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Abstract Consider the semiparametric transformation model �θo(Y ) = m(X) + ε,
where θo is an unknown finite dimensional parameter, the functions �θo and m are
smooth, ε is independent of X , and E(ε) = 0. We propose a kernel-type estimator of
the density of the error ε, and prove its asymptotic normality. The estimated errors,
which lie at the basis of this estimator, are obtained from a profile likelihood estimator
of θo and a nonparametric kernel estimator of m. The practical performance of the
proposed density estimator is evaluated in a simulation study.
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1 Introduction

Let (X1, Y1), . . . , (Xn, Yn) be independent replicates of the random vector (X, Y ),
where Y is a univariate dependent variable and X is a one-dimensional covariate. We
assume that Y and X are related via the semiparametric transformation model

�θo(Y ) = m(X) + ε, (1)

where ε is independent of X and has mean zero. We assume that {�θ : θ ∈ �} (with
� ⊂ R

p compact) is a parametric family of strictly increasing functions defined on an
unbounded subset D in R, while m is the unknown regression function, belonging to
an infinite dimensional parameter set M. We assume that M is a space of functions
endowed with the norm ‖ · ‖M = ‖ · ‖∞. We denote θo ∈ � and m ∈ M for the true
unknown finite and infinite dimensional parameters. Define the regression function

mθ (x) = E[�θ(Y )|X = x],

for each θ ∈ �, and let εθ = ε(θ) = �θ(Y ) − mθ (X).
In this paper, we are interested in the estimation of the probability density function

(p.d.f.) fε of the residual term ε = �θo(Y ) − m(X). To this end, we first obtain the
estimators ̂θ and m̂θ of the parameter θo and the function mθ , and second, form the
semiparametric regression residuals ε̂i (̂θ) = �

̂θ (Yi ) − m̂
̂θ (Xi ). To estimate θo we

use a profile likelihood (PL) approach, developed in Linton et al. (2008), whereas
m̂θ is estimated by means of a Nadaraya–Watson-type estimator Nadaraya (1964),
Watson (1964). To our knowledge, the estimation of the density of ε in model (8) has
not yet been investigated in the statistical literature. Estimating the error density in
the semiparametric transformation model (SPT) �θo(Y ) = m(X) + ε may be very
useful in various regression problems. First, taking transformations of the data may
induce normality and error variance homogeneity in the transformed model. So the
estimation of the error density in the transformed model may be used for testing these
hypotheses; it may also be used for goodness-of-fit tests of a specified error distribution
in a parametric or nonparametric regression setting. Some examples can be found in
Akritas and Van Keilegom (2001), Cheng and Sun (2008), but with �θo ≡ id, i.e. the
response is not transformed. Next, the estimation of the error density in the above model
can be useful for testing the symmetry of the residual distribution. See Ahmad and Li
(1997), Dette et al. (2002), Neumeyer and Dette (2007) and references therein, in the
case �θo ≡ id. Under this model, Escanciano and Jacho-Chavez (2012) considered
the estimation of the (marginal) density of the response Y via the estimation of the
error density. Another application of the estimation of the error density in the SPT
model is the forecasting of �θo(Y ) by means of the mode approach, since the mode of
the p.d.f. of �θo(Y ) given X = x is m(x) + arg maxe∈R fε(e), where fε is the p.d.f.
of the error term ε.
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Error density estimation in transformation models 3

Taking transformations of the data has been an important part of statistical prac-
tice for many years. A major contribution to this methodology was made by Box and
Cox (1964), who proposed a parametric power family of transformations that includes
the logarithm and the identity. They suggested that the power transformation, when
applied to the dependent variable in a linear regression model, might induce normal-
ity and homoscedasticity. Much effort has been devoted to the investigation of the
Box–Cox transformation since its introduction. See, for example, Amemiya (1985),
Horowitz (1998), Chen et al. (2002), Shin (2008), and Fitzenberger et al. (2010). Other
dependent variable transformations have been suggested, for example, the Zellner and
Revankar (1969) transform and the Bickel and Doksum (1981) transform. The trans-
formation methodology has been quite successful and a large literature exists on this
topic for parametric models. See Carroll and Ruppert (1988) and Sakia (1992) and
references therein.

The estimation of (functionals of) the error distribution and density under simplified
versions of model (1) has received considerable attention in the statistical literature in
recent years. Akritas and Van Keilegom (2001) estimated the cumulative distribution
function of the regression error in a heteroscedastic model with univariate covariates.
The estimator they proposed is based on nonparametrically estimated regression resid-
uals. The weak convergence of their estimator was proved. The results obtained by
Akritas and Van Keilegom (2001) have been generalized by Neumeyer and Van Kei-
legom (2010) to the case of multivariate covariates. Müller et al. (2004) investigated
linear functionals of the error distribution in nonparametric regression. Cheng (2005)
established the asymptotic normality of an estimator of the error density based on
estimated residuals. The estimator he proposed is constructed by splitting the sam-
ple into two parts: the first part is used for the estimation of the residuals, while the
second part of the sample is used for the construction of the error density estimator.
Efromovich (2005) proposed an adaptive estimator of the error density, based on a
density estimator proposed by Pinsker (1980). Finally, Samb (2011) also considered
the estimation of the error density, but his approach is more closely related to the one
in Akritas and Van Keilegom (2001).

In order to achieve the objective of this paper, namely the estimation of the error
density under model (8), we first need to estimate the transformation parameter θo.
To this end, we make use of the results in Linton et al. (2008). In the latter paper,
the authors first discuss the nonparametric identification of model (1), and second,
estimate the transformation parameter θo under the considered model. For the esti-
mation of this parameter, they propose two approaches. The first approach uses a
semiparametric profile likelihood (PL) estimator, while the second is based on a mean
squared distance from independence-estimator (MD) using the estimated distributions
of X, ε and (X, ε). Linton et al. (2008) derived the asymptotic distributions of their
estimators under certain regularity conditions, and proved that both estimators of θo

are root-n consistent. The authors also showed that, in practice, the performance of
the PL method is better than that of the MD approach. For this reason, the PL method
will be considered in this paper for the estimation of θo.

The rest of the paper is organized as follows: Section 2 presents our estimator of the
error density and groups some notations and technical assumptions. Section 3 describes
the asymptotic results of the paper. A simulation study is given in Sect. 4, while Sect. 5
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4 B. Colling et al.

is devoted to some general conclusions. Finally, the proofs of the asymptotic results
are collected in Sect. 6.

2 Definitions and assumptions

2.1 Construction of the estimators

The approach proposed here for the estimation of fε is based on a two-step procedure.
In a first step, we estimate the finite dimensional parameter θo. This parameter is
estimated by the profile likelihood (PL) method, developed in Linton et al. (2008).
The basic idea of this method is to replace all unknown expressions in the likelihood
function by their nonparametric kernel estimates. Under model (8), we have

P (Y ≤ y|X) = P
(

�θo(Y ) ≤ �θo(y)|X) = P
(

εθo ≤ �θo(y) − mθo(X)|X)

= Fε

(

�θo(y) − mθo(X)
)

.

Here, Fε(t) = P(ε ≤ t), and so

fY |X (y|x) = fε
(

�θo(y) − mθo(x)
)

�′
θo

(y),

where fε and fY |X are the densities of ε, and of Y given X , respectively. Then, the log
likelihood function is

n
∑

i=1

{

log fεθ (�θ (Yi ) − mθ (Xi )) + log �′
θ (Yi )

}

, θ ∈ �,

where fεθ is the density function of εθ . Now, let

m̂θ (x) =
∑n

j=1 �θ(Y j )K1

(

X j −x
h

)

∑n
j=1 K1

(

X j −x
h

) (2)

be the Nadaraya–Watson estimator of mθ (x), and let

̂fεθ (t) = 1

ng

n
∑

i=1

K2

(

ε̂i (θ) − t

g

)

. (3)

where ε̂i (θ) = �θ(Yi ) − m̂θ (Xi ). Here, K1 and K2 are kernel functions and h and g
are bandwidth sequences. Then, the PL estimator of θo is defined by

̂θ = arg max
θ∈�

n
∑

i=1

[

log ̂fεθ (�θ (Yi ) − m̂θ (Xi )) + log �′
θ (Yi )

]

. (4)
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Error density estimation in transformation models 5

Recall that m̂θ (Xi ) converges to mθ (Xi ) at a slower rate for those Xi which are close
to the boundary of the support X of the covariate X . That is why we assume implicitly
that the proposed estimator (4) of θo trims the observations Xi outside a subset X0 of
X . Note that we keep the root-n consistency of ̂θ proved in Linton et al. (2008) by
trimming the covariates outside X0. But in this case, the resulting asymptotic variance
is different to the one obtained in the latter paper.

In a second step, we use the above estimator ̂θ to build the estimated resid-
uals ε̂i (̂θ) = �

̂θ (Yi ) − m̂
̂θ (Xi ). Then, our proposed estimator ̂f̂ε(t) of fε(t) is

defined by

̂f̂ε(t) = 1

nb

n
∑

i=1

K3

(

ε̂i (̂θ) − t

b

)

, (5)

where K3 is a kernel function and b is a bandwidth sequence, not necessarily the same
as the kernel K2 and the bandwidth g used in (3). Observe that this estimator is a
feasible estimator in the sense that it does not depend on any unknown quantity, as is
desirable in practice. This contrasts with the unfeasible ideal kernel estimator

˜fε(t) = 1

nb

n
∑

i=1

K3

(

εi − t

b

)

, (6)

which depends in particular on the unknown regression errors εi = εi (θo) = �θo(Yi )−
m(Xi ). It is however intuitively clear that ̂f̂ε(t) and ˜fε(t) will be very close for n large
enough, as will be illustrated by the results given in Sect. 3.

2.2 Notations

When there is no ambiguity, we use ε and m to indicate εθo and mθo . Moreover,
N (θo) represents a neighborhood of θo. For the kernel K j ( j = 1, 2, 3), let μ(K j ) =
∫

v2 K j (v) dv and let K (p)
j be the pth derivative of K j . For any function ϕθ (y), denote

ϕ̇θ (y) = ∂ϕθ (y)/∂θ = (∂ϕθ (y)/∂θ1, . . . , ∂ϕθ (y)/∂θp)
t and ϕ′

θ (y) = ∂ϕθ (y)/∂y.
Also, let ‖A‖ = (At A)1/2 be the Euclidean norm of any vector A.

For any functions m̃, r, f, ϕ and q, and any θ ∈ �, let s = (m̃, r, f, ϕ, q), sθ =
(mθ , ṁθ , fεθ , f ′

εθ
, ḟεθ ), εi (θ, m̃) = �θ(Yi ) − m̃(Xi ), and define

Gn(θ, s) = n−1
n

∑

i=1

{

1

f {εi (θ, m̃)}
[

ϕ{εi (θ, m̃)}{�̇θ (Yi ) − r(Xi )} + q{εi (θ, m̃)}]

+ �̇′
θ (Yi )

�′
θ (Yi )

}

,

G(θ, s) = E[Gn(θ, s)] and G(θo, sθo) = ∂
∂θ

G(θ, sθ ) ↓θ=θo .
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6 B. Colling et al.

2.3 Technical assumptions

The assumptions we need for the asymptotic results are listed below for convenient
reference.

(A1) The function K j ( j = 1, 2, 3) is symmetric, has compact support,
∫

vk K j (v)

dv = 0 for k = 1, . . . , q j − 1 and
∫

vq j K j (v)dv 
= 0 for some q j ≥ 4, K j is

twice continuously differentiable, and
∫

K (1)
3 (v)dv = 0.

(A2) The bandwidth sequences h, g and b satisfy nh2q1 = o(1), ng2q2 = o(1) (where
q1 and q2 are defined in (A1)), (nb5)−1 = O(1), nb3h2(log h−1)−2 → ∞ and
ng6(log g−1)−2 → ∞.

(A3) (i) The support X of the covariate X is a compact subset of R, and X0 is a
subset with non-empty interior, whose closure is in the interior of X .

(ii) The density fX is bounded away from zero and infinity on X , and has
continuous second order partial derivatives on X .

(A4) The function mθ (x) is twice continuously differentiable with respect to θ on
X × N (θ0), and the functions mθ (x) and ṁθ (x) are q1 times continuously
differentiable with respect to x on X ×N (θ0). All these derivatives are bounded,
uniformly in (x, θ) ∈ X × N (θo).

(A5) The error ε = �θo(Y ) − m(X) has finite fourth moment and is independent of
X .

(A6) The distribution Fεθ (t) is q3 + 1 (respectively three) times continuously differ-
entiable with respect to t (respectively θ ), and

sup
θ,t

∣

∣

∣

∣

∣

∂k+�

∂tk∂θ
�1
1 . . . ∂θ

�p
p

Fεθ (t)

∣

∣

∣

∣

∣

< ∞

for all k and � such that 0 ≤ k + � ≤ 2, where � = �1 + · · · + �p and
θ = (θ1, . . . , θp)

t .
(A7) The transformation �θ(y) is three times continuously differentiable with

respect to both θ and y, and there exists a α > 0 such that

E

[

sup
θ ′:‖θ ′−θ‖≤α

∣

∣

∣

∣

∣

∂k+�

∂yk∂θ
�1
1 . . . ∂θ

�p
p

�θ ′(Y )

∣

∣

∣

∣

∣

]

< ∞

for all θ ∈ �, and for all k and � such that 0 ≤ k+� ≤ 3, where � = �1+· · ·+�p

and θ = (θ1, . . . , θp)
t . Moreover, supx∈X E[�̇4

θo
(Y )|X = x] < ∞.

(A8) For all η > 0, there exists ε(η) > 0 such that

inf‖θ−θo‖>η
‖G(θ, sθ )‖ ≥ ε(η) > 0.

Moreover, the matrix G(θo, sθo) is non-singular.
(A9) (i) E(�θo(Y )) = 1,�θo(0) = 0 and the set {x ∈ X0 : m′(x) 
= 0} has

non-empty interior.
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Error density estimation in transformation models 7

(ii) Assume that φ(x, t) = �̇θo(�
−1
θo

(m(x) + t)) fε(t) is continuously differ-
entiable with respect to t for all x and that

sup
s:|t−s|≤δ

E

∣

∣

∣

∣

∂φ

∂s
(X, s)

∣

∣

∣

∣

< ∞. (7)

for all t ∈ R and for some δ > 0.

Assumptions (A1), part of (A2), (A3)(ii), (A4) and (A6), (A7) and (A8) are used
by Linton et al. (2008) to show that the PL estimator ̂θ of θo is root n-consistent.
The differentiability of K j up to second order imposed in assumption (A1) is used
to expand the two-step kernel estimator ̂f̂ε(t) in (5) around the unfeasible one ˜fε(t).
Assumptions (A3)(ii) and (A4) impose that all the functions to be estimated have
bounded derivatives. The last assumption in (A2) is useful for obtaining the uniform
convergence of the Nadaraya–Watson estimator of mθo in (2) (see for instance Einmahl
and Mason 2005). This assumption is also needed in the study of the difference between
the feasible estimator ̂f̂ε(t) and the unfeasible estimator ˜fε(t). Finally, (A9)(i) is
needed for identifying the model (see Vanhems and Van Keilegom 2011).

3 Asymptotic results

In this section we are interested in the asymptotic behavior of the estimator ̂f̂ε(t). To
this end, we first investigate its asymptotic representation, which will be needed to
show its asymptotic normality.

Theorem 1 Assume (A1)–(A9). Then,

̂f̂ε(t) − fε(t) = 1

nb

n
∑

i=1

K3

(

εi − t

b

)

− fε(t) + Rn(t),

where Rn(t) = oP((nb)−1/2) for all t ∈ R.

This result is important, since it shows that, provided the bias term is negligible, the
estimation of θo and m(·) has asymptotically no effect on the behavior of the estimator
̂f̂ε(t). Therefore, this estimator is asymptotically equivalent to the unfeasible estimator
˜fε(t), based on the unknown true errors ε1, . . . , εn .

Our next result gives the asymptotic normality of the estimator ̂f̂ε(t).

Theorem 2 Assume (A1)–(A9). In addition, assume that nb2q3+1 = O(1). Then,

√
nb

(

̂f̂ε(t) − f ε(t)
) d→ N

(

0, fε(t)
∫

K 2
3 (v)dv

)

,

where

f ε(t) = fε(t) + bq3

q3! f (q3)
ε (t)

∫

vq3 K3(v)dv.

The proofs of Theorems 1 and 2 are given in Sect. 6.
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8 B. Colling et al.

4 Simulations

In this section, we investigate the performance of our method for different models and
different sample sizes. Consider

�θo(Y ) = b0 + b1 X2 + b2 sin(π X) + σeε, (8)

where �θ is the Box and Cox (1964) transformation

�θ(y) =
{

yθ−1
θ

, θ 
= 0,

log(y), θ = 0,

X is uniformly distributed on the interval [−1, 1], and ε is independent of X . We carry
out simulations for two cases : in the first case, ε has a standard normal distribution
and, in the second case, the distribution of ε is the mixture of the normal distributions
N (−1.5, 0.25) and N (1.5, 0.25) with equal weights. To make computations easier,
error distributions are truncated at −3 and 3 (i.e., put to 0 outside the interval [−3, 3]).
We study three different model settings. For each of them, b2 = b0 − 3σe. The other
parameters are chosen as follows:

Model 1 : b0 = 6.5, b1 = 5, σe = 1.5;
Model 2 : b0 = 4.5, b1 = 3.5, σe = 1;
Model 3 : b0 = 2.5, b1 = 2.5, σe = 0.5.

Our simulations are performed for θ0 = 0, 0.5 and 1. We use the Epanechnikov kernel
K (x) = 3

4

(

1 − x2
)

1 (|x | ≤ 1) for both the estimator of the regression function and
the density function. The results are based on 100 random samples of size n = 100
and n = 200. For the estimation of θ0 and fε(t), we proceed as follows. Let

Lθ (h, g) =
n

∑

i=1

[

log ̂fεθ (̂εi (θ, h)) + log �′
θ (Yi )

]

,

where ε̂i (θ, h) = �θ(Yi ) − m̂θ (Xi , h) and m̂θ (x, h) denotes m̂θ (x) constructed with
bandwidth h. This function will be maximized with respect to θ for given (optimal) val-
ues of (h, g). For each value of θ, h∗(θ) is obtained by least squares cross-validation,

h∗(θ) = arg max
h

n
∑

i=1

(

�θ(Yi ) − m̂−i,θ (Xi )
)2

,

where

m̂−i,θ (Xi ) =
∑n

j=1, j 
=i �θ(Y j )K
(

X j −Xi
h

)

∑n
j=1, j 
=i K

(

X j −Xi
h

)
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Error density estimation in transformation models 9

and g can be chosen with a classical bandwidth selection rule for kernel density estima-
tion. Here, for simplicity, the normal rule is used (̂g(θ) = (40

√
π)1/5n−1/5σ̂̂ε(θ,h∗(θ)),

where σ̂̂ε(θ,h∗(θ)) is the classical empirical estimator of the standard deviation based
on ε̂i (θ, h∗(θ)), i = 1, . . . , n). The solution

̂θ = arg max
θ

Lθ

(

h∗(θ), ĝ(θ)
)

is therefore obtained iteratively (maximization problems are solved with the function
‘optimize’ in R with h ∈ [0, 2] and θ ∈ [−20, 20]) and the estimator of fε(t) is finally
given by

̂f̂ε(t) = 1

nĝ
(

̂θ
)

n
∑

i=1

K

(

ε̂i
(

̂θ, h∗ (

̂θ
)) − t

ĝ
(

̂θ
)

)

.

Tables 1, 3 and 4 show the mean squared error (MSE) of the estimator ̂fε̃(t) of the
standardized (pseudo-estimated) error ε̃ = (

�
̂θ (Y ) − m̂

̂θ (X)
)

/σe (with known σe),
for t = −1, 0 and 1 (respectively t = −1.5,−1, 0, 1 and 1.5) and for the unimodal
(respectively bimodal) normal error distribution. Tables 2 and 5 show the integrated
mean squared error (IMSE) of the estimator ̂fε̃(·) for both error distributions, where
the integration is done over the interval [−3, 3]. As expected, in both cases, estimation
is better for the normal density than for the mixture of two normals, and estimation
improves when n increases, and in most cases, when σe decreases. In particular, this
can be observed from Tables 2 and 5. The limiting case θ0 = 0 (the logarithmic
transformation) seems to be more easily captured, especially when the error is normally
distributed. In general, we observe from Tables 1, 3, 4 that estimation is poorer near
local maxima and minima of the density, which is not uncommon for kernel smoothing
methods. This also suggests that the choice of the smoothing parameters is important
and should be the object of further investigation.

5 Conclusions

In this paper we have studied the estimation of the density of the error in a semi-
parametric transformation model. The regression function in this model is unspecified
(except for some smoothness assumptions), whereas the transformation (of the depen-
dent variable in the model) is supposed to belong to a parametric family of monotone
transformations. The proposed estimator is a kernel-type estimator, and we have shown
its asymptotic normality. The finite sample performance of the estimator is illustrated
by means of a simulation study.

It would be interesting to explore various possible applications of the results in this
paper. For example, one could use the results on the estimation of the error density to
test hypotheses concerning e.g. the normality of the errors, the homoscedasticity of
the error variance, or the linearity of the regression function, all of which are important
features in the context of transformation models.
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10 B. Colling et al.

Table 1 MSE( ̂fε̃ (t)) for different models, values of t and sample sizes, when fε(·) is a standard normal
density

Model θ0 n = 100 n = 200

̂fε̃ (−1) ̂fε̃ (0) ̂fε̃ (1) ̂fε̃ (−1) ̂fε̃ (0) ̂fε̃ (1)

Bias −.0421 −.0206 −.0123 −.0183 .0196 .0004

θ0 = 0 Var .0006 .0206 .0017 .0008 .0116 .0008

MSE .0024 .0211 .0018 .0011 .0120 .0008

b0 = 6.5 Bias −.0621 .0469 −.0631 −.0521 .0309 −.0262

b1 = 5 θ0 = 0.5 Var .0051 .1624 .0061 .0030 .1555 .0066

σ0 = 1.5 MSE .0089 .1646 .0101 .0057 .1565 .0073

Bias −.0874 .0806 −.0885 −.0530 .1063 −.0737

θ0 = 1 Var .0073 .2261 .0089 .0049 .1152 .0032

MSE .0149 .2326 .0168 .0077 .1265 .0086

Bias −.0029 −.0953 −.0232 −.0419 .0627 −.0118

θ0 = 0 Var .0019 .0142 .0023 .0004 .0130 .0010

MSE .0019 .0233 .0028 .0022 .0169 .0012

b0 = 4.5 Bias −.0522 .0476 −.0435 −.0228 −.0193 −.0146

b1 = 3.5 θ0 = 0.5 Var .0041 .1184 .0062 .0017 .0333 .0020

σ0 = 1 MSE .0068 .1207 .0081 .0022 .0337 .0022

Bias −.0703 .1816 −.0837 −.0425 .0240 −.0413

θ0 = 1 Var .0049 .2497 .0045 .0023 .0519 .0028

MSE .0098 .2827 .0114 .0041 .0525 .0045

Bias −.0323 −.0053 −.0008 −.0073 .0306 −.0373

θ0 = 0 Var .0006 .0148 .0011 .0005 .0063 .0002

MSE .0017 .0148 .0011 .0005 .0072 .0016

b0 = 2.5 Bias −.0304 .0156 −.0289 −.0214 .0223 −.0164

b1 = 2.5 θ0 = 0.5 Var .0014 .0266 .0020 .0008 .0129 .0008

σ0 = 0.5 MSE .0024 .0268 .0028 .0012 .0134 .0011

Bias −.0252 .0411 −.0308 −.0442 .0836 −.0303

θ0 = 1 Var .0020 .0415 .0042 .0007 .0256 .0014

MSE .0026 .0432 .0052 .0026 .0325 .0023

Table 2 IMSE( ̂fε̃ ) for different
models and sample sizes, when
fε(·) is a standard normal
density

Model θ0 n = 100 n = 200

b0 = 6.5 θ0 = 0 .0042 .0023

b1 = 5 θ0 = 0.5 .0161 .0106

σ0 = 1.5 θ0 = 1 .0237 .0129

b0 = 4.5 θ0 = 0 .0060 .0029

b1 = 3.5 θ0 = 0.5 .0125 .0053

σ0 = 1 θ0 = 1 .0191 .0075

b0 = 2.5 θ0 = 0 .0027 .0015

b1 = 2.5 θ0 = 0.5 .0048 .0026

σ0 = 0.5 θ0 = 1 .0114 .0036

123



Error density estimation in transformation models 11

Table 3 MSE( ̂fε̃ (t)) for different models, values of t and n = 100, when fε(·) is a mixture of two normal
densities (N (−1.5, 0.25), N (1.5, 0.25)) with equal weights

Model θ0 n = 100

̂fε̃ (−1.5) ̂fε̃ (−1) ̂fε̃ (0) ̂fε̃ (1) ̂fε̃ (1.5)

Bias −.1955 −.0292 .1671 −.0359 −.2069

θ0 = 0 Var .0003 .0010 .0013 .0012 .0005

MSE .0386 .0018 .0293 .0024 .0433

b0 = 6.5 Bias −.1854 −.0004 .1252 −.0086 −.1913

b1 = 5 θ0 = 0.5 Var .0021 .0053 .0017 .0059 .0021

σ0 = 1.5 MSE .0365 .0053 .0174 .0060 .0387

Bias −.2055 −.0046 .1641 −.0188 −.2173

θ0 = 1 Var .0033 .0065 .0167 .0061 .0027

MSE .0455 .0065 .0436 .0065 .0499

Bias −.1665 .0514 .1921 −.0875 −.2354

θ0 = 0 Var .0004 .0014 .0010 .0008 .0005

MSE .0282 .0040 .0379 .0084 .0589

b0 = 4.5 Bias −.1973 −.0235 .1584 −.0066 −.1892

b1 = 3.5 θ0 = 0.5 Var .0007 .0026 .0016 .0038 .0012

σ0 = 1 MSE .0396 .0031 .0267 .0038 .0370

Bias −.2025 −.0271 .1659 .0221 −.1902

θ0 = 1 Var .0015 .0039 .0044 .0039 .0017

MSE .0425 .0046 .0319 .0044 .0379

Bias −.1544 .0698 .1915 −.1296 −.2547

θ0 = 0 Var .0003 .0009 .0006 .0004 .0007

MSE .0242 .0057 .0372 .0172 .0656

b0 = 2.5 Bias −.1924 −.0501 .1341 .0317 −.1459

b1 = 2.5 θ0 = 0.5 Var .0004 .0011 .0007 .0021 .0005

σ0 = 0.5 MSE .0374 .0036 .0187 .0031 .0218

Bias −.1654 .0123 .1289 −.0642 −.1944

θ0 = 1 Var .0005 .0017 .0010 .0022 .0013

MSE .0279 .0019 .0167 .0063 .0391

6 Proofs

Proof of Theorem 1. Write

̂f̂ε(t) − fε(t) = [

̂fε(t) − fε(t)
] + [

̂f̂ε(t) − ̂fε(t)
]

,

where

̂fε(t) = 1

nb

n
∑

i=1

K3

(

ε̂i − t

b

)
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Table 4 MSE( ̂fε̃ (t)) for different models, values of t and n = 200, when fε(·) is a mixture of two normal
densities (N (−1.5, 0.25), N (1.5, 0.25)) with equal weights

Model θ0 n = 200

̂fε̃ (−1.5) ̂fε̃ (−1) ̂fε̃ (0) ̂fε̃ (1) ̂fε̃ (1.5)

Bias −.1578 −.0132 .1103 −.0212 −.1665

θ0 = 0 Var .0003 .0009 .0002 .0010 .0003

MSE .0252 .0011 .0123 .0015 .0281

b0 = 6.5 Bias −.1425 .0372 .0960 −.0193 −.1652

b1 = 5 θ0 = 0.5 Var .0009 .0038 .0005 .0039 .0019

σ0 = 1.5 MSE .0212 .0052 .0097 .0043 .0285

Bias −.1697 −.0077 .1019 −.0213 −.1769

θ0 = 1 Var .0014 .0047 .0007 .0051 .0018

MSE .0302 .0048 .0111 .0056 .0331

Bias −.1511 −.0022 .0980 −.0348 −.1681

θ0 = 0 Var .0002 .0007 .0001 .0009 .0004

MSE .0230 .0007 .0098 .0021 .0286

b0 = 4.5 Bias −.1712 −.0287 .1092 .0099 −.1538

b1 = 3.5 θ0 = 0.5 Var .0005 .0019 .0004 .0025 .0005

σ0 = 1 MSE .0298 .0028 .0123 .0026 .0242

Bias −.1278 .0323 .0630 −.0228 −.1532

θ0 = 1 Var .0009 .0038 .0002 .0038 .0015

MSE .0173 .0048 .0042 .0043 .0250

Bias −.1430 .0008 .0915 −.0581 −.1749

θ0 = 0 Var .0001 .0004 .0001 .0005 .0004

MSE .0205 .0004 .0085 .0039 .0310

b0 = 2.5 Bias −.1406 .0245 .1067 −.0485 −.1673

b1 = 2.5 θ0 = 0.5 Var .0001 .0008 .0002 .0012 .0006

σ0 = 0.5 MSE .0199 .0014 .0116 .0035 .0286

Bias −.1551 −.0291 .0839 .0013 −.1436

θ0 = 1 Var .0003 .0010 .0001 .0013 .0003

MSE .0244 .0019 .0072 .0013 .0210

Table 5 IMSE( ̂fε̃ ) for different
models and sample sizes, when
fε(·) is a mixture of two normal
densities
(N (−1.5, 0.25), N (1.5, 0.25))
with equal weights

Model θ0 n = 100 n = 200

b0 = 6.5 θ0 = 0 .0148 .0089

b1 = 5 θ0 = 0.5 .0158 .0106

σ0 = 1.5 θ0 = 1 .0219 .0119

b0 = 4.5 θ0 = 0 .0184 .0082

b1 = 3.5 θ0 = 0.5 .0157 .0099

σ0 = 1 θ0 = 1 .0186 .0083

b0 = 2.5 θ0 = 0 .0199 .0079

b1 = 2.5 θ0 = 0.5 .0118 .0087

σ0 = 0.5 θ0 = 1 .0123 .0078
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and ε̂i = �θo(Yi ) − m̂θo(Xi ), i = 1, . . . , n. In a completely similar way as was done
for Lemma A.1 in Linton et al. (2008), it can be shown that

̂fε(t) − fε(t) = 1

nb

n
∑

i=1

K3

(

εi − t

b

)

− fε(t) + oP((nb)−1/2) (9)

for all t ∈ R. Note that the remainder term in Lemma A.1 in the above paper equals a
sum of i.i.d. terms of mean zero, plus a oP(n−1/2) term. Hence, the remainder term in
that paper is OP(n−1/2), whereas we write oP((nb)−1/2) in (9). Therefore, the result
of the theorem follows if we prove that ̂f̂ε(t) − ̂fε(t) = oP((nb)−1/2). To this end,
write

̂f̂ε(t) − ̂fε(t)

= 1

nb2

n
∑

i=1

(

ε̂i
(

̂θ
) − ε̂i (θo)

)

K (1)
3

(

ε̂i (θo) − t

b

)

+ 1

2nb3

n
∑

i=1

(

ε̂i (̂θ) − ε̂i (θo)
)2

K (2)
3

(

ε̂i (θo) + β
(

ε̂i
(

̂θ
) − ε̂i (θo)

) − t

b

)

,

for some β ∈ (0, 1). In what follows, we will show that each of the terms above is
oP((nb)−1/2). First consider the last term of (10). Since �θ(y) and m̂θ (x) are both
twice continuously differentiable with respect to θ , the second order Taylor expansion
gives, for some θ1 between θo and ̂θ (to simplify the notations, we assume here that
p = dim(θ) = 1),

ε̂i (̂θ) − ε̂i (θo)

= �
̂θ (Yi ) − �θo(Yi ) − (

m̂
̂θ (Xi ) − m̂θo(Xi )

)

= (

̂θ − θo
) (

�̇θo(Yi ) − ˙̂mθo(Xi )
) + 1

2

(

̂θ − θo
)2 (

�̈θ1(Yi ) − ¨̂mθ1(Xi )
)

.

Therefore, since ̂θ − θo = oP((nb)−1/2) by Theorem 4.1 in Linton et al. (2008) (as
before, we work with a slower rate than what is shown in the latter paper, since this
leads to weaker conditions on the bandwidths), assumptions (A2) and (A7) imply that

1

nb3

n
∑

i=1

(

ε̂i
(

̂θ
) − ε̂i (θo)

)2
K (2)

3

(

ε̂i (θo) + β
(

ε̂i
(

̂θ
) − ε̂i (θo)

) − t

b

)

= OP

(

(nb3)−1
)

,
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14 B. Colling et al.

which is oP((nb)−1/2), since (nb5)−1 = O(1) under (A2). For the first term of (10),
the decomposition of ε̂i (̂θ) − ε̂i (θo) given above yields

1

nb2

n
∑

i=1

(

ε̂i
(

̂θ
) − ε̂i (θo)

)

K (1)
3

(

ε̂i (θo) − t

b

)

=
(

̂θ − θo
)

nb2

n
∑

i=1

(

�̇θo(Yi ) − ˙̂mθo(Xi )
)

K (1)
3

(

ε̂i (θo) − t

b

)

+ oP((nb)−1/2)

=
(

̂θ − θo
)

nb2

n
∑

i=1

(

�̇θo(Yi ) − ṁθo(Xi )
)

K (1)
3

(

εi − t

b

)

+ oP((nb)−1/2), (10)

where the last equality follows from a Taylor expansion applied to K (1)
3 , the fact that

˙̂mθo(x) − ṁθo(x) = OP

(

(nh)−1/2(log h−1)1/2
)

,

uniformly in x ∈ X0 by Lemma 1, and the fact that nhb3(log h−1)−1 → ∞ under
(A2). Further, write

E

[

n
∑

i=1

(

�̇θo(Yi ) − ṁθo(Xi )
)

K (1)
3

(

εi − t

b

)

]

=
n

∑

i=1

E

[

�̇θo(Yi )K (1)
3

(

εi − t

b

)]

−
n

∑

i=1

E
[

ṁθo(Xi )
]

E

[

K (1)
3

(

εi − t

b

)]

= An − Bn .

We will only show that the first term above is O(nb2) for any t ∈ R. The proof
for the other term is similar. Let ϕ(x, t) = �̇θo(�

−1
θo

(m(x) + t)) and set φ(x, t) =
ϕ(x, t) fε(t). Then, applying a Taylor expansion to φ(x, ·), it follows that (for some
β ∈ (0, 1))

An =
n

∑

i=1

E

[

�̇θo

(

�−1
θo

(m(Xi ) + εi )
)

K (1)
3

(

εi − t

b

)]

= n
∫ ∫

φ(x, e)K (1)
3

(

e − t

b

)

fX (x)dxde

= nb
∫ ∫

φ(x, t + bv)K (1)
3 (v) fX (x)dxdv

= nb
∫ ∫ [

φ(x, t) + bv
∂φ

∂t
(x, t + βbv)

]

K (1)
3 (v) fX (x)dxdv

= nb2
∫ ∫

v
∂φ

∂t
(x, t + βbv)K (1)

3 (v) fX (x)dxdv,
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since
∫

K (1)
3 (v)dv = 0, and this is bounded by K nb2 sups:|t−s|≤δ E| ∂φ

∂s (X, s)| =
O(nb2) by assumption (A9)(ii). Hence, Tchebychev’s inequality ensures that

(

̂θ − θo
)

b2

n
∑

i=1

(

�̇θo(Yi ) − ṁθo(Xi )
)

K (1)
3

(

εi − t

b

)

=
(

̂θ − θo
)

nb2 OP

(

nb2 + (nb)1/2
)

= oP((nb)−1/2),

since nb3/2 → ∞ by (A2). Substituting this in (10), yields

1

nb2

n
∑

i=1

(

ε̂i
(

̂θ
) − ε̂i (θo)

)

K (1)
3

(

ε̂i (θo) − t

b

)

= oP((nb)−1/2),

for any t ∈ R. This completes the proof. ��
.

Proof of Theorem 2 It follows from Theorem 1 that

̂f̂ε(t) − fε(t) = [

˜fε(t) − E ˜fε(t)
] + [

E ˜fε(t) − fε(t)
] + oP((nb)−1/2). (11)

The first term on the right hand side of (11) is treated by Lyapounov’s Central Limit
Theorem (LCT) for triangular arrays (see e.g. Billingsley 1968, Theorem 7.3). To this
end, let

˜fin(t) = 1

b
K3

(

εi − t

b

)

.

Then, under (A1), (A2) and (A5) it can be easily shown that

∑n
i=1 E

∣

∣ ˜fin(t) − E ˜fin(t)
∣

∣

3

(∑n
i=1 Var ˜fin(t)

)3/2 ≤ Cnb−2 fε(t)
∫ |K3(v)|3 dv + o

(

nb−2
)

(

nb−1 fε(t)
∫

K 2
3 (v)dv + o

(

nb−1
))3/2

= O((nb)−1/2) = o(1),

for some C > 0. Hence, the LCT ensures that

˜fε(t) − E ˜fε(t)
√

Var ˜fε(t)
= ˜fε(t) − E ˜fε(t)

√

Var ˜f1n(t)
n

d→ N (0, 1) .

This gives

√
nb

(

˜fε(t) − E ˜fε(t)
) d→ N

(

0, fε(t)
∫

K 2
3 (v)dv

)

. (12)
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For the second term of (11), straightforward calculations show that

E ˜fε(t) − fε(t) = bq3

q3! f (q3)
ε (t)

∫

vq3 K3(v)dv + o(bq3).

Combining this with (12) and (11), we obtain the desired result. ��
Lemma 1 Assume (A1)–(A5) and (A7). Then,

sup
x∈X0

|m̂θo(x) − mθo(x)| = OP((nh)−1/2(log h−1)1/2),

sup
x∈X0

| ˙̂mθo(x) − ṁθo(x)| = OP((nh)−1/2(log h−1)1/2).

Proof We will only show the proof for ˙̂mθo(x)−ṁθo(x), the proof for m̂θo(x)−mθo(x)

being very similar. Let cn = (nh)−1/2(log h−1)1/2, and define

˙̂r θo(x) = 1

nh

n
∑

j=1

�̇θo(Y j )K1

(

X j − x

h

)

,

ṙ θo(x) = E
[ ˙̂r θo(x)

]

, f X (x) = E
[

̂fX (x)
]

,

where ̂fX (x) = (nh)−1 ∑n
j=1 K1(

X j −x
h ). Then,

sup
x∈X0

| ˙̂mθo(x) − ṁθo(x)| ≤ sup
x∈X0

∣

∣

∣

∣

∣

˙̂mθo(x) − ṙ θo(x)

f X (x)

∣

∣

∣

∣

∣

+ sup
x∈X0

1

f X (x)

∣

∣ṙ θo(x) − f X (x)ṁθo(x)
∣

∣ . (13)

Since E[�̇4
θo

(Y )|X = x] < ∞ uniformly in x ∈ X by assumption (A7), a similar
proof as was given for Theorem 2 in Einmahl and Mason (2005) ensures that

sup
x∈X0

∣

∣

∣

∣

∣

˙̂mθo(x) − ṙ θo(x)

f X (x)

∣

∣

∣

∣

∣

= OP (cn) .

Consider now the second term of (13). Since E[ε̇(θo)|X ] = 0, where ε̇(θo) =
d

dθ
(�θ (Y ) − mθ (X))|θ=θo , we have

ṙ θo(x) = h−1
E

[

{

ṁθo(X) + ε̇(θo)
}

K1

(

X − x

h

)]

= h−1
E

[

ṁθo(X)K1

(

X − x

h

)]

=
∫

ṁθo(x + hv)K1(v) fX (x + hv)dv,
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from which it follows that

ṙ θo(x) − f X (x)ṁθo(x) =
∫

[

ṁθo(x + hv) − ṁθo(x)
]

K1(v) fX (x + hv)dv.

Hence, a Taylor expansion applied to ṁθo(·) yields

sup
x∈X0

∣

∣ṙ θo(x) − f X (x)ṁθo(x)
∣

∣ = O(hq1) = O (cn) ,

since nh2q1+1(log h−1)−1 = O(1) by (A2). This proves that the second term of (13)
is O(cn), since it can be easily shown that f X (x) is bounded away from 0 and infinity,
uniformly in x ∈ X0, using (A3)(ii). ��
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