A) ≥ 0 for any p × p matrix A and that L(A) = 0 if and only if A = I p

for the p × p identity matrix I p. Define a loss function as L(�δ�t ), where δ is an
estimator of �. It is noted that L(�δ�t ) = 0 if δ = � = (�t�)−1. Some examples
of loss functions will be given later in this subsection. Denote the risk function by
R(δ,�) = ∫T + L(�δ�t ) fW (T|�)γ (dT).

For all A ∈ T +, the group transformation with respect to T + on a random matrix
T and a parameter matrix � is defined by (T,�) → (AT,�A−1). Then the best
equivariant estimator with respect to the group T + can be written by

δB E = δB E (T) = arg min
δ

∫
�∈T +

L(�δ�t ) fW (T|�)γ (d�).

This estimator has the form TDT t , where D is a diagonal matrix independent of T.
The best diagonal matrix D, which yields the best equivariant estimator depends on
the loss function L . The best equivariant estimator δB E has a constant risk R0, say,
and thus the supremum risk over the parameter space is the same as R0, namely,
sup�∈T + R(δB E ,�) = R0.

Let ci j = 3(i − j)− 1. Define a set Pk of � by

Pk = {� ∈ T + : 1/k < θi i < k (i = 1, . . . , p) and

−kci j θi i < θi j < kci j θi i (1 ≤ j < i ≤ p)}.

Then, we consider the sequence of prior distributions given by
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πk(�)d� = γ (d�)

V (Pk)
I (� ∈ Pk), k = 1, 2, . . . , (1)

where γ (d�) = (
∏p

i=1 θ
−i
i i )d�, V (Pk) = ∫

Pk
γ (d�) = 2p(p+1)/2(log k)p∏p

i=1∏i−1
j=1 kci j , and I (·) denotes the indicator function.
The prior distributions (1) yield the Bayes estimators

δπk = δπk (T) = arg min
δ

∫
Z∈Pk

L(ZδZt ) fW (T|Z)πk(Z)dZ,

with the Bayes risks

rk(πk, δ
π
k ) = 1

V (Pk)

∫
�∈Pk

∫
T +

L(�δπk (T)�
t ) fW (T|�)γ (dT)πk(�)d�.

If the above Bayes risks converge to the supremum risk of δB E as k → ∞, namely,
limk→∞ rk(πk, δ

π
k ) = R0, then δB E is minimax and the sequence πk(�)d� is least

favorable (see Proposition 2 of Strawderman 2000). This is proved in the following
theorem.

Theorem 1 The sequence (1) is least favorable, and the best equivariant estimator
δB E is minimax.

Proof We can show this theorem along the same lines as in Kubokawa (2004) and
Kubokawa et al. (2013) who modified the method of Girshick and Savage (1951).

It is easy to check that rk(πk, δ
π
k ) ≤ rk(πk, δ

B E ) = R0, therefore it is sufficient to
show that lim infk→∞ rk(πk, δ

π
k ) ≥ R0. Making the transformation L = �T yields

rk(πk, δ
π
k ) = 1

V (Pk)

∫
�∈Pk

∫
T +

L(�δπk (�
−1L)�t ) fW (L|I p)γ (dL)πk(�)d�, (2)

where δπk (�
−1L) is expressed as

δπk (�
−1L) = arg min

δ

∫
Z∈Pk

L(ZδZt ) fW (L|Z�−1)πk(Z)dZ.

Now, make the transformation Y = Z�−1 with dZ = (
∏p

i=1 θ
p−i+1

i i )dY . We then
have

δπk (�
−1L) = arg min

δ

∫
Y�∈Pk

L(Y�δ�t Y t ) fW (L|Y)πk(Y)dY,

namely, �δπk (�
−1L)�t = δ∗k(L|�) where

δ∗k(L|�) = arg min
δ

∫
Y�∈Pk

L(YδY t ) fW (L|Y)πk(Y)dY.
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Hence, the Bayes risk (2) can be rewritten as

rk(πk, δ
π
k ) = 1

V (Pk)

∫
�∈Pk

∫
T +

L(δ∗k(L|�)) fW (L|I p)γ (dL)πk(�)d�. (3)

Let ξi i = log θi i/ log k for i = 1, . . . , p and let ξi j = θi j/(kci j θi i ) for
i > j . This correspondence is denoted by the function ξ = ϕk(�) for ξ =
(ξ11, ξ21, ξ22, . . . , ξp1, . . . , ξpp)

t . Then, we obtain ϕk(Pk) = (−1, 1)p(p+1)/2 and

γk(dξ) = (log k)p

⎛
⎝ p∏

i=1

i−1∏
j=1

kci j

⎞
⎠ dξ = γ (d�)

for γ (d�) = (
∏p

i=1 θ
−i
i i )d�. Note that “Y� ∈ Pk” is equivalent to “Y ∈ P ′

k(�)”,
where

P ′
k(�) = {Y ∈ T + : k−1 < {Y�}i i < k (i = 1, . . . , p) and

− kci j {Y�}i i < {Y�}i j < kci j {Y�}i i (i > j)}
=
{

Y ∈ T + : k−1 < yiiθi i < k (i = 1, . . . , p) and

− kci j yiiθi i <

i∑
m= j

yimθmj < kci j yiiθi i (i > j)
}
.

By the function ξ = ϕk(�), “Y ∈ P ′
k(�)” is expressed as “Y ∈ P̃k(ξ)”, where

P̃k(ξ) =
{

Y ∈ T + : k−1 < yii k
ξi i < k (i = 1, . . . , p) and

−yii k
ci j +ξi i < yi j k

ξ j j +
i∑

m= j+1

yimξmj k
cmj +ξmm < yii k

ci j +ξi i (i > j)
}

=
{

Y ∈ T + : k−(1+ξi i ) < yii < k1−ξi i (i = 1, . . . , p) and

Li j (Y, ξ) < yi j < Ui j (Y, ξ) (i > j)
}

(4)

with

Ui j (Y, ξ) = yii k
ci j +ξi i −ξ j j −

i∑
m= j+1

yimξmj k
cmj +ξmm−ξ j j ,

Li j (Y, ξ) = −yii k
ci j +ξi i −ξ j j −

i∑
m= j+1

yimξmj k
cmj +ξmm−ξ j j .
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We express δ∗k(L|�) as

δ∗k(L|ξ) = arg min
δ

∫
Y∈P̃k (ξ)

L(YδY t ) fW (L|Y)πk(Y)dY

and the Bayes risk (3) as

rk(πk, δ
π
k ) = 1

2q

∫
ξ∈ϕk (Pk )

∫
T +

L(δ∗k(L|ξ)) fW (L|I p)γ (dL)dξ (5)

for q = p(p + 1)/2.
It is noted that, for any small ε > 0,

ϕk(Pk) =
q∏

i=1

(−1, 1) ⊃
q∏

i=1

(−1 + ε, 1 − ε) ≡ Iε.

Then, the Bayes risk (5) is evaluated as

rk(πk, δ
π
k ) ≥ 1

2q

∫
ξ∈Iε

∫
T +

L(δ∗k(L|ξ)) fW (L|I p)γ (dL)dξ .

As proved in Lemma 1 given below, we see that, for ξ ∈ Iε, δ∗k(L|ξ) → δB E (L) as
k → ∞. Hence, Fatou’s lemma is used to bound the Bayes risk from below as

lim inf
k→∞ rk(πk, δ

π
k ) ≥ 1

2q

∫
ξ∈Iε

∫
T +

fW (L|I p) · lim inf
k→∞ L(δ∗k(L|ξ))γ (dL)dξ

= 1

2q

∫
ξ∈Iε

dξ
∫
T +

fW (L|I p)L(δ
B E (L))γ (dL)

= (1 − ε)q R(δB E (L), I p) = (1 − ε)q R0.

From the arbitrariness of ε > 0, it follows that lim infk→∞ rk(πk, δ
π
k ) ≥ R0, com-

pleting the proof of Theorem 1. ��
To complete the proof of Theorem 1, we need the following lemma, whose proof

will be given in the Appendix.

Lemma 1 For ξ ∈ Iε, it holds that δ∗k(L|ξ) → δB E (L) as k → ∞.

In estimation of the covariance matrix�, Stein (1956) employed the so-called Stein
loss function given by

L S(δ,�) = tr�−1δ − log |�−1δ| − p = tr�δ�t − log |�δ�t | − p, (6)

and the best equivariant estimator is given by δB E = TDB E T t , where

DB E =
[ ∫

T +
�t� fW (I p|�)γ (d�)

]−1

= diag (d1, . . . , dp)
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Minimaxity in estimation of scale parameter matrix 267

for di = (n+ p−2i +1)−1. From Theorem 1, δB E is minimax relative to the Stein loss
(6), and the least favorable sequence of prior distributions is given in (1). Similarly,
we use the following invariant loss functions

L Q(δ,�) = tr (�−1δ − I p)
2 = tr (�δ�t − I p)

2,

L P (δ,�) = tr�δ−1 − log |�δ−1| − p = tr (�δ�t )−1 − log |(�δ�t )−1| − p,

so that the resulting best equivariant estimators are minimax. It is noted that the loss
L P is used in estimation of the precision matrix �−1 rather than of the covariance
matrix�. For more details of estimation with respect to L Q and L P , see Selliah (1964)
and Krishnamoorthy and Gupta (1989), respectively.

The same arguments can be used for estimation of� based on the Cholesky decom-
position. The best equivariant estimator of � is given in Eaton and Olkin (1987), and
its minimaxity can be shown by the arguments based on the sequence of prior distri-
butions.

2.2 Extension to elliptical distributions

The results given in Sect. 2.1 can be extended to a class of elliptical distributions
whose probability density function (p.d.f.) with respect to γ (dT) is given by

fφ(T|�)γ (dT) = |�T|nφ(�T{�T}t )γ (dT) (7)

for an integrable function φ(·). It is assumed that φ satisfies φ(A) = φ(BAB) for a
squared matrix A and a diagonal matrix B with diagonal elements ±1. Consider here
the problem of estimating the scale parameter matrix � = (�t�)−1 relative to an
invariant loss L(�δ�t ). Then, the best equivariant estimator is given by

δB E
φ = δB E

φ (T) = arg min
δ

∫
�∈T +

L(�δ�t ) fφ(T|�)γ (d�) = TDφT t , (8)

where Dφ is a diagonal matrix whose diagonal elements are constants depending on
the functions φ and L . Then, we obtain the following theorem based on the same
arguments as in the previous subsection.

Theorem 2 Assume that the random matrix is distributed as an elliptical distribution
with the p.d.f. (7). Then the sequence (1) is least favorable, and the best equivariant
estimator δB E

φ is minimax.

An example of fφ(T|�)γ (dT) is the p.d.f. of matrix-variate F distribution or
matrix-variate beta distribution, which is expressed as

fF (T|�)γ (dT) = C |�T|n|I p +�T{�T}t |−(v+n+p−1)/2γ (dT),

where C is a normalizing constant, and v is a positive constant. The best
equivariant estimator of � = (�t�)−1 relative to the Stein loss (6) is δB E

F =
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[∫ �t� fF (T|�)γ (d�)]−1. Making transformation from � to �T−1 gives the
expression δB E

F = TDB E
F T t where

DB E
F =

[ ∫
T +

�t� fF (I p|�)γ (d�)
]−1

. (9)

A direct calculation from (9) yields the following lemma, which will be proved in the
appendix.

Lemma 2 Suppose that v > 2. The exact value of DB E
F defined in (9) is given by

DB E
F = diag (h−1

1 , . . . , h−1
p ) for

hi = n − i + 1

v + i − 3
· v + p − 2

v + i − 2
+ p − i

v + i − 2
(i = 1, . . . , p).

Theorem 2 establishes that the best equivariant estimator δB E
F is minimax. It is

noted that δB E
F is the same as a minimax estimator obtained by Muirhead and Veratha-

worn (1985) from the invariance approach. Our notation (n, p, v) corresponds to
(n1,m, n2 − m + 1) in their notation. See Section 3 of Muirhead and Verathaworn
(1985).

3 Estimation under restriction of lower triangular matrix

3.1 Minimaxity under order-restricted diagonal elements

Consider the unique reparametrization for � of the form ���t = �, where � =
(γi j ) is a lower triangular matrix with unit diagonal elements, γi i = 1, and � =
diag (λ1, . . . , λp) with positive diagonal elements λi . Pourahmadi (1999) has pointed
out a statistical meaning of the γi j and λi in analysis of longitudinal data, and showed
that they are interpreted as the autoregressive coefficients and the innovation (residual)
variances, respectively.

In the previous section, we used the Cholesky decomposition �−1 = �t� where
� = (θi j ) ∈ T +. It then follows that λi = θ−2

i i and γi j = θi j/θi i because �−1 =
�t�−1� and the Cholesky decomposition is unique. In this section, we consider the
restriction λ1 ≥ λ2 ≥ · · · ≥ λp, namely,

θ−2
11 ≥ θ−2

22 ≥ · · · ≥ θ−2
pp , or, equivalently, θ11 ≤ θ22 ≤ · · · ≤ θpp. (10)

This signifies that the innovation variances decrease as time goes. For simple expla-
nation of this constraint, see Pourahmadi (1999, Section 2.6).

For ci j = 3(i − j)− 1, define a set P L
k of � by

P L
k =

{
� ∈ T + : k−1/2 ≤ θ11 ≤ k1/2, 1 ≤ θi i/θi−1,i−1 ≤ k2 (i = 2, . . . , p) and

−kci j θi i ≤ θi j ≤ kci j θi i (1 ≤ j < i ≤ p)
}
.
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Minimaxity in estimation of scale parameter matrix 269

Then, we consider the sequence of prior distributions given by

πk(�)d� = γ (d�)

V (P L
k )

I (� ∈ P L
k ), k = 1, 2, . . . , (11)

where γ (d�) = (
∏p

i=1 θ
−i
i i )d� and V (P L

k ) = 2p(p+1)/2−1(log k)p∏p
i=1

∏i−1
j=1 kci j .

Theorem 3 For an elliptical distribution (7) with the restriction (10), the best
equivariant and unrestricted estimator δB E

φ , given in (8), is minimax and the sequence
(11) is least favorable.

Proof An outline of the proof is given because the proof is similar to that of Theorem 1.
Using the same lines from beginning to (3) in the proof of Theorem 1, we express

the Bayes risk with respect to P L
k as

rk(πk, δ
π
k ) = 1

V (P L
k )

∫
�∈P L

k

∫
L∈T +

L(δ∗k(L|�)) fφ(L|I p)γ (dL)πk(�)d�, (12)

where

δ∗k(L|�) = arg min
δ

∫
Y�∈P L

k

L(YδY t ) fφ(L|Y)πk(Y)dY.

Since we easily see that, for all k, rk(πk, δ
π
k ) ≤ Rφ = ∫

T∈T + L(δB E
φ (T)) fφ(T|I p)

γ (dT), it will be shown that lim infk→∞ rk(πk, δ
π
k ) ≥ Rφ .

Let P = {� ∈ T + : θ11 ≤ θ22 ≤ · · · ≤ θpp}. It is seen that ∪∞
k=1 P L

k = P ⊂ T +.
The function ξ = ϕk(�) is defined by

ξ11 = 2 log θ11

log k
, ξi i = 1

log k
log

θi i

θi−1,i−1
− 1 (i = 2, . . . , p),

ξi j = θi j

θi i kci j
(1 ≤ j < i ≤ p).

Then, it follows that ϕk(P L
k ) = [−1, 1]p(p+1)/2 and

γk(dξ) = 2−1(log k)p

⎛
⎝ p∏

i=1

i−1∏
j=1

kci j

⎞
⎠ dξ = γ (d�)

for γ (d�) = (
∏p

i=1 θ
−i
i i )d�.
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It is noted that “Y� ∈ P L
k ” is written as “Y ∈ P ′

k(�)”, where

P ′
k(�) =

{
Y ∈ T + : k−1/2 ≤ {Y�}11 ≤ k1/2, 1 ≤ {Y�}i i{Y�}i−1,i−1

≤ k2

(i = 2, . . . , p) and − kci j {Y�}i i ≤ {Y�}i j ≤ kci j {Y�}i i

(1 ≤ j < i ≤ p)
}

=
{

Y ∈ T + : k−1/2 ≤ y11θ11 ≤ k1/2, 0 ≤ yii θi i
yi−1,i−1θi−1,i−1

≤ k2

(i = 2, . . . , p) and − kci j yiiθi i ≤∑i
m= j yimθmj ≤ kci j yiiθi i

(1 ≤ j < i ≤ p)
}
.

It also follows that θi i = kξ11/2+∑i
�=2(1+ξ��) for i ≥ 2. Thus, by the function ξ =

ϕk(�), “Y ∈ P ′
k(�)” is expressed as “Y ∈ P̃k(ξ)”, where

P̃k(ξ) = {Y ∈ T + : Li j (Y, ξ) ≤ yi j ≤ Ui j (Y, ξ) (1 ≤ j ≤ i ≤ p)}

with

Li j (Y, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−(1+ξ11)/2 if i = j = 1,

yi−1,i−1k−(1+ξi i ) if i = j ≥ 2,

−yii k
ci j +∑i

�= j+1(1+ξ��)

−∑i
m= j+1 yimξmj k

cmj +∑m
�= j+1(1+ξ��) if i > j,

Ui j (Y, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k(1−ξ11)/2 if i = j = 1,

yi−1,i−1k1−ξi i if i = j ≥ 2,

yii k
ci j +∑i

�= j+1(1+ξ��)

−∑i
m= j+1 yimξmj k

cmj +∑m
�= j+1(1+ξ��) if i > j.

The function ξ = ϕk(�) transforms δ∗k(L|�) to

δ∗k(L|ξ) = arg min
δ

∫
Y∈P̃k (ξ)

L(YδY t ) fφ(L|Y)πk(Y)dY.

Let |ξi j | < 1−ε for i ≥ j and any small ε > 0. We here use the same way as in the
proof of Lemma 1 and can easily show that P∗

k = {Y ∈ T + : L∗
i j < yi j < U∗

i j (1 ≤
j ≤ i ≤ p)} ⊂ P̃k(ξ), where

L∗
i j =

{
k−ε/2 if i = j,

−ε(1 − k−1)i− j−1kε if i > j,

U∗
i j =

{
kε/2 if i = j,

ε(1 − k−1)i− j−1kε if i > j.
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Minimaxity in estimation of scale parameter matrix 271

It then holds that ∪∞
k=1 P∗

k = T +, which implies that, for ξ ∈ Iε, δ∗k(L|ξ) → δB E
φ (L)

as k → ∞. We, hence obtain lim infk→∞ rk(πk, δ
π
k ) ≥ Rφ in the same way as the

last part after (5) in the proof of Theorem 1. ��

3.2 Improvement by the isotonic regression method

In the previous subsection, the best equivariant and unrestricted estimator is shown to
remain minimax under the restriction (10). In this subsection, it is shown that the best
equivariant estimator can be further improved on by the isotonic regression method
under the restriction (10).

Let T1 be the lower triangular matrix with unit diagonal elements such that, for
i > j , the (i, j) off-diagonal elements are ti j/t j j , where the ti j are elements of
T = (ti j ) ∈ T +. Then, the best equivariant estimator with respect to the Stein loss (6)
is rewritten as

δB E
φ = TDφT t = T1�

B E (t)T t
1

for t = (t2
11, . . . , t2

pp), where�B E (t) = diag (d1t2
11, . . . , dpt2

pp) and the di are positive

constants. If θ−2
11 ≥ θ−2

22 ≥ · · · ≥ θ−2
pp on� = (�t�)−1, we should modify the order-

ing property of diagonal elements of�B E (t) as long as Pr(d1t2
11 ≥ · · · ≥ dpt2

pp) < 1.
To revise the unnatural ordering, we apply the isotonic regression to diagonal ele-

ments of �B E (t). Let �B E (t) = diag (ψ B E
1 , . . . , ψ B E

p ) with ψ B E
i = di t2

i i , and let

� I R(t) = diag (ψ I R
1 , . . . , ψ I R

p ), where {ψ I R
1 , . . . , ψ I R

p } is a solution of minimizing∑p
i=1(λi − ψ B E

i )2 subject to λ1 ≥ λ2 ≥ · · · ≥ λp. For more details of the isotonic
regression, refer to Robertson et al. (1988).

Theorem 4 For an elliptical distribution (7) with the restriction (10), suppose that
Pr(d1t2

11 ≥ · · · ≥ dpt2
pp) < 1. Then δ I R

φ = T1�
I R(t)Tt

1 is minimax estimator domi-

nating δB E
φ relative to the Stein loss (6).

We verify this theorem via the following lemma. For details of the lemma, see
Rockafellar (1970) and Calvin and Dykstra (1991).

Lemma 3 (Fenchel’s duality theorem) Let f (x) be a concave function defined in R
p,

and let K be a closed convex cone in R
p. Define the concave conjugate of f (x) and

the dual cone of K as, respectively,

f ∗(y) = inf
x∈Rp

{ p∑
i=1

xi yi − f (x)

}
, K∗ =

{
y ∈ R

p :
p∑

i=1

xi yi ≤ 0, ∀x ∈ K
}
.

Then, we have

sup
x∈K

f (x) = − sup
y∈K∗

f ∗(y) (13)
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if either ri(dom f ) ∩ ri(K) �= ∅ or ri(dom f ∗) ∩ ri(K∗) �= ∅, where ri means relative
interior and dom f = {x ∈ R

p : f (x) > −∞}. Denote by x∗ and y∗, respectively,
solutions of the left- and right-hand sides of (13). It then holds that (a) x∗ ∈ K, (b)
y∗ ∈ K∗, (c) (x∗)t y∗ =∑p

i=1 x∗
i y∗

i = 0 and (d) −y∗ is a subgradient of − f at x∗.

Proof of Theorem 4 The proof can be done along the same lines as in Tsukuma and
Kubokawa (2011). Let �(t) = diag (ψ1, . . . , ψp) whose diagonal elements are func-
tions of t. Recall that �−1 = �t�−1� with λ1 ≥ λ2 ≥ · · · ≥ λp. Then, the risk of
estimator δφ = T1�(t)T t

1 is written as

R(δφ,�) = E[tr�−1T1�(t)T t
1 − log |�−1T1�(t)T t

1| − p]
= E[tr�−1U�(t)Ut − log |�−1�(t)| − log |UUt | − p],

where the second equality follows from the transformation U = (ui j ) = �T1. The
first term of the last right-hand side is expressed as

E[tr�−1U�(t)Ut ] = E

[ p∑
i=1

ψi {Ut�−1U}i i

]
= E

⎡
⎣ p∑

i=1

ψi

p∑
j=i

u2
j i/λ j

⎤
⎦ . (14)

Let

ai = ai (t) = E

⎡
⎣ p∑

j=i+1

u2
j i/λ j

∣∣∣∣ t

⎤
⎦ . (15)

It follows that uii = 1 for i = 1, . . . , p. Note that ai depends on the probability
density function (7) and that if (7) is the normal density then ai = (p − i)/t2

i i , since
the Bartlett decomposition leads to the fact that t2

i i/λi ∼ χ2
n−i+1 for i = 1, . . . , p and

u ji |tii ∼ N (0, λ j/t2
i i ) for j > i . Combining (14) and (15), we obtain

E[tr�−1U�(t)Ut ] = E

[ p∑
i=1

ψi (λ
−1
i + ai )

]
,

which yields

R(δφ,�) = E

[ p∑
i=1

{ψi (λ
−1
i + ai )− log(ψi/λi )}

]
− p. (16)

Let ψ B E = (ψ B E
1 , . . . , ψ B E

p )t and ψ I R = (ψ I R
1 , . . . , ψ I R

p )t . For i = 1, . . . , p,

let ξi = λ−1
i . Denote R

p
+ = {x ∈ R

p : xi > 0 for each i}. Then, ξ = (ξ1, . . . , ξp)
t

belongs to

K = {ξ ∈ R
p
+ : ξ1 ≤ · · · ≤ ξp}.
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Also, denote the dual cone of K by

K∗ = {η ∈ R
p : ηt x ≤ 0 for any x ∈ K}.

Let the objective function be

�(ξ |ψ B E ) =
p∑

i=1

{log ξi − ψ B E
i (ξi + ai )},

which is the concave function of ξ . It is noted from Robertson et al. (1988) that ψ I R
i ’s

are the same as certain solutions ξ̂−1
i of maximizing

∑p
i=1{log ξi − ψ B E

i ξi } subject
to ξ ∈ K and, moreover, the ξ̂i ’s are equivalent to solutions of maximizing �(ξ |ψ B E )

subject to ξ ∈ K.
The concave conjugate function of �(ξ |ψ B E ) is given by

�∗(η|ψ B E ) = inf
ξ∈R

p
+

{ p∑
i=1

ξiηi − �(ξ |ψ B E )

}

= inf
ξ∈R

p
+

[ p∑
i=1

{ξi (ηi + ψ B E
i )− log ξi }

]
+

p∑
i=1

ψ B E
i ai

=
p∑

i=1

log(ηi + ψ B E
i )+ p +

p∑
i=1

ψ B E
i ai

and the domain of �∗(η|ψ B E ) is {η ∈ R
p : η+ψ B E � 0p}, where “�” stands for “is

componentwise greater than”.
The subgradient of −�(ξ |ψ B E ) is equal to (ψ B E

1 − ξ−1
1 , . . . , ψ B E

p − ξ−1
p )t , so

Lemma 3 (d) implies that the supremum of �∗(η|ψ B E ) is attained at

η̂ = (ξ̂−1
1 − ψ B E

1 , . . . , ξ̂−1
p − ψ B E

p )t .

Since ξ̂−1
i = ψ I R

i , we can see that

− sup
η∈K∗

η+ψ B E �0p

�∗(η|ψ B E ) = −�∗(̂η|ψ B E ) = −
p∑

i=1

logψ I R
i − p −

p∑
i=1

ψ B E
i ai .

(17)
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It is noted thatψ B E
i eai (ψ

I R
i −ψ B E

i ) > 0 for each i . Replacingψ I R
i byψ B E

i eai (ψ
I R
i −ψ B E

i )

in the above expression yields

− sup
η∈K∗

η+ψ B E �0p

�∗(η|ψ B E ) ≤ −
p∑

i=1

log(ψ B E
i eai (ψ

I R
i −ψ B E

i ))− p −
p∑

i=1

ψ B E
i ai

= −
p∑

i=1

logψ B E
i − p −

p∑
i=1

ψ I R
i ai . (18)

Combining (17) and (18) gives that
∑p

i=1(ψ
I R
i ai − logψ I R

i ) ≤ ∑p
i=1(ψ

B E
i ai −

logψ B E
i ), or, equivalently,

p∑
i=1

{ψ I R
i ai − log(ψ I R

i /λi )} ≤
p∑

i=1

{ψ B E
i ai − log(ψ B E

i /λi )}. (19)

From the fact that η̂ ∈ K∗ and ξ ∈ K, it follows that λ̂
t
ξ ≤ 0, namely,

p∑
i=1

(ψ I R
i − ψ B E

i )ξi =
p∑

i=1

(ψ I R
i − ψ B E

i )λ−1
i ≤ 0. (20)

Combining (19) and (20), we can see that

p∑
i=1

{ψ I R
i (λ−1

i + ai )− log(ψ I R
i /λi )} ≤

p∑
i=1

{ψ B E
i (λ−1

i + ai )− log(ψ B E
i /λi )}

with probability one. Thus, it follows from (16) that R(δ I R
φ ,�) ≤ R(δB E

φ ,�), which

implies that δ I R
φ is a minimax estimator improving on δB E

φ . ��

4 Concluding remarks

In this paper, we have considered some problems related to estimating covariance
matrix of multivariate normal distribution model, and have used sequences of prior
distributions to show minimaxity of the resulting best equivariant estimator. The
approaches to minimaxity can be used in both restricted and non-restricted cases of
parameters. The most striking result of the paper is that we have succeeded in deriving
an explicit formula for a least favorable sequence of prior distributions for the covari-
ance matrix. This has been an open question for a long time, since Stein (1956) and
James and Stein (1961). The least favorable prior approach to minimaxity is construc-
tive and pedagogic. We have also applied the same arguments given in Theorem 1 to
the restricted case of lower triangular matrix for establishing minimaxity of the best
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equivariant and unrestricted estimators, which is further improved on by the isotonic
regression method.

The least favorable prior approach used in the proofs of Theorem 1 has the potential
to be applied to various restrictions of covariance and precision matrices. For example,
consider the restrictions |�| ≤ c and |�| ≥ c for positive c, namely,

∏p
i=1 θ

2
i i ≥

1/c and
∏p

i=1 θ
2
i i ≤ 1/c. The case of |�| ≥ c has been treated by Marchand and

Strawderman (2012), who established minimaxity of the best equivariant estimator
based on a different method from our approach. See Marchand and Strawderman
(2012) for more details. For the case of |�| ≤ c, we can get the following theorem
which is shown in the appendix.

Theorem 5 For an elliptical distribution (7) with the restriction |�| ≤ c, the best
equivariant estimator of �, given in (8), is minimax.

The least favorable sequences of prior distributions addressed in this paper are
extended to general estimation problems with an invariance structure and a uni-
fied methodology can be presented for both restricted and non-restricted cases. See
Tsukuma and Kubokawa (2012).

The methods given in this paper can be applied to more general models with both
location and scale parameters. For instance, we can handle the case that a sample mean
vector is available, which can be described as V ∼ Wp(n,�) and X ∼ Np(μ,�). Our
results can be easily extended to this model, and minimaxity for the best equivariant
estimator of � is established.

Appendix A

A.1 Proof of Lemma 1

For i > j , let U∗
i j = ε(1 − k−1)i− j−1kε and L∗

i j = −ε(1 − k−1)i− j−1kε. Define

P∗
k = {Y ∈ T + : k−ε < yii < kε (i = 1, . . . , p) and L∗

i j < yi j < U∗
i j (i > j)}.

Recall that P̃k(ξ) is given in (4). If it is proved that P∗
k ⊂ P̃k(ξ) for all k and any

ξ ∈ Iε, then δ∗k(L|ξ) → δB E (L) as k → ∞ because ∪∞
k=1 P∗

k = T +. Then, the proof
of this lemma will be complete.

Denote, for i = 1, . . . , p,

Rii = {yii ∈ R : k−(1+ξi i ) < yii < k1−ξi i },
R∗

i i = {yii ∈ R : k−ε < yii < kε},
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and, for i > j ,

Ri j = {yi j ∈ R : Li j (Y, ξ) < yi j < Ui j (Y, ξ)},
R̃i j = {yi j ∈ R : −yii Bi j (ξ) < yi j < yii Bi j (ξ)},
R∗

i j = {yi j ∈ R : L∗
i j < yi j < U∗

i j },

where Bi j (ξ) = ε(1 − k−1)i− j−1kci j +ξi i −ξ j j . It is here noted that P̃k(ξ) = ∩p
i=1 ∩i

j=1

Ri j and P∗
k = ∩p

i=1 ∩i
j=1 R∗

i j . To prove that P∗
k ⊂ P̃k(ξ), we will establish the

following inclusion relations

P̃k(ξ) ⊃
p⋂

i=1

⎧⎨
⎩
⎛
⎝ i−1⋂

j=1

R̃i j

⎞
⎠ ∩ Rii

⎫⎬
⎭ ⊃ P∗

k . (21)

For proof of the first inclusion relation in (21), we inductively show that for each i

i−1⋂
j=1

Ri j ⊃
⎛
⎝ i−2⋂

j=1

Ri j

⎞
⎠ ∩ R̃i,i−1 ⊃

⎛
⎝ i−3⋂

j=1

Ri j

⎞
⎠ ∩

⎛
⎝ i−1⋂

j=i−2

R̃i j

⎞
⎠ ⊃ · · · ⊃

i−1⋂
j=1

R̃i j .

(22)

It is observed that 1 − ξi j > ε and 1 + ξi j > ε for i ≥ j since ξ ∈ Iε =
(−1 + ε, 1 − ε)q . For j = i − 1, it follows that

Ui,i−1(Y, ξ) = yii (1 − ξi,i−1)k
ci,i−1+ξi i −ξi−1,i−1 > yiiεk

ci,i−1+ξi i −ξi−1,i−1

= yii Bi,i−1(ξ),

Li,i−1(Y, ξ) = −yii (1 + ξi,i−1)k
ci,i−1+ξi i −ξi−1,i−1 < −yiiεk

ci,i−1+ξi i −ξi−1,i−1

= −yii Bi,i−1(ξ).

We thus have Ri,i−1 ⊃ R̃i,i−1, which yields

i−1⋂
j=1

Ri j =
⎛
⎝ i−2⋂

j=1

Ri j

⎞
⎠ ∩ Ri,i−1 ⊃

⎛
⎝ i−2⋂

j=1

Ri j

⎞
⎠ ∩ R̃i,i−1.

This implies that the first inclusion relation in (22) is true.
Next, suppose that the (i − �− 1)-th inclusion relation in (22) holds true, namely,

⎛
⎝ �+1⋂

j=1

Ri j

⎞
⎠ ∩

⎛
⎝ i−1⋂

j=�+2

R̃i j

⎞
⎠ ⊃

⎛
⎝ �⋂

j=1

Ri j

⎞
⎠ ∩

⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠ .
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We then verify the (i − �)-th inclusion relation of (22),

⎛
⎝ �⋂

j=1

Ri j

⎞
⎠ ∩

⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠ ⊃

⎛
⎝ �−1⋂

j=1

Ri j

⎞
⎠ ∩

⎛
⎝ i−1⋂

j=�
R̃i j

⎞
⎠ , (23)

by means of proving that

Ri� ∩
⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠ ⊃

i−1⋂
j=�

R̃i j . (24)

For j = � + 1, . . . , i − 1, R̃i j implies that |yi j/yii | < Bi j (ξ). Then, the upper
bound of Ri� is evaluated below as

Ui�(Y, ξ) = yii k
ci�+ξi i −ξ��

{
1 − ξi� −

i−1∑
m=�+1

yim

yii
ξm�k

cm�−ci�+ξmm−ξi i
}

> yii k
ci�+ξi i −ξ��

{
1 − ξi� −

i−1∑
m=�+1

∣∣∣ yim

yii

∣∣∣ · |ξm�|kcm�−ci�+ξmm−ξi i
}

> yii k
ci�+ξi i −ξ��

{
1 − ξi� −

i−1∑
m=�+1

Bim(ξ) · |ξm�|kcm�−ci�+ξmm−ξi i
}
.

Noting that 1 − ξi� > ε and |ξm�| < 1, we obtain

Ui�(Y, ξ) > yii k
ci�+ξi i −ξ��

{
ε −

i−1∑
m=�+1

Bim(ξ)k
cm�−ci�+ξmm−ξi i

}

= yii k
ci�+ξi i −ξ��

{
ε −

i−1∑
m=�+1

ε(1 − k−1)i−m−1kcim+cm�−ci�

}
.

Recall that ci j = 3(i − j)− 1. Since cim + cm� − ci� = 3(i − m)− 1 + 3(m − �)−
1 − 3(i − �)+ 1 = −1, it is observed that

Ui�(Y, ξ) > yii k
ci�+ξi i −ξ��

{
ε −

i−1∑
m=�+1

ε(1 − k−1)i−m−1k−1

}

= yii k
ci�+ξi i −ξ��ε

{
1 − 1

k
−
(

1 − 1

k

)
1

k
−
(

1 − 1

k

)2 1

k

− · · · −
(

1 − 1

k

)i−�−2 1

k

}
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= yii k
ci�+ξi i −ξ��ε

(
1 − 1

k

)i−�−1

= yii Bi�(ξ).

Similarly, it is seen that, when |yi j/yii | < Bi j (ξ) for j = �+ 1, . . . , i − 1,

Li�(Y, ξ) = −yii k
ci�+ξi i −ξ��

{
1 + ξi� +

i−1∑
m=�+1

yim

yii
ξm�k

cm�−ci�+ξmm−ξi i
}

< −yii k
ci�+ξi i −ξ��

{
1 + ξi� −

i−1∑
m=�+1

∣∣∣ yim

yii

∣∣∣ · |ξm�|kcm�−ci�+ξmm−ξi i
}

< −yii Bi�(ξ),

so that

Ri� ∩
⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠ = {yi� ∈ R : Li�(Y, ξ) < yi� < Ui�(Y, ξ)} ∩

⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠

⊃ {yi� ∈ R : −yii Bi�(ξ) < yi� < yii Bi�(ξ)} ∩
⎛
⎝ i−1⋂

j=�+1

R̃i j

⎞
⎠

=
i−1⋂
j=�

R̃i j .

Hence we get (24), which immediately gives the inclusion relation (23). Inductively
repeating the relation (23), we obtain the inclusion relations (22) for each i , which
establishes the first inclusion relation in (21).

Next, the second inclusion relation in (21) is shown. Noting that 1 − ξi j > ε and
1 + ξi j > ε for i ≥ j , we obtain, for i = 1, . . . , p,

Rii = {yii ∈ R : k−(1+ξi i ) < yii < k1−ξi i } ⊃ {yii ∈ R : k−ε < yii < kε} = R∗
i i

(25)

and also, for i > j ,

Bi j (ξ) = ε(1 − k−1)i− j−1k3(i− j)−1+ξi i −ξ j j

= ε(1 − k−1)i− j−1k3(i− j−1)+(1+ξi i )+(1−ξ j j )

> ε(1 − k−1)i− j−1k3(i− j−1)+2ε

> ε(1 − k−1)i− j−1k2ε, (26)
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where the last inequality follows from the fact that i − j − 1 ≥ 0. When yii ∈ R∗
i i ,

using the inequality (26) gives, for i > j ,

yii Bi j (ξ) > k−εBi j (ξ) > k−ε × ε(1 − k−1)i− j−1k2ε = ε(1 − k−1)i− j−1kε,

which yields that

R∗
i i ∩ R̃i j = R∗

i i ∩ {yi j ∈ R : −yii Bi j (ξ) < yi j < yii Bi j (ξ)}
⊃ R∗

i i ∩ {yi j ∈ R : −ε(1 − k−1)i− j−1kε < yi j < ε(1 − k−1)i− j−1kε}
= R∗

i i ∩ R∗
i j . (27)

Using (25) and (27) gives

p⋂
i=1

⎧⎨
⎩
⎛
⎝i−1⋂

j=1

R̃i j

⎞
⎠ ∩ Rii

⎫⎬
⎭ ⊃

p⋂
i=1

⎧⎨
⎩
⎛
⎝i−1⋂

j=1

R̃i j

⎞
⎠ ∩ R∗

i i

⎫⎬
⎭

⊃
p⋂

i=1

⎧⎨
⎩
⎛
⎝i−1⋂

j=1

R∗
i j

⎞
⎠ ∩ R∗

i i

⎫⎬
⎭ = P∗

k ,

which establishes the second inclusion relation in (21). It hence holds that P∗
k ⊂ P̃k(ξ)

for all k, which completes the proof of Lemma 1.

A.2 Proof of Lemma 2

It is noted that the integral in DB E
F given in (9) is invariant under transformation� →

B�B where B is a diagonal matrix such that all diagonal elements are respectively
either one or minus one. Denote by E∗ the expectation with respect to the probability
density function fF (I p|�)γ (d�) and let

H p = E∗[�t�] =
∫
�t� fF (I p|�)γ (d�).

Partition � into four blocks as follows:

� =
(
�11 0p−1

θ t
21 θpp

)
,
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where the sizes of �11 and θ21 are, respectively, (p − 1)× (p − 1) and (p − 1)× 1.
It is seen that

|I p +��t | =
∣∣∣∣I p−1 +�11�

t
11 �11θ21

θ t
21�

t
11 1 + θ2

pp + θ t
21θ21

∣∣∣∣
= |I p−1 +�11�

t
11|{1 + θ2

pp + θ t
21θ21

− θ t
21�

t
11(I p−1 +�11�

t
11)

−1�11θ21}
= |I p−1 +�11�

t
11|{1 + θ2

pp + θ t
21(I p−1 +�t

11�11)
−1θ21},

which yields

fF (I p|�)γ (d�) = C |I p−1 +�11�
t
11|−a(1 + θ2

pp)
−a(1

+ θ t
21G−1θ21)

−a

( p∏
i=1

θn−i
i i

)
d�11dθ21dθpp

= C |I p−1 +�11�
t
11|−a+1/2(1 + θ2

pp)
−a+(p−1)/2

( p∏
i=1

θn−i
i i

)

× |G|−1/2(1 + θ t
21G−1θ21)

−ad�11dθ21dθpp

with a = (v+n + p−1)/2 and G = (1+θ2
pp)(I p−1 +�t

11�11). Hence, the marginal
distribution of {(v+ p − 1)/(n − p + 1)}θ2

pp is the F distribution with n − p + 1 and
v+ p − 1 degrees of freedom, and the conditional distribution of (v+ n)1/2θ21 given
�11 and θpp is the (p − 1)-dimensional t distribution with v+ n degrees of freedom,
mean zero and scale matrix G. Letting H p−1 = E∗[�t

11�11], we obtain

E∗[θ2
pp] = n − p + 1

v + p − 3

and

E∗[θ21θ
t
21] = E∗

[
1 + θ2

pp

v + n − 2
(I p−1 +�t

11�11)

]
= 1

v + p − 3
(I p−1 + H p−1),

which implies that

H p =
(

E∗[�t
11�11 + θ21θ

t
21] 0p−1

0t
p−1 E∗[θ2

pp]

)

=
(
(1 + βp−1)H p−1 + βp−1I p−1 0p−1

0t
p−1 αp

)
,

where αp = E∗[θ2
pp] = (n − p + 1)/(v + p − 3) and βp−1 = 1/(v + p − 3).
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Similarly, let Ai be the i × i left upper corner of � and denote Hi = E∗[At
i Ai ].

Then, it holds that

αi = E∗[θ2
i i ] = n − i + 1

v + i − 3

and

Hi =
(
(1 + βi−1)Hi−1 + βi−1Ii−1 0i−1

0t
i−1 αi

)

with βi−1 = (1 + αi )/(v + n − 2) = 1/(v + i − 3). Solving these inductively yields

hi = E∗[{�t�}i i ] = αi

p−1∏
j=i

(1 + β j )+
p−1∑
j=i

β j

p∏
k= j+1

(1 + βk) (i = 1, . . . , p − 1),

h p = E∗[{�t�}pp] = αp,

where βp = 0. It is observed that

p−1∏
j=i

(1 + β j ) = v + p − 2

v + i − 2

and

p−1∑
j=i

β j

p∏
k= j+1

(1 + βk) =
p−1∑
j=i

v + p − 2

(v + j − 2)(v + j − 1)

= (v + p − 2)
p−1∑
j=i

(
1

v + j − 2
− 1

v + j − 1

)

= p − i

v + i − 2
,

which gives hi in Lemma 2. This completes the proof of Lemma 2.

A.3 Proof of Theorem 5

Without loss of generality, we take c = 1. Let P = {� ∈ T + : |�|2 ≥ 1} = {� ∈
T + :∏p

i=1 θ
2
i i ≥ 1}. Define

Pk =
{
� ∈ T + : 1 ≤

p∏
i=1

θi i ≤ k2p, 1/k ≤ θi i ≤ k (i = 2, . . . , p), and

− kci j θi i ≤ θi j ≤ kci j θi i (1 ≤ j < i ≤ p)
}
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with ci j = 3(i − j)− 1. Note that ∪∞
k=1 Pk = P . It is observed that

V (Pk) =
∫

Pk

γ (d�) = p2p(p+1)/2(log k)p
p∏

i=1

i−1∏
j=1

kci j ,

where γ (d�) = (
∏p

i=1 θ
−i
i i )d�.

Define the sequence of prior distributions as

πk(�)d� = γ (d�)

V (Pk)
I (� ∈ Pk), k = 1, 2, . . . .

The resulting Bayes estimators are denoted by

δπk = δπk (T) = arg min
δ

∫
Z∈Pk

L(ZδZt ) fφ(T|Z)πk(Z)dZ

with the Bayes risks

rk(πk, δ
π
k ) = 1

V (Pk)

∫
�∈Pk

∫
T +

L(�δπk (T)�
t ) fφ(T|�)γ (dT)πk(�)d�.

If it can be proved that limk→∞ rk(πk, δ
π
k ) = Rφ , where Rφ = R(δB E

φ ,�), then we
obtain the result of Theorem 5. Since the proof of Theorem 5 is very similar to those
of Theorems 1 and 3, we only show a convergence corresponding to δπk , as given in
Lemma 1.

A set of functions

ξ11 = 1

p

p∑
i=1

log θi i

log k
− 1, ξi i = log θi i

log k
(i = 2, . . . , p),

ξi j = θi j

kci j θi i
(1 ≤ j < i ≤ p)

is denoted by ξ = ϕk(�), which implies that ϕk(Pk) = [−1, 1]p(p+1)/2. It then
follows that

γk(dξ) = p(log k)p

⎛
⎝ p∏

i=1

i−1∏
j=1

kci j

⎞
⎠ dξ = γ (d�)

for γ (d�) = (
∏p

i=1 θ
−i
i i )d�.

Replacing the θi j in Pk by the {Y�}i j , we obtain
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P ′
k(�) =

{
Y ∈ T + : 1 ≤

p∏
i=1

{Y�}i i ≤ k2p, 1/k ≤ {Y�}i i ≤ k for i = 2, . . . , p,

and − kci j {Y�}i i ≤ {Y�}i j ≤ kci j {Y�}i i for i > j
}
.

The function ξ = ϕk(�) implies that θ11 = k p(1+ξ11)−∑p
�=2 ξ�� , θi i = kξi i for i =

2, . . . , p, and θi j = ξi j kci j +ξi i for i > j . The intervals “1 ≤∏p
i=1{Y�}i i ≤ k2p” and

“1/k ≤ {Y�}i i ≤ k” are equivalent to, respectively,

k−p(1+ξ11)

p∏
�=2

y−1
�� ≤ y11 ≤ k p(1−ξ11)

p∏
�=2

y−1
�� ,

k−(1+ξi i ) ≤ yii ≤ k1−ξi i (i = 2, . . . , p).

Hence, P ′
k(�) becomes

P̃k(ξ) = {Y ∈ T + : Li j (Y, ξ) ≤ yi j ≤ Ui j (Y, ξ) for 1 ≤ j ≤ i ≤ p},

where

Li j (Y, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k−p(1+ξ11)
∏p
�=2 y−1

�� if i = j = 1,

k−(1+ξi i ) if i = j ≥ 2,

−yii kci j +ξi i −ξ j j

−∑i
m= j+1 yimξmj kcmj +ξmm−ξ j j if 1 ≤ j < i ≤ p,

Ui j (Y, ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k p(1−ξ11)
∏p
�=2 y−1

�� if i = j = 1,

k1−ξi i if i = j ≥ 2,

yii kci j +ξi i −ξ j j

−∑i
m= j+1 yimξmj kcmj +ξmm−ξ j j if 1 ≤ j < i ≤ p.

The same arguments as in the proof of Lemma 1 yield that P̃k(ξ) ⊃ P∗
k = {Y ∈ T + :

L∗
i j < yi j < U∗

i j (1 ≤ j ≤ i ≤ p)}, where, for a small enough ε > 0,

L∗
i j =

{
k−ε if i = j,

−ε(1 − k−1)i− j−1kε if 1 ≤ j < i ≤ p,

U∗
i j =

{
kε if i = j,

ε(1 − k−1)i− j−1kε if 1 ≤ j < i ≤ p.
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Then, we observe that ∪∞
k=1 P∗

k = T +. This implies that, for ξ ∈ Iε,

δ∗k(L|ξ) = arg min
δ

∫
Y∈P̃k (ξ)

L(YδY t ) fφ(L|Y)πk(Y)dY → δB E
φ (L)

as k → ∞. Therefore, combining the above convergence and the same arguments as
in the proof of Theorem 1 leads to the proof of Theorem 5.
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