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Abstract Progress in information technologies has enabled to apply computer-
intensive methods to statistical analysis. In time series modeling, sequential Monte
Carlo method was developed for general nonlinear non-Gaussian state-space models
and it enables to consider very complex nonlinear non-Gaussian models for real-world
problems. In this paper, we consider several computational problems associated with
sequential Monte Carlo filter and smoother, such as the use of a huge number of parti-
cles, two-filter formula for smoothing, and parallel computation. The posterior mean
smoother and the Gaussian-sum smoother are also considered.

Keywords Nonlinear non-Gaussian state-space model · Particle filter ·
Gaussian-sum filter · Two-filter formula · Parallel computation · Posterior mean
smoother

1 Introduction

In time series analysis, the prior knowledge of the dynamics of the phenomena and
the mechanism of the observation process can usually be combined into state-space
model form. As a result, many important problems in time series analysis can be
solved using the linear-Gaussian state-space model, and various nonstationary time
series models have been developed using state-space models (Harrison and Stevens
1976; West and Harrison 1989; Kitagawa and Gersch 1996, Doucet et al. 2001, Prado
and West 2010). However, there are numerous situations in which the ordinary time
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444 G. Kitagawa

series model is too restrictive and a more general nonlinear model or non-Gaussian
model is required (Kitagawa 1987, 2010; Kitagawa and Gersch 1984). In the 1990s,
various sequential Monte Carlo methods, referred to as bootstrap filters, Monte Carlo
filters, and particle filters, were developed (Gordon et al. 1993; Kitagawa 1996; Higuchi
1997; Pitt and Shephard 1999; Doucet et al. 2000, 2001; Doucet and Johansen 2011).
In these methods, arbitrary distributions of the state and the system noise are expressed
by numerous particles. Then, it is possible to develop a recursive filter and smoother
for very complex nonlinear non-Gaussian state-space models. These methods have
been successfully applied to a number of complex real-world problems (Doucet et al.
2001; Nakano et al. 2007).

Recent progress of information and communication technologies brought us both
the difficult problems and various possibilities in statistical modeling. To properly
handle and fully utilize the information contained in the “big data”, it is necessary to
develop high-dimensional very complex nonlinear models. On the other hand, emer-
gence of massive parallel processors enables to apply computer-intensive methods to
mitigate the difficulties in complex nonlinear modeling. As an example, the difficulty
with sequential Monte Carlo filtering and smoothing comes from the degeneracy of
the posterior distribution due to resampling of the particles, and several particle filter
algorithms have been developed to address this problem (Briers et al. 2010; Doucet
et al. 2001; Fearnhead et al. 2010). However, progress in information technologies
has enabled the use of highly parallel processors, and even the use of a billion of
particles or more for approximation of complex distributions is becoming realistic. It
is interesting to see to what extent the use of a huge number of particles alleviate the
difficulties in smoothing (Klaas et al. 2006).

In this paper, various computational problems are considered via simulation study
using a simple one-dimensional trend model. This is because, we need a “true” poste-
rior distribution to evaluate the accuracy of the filtering and smoothing algorithms. In
Sect. 2, a brief review of state-space model and recursive filtering methods is presented.
Computational efficiency and accuracy of the filter and the smoother when we use a
huge number of particles are considered in Sect. 3. The improvement of the smooth-
ing distribution by two-filter formula is presented in Sect. 4, and three algorithms
for parallel computation are considered in Sect. 5. The posterior mean smoother and
the Gaussian-sum filter and smoother are considered in Sects. 6 and 7, respectively.
Finally, some concluding remarks are give in Sect. 8.

2 A brief review of the filtering and smoothing algorithms

2.1 The state-space model and the state estimation problems

Assume that a time series (yn) is expressed by a linear state-space model

xn = Fn xn−1 + Gnvn

yn = Hn xn + wn, (1)
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where xn is an k-dimensional state vector, vn and wn are �-dimensional and 1-
dimensional white noise sequences having density functions qn(v) and rn(w), respec-
tively. The initial state vector x0 is assumed to be distributed according to the density
p(x0).

The information from the observations up to time j is denoted by Y j , namely, Y j ≡
{y1, . . . , y j }. The problem of state estimation is to evaluate p(xn|Y j ), the conditional
density of xn given the observations Y j and the initial density p(x0|Y0) ≡ p(x0). For
n > j, n = j and n < j , it is called the problem of prediction, filtering and smoothing,
respectively.

This linear state-space model can be generalized to a nonlinear non-Gaussian state-
space model,

xn = Fn(xn−1, vn)

yn = Hn(xn) + wn, (2)

where Fn(x, v) and Hn(x) are possibly nonlinear functions of the state and the noise
inputs. Diverse problems in time series analysis can be treated using this nonlinear
state-space model (Kitagawa and Gersch 1996; Doucet et al. 2001). Note that this
nonlinear non-Gaussian state-space model can be further generalized to general state-
space model which is defined using conditional distributions.

2.2 The Kalman filter and the smoother

It is well known that if all of the noise densities qn(v) and rn(w) and the initial state
density p(x0) are Gaussian, then the conditional density of linear state-space model
(1), the conditional density p(xn|Ym), is also Gaussian and that the mean and the
covariance can be obtained by the Kalman filter and the fixed-interval smoothing
algorithms (Sage and Mersa 1971; Anderson and Moore 1979).

To be specific, if we assume qn(v) ∼ N (0, Qn), rn(w) ∼ N (0, Rn), p(x0|Y0) ∼
N (x0|0, V0|0), and p(xn|Ym) ∼ N (xn|m, Vn|m), then the Kalman filter is given as
follows:

One-step-ahead prediction:

xn|n−1 = Fn xn−1|n−1

Vn|n−1 = Fn Vn−1|n−1 FT
n + Gn QnGT

n . (3)

Filter

Kn = Vn|n−1 H T
n (Hn Vn|n−1 Ht

n + Rn)−1

xn|n = xn|n−1 + Kn(yn − Hn xn|n−1)

Vn|n = (I − Kn Hn)Vn|n−1. (4)

Using these estimates, the smoothed density is obtained by the following
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Fixed-interval smoothing algorithm:

An = Vn|n FT
n V −1

n+1|n
xn|N = xn|n + An(xn+1|N − xn+1|n)
Vn|N = Vn|n + An(Vn+1|N − Vn+1|n)AT

n . (5)

2.3 The non-Gaussian filter and the smoother

It is well known that for the nonlinear non-Gaussian state-space model (2), the recursive
formulas for obtaining the densities of the one-step-ahead predictor, the filter and the
smoother are as follows:

One-step-ahead prediction:

p(xn|Yn−1) =
∫ ∞

−∞
p(xn|xn−1)p(xn−1|Yn−1)dxn−1. (6)

Filtering:

p(xn|Yn) = p(yn|xn)p(xn|Yn−1)∫
p(yn|xn)p(xn|Yn−1)dxn

. (7)

Smoothing:

p(xn|YN ) = p(xn|Yn)

∫ ∞

−∞
p(xn+1|YN )p(xn+1|xn)

p(xn+1|Yn)
dxn+1. (8)

In Kitagawa (1987, 1988), an algorithm for implementing the non-Gaussian fil-
ter and smoother was developed by approximating each density function using a
step-function or a continuous piecewise linear function and by performing numer-
ical computations. This method was successfully applied to various problems such as
estimation of trend or volatility, spectrum smoothing, smoothing discrete process and
tracking problem (Kitagawa and Gersch 1996; Kitagawa 2010).

2.4 Sequential Monte Carlo filter and smoother for non-Gaussian nonlinear
state-space models

The non-Gaussian filter and the smoother based on numerical integration mentioned
in the previous subsection have a limitation that they can be applied to only lower
dimensional, such as the third- or the fourth-order, state-space model. Sequential
Monte Carlo filter and smoother, hereinafter denoted as MCF, were developed to
mitigate this problem. In this method, each distribution appeared in recursive filter and
smoother is approximated by many “particles” that can be considered as realizations
from that distribution (Gordon et al. 1993; Kitagawa 1993, 1996).

In this paper, we use the following notations, {p(1)
n , . . . , p(m)

n } ∼ p(xn|Yn−1),
{ f (1)

n , . . . , f (m)
n } ∼ p(xn|Yn), {s(1)

n|N , . . . , s(m)
n|N } ∼ p(xn|YN ). In effect we approximate
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Fig. 1 Sequential Monte Carlo filter. One cycle of prediction, filter, and resampling

the cumulative distributions by the empirical distributions determined by the set of
“particles”.

Then a recursive filtering algorithm is realized as follows (Gordon et al. 1993;
Kitagawa 1993, 1996) (Fig. 1):

1. Generate a k-dimensional random number f ( j)
0 ∼ p0(x), for j = 1, . . . , m.

2. Repeat the following steps for n = 1, . . . , N .
(a) Generate an �-dimensional random number v

( j)
n ∼ q(v), for j = 1, . . . , m.

(b) Generate a new particle by p( j)
n = F( f ( j)

n−1, v
( j)
n ), for j = 1, . . . , m.

(c) Compute the importance weight α
( j)
n = r(yn − H(p( j)

n )), for j = 1, . . . , m.
(d) Generate f ( j)

n ∼ (
∑m

i=1 α
(i)
n )−1 ∑m

i=1 α
(i)
n I (x, p(i)

n ), for j = 1, . . . , m by the

resampling of p(1)
n , . . . , p(m)

n .

In Kitagawa (1993, 1996), it is shown that the particles approximating the smooth-
ing distribution are obtained by a simple modification of the Monte Carlo filter.
Assume that (s( j)

1|i , . . . , s( j)
n|i )T denotes the j-th realization of the conditional joint

density p(x1, . . . , xn |Yi ). Then an algorithm for smoothing is obtained by replacing
the Step 2 (d) of the algorithm for filtering;

(d-S) Generate {(s( j)
n−L|n, · · · , s( j)

n−1|n, s( j)
n|n)T , j = 1, . . . , m}

by the resampling of {(s( j)
n−L|n−1, · · · , s( j)

n−1|n−1, p( j)
n )T , j = 1, . . . , m}.

This is equivalent to applying the L-lag fixed-lag smoother rather than the fixed-
interval smoother (Anderson and Moore 1979). The increase of lag, L , will improve the
accuracy of the p(xn|Yn+L) as an approximation to p(xn|YN ), while it is very likely to
decrease the accuracy of {s(1)

n|N , · · · , s(m)
n|N } as representatives of p(xn|Yn+L) (Kitagawa

1996). Since p(xn|Yn+L) usually converges quickly to p(xn|YN ), it is recommended
to take L not so large (such as, 20, or at the largest 50).

123



448 G. Kitagawa

3 MCF with a large number of particles: an empirical study

Although many refinements on the MCF algorithm have been developed, because of
the development of large-scale parallel processors, it is interesting to see what happens
if the number of particles becomes huge in the crude MCF algorithm. In this section,
by an empirical study, we investigate the properties of the MCF from the viewpoints
of accuracy and computation time when the number of particles gets very large. Here,
we consider the simplest first-order trend model

xn = xn−1 + vn

yn = xn + wn, (9)

where yn is the observed time series, xn is the unknown trend component, and vn

and wn are the system noise and observation noise, respectively. Here, wn is assumed
to follow a Gaussian distribution with mean 0 and variance σ 2. As distributions of
the system noise, vn , we consider the following two cases: a Gaussian distribution
N (0, τ 2) and a Cauchy distribution C(0, τ 2) with density function f (v) = τπ−1(v2+
τ 2)−1.

The test data consisting of 500 observations are generated from the model, yn ∼
N (tn, 1) where tn = 0 for 1 ≤ n ≤ 150 and 351 ≤ n ≤ 500, tn = −1 for 151 ≤
n ≤ 250 and tn = 1 for 251 ≤ n ≤ 350. For simplicity, the variance or dispersion
parameters, σ 2 and τ 2, are assumed to be given as τ 2 = 1.22 × 10−2 and σ 2 = 1.043
for the Gaussian model and as τ 2 = 3.48 × 10−5 and σ 2 = 1.022 for the Cauchy
model (Kitagawa 1987, 1996).

The problem here is to obtain the one-step-ahead predictive distribution, p(tn |Yn−1),
the filter distribution, p(tn|Yn), and the smoothing distribution, p(tn|YN ), of the trend
component t1, . . . , t500 given the 500 observations, YN = {y1, . . . , y500}. For the
Gaussian noise case, the exact marginal posterior distributions can be obtained by the
Kalman filter and the smoothing algorithm, which are used as the true distributions in
the evaluation of the MCF. On the other hand, for the Cauchy noise model, the non-
Gaussian filter and smoother (Kitagawa 1987) are used to obtain an approximately
“true” distributions.

Computer codes were written by FORTRAN and were performed on a shared-
memory parallel processor with 352 cores (SPARC64 VII (2.88 GHz), 88 CPUs, 2TB,
4.0TFLOPS), and a Mersenne twister (Matsumoto and Nishimura 1998) was used as
a pseudo-random number generator.

To reduce the computation time, we use the following stratified sampling (Kitagawa
1996) in the resampling step 2-(d);

1. Set the search starting point as j1 = 1.
2. For i = 1, . . . , m,

(a) Set si = (i − ri )/m, where ri is a common uniform random number on [0,1).
Note that, ri may be an individual uniform random number drawn for each i or
a constant such as 1/2.

(b) Find the smallest j ∈ [ ji , m] that satisfies α j ≤ si .
(c) Set the i-th particle by fi = p j and the search starting point by ji+1 = j .
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3.1 Computation time and sampling variability of log-likelihood

Table 1 shows the computation times and the log-likelihoods for MCF with various
numbers of particles. The second column shows the computation time in seconds
required for single-core computation. The computation time of the current stratified
resampling algorithm with a single core is proportional to the number of particles,
m. Note that a crude resampling algorithm requires O(m2) operations. The third and
fourth columns show the mean and the standard deviation of the log-likelihoods for
100 repetitions of the MCF with different random numbers for the Gaussian model.
The table shows that the standard deviation of the log-likelihood is larger than 0.1,
even with m = 105 particles.

The fifth through seventh columns show the results for the Cauchy model. The
standard deviations of the log-likelihood are larger than those of the Gaussian model
for 103 particles or fewer. However, for m greater than or equal to 104, standard
deviations of the log-likelihood are smaller than those of the Gaussian model. This
reflects the fact that non-Gaussian distributions cannot be reasonably represented by
a small number of particles, whereas for the case in which the number of particles is
large, the posterior distribution can quickly adapt to the jumps of the mean values in
the test data, which results in the reduction of the instability of the filter.

Table 2 shows the accuracy of the distributions obtained by the MCF with various
numbers of particles m = 102, . . . , 107. The accuracies of the predictive distribution,
the filter distribution, the filter distribution after resampling, the smoothing distribution
with the best lag, the smoothing distribution with the maximum lag (k = 500), together
with the log-likelihoods and the best lags that attain the maximum accuracy among all
possible lag time, 0, . . . , N are shown. Note that the smoothing with the maximum
lag is equivalent to the fixed-interval smoothing.

The accuracy of the marginal posterior distributions obtained by MCF is evaluated
on the basis of the divergence of the true and the estimated distribution functions
measured by

Table 1 Log-likelihoods and computation times in seconds for various numbers of particles, m = 10k ,
k = 2, . . . , 9

m Gauss model Cauchy model

CPU-time Log-L SD CPU-time Log-L SD

102 0.02 −750.859 2.287 0.02 −752.207 6.247

103 0.06 −748.529 1.115 0.06 −743.244 2.055

104 0.58 −748.127 0.577 0.63 −742.086 0.429

105 5.84 −747.960 0.232 6.27 −742.024 0.124

106 59.41 −747.931 0.059 62.73 −742.029 0.038

107 591.04 −747.926 0.023 680.33 −742.026 0.013

108 5,906.62 −747.930 0.008 6,801.55 −742.026 0.003

109 59,077.35 −747.928 0.002 69,255.03 −742.026 0.001

The computation times, and the mean and standard deviation of log-likelihood for 100 runs with different
random numbers are shown
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Table 2 Accuracy of the MCF with different numbers of particles

Noise
model

m Log-
likelihood

Pred. Filter Resamp.
filter

Fixed-lag
smoother

Max-lag
smoother

Optimal
lag

Gauss 102 −750.995 3.1811 3.2227 3.3411 8.6931 41.7225 16.4

103 −748.728 0.5201 0.5385 0.5500 2.2594 16.2752 22.9

104 −748.077 0.1131 0.1189 0.1201 0.7171 5.5469 27.9

105 −747.951 0.0251 0.0265 0.0266 0.1848 1.4475 33.8

106 −747.923 0.0042 0.0045 0.0045 0.0341 0.1794 42.9

107 −747.932 0.0004 0.0004 0.0004 0.0042 0.0173 54.4

Cauchy 102 −751.439 19.9358 20.2267 20.2927 21.2479 47.8807 18.2

103 −742.897 4.0350 4.1334 4.1409 6.0420 23.6541 30.5

104 −742.141 0.3762 0.3875 0.3883 1.0009 3.6785 50.2

105 −742.076 0.0431 0.0431 0.0431 0.1396 0.3800 78.0

106 −742.028 0.0049 0.0046 0.0046 0.0173 0.0413 94.7

107 −742.027 0.0021 0.0017 0.0017 0.0035 0.0055 114.0

Gaussian and Cauchy cases: from left to right, the number of particles, the log-likelihood, and the accuracies
of prediction, filter, filter after resampling, smoothing with the best lag, smoothing with the maximum lag,
and the optimal lag obtained as the average of 100 runs are shown

Dist (D, D̂) =
500∑
n=1

I∑
i=1

{D(xi , n) − D̂(xi , n)}2�x, (10)

where �x = 16/I and xi = −8 + (i − 1)�x . Hereinafter, we use I = 6400 and in
actual evaluation, the D̂(xi , n) is replaced with either the predictive distribution func-
tion D̂p(x, n), the filter distribution D̂ f (x, n), or the smoother distribution D̂s(x, n)

obtained by the MCF and D(xi , n) by the “true” predictive distributions Dp(x, n), fil-
ter distribution D f (x, n), or the fixed-interval smoother distribution Ds(x, n), respec-
tively. As mentioned above, in the case of the Gaussian model, the true distributions
can be easily obtained by the Kalman filter. However, for the Cauchy model, the
“true” distributions are obtained numerically by applying the non-Gaussian filter and
smoother (Kitagawa 1987).

From the table, it can be seen that, for the current example of one-dimensional
Gaussian model, the predictive distribution and the filter distribution can be reasonably
approximated by m = 103 particles. Actually, they are closer to the true one than the
numerical integration method with k =500 nodes.

Lower half of Table 2 shows the results for the Cauchy model. Compared with the
Gaussian model, for smaller m, the Cauchy model is less accurate, and in order to
attain the same accuracy as the Gaussian model with m = 102, m = 103 is required.
Accuracy in the smoothing is also interesting and will be discussed later in the next
subsection.

Figure 2 illustrates the results listed in Table 2. The left-hand panel shows the rela-
tion between the number of particles and the accuracy for Gaussian model. From the
bottom to the top, three curves show the filter distribution, the smoothing distribution
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Fig. 2 Accuracy of the MCF for various numbers of particles. Horizontal axis number of particles; vertical
axis accuracy as measured by Dist (D, D̂). Left plot Gaussian case, right plot Cauchy model case. In each
plot, from bottom to top, three curves show accuracy of the filter, smoother with the best lag, and the
smoother with the maximum lag

with the best lag and the smoothing distribution with the maximum lag, i.e., k = 500,
respectively. On a log–log scale, the relations are almost linear.

The right-hand panel shows the change in accuracy for the Cauchy model. The
increase in accuracy for m = 103, ..., 106 is more rapid than that for the Gaussian
model.

3.2 Fixed-lag smoothing with large lag

In this subsection, we shall consider the accuracy of the fixed-lag smoothing distrib-
ution as an approximation to the exact fixed-interval smoothing distribution. Figure 3
shows the accuracy of the fixed-lag smoothers up to the maximum lag of k = 500.
Note that fixed-lag smoothing with k = 500 yields a fixed-interval smoother, but is
not recommended to use very large lag for small m. The left-hand panel shows the
results for the Gaussian model, and the right-hand panel shows the results for the
Cauchy model. In each panel, from top to bottom, the six curves show the cases with
m = 102, . . . , 107 particles.

The smoothing distribution is less accurate than the filter and a larger number of
particles, e.g., m = 104, is required in order to attain the accuracy measure less than
1. Obviously, this is due to the collapse of the distribution caused by resampling of
the particles. Note that in the MCF computation, fixed-interval smoothing distribution
is usually degenerated, and it is recommended to use the fixed-lag smoothing with a
moderate lag, such as 20 or 50, since the best lag is known only when we know the
true distribution such as the present simulation study.

For the Gaussian case, the best approximation is attained at lag=16 for m = 100 (see
also the last column of Table 2), and for the lag larger than 100, it becomes worse than
the accuracy with k = 0, namely that of the filter. However, as the number of particles,
m, increases, the best lag length becomes large, and for m = 107, it becomes larger
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Fig. 3 Accuracy of the smoothed distributions for large lag in fixed-lag smoothing. Left Gaussian model,
right Cauchy model. Horizontal axis lag, vertical axis accuracy. From top to bottom, the numbers of particle,
m = 102, . . . , 107

than 50. The figure also shows that for large m, a large lag will not adversely affect
the accuracy of the distribution so severely, and rule of thumb to set the maximum lag
to 20-50 recommended in the literature (i.e., 1996) is reasonable in this case.

The right-hand panel shows the results for Cauchy model. Compared with the case
of the Gaussian model, the optimal lag length shifts to the right quickly with the
increase in the number of particles, and for m = 107, the optimal lag length exceeds
k = 100. In this case, this figure indicates that the degeneracy of the distribution
becomes slight using a large number of particles, and the best lag may become larger
than the one determined by the rule of thumb mentioned above. It should be noted that
the curves in both plots are parallel to each other on the right-hand half of the log scale
plots. This means the increase of the number of particles will ensure the increase of
the accuracy of the smoother for large lag.

Figure 4 shows the marginal posterior distribution of the trend component obtained
by the fixed-lag smoothing with the maximum lag length, i.e., k = 500. The four
panels show the MCFs with m = 104, 105, 106, and 107, respectively. In each panel,
seven curves show the 0.13, 2,27, 15.87, 50, 84.13, 97.73, and 99.87 % points that cor-
respond to the mean and the ±1, 2, 3× (standard deviation) intervals for the Gaussian
distributions. For m = 104 and 105, some spiky fluctuations are observed in the ±3×
(standard deviation) curves. However, at least visually, no deterioration of the distri-
bution is observed for m = 107, as compared to the fixed-lag smoothing with the
best lag and the “exact” fixed-interval smoother obtained by the numerical integration
method. This also demonstrates that the degeneracy of the smoothing distribution can
be mitigated using a large number of particles for the MCF.

Figure 5 shows the details of the changes of the fixed-lag smoothing distributions
for the state x252 just after the largest jump in the trend, as the lag length increases.
The histograms with 80 bins representing the posterior distributions of the filter and
the smoothers with various lags are shown for four different numbers of particles,
m = 100, 104, 106, and 108.
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Fig. 4 Smoothed posterior distribution of the trend obtained using a Cauchy model. m = 104, 105, 106,
and 107, Lag = 500. Each figure shows time changes of the 0.13, 2.27, 15.87, 50, 84.13, 97.73, and 99.87 %
points of the smoothed posterior distributions

For all m, filtered distributions, p(x252|Y252), are uni-modal and do not reflect a
jump in the trend, and most of the particles remain on the negative side. However,
except for m = 100, after obtaining the observation y253, the smoothed distributions
became bimodal and a large part of the particles shifted to the right (positive) side.
The histograms obtained with m = 108 particles are very smooth, but become rougher
as the number of particles decreases. For m = 100, all of the particles shrunk into
a single bin at n = 256 and failed to shift to the positive side. For m = 1,000, for
which the histograms are not shown, the particles shrunk to a single bin located on the
positive side.

To avoid misunderstanding that the particles always shrink to a single bin for smaller
m, smoothed distributions of the state x450 are shown in Fig. 6 as a typical case in
which no level shift occurs. In this case, the particles do not shrink to a single bin and
we can obtain fairly reasonable posterior distributions, even for a very small number
of particles such as m = 100.

4 The two-filter formula for smoothing

As mentioned in the previous section, the main reason that the smoothing distribution
loses the accuracy is the reduction of the number of different particles by repeating
the resampling step. Various resampling algorithms have been developed to mitigate
this difficulty (Doucet et al. 2000). One way to address this problem, however, is to
use two-filter formula based on the decomposition of p(xn|YN ) (Solo 1982; Kitagawa
1989, 1994, 1996; Briers et al. 2010);
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Fig. 6 Filter and fixed-lag smoothing distributions of the state x450 obtained using a Cauchy model for
m = 102, 104, 106, and 108

p(xn|YN ) = p(xn|Yn−1)p(Yn:N |xn)p(Yn:N |Yn−1)
−1, (11)

where Yn:N ≡ YN � Yn−1 = {yn, ..., yN }. Here p(Yn:N |xn) can be evaluated by the
following filtering for the properly defined backward state-space model.

To obtain smoothed marginal posterior distribution p(xn |YN ) exactly, it is necessary
to evaluate the importance weight of each particle of the predictive distribution p( j)

n
by
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Fig. 7 Change of the accuracy of two-filter smoothing algorithm for various r . Left plot Gaussian model,
right plot Cauchy model. Horizontal axis the number of evaluated particles, r , vertical axis accuracy

β
( j)
n = 1

m

m∑
i=1

Hn( f̃ (i)
n − p( j)

n ), (12)

where f̃ (i)
n is a particle generated by the backward filtering. The evaluation of the

likelihood for all m2 combinations of particles requires a huge amount of computations
for large m.

In actual computations, it can be approximated by sampling r particles from m
particles, p̃(1)

n , . . . , p̃(m)
n ,

β ′( j)
n = 1

r

r∑
α=1

Hn( f̃ (iα)
n − p( j)

n ). (13)

As shown in Fig. 7, it is possible to achieve good approximation of the exact distribution
by evaluating for only r = 10 to 102 particles of p(Yn:N |xn).

Table 3 shows the comparison of the accuracy among the fixed-lag smoother with
the best lag, the fixed-interval smoother and the smoother obtained by the two-filter
formula. It can be seen that the smoothing by the two-filter formula outperforms not
only the fixed-interval smoother but also that of the fixed-lag smoother with the best
lag. Note that the best lag for the fixed-lag smoothing is actually unknown unless we
know the true distribution, thus it is difficult to attain the accuracy of the best fixed-lag
smoother in practice.

Figure 8 shows the marginal posterior distributions of the fixed-interval smoother
and the smoother based on two-filter formula, for the number of particles m = 103,
104, and 105. From the figure, it can be seen that very good approximation of marginal
posterior distribution is obtained even with m = 104 by the two-filter smoothing
formula.
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Table 3 Comparison of the
accuracy of the fixed-lag
smoother, fixed-interval
smoother and the two-filter
formula for various numbers of
particles, m = 10k , k = 2, . . . , 5

m Gauss model Cauchy model

Fixed Fixed Two Fixed Fixed Two
lag interval filter lag interval filter

102 8.693 41.723 6.913 21.248 47.881 26.440

103 2.259 16.275 1.399 6.042 23.654 4.870

104 0.717 5.547 0.333 1.001 3.679 0.378

105 0.185 1.448 0.118 0.140 0.380 0.072

Fig. 8 Comparison of fixed-interval smoothing and two-filter formula. Left plots fixed-interval smoother;
right plots two-filter formula

5 Parallel computation

5.1 Direct parallelization of the Monte Carlo filter

As shown in Table 1, even with the stratified resampling algorithm, the computation
time of the MCF increases almost linearly with the number of particles. Therefore,
the computation time becomes enormous as the number of particles increases.
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The use of parallel computer for the MCF is considered in this section. In the parallel
computation for the MCF, attention must be paid to the random number generation and
resampling steps. In the random number generation, we should be careful so that the
random numbers generated in parallel to be independent and computationally efficient.

In the resampling step, without careful design, numerous communication between
cores occurs, which counteracts the efficiency of parallel computation. In direct par-
allelization of the MCF, in order to minimize communication between cores, we used
the following procedure:

1. Compute the likelihood of the j-th particle in the i-th MCF, α( j,i)
n , for j = 1, . . . , m

and i = 1, . . . , k.
2. Define the weight of the i-th MCF, β

(i)
n = ∑m

j=1 α
( j,i)
n , for i = 1, . . . , k, and

cumulative weight γ
(i)
n = ∑i

q=1 β
(q)
n /

∑k
q=1 β

(q)
n , for i = 1, . . . , k.

3. Obtain the starting point I (i)
1 and J (i)

1 for the resampling of the i-th MCF, as follows:

(a) I (i)
1 is the smallest p that satisfies γ

(p)
n ≥ i/k.

(b) Then, J (i)
1 is the smallest q that satisfies γ

(I (i)
1 −1)

n + ∑q
p=1 β

I (p)
1

n ≥ i/k.

Then, by starting from p
(J (i)

1 ,I (i)
1 )

n , the resampling of the i-th MCF can be performed
efficiently, without any conflict between different cores.

Table 4 shows the elapsed time (in seconds) required for the ordinary MCF with
m particles by a parallel processor with k cores, where k = 4, 8, 16, 32, 64, and
128. Compilation was performed by OpenMP. The left-hand panel of Fig. 9 shows
these results, and the right-hand panel shows the relative efficiency of the parallel
computation compared with the single-core computation defined by

RE(k, m) = T (1, m)

k × T (k, m)
, (14)

Table 4 Elapsed time in direct parallel computation

m 1-CPU 4-CPU 8-CPU 16-CPU 32-CPU 64-CPU 128-CPU

102 0.02 0.03 0.03 0.06 0.11 0.19 0.45

103 0.06 0.05 0.04 0.06 0.12 0.20 0.48

104 0.63 0.21 0.14 0.11 0.14 0.27 0.46

105 6.27 1.76 1.01 0.59 0.39 0.40 0.52

106 62.73 18.44 10.03 5.33 2.94 1.75 1.34

107 628.02 183.44 99.97 54.09 34.52 19.68 12.07

108 6,280.90 1,827.65 998.87 534.53 343.66 209.29 173.13

109 62,854.89 18,243.37 9,963.29 5,471.30 3,422.24 2,096.21 1,730.12

1010 − − − 51,435.37 29,980.80 19,846.13 15,762.55

Here, m is the number of particles and the elapsed time is measured in seconds
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Fig. 9 Efficiency of direct parallel computation. The left-hand panel shows the elapsed time versus the
number of particles. The right-hand panel shows the relative efficiency

where m is the number of particles, k is the number of cores used for parallel com-
putation, and T (k, m) is the elapsed time required for the MCF with m particles by
parallel computation with k cores. From top to bottom, six curves show the change
of relative efficiency in parallel computation with 4, 8, 16, 32, 64, and 128 cores.
For a number of particles larger than or equal to 105 and a number of cores less
than or equal to 16, the relative efficiency is higher than 0.7. However, low rela-
tive efficiencies are observed for k = 64 and 128. This is because of the overhead
of the parallel computation. For larger m, the efficiency for 128 cores is 0.41–0.28.
According to Amdahl’s law, the parallel portion of the algorithm is evaluated to be
0.980–0.989.

5.2 Simple parallel Monte Carlo filter and smoother

One way to increase the computational efficiency in parallel computation is to compute
many MCFs in parallel and to take the average of the filtered or smoothed distributions.
By this method, filtering and smoothing can be performed independently on each
core, and communication between cores occurs only during averaging of the posterior
distributions. Therefore for large m, the elapsed time is almost inversely proportional
to the number of cores.

Table 5 shows the average of the accuracies of the filter distribution in 100 runs for
various values of m and k. The second through fifth columns show the results for the
Gaussian model. For smaller m such as m = 102, 103 or 104, the accuracy does not
increase significantly with increase of k. On the other hand, for large m, the accuracy
increases by one digit as the number of parallel MCFs increases by a factor of 10. The
sixth through ninth columns show the same results for the Cauchy model. In this case,
to see the goodness of the parallel MCF as an approximation to the single MCF, the
average of 10 distributions obtained by the MCF with m = 108 particles is used as
the “true” distribution.
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Table 5 Accuracy of the simple parallel Monte Carlo filter obtained as the average of 100 runs

m Gauss model Cauchy model
Number of parallel filters, k Number of parallel filters, k

1 10 100 1,000 1 10 100 1,000

102 3.22273 1.11807 0.90401 0.90421 21.72463 11.32517 10.44000 10.26888

103 0.53848 0.23308 0.18685 0.18304 4.01454 1.01333 0.72036 0.72802

104 0.11893 0.02979 0.02150 0.01916 0.37586 0.03984 0.00677 0.00479

105 0.02650 0.00377 0.00141 0.00081 0.03416 0.00327 0.00034 0.00008

106 0.00396 0.00042 0.00004 0.00334 0.00032 0.00004

107 0.00039 0.00004 0.00031 0.00003

108 0.00017 0.00003

m is the number of particles, and k is the number of parallel filters
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Fig. 10 Accuracy of simple parallel computation for Gauss model (left) and Cauchy model (right). From
top to bottom, m = 102, 103, 104, 105, and 106. Horizontal axis number of parallel MCFS, vertical axis
accuracy

Figure 10 illustrates these results. For Gaussian model, the simple parallel MCF
is effective only up to k = 10, if the number of particles of the single MCF is less
than or equal to 104. However, for larger m, such as 105 and 106, the single MCF is
effective up to at least k=100. In the case of Cauchy model, for m = 104 or larger,
the simple parallel MCF is very effective and the accuracy of the simple parallel MCF
with m particles and k MCFs is almost equivalent to that of a simple MCF with m × k
particles.

Summarizing, although this simple parallel MCF is efficient with respect to com-
putation time, it has a limitation in accuracy for small m. This is because the simple
parallel MCF can reduce only the variance of the filter and smoother. On the other
hand, the accuracy of the posterior distributions depends on both the bias and variance,
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Table 6 Biases and variances for various values of m

m 100 1,000 104 105

Gauss Bias 0.9109 0.1883 0.0200 0.0011

Variance 2.2741 0.3329 0.0931 0.0240

Cauchy Bias 10.2735 0.6985 0.0034 0.0000

Variance 10.9688 3.3143 0.3724 0.0342

and only the variance of the estimates is reduced in inverse proportion to the number
of parallel MCFs.

This suggests that the accuracy of k parallel MCFs with m particles can be decom-
posed as

bias(m) + 1

k
variance(m). (15)

The least squares estimates of the bias and variance are shown in Table 6. Bias terms
show the lower bound of the accuracy measure attained by the simple parallel MCF
with m particles. For Cauchy model, the bias is almost negligible for large m, and the
variance is inverse proportional to the number of particles.

5.3 Weighted parallel MCF with transplantation

The results presented in the previous subsection show that the simple parallel MCF
is not efficient in accuracy, for small numbers of particles because of the presence
of the bias of the estimates. To develop an efficient method with respect to both
computation and accuracy, we consider a weighted parallel MCF. In this method, k
MCFs are basically performed independently like the simple parallel MCF. We assume
that p( j,i)

n and f ( j,i)
n are the j-th particles in the predictive and filtered distributions

of the i-th MCF at time step n, respectively. The likelihood of the i-th MCF at time n
is obtained by

p(i)(yn|Yn−1, θ) = 1

m

m∑
j=1

α
( j,i)
n , (16)

where α
( j,i)
n is the importance weight of the particle p( j,i)

n defined by α
( j,i)
n =

p(yn|p( j,i)
n ). Then, the relative importance of the i-th MCF is defined by

wi =
∑m

j=1 α
( j,i)
n∑k

i=1
∑m

j=1 α
( j,i)
n

, (17)

and the likelihood and the posterior distribution of the state of the weighted parallel
MCF are evaluated as
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Fig. 11 Resampling in the weighted parallel MCFs with transplantation

p(yn|Yn−1, θ) =
k∑

i=1

wi p(i)(yn|Yn−1, θ) = 1

m

k∑
i=1

wi

m∑
j=1

α
( j,i)
n , (18)

p(xn|Yn, θ) =
k∑

i=1

wi p(i)(xn|Yn, θ) ∝ 1

m

k∑
i=1

wi

m∑
j=1

α
( j,i)
n I (xn, f ( j,i)

n ). (19)

This weighted parallel MCF surrogates the resampling in the sense that the cumu-
lative distribution defined by the weighted particles can yield a reasonable approxima-
tion to the distribution obtained using a single MCF with k × m particles without any
communication between cores in the resampling step. However, it is likely that the
weights of some MCFs may become very small as time progresses and may eventually
deteriorate the efficiency of the total filter.

To alleviate this problem, we adopted the following transplantation of particles
from “good” MCF to “bad” MCF. Namely, at each time step, we find the largest and
smallest wi ’s, and if their ratio is larger than a certain threshold, c, then the particles
of both MCFs are used in the resampling of the “bad” MCF, as shown in the following
algorithm. This is equivalent to merge two MCFs. Assume that the indices of “good”
and “bad” MCFs are denoted by imax and imin, respectively.

In the resampling of MCFimin , generate m1 particles by the resampling of p( j,imax)
n

with importance weights α
( j,imax)
n and generate m2 particles by the resampling of

p( j,imin)
n with importance weights α

( j,imin)
n (Fig. 11) where

m1 = 2mwimax

(wimax + wimin)
− m (20)

and m2 = m − m1. Set the importance weights of MCFimin as

m1wimax + m2wimin

(m1 + m2)
. (21)
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Repeat this transplantation of particles until the maximum ratio becomes less than
the predetermined threshold. According to the experience of the author, the accuracy
of the weighted parallel MCF is not sensitive to the selection of the threshold and we
may set a large value such as c = 10.

Figure 12 shows the results of the weighted parallel MCF with transplantation for the
number of particles m = 102, 103, 104 and k = 10, 100, and 1,000. It shows that the
k parallel MCF with number of particles m yields, at least visually, the same posterior
distribution as the one by k/10 parallel MCF with 10m particles. Table 7 and Fig. 13
show the accuracy of the weighted parallel MCF. Compared with Table 5, a significant
improvement of the accuracy is seen, even for smaller m. Also from the figure, it can
be seen that the accuracy of the weighted parallel MCF with transplantation increases
almost linearly in the log–log plot and yields almost the same accuracy as the single
MCF with m × k particles for large m.

6 Monte Carlo posterior mean smoother

As stated in the previous section, the Monte Carlo smoothing algorithm is occasionally
unstable and the smoothed distribution of the state collapses to a small number of
particles. If only the posterior mean of the marginal distribution of the state is necessary,
relatively more precise approximations to the posterior mean value function can be
obtained with a smaller number of particles by the following algorithm:

1. Rearrange p(1)
n , . . . , p(m)

n in order of magnitude. The results are expressed as
p̃(1)

n , . . . , p̃(m)
n , and the associated normalized importance weights are given by

α̃
(1)
n , . . . , α̃

(m)
n .

2. For j = 1, . . . , m,

(a) Generate a uniform random number u( j)
n ∈

[
j−1
m ,

j
m

]
.

(b) Find an integer i such that

i−1∑
�=1

α̃(�)
n < u( j)

n ≤
i∑

�=1

α̃(�)
n .

(c) Take weighted average of two particles

f ( j)
n = (1 − θ) p̃(i−1)

n + θ p̃(i)
n ,

s( j)
n|n = (1 − θ) f (i−1)

n + θ f (i)
n

s( j)
t |n = (1 − θ)s̃(i−1)

t |n + θ s̃(i)
t |n, f or t = 1, . . . , n − 1 (22)

where θ is given by (u( j)
n − ∑i−1

�=1 α̃
(�)
n )/α̃

(i)
n .

By this weighted average operation, it seems that the generated particles converged to
the mean of the distribution rather than approximating the posterior distribution.

In Fig. 14, top plots shows the marginal posterior distributions obtained by the
ordinary Monte Carlo smoother with a large number of particles. The middle plots
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Table 7 Accuracy of the
weighted parallel MCF with
crossover obtained as the
average of 100 runs

m is the number of particles, and
k is the number of parallel filters

m Number of parallel filters, k

1 10 100 1,000

102 21.24629 4.57516 0.70721 0.08344

103 4.01454 0.43215 0.05022 0.01415

104 0.37586 0.03175 0.00354 0.00037

105 0.03416 0.00358 0.00033 0.00004

106 0.00334 0.00034 0.00003

107 0.00034 0.00003

Fig. 13 Comparison of accuracy of simple parallel MCF and weighted parallel MCF for Cauchy model.
From top to bottom, m = 102, 103, 104, 105, and 106. Horizontal axis number of parallel MCFs, vertical
axis accuracy

show the paths of 100 particles of the Monte Carlo posterior mean smoother and the
bottom plots focus on the end portion. For both Gaussian and Cauchy models, all
particles of the Monte Carlo posterior mean smoother converged within 50 steps to a
single point which is close to the mean of the marginal posterior distribution obtained
by the Monte Carlo smoother.

Figure 15 shows the accuracy as an estimate of the posterior mean measured by
the mean squared error. The dotted lines show the least squares measure of the Monte
Carlo posterior mean smoother with m = 102, . . . , 106, and the solid curves show the
ones by the ordinary Monte Carlo fixed-lag smoother with various lags. It can be seen
that except for m = 102, the posterior mean smoother outperforms the ordinary Monte
Carlo smoother with any lag length.
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Fig. 14 Comparison of Monte Carlo Smoother and Monte Carlo Posterior Mean Smoother. Top plots
marginal posterior distributions obtained by the Monte Carlo smoother with large number of particles,
middle plots the posterior means obtained by the Monte Carlo posterior mean smoother, bottom plots
enlarged end potion of the posterior means. Left plots Gaussian model, right plots Cauchy model

It is difficult to analyze the property of this smoothing algorithm, and we consider
here the simplest situation where the new particles are generated independent on the
observations by

Z ( j)
n = (1 − α)Z (�i )

n−1 + αZ
(� j )

n−1, α ∼ U (0, 1). (23)

Assume that the mean, the variance and the covariance of the generated particles are
defined by E[Z ( j)

n ] = μ, Var[Z ( j)
n ] = vn , Cov{Z ( j)

n , Z (k)
n } = cn for j �= k. Then vn

and cn satisfy the difference equations

vn = 2

3
vn−1 + 1

3
cn−1

cn = 3

4m
vn−1 + 4m − 3

4m
cn−1. (24)

Therefore, under the initial conditions that v0 = 1 and c0 = 0, the variance and the
covariance of the particles Z ( j)

n , j = 1, . . ., are, respectively, given by
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Fig. 15 Mean square errors of the Monte Carlo Posterior Mean Smoother and the Fixed-lag Monte Carlo
Smoother. Horizontal axis lag, vertical axis accuracy. Solid curve fixed-lag smoother, dotted line Monte
Carlo posterior mean smoother

vn = (4m + 9)−1
{

9 + 4m

(
2

3
− 3

4m

)n}
(25)

cn = (4m + 9)−1
{

9 − 3

(
2

3
− 3

4m

)n}
. (26)

Therefore, as n increases, both v
( j)
n and c( j)

n converge to 9/(4m + 9). This means
that the correlation of the particles approaches to 1 as n increases, and that all of the
particles converges to one point, namely to the estimate of the mean of the distribution,
and its variance is the 9/4 of the sample mean.

Similarly, if the new particles are obtained by the average of two particles, i.e.,

Z ( j)
n = (Z (�i )

n−1 + Z
(� j )

n−1)/2, vn and cn are given by

vn = (2m + 1)−1
{

3 + 2(m − 1)

(
2m − 1

4m

)n}
(27)

cn = (2m + 1)−1
{

3 − 3

(
2m − 1

4m

)n}
. (28)

In this case, for large n, both v
( j)
n and c( j)

n converge to 3/(2m + 1) and the asymptotic
variance is 3/2 of the sample mean.
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7 The Gaussian-sum filter and smoother

For higher order state-space models, the application of the Monte Carlo filter and
smoother may become impractical due to huge amount of computations. One prac-
tical way to mitigate this computational burden is to use of the Gaussian-sum filter
that approximates arbitrary distribution by the mixture of several or many Gaussian
distributions (Alspach and Sorenson 1972; Harrison and Stevens 1976; Anderson and
Moore 1979; Kitagawa 1989, 1994) extended this to the Gaussian-sum smoother based
on the two-filter formula.

Assume that the predictive distribution, p(xn|Yn−1), and the filter distribution of
the backward filter p(Y n|xn) are expressed by the mixture of Ln and Mm Gaussian
components, respectively as

p(xn|Yn−1) =
Ln∑

k=1

γknϕk(xn|Yn−1)

p(Y n|xn) =
Mn∑
�=1

δ�nϕ�(Y
n|xn), (29)

where ϕk(xn|Yn−1) ∼ N (xk
n|n−1, V k

n|n−1), ϕ�(Yn|xn) ∼ N (z�
n|n, U �

n|n) and γkn and δ�n

are the weights of the Gaussian component, respectively. Here, xk
n|n−1, V k

n|n−1 and γkn

are obtained by the Gaussian-sum filter. Similarly, x�
n|n , U �

n|n and δ� are obtained by
the backward Kalman filter. (For details see Kitagawa 1994.)

Then, the Gaussian-sum smoother is obtained by

p(xn|YN ) ∝
Mn∑
�=1

Ln∑
k=1

δ�nγknϕ�(Y
n|xn)ϕk(xn|Y n−1)

≡
Mn∑
�=1

Ln∑
k=1

δ�nγknϕ�k(xn|YN ). (30)

Here ϕ�k(xn|YN ) is the Gaussian density whose mean and the covariance are obtained
by the Kalman filter algorithm for an appropriately defined model,

J �k
n = V k

n|n−1(V k
n|n−1 + U �

n|n)−1

x�k
n|N = xk

n|n−1 + J �k
n (z�

n|n − xk
n|n−1)

V �k
n|N = (I − J �k

n )V k
n|n−1. (31)

The difficulty with this Gaussian-sum filtering and smoothing is that if the
system noise or observation noise are non-Gaussian and are expressed by or
approximated by a mixture of several Gaussian components, then the numbers
of Gaussian components, Ln and Mn , increase very rapidly as time step pro-
ceeds. Actually, even in the simplest situation where system noise is the mix-
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Fig. 16 Gaussian-sum smoother. Top left plot Gaussian smoother, top right Gaussian-sum smoother with
m = 1, bottom left m = 4, bottom right m = 16

ture of two Gaussian components and the initial state distribution and observa-
tion noise are Gaussian, the number of Gaussian components at time n becomes
Ln = 2n .

Therefore to avoid the explosion of the number of Gaussian terms, it is necessary
to reduce the number of Gaussian components at least once every several time step. In
principle, the reduction of the number of Gaussian terms can be realized by minimizing
the Kullback–Leibler divergence. However, especially for large Ln , searching for the
parameters of the Gaussian mixture distribution with reduced number of components
by the numerical optimization is very time consuming and an algorithm based on
successive pooling of the most adjacent two Gaussian distributions has been developed.
The details of the algorithm and criterion and several successful applications are shown
in Kitagawa (1994).

Figure 16 shows the results by the Gaussian-sum smoother when the system noise is
the mixture of two Gaussian components, p(v) ∼ (1 −α)N (0, τ 2)+αN (0, ζ 2). Top
left plot shows the ordinary Kalman smoothing. Top right plot shows the case when
we set Ln = 1. Even in this case, the marginal posterior distribution is significantly
different from the Gaussian model and the sudden jump of the trend is detected. Bottom
left and bottom right plots show the cases when we set Ln = 4 and 16, respectively. It
can be seen that even with Ln = 4, reasonable approximations were obtained by the
Gaussian-sum smoother.

As shown in the example, the Gaussian-sum filter and smoother work well if the
state dimension is low and the non-Gaussian state distribution is reasonably approxi-
mated by relatively small number of Gaussian components. However, if the necessary
Gaussian terms becomes large, the step for reducing the number of Gaussian terms
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Table 8 Comparison of
computing time of the original
Gaussian-sum filter/smoother
and the resampling method

m KL minimization Resampling

Filter Smoother Filter Smoother

1 0.00 0.00 – −
2 0.00 0.00 0.00 0.01

4 0.01 0.01 0.00 0.00

8 0.04 0.07 0.00 0.01

16 0.25 0.34 0.00 0.03

32 1.17 1.50 0.01 0.11

64 4.60 5.90 0.02 0.41

128 21.20 25.05 0.06 1.60

256 612.93 555.91 0.19 6.29

512 − − 0.66 24.97

1,024 − − 1.80 98.84

dominates in the computation time and that eventually makes the Gaussian-sum filter
impractical.

To mitigate this problem, we consider here the reduction of number of Gaussian
components by resampling. Namely, by the analogy to the Monte Carlo filtering and
smoothing, it may be considered that many Gaussian components are replaced with a
smaller number of Gaussian distributions by resampling. Then it is possible to reduce
the number of Gaussian components using the likelihood of each Gaussian distribution
as the importance weight of the distribution.

An important remark is in order here. Namely, in the simple resampling algorithm,
the Gaussian components with very small importance weight will vanish, whereas
many similar distributions with relatively large importance weight will remain. Obvi-
ously, this will cause the loss of diversity of the components and will eventually spoil
the ability to adjust to the sudden changes of the state which is the most significant
merit of non-Gaussian distribution.

Therefore, in the present paper, we use the following ad hoc strategy in resampling.
If the system noise is a mixture of two Gaussian distribution, in the resampling stem,
we have to reduce the number of Gaussian components by 50 %. In doing so, 25 %
of the components with high importance weights are resampled with 100 %, rest
of the components except for the last one are resampled with a certain probability
(approximately 25 %). The final components are defined by the weighted average of
the un-selected components. This will approximately reserve the first two moments
of the distribution.

Table 8 compares computing time for the Gaussian-sum filter and smoother with
successive pooling and those of the filter and smoother based on the resampling. In
the original Gaussian-sum filter the computation time explodes at 256. On the other
hand, the resampling method is applicable even with m = 1,024.

Table 9 shows the accuracy of the Gaussian-sum filter and smoother based on the
resampling algorithm. Compared with Table 2, by this ad hoc resampling method, the
Gaussian-sum filter and smoother with 8 and 32 Gaussian components yield similar
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Table 9 Accuracy of the
original Gaussian-sum
filter/smoother: original and the
resampling methods

m KL pooling Resampling

Filter Smoother Filter Smoother

1 20.6270 21.4308 20.6270 21.4308

2 3.8016 2.8118 5.3989 3.6996

4 0.0751 0.1008 3.5662 2.0117

8 0.0351 0.0384 1.5314 1.2371

16 0.0294 0.0346 0.6438 0.5655

32 0.0291 0.0346 0.3241 0.3402

64 0.0300 0.0345 0.1907 0.2176

128 0.0386 0.0360 0.1167 0.1713

256 0.0432 0.0415 0.0807 0.0963

512 − − 0.0703 0.0847

1,024 − − 0.0672 0.0781

accuracy as the MCF with 104 and 105 particles, respectively. However, unfortunately,
the accuracy of this ad hoc method cannot match for the original pooling method.

8 Conclusion

In this paper, we present empirical study on the computational aspects of the Monte
Carlo filtering and smoothing by applying the method to simple state-space model for
which exact posterior distributions can be easily obtained by the Kalman filter or by
the non-Gaussian smoother. Some of the important findings are as follows:

(i) Using a huge number of particles, we can obtain a very accurate smoothing
distribution of the state using a fixed-lag smoothing algorithm with a very large
lag.

(ii) By the two-filter formula for smoothing, we may obtain better smoothing dis-
tribution than the fixed-lag smoother with the best lag. The computation time of
the two-filter formula can be reduced without significantly losing the accuracy
by sampling in smoothing algorithm with a very large lag.

(iii) The direct parallel MCF compiled by OpenMP is effective for m larger than or
equal to 105.

(iv) The simple parallel MCF is computationally very efficient but can only reduce
the variance of the posterior, and thus is only effective when the bias of the MCF
is small, i.e., the number of particles for each MCF is large.

(v) The weighted parallel MCF with transplantation can mitigate this problem of
simple parallel MCF.

(vi) At least for the current example, the posterior mean smoother can yield better
estimate of the mean value function than the fixed-lag smoother with any lags
except for very small m.

(vii) By the resampling of Gaussian component, we can develop a fairly accurate ad
hoc filter and smoother. However, these results are not as good as the one by the
pooling method.
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