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Abstract Variable selection in the Cox proportional hazards model (the Cox model)
has manifested its importance in many microarray genetic studies. However, theo-
retical results on the procedures of variable selection in the Cox model with a high-
dimensional feature space are rare because of its complicated data structure. In this
paper, we consider the extended Bayesian information criterion (EBIC) for variable
selection in the Cox model and establish its selection consistency in the situation of
high-dimensional feature space. The EBIC is adopted to select the best model from
a model sequence generated from the SIS-ALasso procedure. Simulation studies and
real data analysis are carried out to demonstrate the merits of the EBIC.

Keywords Variable selection · Cox model · Extended Bayesian information
criterion · Selection consistency

1 Introduction

In many microarray genetic studies, a primary goal is to identify the genes which are
associated with a phenotype. When the outcomes of interest are censored time-to-
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event data, the Cox model is usually used to model the covariate–response association
(Cookson et al. 2009). Usually, the responsible genes occupy only a small propor-
tion of the whole genome, which is the so-called “sparsity” phenomenon (Barabási
et al. 2011). The objective of variable selection is to extract these responsible genes
from an enormous number of genes. Various techniques have been proposed for vari-
able selection in the Cox model with high-dimensional feature space. Regularization
methods such as the Lasso (Tibshirani 1997), the adaptive lasso (Zhang and Lu 2007;
Zou 2008) and the SCAD (Fan and Li 2002) have been proposed and shown to have
a so-called oracle property, i.e., the ability to identify exactly the responsible fea-
tures and estimate the model parameters as if the responsible features were known
in advance. For an overview of such techniques, see Fan et al. (2005). For a more
general case, in Du et al. (2010), the authors investigated the estimation and variable
selection problem in cox model with semiparametric relative risk, where either the
SCAD or the adaptive LASSO penalty is applied for variable selection for the para-
metric part. The resulting estimator of the parametric part was also shown to possess
the oracle property. It is important to note that the oracle property is obtained under
certain theoretical assumptions on the penalty parameter involved in the methods.
In practice, the penalty parameter needs to be chosen by a certain model selection
criterion.

Traditionally, model selection criteria such as cross validation (CV), generalized
cross validation (GCV), Bayesian information criterion (BIC, Schwarz 1978), etc.
have been used for model selection. However, in the case of high-dimensional feature
space, it has been observed that these model selection criteria tend to select models with
many spurious covariates and hence do not have the property of selection consistency,
see Broman and Speed (2002), Siegmund (2004) and Bogdan et al. (2004). To tackle
the problem of model selection with high-dimensional feature space, various variants
of the BIC have been considered in the literature. Among them are the modified BIC
(mBIC) proposed in Bogdan et al. (2004) and the extended BIC (EBIC) developed
in Chen and Chen (2008). The mBIC is asymptotically a sepcial case of EBIC. The
selection consistency of the EBIC has been established under various settings of high-
dimensional feature space for model selection in linear and generalized linear models,
see Chen and Chen (2008), Chen and Chen (2012), Luo and Chen (2013a) and Luo
and Chen (2013b).

In this paper, we consider the EBIC for variable selection in the Cox model when
the dimension of the feature space is high, particularly when it is much larger than
the sample size. The selection consistency of the EBIC in the Cox model is rigor-
ously established under fairly mild conditions. This is technically challenging since
it involves the uniform convergence rate of the partial likelihood, which has never
been treated in the literature. Our results allow the dimension of the feature space to
be of order O(nκ) for any κ > 1, and the number of relevant features is finite. The
performance of the EBIC is demonstrated in simulation studies as well as in real data
analysis with a microarray dataset.

The rest of the paper is organized as follows. The main theorems are provided in
Sect. 2. The simulation studies are presented in Sect. 3. The real data analysis is given
in Sect. 4. Some explanations on the conditions assumed for the theorems and the
technical proofs are relegated to the Appendix.
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2 Selection consistency of the EBIC in the Cox model

In this section, a brief review of the Cox model and the definition of the EBIC in the
case of Cox model are given at first. Then the conditions and the theoretical results
are stated. The theoretical results include a large deviation result on the score function
of the partial likelihood of the Cox model (Theorem 1), a uniform convergence rate
for the partial likelihood estimator of the Cox model (Theorem 2) and the selection
consistency of the EBIC for Cox model (Theorem 3). Besides their application in the
proof of Theorem 3, Theorem 1 and Theorem 2 are of their own interests in studies of
high-dimensional data analysis.

Denote by T and C the survival and censoring times, respectively. Let F and G, f
and g be the cumulative distribution functions and density functions of T and C ,
respectively. Let z be a p-dimensional covariate vector which might depend on time
t . The survival time T and censoring time C are assumed independent given the z.

We consider the right-censored model. The observations from n individuals are
n triplets {(Xi , δi , zi ) : i = 1, . . . , n} where Xi = min(Ti ,Ci ), δi = I (Ti ≤ Ci )

and zi = (zi1, zi2, . . . , zip)
τ . Suppose there are no ties in the observed times. The

likelihood function based on the observations is given by

L =
∏

i :δi =1

f (Xi |zi )
∏

i :δi =0

(1 − F(Xi |zi )) =
∏

i :δi =1

h(Xi |zi )

n∏

i=1

(1 − F(Xi |zi )),

where

h(t |z) = lim
Δt↓0

P(t ≤ T < t +Δt |T ≥ t, z = z) = f (t |z)/ (1 − F(t |z))

is the hazard function at t given z. The Cox model assumes that

h(t |z) = h0(t) exp(zτβ),

where h0(t) is a baseline hazard rate with cumulative hazard function

H0(t) =
∫ t

0
h0(u)du.

Without loss of generality, assume that the support of h0(t) is [0, 1] and
∫ 1

0 h0(t)dt <
+∞.

Let t1 < t2 < · · · < tN be the ordered observed survival times. Denote by {z( j) :
j = 1, . . . , N } the covariate vectors of the individuals with the survival times. Let
R(t) be the risk set at time t , i.e., R(t) = {i : Xi ≥ t}. In the Cox model, the
baseline cumulative hazard function H0(t) is modeled nonparametrically as H0(t) =∑N

j=1 h j I (t0
j ≤ t). Hence, h0(t j ) = h j and the second product of the likelihood

function is expressed as
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n∏

i=1

(1 − F(Xi |zi )) = exp

(
−

n∑

i=1

H(Xi |zi )

)

= exp

⎛

⎝−
N∑

j=1

h j

n∑

i=1

I (i ∈ R(t j )) exp(zτi β))

⎞

⎠

= exp

⎛

⎝−
N∑

j=1

h j

∑

i∈R(t j )

exp(zτi β)

⎞

⎠ .

The likelihood function L reduces to

L =
⎛

⎝
N∏

j=1

h j

⎞

⎠

⎛

⎝
N∏

j=1

exp(zτ( j)β)

⎞

⎠ exp

⎛

⎝−
N∑

j=1

h j

∑

i∈R(t j )

exp(zτi β)

⎞

⎠ .

Maximizing the log of the likelihood function with respect to the h j ’s for any fixed β

yields the log partial likelihood:

�n(β) =
N∑

j=1

⎛

⎝zτ( j)β − ln

⎛

⎝
∑

i∈R(t j )

exp(zτi β)

⎞

⎠

⎞

⎠ .

Let s be a subset of {1, 2, · · · , p}. Let |s| be the number of indices in s. By con-
vention, we denote by z(s) and β(s) the vectors obtained from the components of z
and β whose indices are contained in s. For convenience, we refer to s as both the
index set and the model consisting of the covariate vector z(s). Let S j be the set of
all models consisting of j covariates and τ(S j ) = (p

j

)
. In the context of Cox model,

for model s, the EBIC proposed in Chen and Chen (2008) is defined as follows:

EBICγ (s) = −2�n(β̂(s))+ |s| ln n + 2γ ln τ(S |s|), 0 ≤ γ ≤ 1,

where β̂(s) is the maximum partial likelihood estimator of β(s). When γ = 0, the
EBIC reduces to the original BIC. The EBIC with γ = 1 is equivalent to the mBIC
mentioned in Sect. 1.

In order to establish the selection consistency of the EBIC above, we need the tool
of counting processes. In the following, we define some needed counting processes
and express the partial log likelihood function in terms of the counting processes.
Without loss of generality, we confine time t to the interval [0, 1]. At time t , define

Ni (t) = I (Xi ≤ t, δi = 1), Yi (t) = I (Xi ≥ t).

Let

Sn(β(s), t) = 1

n

n∑

i=1

Yi (t) exp
(
zτi (s)β(s)

)
.
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Define

ln(β(s), t) =
n∑

i=1

∫ t

0
zτi (s)β(s)dNi (u)−

∫ t

0
ln (nSn(β(s), u)) dN̄ (u),

where N̄ (u) = ∑n
i=1 Ni (u).

In terms of the counting processes defined above, the log partial likelihood function
is expressed as

�n(β(s)) =
n∑

i=1

δi

(
zτi (s)β(s)− ln

(
n∑

k=1

Yk(Xi ) exp(zτk (s)β(s))

))

= ln

⎛

⎜⎜⎝
n∏

i=1

∏

0≤u≤1

⎧
⎪⎪⎨

⎪⎪⎩

exp(zτi (s)β(s))
n∑

k=1
Yk(u) exp(zτk (s)β(s)))

⎫
⎪⎪⎬

⎪⎪⎭

ΔNi (u)⎞

⎟⎟⎠

= ln(β(s), 1),

where ΔNi (u) = 1, if Ni (u)− Ni (u−) = 1; 0, otherwise.
The conditions required for the selection consistency of EBIC are in terms of the first

and second derivatives of the processes Sn(β(s), t) and ln(β(s), t). These derivatives
are given below:

S(1)n (β(s), t)= ∂Sn(β(s), t)

∂β(s)
= 1

n

n∑

i=1

zi (s)Yi (t) exp
(
zτi (s)β(s)

)
,

S(2)n (β(s), t)= ∂2Sn(β(s), t)

∂β(s)∂βτ (s)
= 1

n

n∑

i=1

zi (s)zτi (s)Yi (t) exp
(
zτi (s)β(s)

)
,

En(β(s), t)= ∂ ln(Sn(β(s), t))

∂β(s)
= S(1)n (β(s), t)

Sn(β(s), t)
,

Vn(β(s), t)= ∂2 ln(Sn(β(s), t))

∂β(s)∂βτ (s)
= S(2)n (β(s), t)

Sn(β(s), t)
− En(β(s), t)Eτn (β(s), t)

= 1

n

n∑

i=1

[zi (s)−En(β(s), t)][zi (s)−En(β(s), t)]τYi (t) exp
(
zτi (s)β(s)

)

Sn(β(s), t)
,

Un (β(s), t)= ∂ln (β(s), t)

∂β(s)
=

n∑

i=1

∫ t

0
(zi (s)− En (β(s), u)) dMi (u),

In (β(s), t)=− ∂ln (β(s), t)

∂β(s)∂βτ (s)
= n

∫ t

0
V (β(s), u) Sn (β(s), u) h0(u)du,
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where Mi (u) = Ni (u) − ∫ u
0 Yi (w) exp

(
zτi (s)β(s)

)
h0(w)dw is a martingale with

respect to the σ -fields {F (n)
u : u ≥ 0} defined by

F (n)
u = σ {Ni (w), I (Xi ≤ w, δi = 0) : 0 ≤ w ≤ u, 1 ≤ i ≤ n} .

Let

s(β(s), t) = lim
a.s.

Sn(β(s), t), s(l)(β(s), t) = lim
a.s.

S(l)n (β(s), t), l = 1, 2,

e(β(s), t) = lim
a.s.

En(β(s), t), v(β(s), t) = lim
a.s.

Vn(β(s), t),

Σ(β(s), t) = lim
a.s.

1

n
In((β(s), t).

We now state the conditions below. Let s0 = { j : β j �= 0} and p0 = |s0|. Let β0
denote the true values of β. Let C > 1 be any fixed constant. Define

A0 = {s : s0 ⊂ s, |s| ≤ Cp0}, A1 = {s : s0 �⊂ s, |s| ≤ Cp0}.

Assumption A0 p = pn = O(nκ) for some κ > 1 and β0(s0) is independent of the
sample size n.

Assumption A1 A1.1. For u in a neighborhood of zero,

sup
t∈[0,1]

E exp
[
uYi (t) exp

(
zτi β0

)]
< +∞;

sup
t∈[0,1]

E exp
[
uzi j Yi (t) exp

(
zτi β0

)]
< +∞, ∀ j ∈ {1, 2, . . . , pn};

sup
t∈[0,1]

E exp
[
uzi j zilYi (t) exp

(
zτi β0

)]
< +∞, ∀ j, l ∈ {1, 2, . . . , pn}.

A1.2. As functions of t, s(β0, t), s(1)(β0, t), s(2)(β0, t) are element-wise bounded
and s(β0, t) is bounded away from 0; the family of functions (as functions of
β) {s(β, t), s(1)(β, t), s(2)(β, t) : 0 ≤ t ≤ 1} is an equi-continuous family.

A1.3. Σ(β0, 1) is positive definite.
A1.4. The process Y (t) = (Y1(t), . . . ,Yn(t))τ is left continuous with right-hand

limits and satisfies P (Y (t) = 1, 0 ≤ t ≤ 1) > 0; the covariate vector Z(t) is
left continuous if Z depends on t .

Assumption A2 Let ξi j = ∫ 1
0

(
zi j (t)− e j (β0, t)

)
dMi (t), where e j (β0, t) is the j th

component of e(β0, t). For any set s ∈ A0, any fixed |s|−dimensional vector a
satisfying var(

∑n
i=1

∑
j∈s a jξi j/

√
n) = 1, and any u in a neighborhood of zero,

E exp

⎡

⎣u
∑

j∈s

a jξi j

⎤

⎦ < +∞. (1)
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Assumption A3 A3.1 . Let λ1n = infs∈A1 λmin
(
I
(
β0(s), 1

))
. There exists a posi-

tive constant c such that λ1n ≥ cn2/3−δ for some δ ∈ (0, 1/6).
A3.2. For any given ε > 0, there exists a constant δ > 0 such that, when n is

sufficiently large,

I (β(s), 1) ≥ (1 − ε)I
(
β0(s), 1

)

for all β(s) such that s ∈ A0 and ‖β(s)− β0(s)‖2 ≤ δ.
Some explanations and remarks on the above assumptions are given in the

Appendix.

We now present our main theoretical results. First we give two theorems which are
needed in the proof of the selection consistency of the EBIC.

Theorem 1 (Large deviation of the score function) Under Assumptions A0, A1 and
A2, for any positive sequence un satisfying (ln n)−1/2un → +∞ and n−1/6un → 0,
as n → +∞, and for any arbitrary ε > 0, there exists positive constant c0 such that
Unj (β0, 1), the j th component of Un(β0, 1), satisfies

P
(|Unj (β0, 1)| > √

nun
) ≤ c0 exp

(
− (1 − ε)u2

n

2

)
, j = 1, 2, . . . , p. (2)

Furthermore, for any unit vector u and s ∈ A0,

P(|uτ [Σ(β0(s), 1)]−1/2Un(β0(s), 1)| > √
nun) ≤ c0 exp

(
− (1 − ε)u2

n

2

)
. (3)

Theorem 2 (Uniform convergence of the partial likelihood estimator) Under Assump-
tions A0, A1, A2 and A3,

P(‖β̂(s)− β0(s)‖2 = O(ψn)) → 1,

uniformly for s ∈ A0, where β̂(s) is the maximum partial likelihood estimator of β(s),
and

ψn → 0, λ1nψn(n ln n)−1/2 → +∞, λ1nψnn−2/3 → 0. (4)

The selection consistency of the EBIC is given in the following theorem:

Theorem 3 (Selection consistency of the EBIC) Under Assumptions A0, A1, A2 and
A3, when γ > 1 − ln n

2 ln p = 1 − 1
2κ ,

P

(
min

s:s �=s0,|s|≤Cp0
EBICγ (s) ≤ EBICγ (s0)

)
→ 0, as n → ∞,

where C is any fixed constant >1.
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Theorem 3 implies that, if the model selection is made among the models with size
smaller than or comparable with that of the true model s0, the EBIC is able to identify
the true model with probability 1 asymptotically. The confining of the model size to
the range < Cp0 is reasonable in practice, since in practical problems people will
never consider models whose size is much larger than that of the true model.

The proofs of the theorems are given in the Appendix.

3 Simulation study

It is a common practice that the variable selection with high-dimensional feature spaces
is carried out in multiple stages. In the first stage, a simple screening procedure is used
to screen out obviously non-important variables to reduce the computational burden.
In the second stage, a sophisticated approach is used for the final selection. In our
simulation studies, we use the marginal utility ranking procedure (SIS) elaborated in
Fan et al. (2010) for the screening in the first stage; that is, consider the maximum
likelihood for each of the p models, each consisting of only one variable, and retain
the variables with the higher maximum likelihoods. In the second stage, we use the
adaptive Lasso considered in Zhang and Lu (2007) to generate candidate models with
a sequence of penalty parameter values. The EBIC is then used to select among those
candidate models. The whole procedure is denoted by SIS-ALasso-EBIC.

In the simulation study, we aim at evaluating the performance of SIS-ALasso-EBIC
in the Cox model when the dimension of the feature space is high. Specifically, we let
κ = 1.25, pn = [nκ ]. We consider n = 100, 150, 200, 250 with corresponding pn =
316, 524, 752, 994. We compare the performance of SIS-ALasso-EBIC with different
γ values in terms of the positive discovery rate (PDR) and the false discovery rate
(FDR) averaged over the simulation replicates. The PDR and FDR are defined by

PDR = |s∗ ∩ s0|
|s0| , FDR = |s∗ ∩ sc

0|
|s∗| ,

where s0 and s∗ are the set of true and selected features respectively. The model selec-
tion consistency implies that PDR converges to 1 and FDR converges to 0 simultane-
ously as n goes to +∞. The γ values considered are (γ1, γ2, γ3) = (0, 1 − 1/(4κ), 1).
The EBIC with γ1 corresponds to the original BIC. The EBIC with γ3 corresponds to
mBIC. The value γ2 is slightly larger than the lower bound of the consistency range
given in Theorem 3.

For a comparison with other benchmark analysis, we have also included the results
from other procedures designed specifically for n < p scenario. For instance, the
SIS-SCAD procedure proposed in Fan et al. (2010), which can be realized directly
using R package SIS. The regularization parameters and model selection method are
all chosen to be the values by default inSIS. We note that, in Zhang and Lu (2007), the
Generalized cross validation (GCV) was proposed as a model selection criterion after
ALasso. However, it was defined under the n > p situation. Therefore, we excluded
it from our simulation study for a fair comparison.
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Table 1 The censoring proportion averaged over 200 replicates

L n = 100 n = 150 n = 200 n = 250

Mean SD Mean SD Mean SD Mean SD

L = 2 0.470 (0.061) 0.471 (0.043) 0.467 (0.042) 0.468 (0.037)

L = 3 0.448 (0.065) 0.451 (0.048) 0.446 (0.047) 0.448 (0.042)

L = 4 0.433 (0.068) 0.435 (0.051) 0.429 (0.051) 0.432 (0.046)

L = 50 0.277 (0.086) 0.275 (0.073) 0.273 (0.070) 0.275 (0.066)

3.1 Simulation 1

In this subsection, we examine the influence of the censoring proportion on the per-
formance of the procedure. The data setting in this simulation is adapted from that
considered in Fan and Li (2002) and Zou (2008).

1. The predictors in X are normally distributed with mean 0 and covariances σi j =
0.5|i− j |.

2. The true parameter vector β is given by β1 = β9 = 0.8,β4 = β12 = 1,β7 =
β15 = 0.6 and 0 for other components.

3. The survival time T is generated as ln T = −X τβ + ln ε, where ε ∼ exp(1), there-
fore, h(t |X) = exp(X τβ). The censoring time was simulated from an exponen-
tial distribution with mean U exp(X τβ0), where U follows a uniform distribution
U (1, L) and it is independent of ε.

The value of L controls the censoring proportion in the data. We let L = 2, 3, 4, 50.
The sample mean (mean) and standard deviations (sd) of the corresponding censoring
proportions simulated from 200 replicates are summarized in Table 1. The larger the L ,
the less the censoring proportion. The averaged PDR and FDR over 200 replicates and
their standard deviations (in brackets) are given in Table 2. The censoring proportion
does have an effect on the accuracy of the variable selection. It is obvious from Table 2
that the higher the censoring proportion, the lower the PDR and that the FDRs are
comparable.

3.2 Simulation 2

In this subsection, we examine the performance of the procedure when the predictors
have different linear correlations. The data settings in this simulation are adapted from
Fan et al. (2010).

1. The predictors in X are normally distributed with mean 0 the variances and covari-
ances: σi i = 1, σi j = ρ, i �= j .

2. The first 6 components of β are given below:

(β0,1,β0,2,β0,3,β0,4,β0,5,β0,6) = (−1.6328, 1.3988,−1.6497, 1.6353,

−1.4209, 1.7022).

123



296 S. Luo et al.

Ta
bl

e
2

T
he

PD
R

an
d

FD
R

av
er

ag
ed

ov
er

20
0

re
pl

ic
at

es
fo

r
Si

m
ul

at
io

n
1

L
n

=
10

0
n

=
15

0
n

=
20

0
n

=
25

0

PD
R

FD
R

PD
R

FD
R

PD
R

FD
R

PD
R

FD
R

2
E

B
IC
γ

1
0.

71
3

(0
.1

83
)

0.
55

1
(0

.1
76

)
0.

87
3

(0
.1

35
)

0.
48

8
(0

.1
93

)
0.

95
3

(0
.0

82
)

0.
42

5
(0

.1
84

)
0.

96
9

(0
.0

67
)

0.
42

2
(0

.1
96

)

E
B

IC
γ

2
0.

34
5

(0
.2

69
)

0.
19

2
(0

.2
75

)
0.

65
9

(0
.2

67
)

0.
17

0
(0

.1
64

)
0.

84
4

(0
.1

86
)

0.
17

4
(0

.1
42

)
0.

93
3

(0
.1

04
)

0.
15

1
(0

.1
29

)

E
B

IC
γ

3
0.

24
1

(0
.2

56
)

0.
11

5
(0

.2
42

)
0.

60
0

(0
.2

85
)

0.
13

2
(0

.1
74

)
0.

81
1

(0
.2

11
)

0.
14

8
(0

.1
43

)
0.

90
2

(0
.1

38
)

0.
12

2
(0

.1
18

)

SC
A

D
0.

43
5

(0
.1

34
)

0.
47

8
(0

.1
61

)
0.

61
4

(0
.1

40
)

0.
47

4
(0

.1
20

)
0.

72
3

(0
.1

24
)

0.
51

8
(0

.0
83

)
0.

83
5

(0
.0

66
)

0.
54

5
(0

.1
22

)

3
E

B
IC
γ

1
0.

72
8

(0
.1

79
)

0.
54

0
(0

.1
97

)
0.

88
3

(0
.1

28
)

0.
47

0
(0

.1
97

)
0.

95
1

(0
.1

05
)

0.
40

7
(0

.1
97

)
0.

96
4

(0
.0

75
)

0.
39

9
(0

.1
98

)

E
B

IC
γ

2
0.

38
4

(0
.2

89
)

0.
20

4
(0

.2
82

)
0.

68
3

(0
.2

59
)

0.
17

2
(0

.1
86

)
0.

87
1

(0
.1

74
)

0.
17

3
(0

.1
42

)
0.

93
6

(0
.1

00
)

0.
13

3
(0

.1
22

)

E
B

IC
γ

3
0.

27
5

(0
.2

80
)

0.
09

9
(0

.2
28

)
0.

62
8

(0
.2

70
)

0.
12

7
(0

.1
64

)
0.

83
8

(0
.1

98
)

0.
14

3
(0

.1
33

)
0.

91
6

(0
.1

21
)

0.
11

1
(0

.1
12

)

SC
A

D
0.

44
9

(0
.1

32
)

0.
46

1
(0

.1
58

)
0.

61
9

(0
.1

39
)

0.
46

9
(0

.1
19

)
0.

73
4

(0
.1

30
)

0.
51

1
(0

.0
86

)
0.

84
5

(0
.1

10
)

0.
53

9
(0

.0
60

)

4
E

B
IC
γ

1
0.

73
7

(0
.1

82
)

0.
52

3
(0

.1
95

)
0.

89
3

(0
.1

34
)

0.
46

0
(0

.1
96

)
0.

95
7

(0
.0

93
)

0.
41

4
(0

.1
93

)
0.

97
3

(0
.0

68
)

0.
41

8
(0

.2
02

)

E
B

IC
γ

2
0.

39
8

(0
.2

96
)

0.
20

2
(0

.2
81

)
0.

71
3

(0
.2

51
)

0.
17

0
(0

.1
78

)
0.

88
2

(0
.1

65
)

0.
16

7
(0

.1
40

)
0.

93
8

(0
.1

02
)

0.
13

3
(0

.1
23

)

E
B

IC
γ

3
0.

30
9

(0
.2

89
)

0.
12

1
(0

.2
36

)
0.

66
4

(0
.2

67
)

0.
13

6
(0

.1
63

)
0.

84
9

(0
.1

87
)

0.
13

2
(0

.1
28

)
0.

92
5

(0
.1

17
)

0.
11

2
(0

.1
15

)

SC
A

D
0.

45
8

(0
.1

34
)

0.
45

0
(0

.1
61

)
0.

62
7

(0
.1

44
)

0.
46

3
(0

.1
23

)
0.

74
7

(0
.1

37
)

0.
50

2
(0

.0
91

)
0.

85
3

(0
.1

10
)

0.
53

5
(0

.0
60

)

50
E

B
IC
γ

1
0.

86
6

(0
.1

41
)

0.
42

7
(0

.1
73

)
0.

95
6

(0
.0

79
)

0.
37

2
(0

.1
97

)
0.

98
2

(0
.0

57
)

0.
35

6
(0

.1
97

)
0.

99
4

(0
.0

31
)

0.
35

3
(0

.2
04

)

E
B

IC
γ

2
0.

66
8

(0
.2

55
)

0.
16

2
(0

.1
62

)
0.

89
8

(0
.1

47
)

0.
14

2
(0

.1
42

)
0.

95
7

(0
.0

90
)

0.
11

4
(0

.1
11

)
0.

98
5

(0
.0

51
)

0.
07

4
(0

.1
01

)

E
B

IC
γ

3
0.

57
5

(0
.2

92
)

0.
11

9
(0

.2
92

)
0.

86
9

(0
.1

70
)

0.
12

4
(0

.1
40

)
0.

95
0

(0
.1

02
)

0.
10

2
(0

.1
06

)
0.

98
0

(0
.0

62
)

0.
06

2
(0

.0
92

)

SC
A

D
0.

53
0

(0
.1

18
)

0.
36

4
(0

.1
41

)
0.

69
8

(0
.1

24
)

0.
40

2
(0

.1
06

)
0.

81
1

(0
.1

18
)

0.
45

9
(0

.0
79

)
0.

89
8

(0
.1

01
)

0.
51

0
(0

.0
55

)

123



Extended Bayesian information criterion in the Cox model 297

All the other components of β are 0.
3. The survival time T is generated as ln T = −X τβ0 + ln ε, where ε ∼ exp(1).

The censoring time was simulated from an exponential distribution with mean
U exp(X τβ0), where U follows a uniform distribution U (1, 3) and it is independent
of ε.

The ρ controls the linear associations among the predictors and we consider ρ =
0, 0.3, 0.5. The averaged PDR and FDR over 200 replicates and their standard devia-
tions (in brackets) are presented in Table 3.

The following points manifest themselves in Table 3: (i) for the EBIC with γ2
and γ3 (both are in the consistency range), the PDR rapidly approaches 1 and the
FDR steadily approaches 0, as n increases, which reflects the theoretical property
of selection consistency; (ii) the original BIC (corresponding to γ1) does not seem
to be selection consistent, since the FDR stays away from zero as n increases;
(iii) the mBIC (corresponding to γ3) is more conservative than the EBIC (corre-
sponding to γ2); (iv) the correlation structure affects the accuracy of the variable
selection: the more correlated the covariates, the less accurate the variable selec-
tion. The SIS-SCAD procedure performs the worst in the sense that, their FDRs
are close to or even greater than the original BIC, which has the highest FDR
among EBICγ1 ,EBICγ2 ,EBICγ3 , while its PDRs are much smaller than the original
BIC.

4 Real data analysis

In this section, we consider a data set published and analyzed in Rosenwald et al.
(2002). The data set has also been studied in Gui and Li (2005) and Sha et al. (2006).
In this dataset, 240 patients were monitored using a Lyphochip cDNA microarray
with 7399 probes. Their follow-up time after chemotherapy and survival status at the
follow-up time were also recorded. The censoring proportion is 0.425. Many of the
gene expression measurements of the 7399 genes (genes sharing the same name but
having different predictor values are considered different) are missing. In our study, we
applied the technique of Troyanskaya et al. (2001) to impute the missing values; that
is, the missing values are imputed by the average expression levels of their physically
nearest 8 neighboring genes with complete observations.

We applied the SIS-ALasso-EBIC method to the data set. First, the 7399 genes are
screened using the maximum partial likelihoods of uni-covariate models. The 0.6n
genes with larger maximum partial likelihoods are retained. Then the adaptive Lasso is
applied to these genes. The EBIC withγ = 0.7 (which is slightly larger than 1− ln n

2 ln p =
0.6924) is used for the model selection. The following two genes are identified to be
related to diffuse large B-cell lymphoma: HLA-DQα and HLA-DPα. Note that HLA-
DQα is the second important gene selected by the LARS-Cox procedure in Gui and
Li (2005) and one of the representative genes selected in Rosenwald et al. (2002), and
that HLA-DPα is detected in Sha et al. (2006) and Rosenwald et al. (2002) but not in
Gui and Li (2005). By using smaller γ values, more genes are selected. The γ values
together with the selected genes are given in Table 4.
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Table 4 Genes selected via the EBIC

GenBank ID Signature 0 ≤ γ ≤ 0.1 γ = 0.2 0.3 ≤ γ ≤ 0.7 γ ≥ 0.8

AA278718 + + − −
AA004687 + + − −
LC_24432 Proli + + − −
AA824616 Proli + + + −
X00452 MHC + + + −
AA490586 Germ + − − −
AA731721 + − − −
X02530 Lymph + − − −
AA193262 + + − −
AA469973 + − − −
1, Germ, Germinal-cancer B-cell signature; MHC, MHC class II signature; Lymph = lymph-node signature;
Proli, proliferation_signature. 2, + / −, selected/not selected

Appenidx A: remarks on the assumptions

Remark on assumption A1

Note that Sn, S(1)n and S(2)n are summations of i.i.d random variables; it is verified
in Fill (1983) that, when the associated random variable satisfies A1.1, for instance,
when the components in Z are bounded or Gaussian random variables, there exists
positive constants C0,C1 such that

P

(
sup

t∈[0,1]
∣∣Sn(β0, t)− s(β0, t)

∣∣ ≥ C1un√
n

)
≤ C0

un
exp

(
−u2

n

2

)
,

P

(
sup

t∈[0,1]

∣∣∣S(1)nj (β0, t)− s(1)j (β0, t)
∣∣∣ ≥ C1un√

n

)
≤ C0

un
exp

(
−u2

n

2

)
,

P

(
sup

t∈[0,1]

∣∣∣S(2)ni j (β0, t)− s(2)i j (β0, t)
∣∣∣ ≥ C1un√

n

)
≤ C0

un
exp

(
−u2

n

2

)

hold for any positive un such that un → +∞, n−1/6un → 0 as n → +∞. These
inequalities and A1.2 are similar to Condition (2.2) and (2.5) in Section 8.2 of Fleming
and Harrington (1991). However, it is worth noting that they assume the convergence of
Sn, S(l)n to s, s(l) holds for a neighborhood B of β0. That is, supt∈[0,1],β∈B ‖Sn(β, t)−
s(β, t)‖ → 0, supt∈[0,1]β∈B ‖S(l)n (β, t)− s(l)(β, t)‖ → 0 for l = 1, 2 in probability.
Similarly for the boundedness of s, s(l). But our assumptions are made at the true value
β0. Moreover, with condition A1.2, it can be deduced that

P

(
sup

t∈[0,1]
∣∣Enj (β0, t)− e j (β0, t)

∣∣ ≥ C1un√
n

)
≤ C0

un
exp

(
−u2

n

2

)
(5)
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and

P

(
sup

t∈[0,1]

∣∣∣∣∣
Ii j
(
β0, t

)

n
−Σi j

(
β0, t

)
∣∣∣∣∣ ≥ C1un√

n

)
≤ C0

un
exp

(
−u2

n

2

)
. (6)

The detailed proofs of inequalities (5) and (6) are provided in the Appendix 4. A1.3
is Condition (2.6) in Section 8.2 of Fleming and Harrington (1991). A1.4 is assumed
in Theorem 4.1 in Andersen and Gill (1982); they are regular conditions in counting
process theory.

Remark on assumption A2

Under Assumption A2, we have, for any positive un such that un → +∞, n−1/6un →
0 as n → +∞, there exists positive constant C0 such that

P

⎛

⎝

∣∣∣∣∣∣

n∑

i=1

∑

j∈s

a jξi j

∣∣∣∣∣∣
≥ √

nun

⎞

⎠ ≤ C0

un
exp

(
−u2

n

2

)
. (7)

Without loss of generality, we assume all the diagonal elements ofΣ
(
β0, 1

)
are 1.

Then when a j = 1 for any fixed j and 0 otherwise, (7) reduces to

P

(∣∣∣∣∣

n∑

i=1

ξi j

∣∣∣∣∣ ≥ √
nun

)
≤ C0

un
exp

(
−u2

n

2

)
, ∀ j ∈ {1, 2, . . . , pn}.

Now let us see how A2 is related to A1.1 in the following: Denote ξi j (t) =∫ t
0

(
Zi j (u)− e j (β0, u)

)
dMi (u); it can be shown that Cov(ξi j (t), ξik (t)) = [

Σ
(
β0, t

)]
jk

in the following:

< ξi j , ξik > (t)=
∫ t

0
(Zi j − e j (β0, u))(Zik − ek(β0, u))d < Mi ,Mi > (u)

=
∫ t

0
(Zi j − e j (β0, u))(Zik − ek(β0, u))Yi (u) exp

(
zτi β0

)
h0(u)du;

E < ξ1 j , ξ1k > (t)=
∫ t

0
E Zi j ZikYi (u) exp

(
zτi β0

)
h0(u)du

−
∫ t

0
e j (β0, u)E ZikYi (u) exp

(
zτi β0

)
h0(u)du

−
∫ t

0
ek(β0, u)E Zi j Yi (u) exp

(
zτi β0

)
h0(u)du

+
∫ t

0
e j (β0, u)ek(β0, u)EYi (u) exp

(
zτi β0

)
h0(u)du
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=
∫ t

0

[
E
[
Zi j ZikYi (u) exp

(
zτi β0

)]

s(β0, u)
− e j (β0, u)ek(β0, u)

]

×s(β0, u)h0(u)du

= [Σ (
β0, t

)]
jk .

For any fixed set s, denote ξi (s) = (ξi j ) j∈s , note thatvar(
∑n

i=1
∑

j∈s a jξi j/
√

n) =
1 implies aτΣ(β0(s), 1)a = 1. Let λmin denote the smallest eigenvalue. Since for
u > 0, we have

E exp

⎛

⎝u
∑

j∈s

a jξi j

⎞

⎠ ≤ E exp(u‖a‖2‖ξi (s)‖2)

≤ λ
−1/2
min (Σ(β0(s), 1))|s| max

j
E exp(u|ξi j |).

Therefore, when λmin(Σ(β0(s), 1)) is bounded from below and |s| is bounded from
above, E exp(|uξi j |) < +∞ for all j , inequality (1) holds.

Remark on assumption A3

The more strict counterpart of A3.1 in linear regression models is the Sparse Riesz
Condition. Similar conditions were also assumed in Chen and Chen (2012) for general-
ized linear regression models. As was relaxed technically in linear regression models,
a weaker version of A3.1 can be expected in the Cox models.

Appenidx B: proofs of the main results

Proof of inequality (5) By definition, for a fixed j ,

Enj (β0, t)− e j (β0, t) = S(1)nj (β0, t)

Sn(β0, t)
− s(1)j (β0, t)

s(β0, t)

= 1

Sn(β0, t)

(
S(1)nj (β0, t)− s(1)j (β0, t)

)

− s(1)j (β0, t)

Sn(β0, t)s(β0, t)

(
Sn(β0, t)− s(β0, t)

)

= I1(t)− I2(t).

Assumption A1.2 implies supt∈[0,1]

∣∣∣∣∣∣

s(1)j (β0, t)

s(β0, t)

∣∣∣∣∣∣
and supt∈[0,1]

∣∣∣∣
1

s(β0, t)

∣∣∣∣ are bounded from

above.
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Note that supt∈[0,1]
∣∣∣∣

1

Sn(β0, t)

∣∣∣∣ is bounded from above when

sup
t∈[0,1]

∣∣Sn(β0, t)− s(β0, t)
∣∣ ≤ C1un√

n

and n is sufficiently large. That is, under this condition, there exists constants c1 >

0, c2 > 0 such that

|I1(t)| ≤ c1

∣∣∣S(1)nj (β0, t)− s(1)j (β0, t)
∣∣∣ ; |I2(t)| ≤ c2

∣∣Sn(β0, t)− s(β0, t)
∣∣ .

Hence,

P

(
sup

t∈[0,1]
∣∣Enj (β0, t)− e j (β0, t)

∣∣ ≥ C1un√
n

)

≤ P

(
sup

t∈[0,1]
∣∣Enj (β0, t)− e j (β0, t)

∣∣≥ C1un√
n
, sup

t∈[0,1]
|Sn(β, t)− s(β, t)|≤ C1un√

n

)

+P

(
sup

t∈[0,1]
|Sn(β, t)− s(β, t)| ≥ C1un√

n

)

≤ P

(
sup

t∈[0,1]

∣∣∣S(1)nj (β0, t)− s(1)j (β0, t)
∣∣∣ ≥ C1un

2c1
√

n

)

+P

(
sup

t∈[0,1]
∣∣Sn(β0, t)− s(β0, t)

∣∣ ≥ C1un

2c2
√

n

)

+P

(
sup

t∈[0,1]
|Sn(β, t)− s(β, t)| ≥ C1un√

n

)
≤ C0

un
exp

(
−u2

n

2

)
.

��
Proof of inequality (6) By definition, for fixed i, j ,

Vi j
(
β0, t

)
Sn
(
β0, t

)− vi j
(
β0, t

)
s
(
β0, t

)

= [S(2)ni j

(
β0, t

)− s(2)i j

(
β0, t

)] − [Eni
(
β0, t

)
S(1)nj

(
β0, t

)− ei
(
β0, t

)
s(1)j

(
β0, t

)]
= [S(2)ni j

(
β0, t

)− s(2)i j

(
β0, t

)] − [Eni
(
β0, t

)− ei
(
β0, t

)]S(1)nj

(
β0, t

)

−ei
(
β0, t

) [S(1)nj

(
β0, t

)− s(1)j

(
β0, t

)].

By following the steps in the proof of inequality (5), we can obtain inequality (6). ��
Proof of Theorem 1 Here we decompose the j th component of the score function
U (β0, t) defined in Sect. 2 as
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U j (β0, t) =
n∑

i=1

∫ t

0

(
zi j − e j

(
β0, u

))
dMi (u)−

n∑

i=1

∫ t

0

(
Enj

(
β0, u

)

−e j
(
β0, u

))
dMi (u)

= ξ1 j (t)− ξ2 j (t).

To avoid confusion, let ξ j = ξ j (1), ξ1 j = ξ1 j (1), ξ2 j = ξ2 j (1). For any fixed s ∈ A0,
note that for any j ∈ s, Enj

(
β0, u

) = Enj
(
β0(s), u

)
, e j

(
β0, u

) = e j
(
β0(s), u

)
,

for any unit vector u, let a = uτΣ−1/2(β0(s), 1). Then

uτΣ−1/2 (β0(s), 1
)

U
(
β0(s), 1

) =
∑

j∈s

a jξ1 j −
∑

j∈s

a jξ2 j .

Also, from the remark on Assumption A2, we have var(
∑
j∈s

a jξ1 j/
√

n) = 1 and

‖a‖2
2 ≤ λ−1

min

(
Σ(β0(s), 1)

)
. Let un satisfy n−1/6un → 0, un(ln n)−1/2 → +∞ as

n → +∞; note that for any positive constant c ∈ (0, 1) independent of n,

P(|
∑

j∈s

a jξ1 j −
∑

j∈s

a jξ2 j | > √
nun) ≤ P

⎛

⎝|
∑

j∈s

a jξ1 j | > c
√

nun

⎞

⎠

+P

⎛

⎝|
∑

j∈s

a jξ2 j | > (1 − c)
√

nun

⎞

⎠ ,

the large deviation result of
∑

j∈s a jξ1 j is already given in the remark on Assumption
A2, that is, there exists a constant C0 such that

P

⎛

⎝|
∑

j∈s

a jξ1 j | > c
√

nun

⎞

⎠ ≤ C0 exp

(
−c2u2

n

2
− ln un

)
. (8)

Now it suffices to show the large deviation of
∑

j∈s a jξ2 j . Let C1 be a positive constant,
denote

C =
{

‖ sup
u∈[0,1]

[En
(
β0, u

)− e
(
β0, u

)]‖+∞ ≤ C1un√
n
, sup

u∈[0,1]
|Sn(β0, u)

−s(β0, u)| ≤ C1un√
n

}
,

then
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P

⎛

⎝

∣∣∣∣∣∣

∑

j∈s

a jξ2 j

∣∣∣∣∣∣
> (1 − c)

√
nun

⎞

⎠

≤ P

(
‖ sup

u∈[0,1]
[En

(
β0, u

)− e
(
β0, u

)]‖+∞ ≥ C1un√
n

)

+P

(
sup

u∈[0,1]
|Sn(β0, u)− s(β0, u)| ≥ C1un√

n

)

+P

⎛

⎝

∣∣∣∣∣∣

∑

j∈s

a jξ2 j

∣∣∣∣∣∣
> (1 − c)

√
nun | C

⎞

⎠

≡ P2,1 + P2,2,1 + P2,2,2.

Inequality (5) and the remark on Assumption A1 demonstrate that there exists
positive constant C0 such that

P2,1 ≤ C0 exp

(
−u2

n

2
+ κ ln n − ln un

)
; P2,2,1 ≤ C0 exp

(
−u2

n

2
− ln un

)
. (9)

In the following, we verify that condition on C , the new martingale
∑

j∈s a jξ2 j (t)
has bounded jumps by following the steps in the proof of Theorem 3.1 in ?. Let

M̄(t) =
n∑

i=1
Mi (t), N̄ (t) =

n∑
i=1

Ni (t), then |�(M̄(t))| = |�(N̄ (t))| ≤ 1.

First,

∣∣∣�
(

n−1/2ξ2 j (t)
)∣∣∣≤n−1/2‖ sup

u∈[0,1]
[En

(
β0, u

)− e
(
β0, u

)]‖+∞ ≡n−1/2cn ≤ C1un

n
;

therefore,

∣∣∣∣∣∣
�
⎛

⎝n−1/2
∑

j∈s

a jξ2 j (t)

⎞

⎠

∣∣∣∣∣∣
≤
∑

j∈s

|a j |
∣∣∣�
(

n−1/2ξ2 j (t)
)∣∣∣ ≤ |s|C1un

n
. (10)

Second, the predictable quadratic variation of n−1/2ξ2 j (t), denoted by
〈
n−1/2ξ2 j (t)

〉

is bilinear and for all j ∈ {1, 2, . . . , pn},
〈
n−1/2ξ2 j (t)

〉
= n−1

∫ t

0

(
Enj

(
β0, u

)− e j
(
β0), u

))2 d
〈
M̄(u)

〉

=
∫ t

0

(
Enj

(
β0, u

)− e j
(
β0, u

))2
Sn(β0, u)h0(u)du

≤ ‖ sup
u∈[0,1]

[En
(
β0, u

)− e
(
β0, u

)]‖2+∞
∫ t

0
Sn(β0, u)h0(u)du

≡ b2
n(t).
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〈
n−1/2

∑

j∈s

a jξ2 j (t)

〉
≤ |s|

∑

j∈s

a2
j

〈
n−1/2ξ2 j (t)

〉
≤ |s|2b2

n(t).

Obviously, b2
n(t) ≤ b2

n(1) ≤ c2
n

∫ 1
0 Sn(β0, u)h0(u)du. Note that

∫ 1

0
Sn(β0, u)h0(u)du ≤

∫ 1

0
s(β0, u)h0(u)du

+ sup
u∈[0,1]

|Sn(β0, u)− s(β0, u)|
∫ 1

0
h0(u)du.

Assumption A1.2 and Eq. (10) imply that

sup
t∈[0,1]

b2
n(t) ≤ c2

n

(
C1 + C2

C1un√
n

)
≤ C

u2
n

n
.

That is, when |s| = O(1), condition on C , there exists constants b2 = O( u2
n

n ), K =
O( un

n ) such that

∣∣∣∣∣∣
�
⎛

⎝n−1/2
∑

j∈s

a jξ2 j (t)

⎞

⎠

∣∣∣∣∣∣
≤ K ;

〈
n−1/2

∑

j∈s

a jξ2 j (t)

〉
≤ b2.

According to Lemma 2.1 in Van de Geer (1995), we have

P2,2,2 ≤ 2 exp

(
− (1 − c)2u2

n

2(K (1 − c)un + b2)

)

= 2 exp

(
− u2

n

2(K (1 − c)−1un + (1 − c)−2b2)

)
,

since u2
n/n → 0, when n is sufficiently large, there exists an arbitrarily large positive

constant M such that

P2,2,2 ≤ 2 exp(−Mu2
n).

Hence, together with (8) and (9), because of the arbitrariness of c, we know that there
exists positive constants c0 independent of j and an arbitrarily small positive ε such
that

P
(∣∣∣uτΣ−1/2 (β0(s), 1

)
U
(
β0(s), 1

)∣∣∣ >
√

nun

)
≤ c0 exp

(
− (1 − ε)u2

n

2

)
.
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When a j = 1 and 0 otherwise, we have

P
(|U j

(
β0, 1

) | > √
nun

) ≤ c0 exp

(
− (1 − ε)u2

n

2

)

over j ∈ {1, 2, . . . , pn}. ��

Proof of Theorem 2 For any unit vector w(s), let β(s) = β0(s)+ ψnw(s) where ψn

satisfies (4). Under Assumption A3, for all s ∈ A0, the mean value theorem implies
that there exists β̃(s) satisfying ‖β̃(s)− β0(s)‖2 ≤ ‖ψnw(s)‖2 such that

ln(β(s))− ln(β0(s)) = ψnwτ (s)U (β0(s), 1)− 1

2
ψ2

n w(s)τ {I (β̃(s), 1)}w(s)

≤ ψnwτ (s)U (β0(s), 1)− 1 − ε

2
λ1,nψ

2
n

≤ ψn

√
wτ (s)w(s)

√
U τ (β0(s), 1)U (β0(s), 1)− 1 − ε

2
λ1,nψ

2
n

≤ ψn

√
kn max

j∈s,s∈A0

∣∣U j (β0(s), 1)
∣∣− 1 − ε

2
λ1,nψ

2
n .

Hence, we have

P(ln(β(s))− ln(β0(s) > 0 : for some w(s))

≤ P

(
max

j∈s,s∈A0

∣∣U j (β0(s), 1)
∣∣ ≥ 1 − ε

2
√

kn
λ1,nψn

)
.

By noting that kn = O(1), pn = O(nκ) and letting un = 1−ε
2
√

nkn
λ1,nψn , n−1/6un →

0, un(ln n)−1/2 → +∞. According to (2), it follows that

P

(
max

j∈s,s∈A0

∣∣U j (β0(s), 1)
∣∣ ≥ 1 − ε

2
√

kn
λ1,nψn

)

≤
∑

j∈s,s∈A0

P

(∣∣U j (β0(s), 1)
∣∣ ≥ 1 − ε

2
√

kn
λ1,nψn

)

≤ kn pkn
n C0 exp

(
−C1

λ2
1,nψ

2
n

n

)

≤ C̃0 exp

(
−C1

λ2
1,nψ

2
n

n
+ C2κ ln n

)

for some positive constants C0,C1,C2, C̃0. It converges to 0 as n goes to infinity.
Because ln (β(s)) is a concave function for any β(s), we get the desired result. ��
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Proof of Theorem 3 Note that {s : s �= s0, |s| ≤ Cp0} = A1 ∪ A0, if we can prove
that when γ > 1 − 1

2κ , as n → +∞,

P

(
min

s:s∈A1

EBICγ (s) ≤ EBICγ (s0)

)
→ 0, (11)

and

P

(
min

s:s∈A0

EBICγ (s) ≤ EBICγ (s0)

)
→ 0, (12)

then we will have completed the proof. Since asymptotically, ln τ(S j ) = jκ ln n(1 +
o(1)),

EBICγ (s0n)− EBICγ (s)=2
(

ln(β̂(s))− ln(β̂(s0n))
)
+(1 + 2γ κ) (|s0n| − |s|) ln n,

EBICγ (s) ≤ EBICγ (s0n) implies

ln(β̂(s))− ln(β̂(s0n)) ≥ −1 + 2γ κ

2
(|s0n| − |s|) ln n.

(1) When s ∈ A1, note that

−1 + 2γ κ

2
(|s0n| − |s|) ln n ≥ −1 + 2γ κ

2
|s0n| ln n ≥ −C ln n

for some positive constant C when − 1

2κ
< γ ≤ 1 and κ is a positive constant.

Therefore, if we can show that

P(sup{ln(β̂(s))− ln(β̂(s0n)) : s ∈ A1} ≥ −C ln n) → 0, (13)

then we will have (11). Now, consider s̃ = s ∪ s0n and β(s̃) near β0(s̃). Taylor
expansion shows that

ln (β(s̃))− ln
(
β0(s̃)

) ≤ (
β(s̃)− β0(s̃)

)τ
U (β0(s))

− (1 − ε)λ1,n

2

∥∥β(s̃)− β0(s̃)
∥∥2

2 .

Let β̆(s̃) be augmented β̂(s) with components in s̃ ∩ sc being 0, then

ln
(
β̂(s)

)
= ln

(
β̆(s̃)

)
and ‖β̆(s̃) − β0(s̃)‖2 ≥ |β0,min|, where |β0,min| =

min
{|β0, j | : j ∈ s0n

}
. The concavity of ln (β(s)) implies

Mn = sup
{
ln (β(s̃))− ln

(
β0(s̃)

) : s ∈ A1, ‖β(s̃)− β0(s̃)‖2 ≥ |β0,min|
}

≤ sup
{
ln (β(s̃))− ln

(
β0(s̃)

) : s ∈ A1, ‖β(s̃)− β0(s̃)‖2 = |β0,min|
}
.
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Since for any fixed s̃, when ‖β(s̃)− β0(s̃)‖2 = |β0,min|,

ln (β(s̃))− ln
(
β0(s̃)

) ≤ |β0,min|‖U j (β0(s̃))‖+∞ − β2
0,min

(1 − ε)λ1,n

2
.

Therefore,

P

(
Mn ≥ −β2

0,min
(1 − ε)λ1,n

4

)
≤ kn pkn

n P(‖U j (β0(s̃))‖+∞

≥ |β0,min|(1 − ε)λ1,n

4
).

When n1/6−δ = O(λ1,n/
√

n) for some 0 < δ < 1/6.

P(sup{ln(β̂(s))− ln(β̂(s0n)) : s ∈ A1} ≥ −C ln n)

≤ P (Mn ≥ −C ln n) ≤ P

(
Mn ≥ −β2

0,min
(1 − ε)λ1,n

4

)

≤ kn pkn
n P(‖U j (β0(s̃))‖+∞ ≥ √

nn1/6−δ) ≤ c0 exp
(
−c1n1/3−2δ + κ ln n

)
.

It converges to 0 when n goes to ∞; inequality (13) is thus obtained.
(2) When s ∈ A0 and s �= s0n , let m = |s| − |s0n|,EBICγ (s) ≤ EBICγ (s0n) if and

only if

ln(β̂(s))− ln(β̂(s0n)) ≥ m[0.5 ln n + γ ln pn] ≈ m(1 + 2γ κ) ln n

2
.

From the assumptions, we can see that

ln(β̂(s))− ln(β̂(s0n))≤ ln(β̂(s))− ln(β(s0n)) = ln
(
β̂(s)

)
− ln

(
β0(s)

)

≤
(
β̂(s)− β(s0n)

)τ
U
(
β0(s), 1

)

−1

2

(
β̂(s)− β(s0n)

)τ
I
(
β̃(s), 1

) (
β̂(s)− β(s0n)

)

≤
(
β̂(s)− β(s0n)

)τ
U
(
β0(s), 1

)

−1 − ε

2

(
β̂(s)− β(s0n)

)τ
I
(
β0(s), 1

) (
β̂(s)− β(s0n)

)

≤ max
β

[
βτU

(
β0(s), 1

)− 1 − ε

2
βτ I

(
β0(s), 1

)
β

]

≤ [βτU
(
β0(s), 1

)] |β=[(1−ε)I(β0(s),1)]−1U(β0(s),1)

= 1

2n(1 − ε)
U τ

(
β0(s), 1

)
[

I
(
β0(s), 1

)

n

]−1

U
(
β0(s), 1

)
,
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where ε is an arbitrary positive value. Note that m is finite; therefore, if we can
show that for any fixed positive integer m, when γ > 1 − 1

2κ ,

P

⎛

⎝ max
s∈A0,|s|=m+|s0n |

1

2n(1 − ε)
U τ

(
β0(s), 1

)
[

I
(
β0(s), 1

)

n

]−1

U
(
β0(s), 1

)

≥ m(1 + 2γ κ) ln n

2

)
→ 0, (14)

then we will have (12). Denote

T1 =
{

max
s∈A0

‖[ I
(
β0(s), 1

)

n
]−1 −Σ−1 (β0(s), 1

) ‖+∞ ≤ C1un√
n

}

T2 =
{

max
s∈A0

U τ
(
β0(s), 1

)
U
(
β0(s), 1

)

|s| ≤ nu2
n

}
.

Inequalities (6) and (2) show that

P
(
T c

1

) ≤ C0

un
exp

(
−u2

n

2
+ 2κ ln n

)
; P

(
T c

2

)

≤ c0 exp

(
− (1 − ε)u2

n

2
+ κ ln n

)
. (15)

Therefore, we have

P

(
max

s∈A0,|s|=m+|s0n |
1

2n(1 − ε)
U τ

(
β0(s), 1

)
[

I
(
β0(s), 1

)

n

]−1

U
(
β0(s), 1

)

≥ m(1 + 2γ κ) ln n

2

)

≤ P

⎛

⎝ max
s∈A0,|s|=m+|s0n |

U τ
(
β0(s), 1

)
[

I
(
β0(s), 1

)

n

]−1

U
(
β0(s), 1

)

≥ mn(1 − ε)(1 + 2γ κ) ln n | T1,T2)

+P
(
T c

1

)+ P
(
T c

2

)
.

Since under T1,T2,

max
s∈A0,|s|=m+|s0n |

[
U τ

(
β0(s), 1

)
∣∣∣∣∣[

I
(
β0(s), 1

)

n
]−1 −Σ−1 (β0(s), 1

)
∣∣∣∣∣U

(
β0(s), 1

)
]

≤ C
√

nu3
n = C

(n−1/6un)
3

ln n
(n ln n) = o(n ln n),
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the two terms in (15) both converge to 0 as n goes to +∞ and

P

(
max

s∈A0,|s|=m+|s0n |
U τ

(
β0(s), 1

)
Σ−1 (β0(s), 1

)
U
(
β0(s), 1

)

≥ mn(1 − ε)(1 + 2γ κ) ln n | T1,T2)

≤ C P

(
max

s∈A0,|s|=m+|s0n |
uτΣ−1/2 (β0(s), 1

)
U
(
β0(s), 1

)

≥ (1 − δ)
√

mn(1 − ε)(1 + 2γ κ) ln n | T1,T2

)
,

where ‖u‖2 = 1, δ is an arbitrary positive value. According to (3), it can be

further bounded by c�0 exp

[
−1 − ε�

2
(1 + 2γ κ)m ln n + mκ ln n

]
where c�0 is a

positive constant. It converges to 0 when γ > 1
1−ε� − 1

2κ , where ε� is an arbitrary
positive value; inequality (14) is thus obtained.

��
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