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Abstract We estimate the drift parameter in a simple linear model driven by sub-
fractional Brownian motion. We construct a maximum likelihood estimator (MLE)
for the drift parameter by using a random walk approximation of the sub-fractional
Brownian motion and study the asymptotic behaviors of the estimator. Simulations
confirm the theoretical results and indicate superiority of the new proposed estimator.

Keywords Maximum likelihood estimator · Sub-fractional Brownian motion ·
Random walk

1 Introduction

The self-similar processes are of interest for various applications, such as economics,
internet traffic or hydrology. The sub-fractional Brownian motion besides fractional
Brownian motion is the usual candidate to model phenomena in which the self-
similarity property can be observed from the empirical data. Recall that the sub-
fractional Brownian motion (SH

t )t∈[0,T ] is a centered Gaussian process with the covari-
ance function
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76 N. Kuang, H. Xie

CH (s, t) = E(SH
s SH

t ) = s2H + t2H − 1

2

[
(s + t)2H + |s − t |2H

]
,

t ≥ 0, s ≥ 0, H ∈ (0, 1). (1)

The sub-fractional Brownian motion has properties analogous to those of fractional
Brownian motion (self-similarity, long- range dependence, Hölder paths), and satisfies
the following estimates:
[(

2 − 22H−1
)

∧ 1
]
|t − s|2H ≤ E|SH

t − SH
s |2 ≤

[(
2 − 22H−1

)
∨ 1
]
|t − s|2H .

The main properties of a sub-fractional Brownian motion were studied by Bojdecki
et al. (2004).

The stochastic analysis of the sub-fractional Brownian motion naturally led to the
statistical inference for diffusion processes with the sub-fractional Brownian motion as
the driving noise. For the problem of the estimation of the drift parameter in the model

dXt = θb(Xt )dt + dW H
t , t ∈ [0, T ], (2)

where (W H
t )t∈[0,T ] is a fractional Brownian motion with a Hurst index H ∈ (0, 1)

and b is a deterministic function satisfying some regularity conditions, and assume
that the parameter θ ∈ R has to be estimated. Such questions have been treated in
several papers (see Le Breton 1998; Kleptsyna and Le Breton 2002; Prakasa Rao 2008
for the case H ∈ ( 1

2 , 1) and b linear or Tudor and Viens 2007 for the general case
or Sottinen and Tudor 2008 for the two-parameter case): in general, the techniques
used to construct MLE for the drift parameter θ are based on Girsanov transforms
for fractional Brownian motion and depend on the properties of the deterministic
fractional operators related to the fractional Brownian motion. Another possibility is
to use Euler-type approximations of the above equation and to construct a MLE based
on the density of the observations given “the past”, as in e.g. Prakasa Rao (1999),
Section 3.4.

In this work, our purpose is to discuss the simple linear model

Xt = θ t + SH
t , (3)

where
(
SH

t

)
t∈[0,T ] is a sub-fractional Brownian motion with a Hurst index H ∈ ( 1

2 , 1)

and θ ∈ R is the parameter to be estimated. We consider an approximated model
in which we replace the noise SH by a disturbed random walk SH,N . We will prove
that SH,N converges weakly in the Skorohod topology to SH as N → ∞. Note that
this approximated model still keeps the main properties of the original model since
the noise is asymptotically self-similar and it exhibits long-range dependence. We
then construct a MLE estimator using a Euler scheme method and we prove that this
estimator is L p-consistent (p ≥ 1) and strong consistent.

Note that the approaches previously used in the literature (Kleptsyna and Le Bre-
ton 2002; Tudor and Viens 2007) to treat the problem of drift parameter estimation in
models such as (2), are based on the following idea: first, one constructs an estimator
(via Girsanov transform) in the continuous time model and then the estimator is dis-
cretized. We propose here an alternative point of view: first we discretize the equation
and then we construct the estimator.

123



Maximum likelihood estimator for the sub-fractional Brownian 77

Our technics used in this work are inspired from Bertin et al. (2009, 2011) and
Sottinen (2001). Our paper is organized as follows. In Sect. 2, we recall some facts on
the MLE for the drift parameter in the model driven by sub-fractional Brownian motion.
In Sect. 3, we introduce a statistical model driven by a disturbed random walk that
converges weakly to the sub-fractional Brownian motion. We construct an estimator
for the drift parameter and we prove its L p-consistency (p ≥ 1) and strong consistency
under the condition α > 1 where Nα is the number of observations at our disposal and
the step of the Euler scheme is 1

N . This condition extends the usual hypothesis in the
standard Wiener case (see Prakasa Rao 1999, paragraph 3.4). Section 4 is devoted to
comparison of three parameter estimators by numerical simulations which illustrate
the efficiency of the proposed estimator.

2 Preliminaries

Let us start by recalling some known facts on maximum likelihood estimation in
the simple case. Let (SH

t )t∈[0,T ] be a sub-fractional Brownian motion with a Hurst
parameter H ∈ ( 1

2 , 1) and let us consider the simple model (3).
Recall that the sub-fractional Brownian process (SH

t )t∈[0,T ] with a Hurst parameter
H ∈ ( 1

2 , 1) can be written (see, Mendy 2013)

SH
t = c(H)

∫ t

0
nH (t, s)dWs,

where (Wt , t ∈ [0, T ]) is a standard Wiener process,

nH (t, s) = 21−H √
πs

3
2 −H

�(H − 1
2 )

(∫ t

s
(x2 − s2)H− 3

2 dx

)
I(0,t)(s), (4)

and

c2(H) = �(1 + 2H) sin(π H)

π
.

For t > s, we have

∂nH

∂t
(t, s) = 21−H √

πs
3
2 −H

�
(
H − 1

2

)
(

t2 − s2
)H− 3

2
.

In the model (3), we aim to estimate the drift parameter θ by assuming that H is known
and on the basis on discrete observations X1, . . . , X Nα (the condition on α will be
clarified later). We use the Euler type method with t j = j

N and we denote Xt j = X j .
We can easily find the following expression for the observations X j , j =

1, . . . , Nα ,

X j = j
θ

N
+ SH

j
N
.
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78 N. Kuang, H. Xie

We need to compute the density of the vector (X1, . . . , X Nα ). Since the covariance

matrix of this vector is given by � = (�i j )i, j=1,...,Nα with �i j = Cov

(
SH

i
N
, SH

j
N

)
,

the density of (X1, . . . , X Nα ) will be given by

(2π)−
Nα

2
1√

det�
exp

(
−1

2

(
x1 − θ

N
, . . . , xNα − Nα θ

N

)′

×�−1
(

x1 − θ

N
, . . . , xNα − Nα θ

N

))
,

and by maximizing the above expression with respect to the variable θ , we obtain the
following MLE estimator

θ̃N = N

∑Nα

i, j=1( j�−1
i j Xi )∑Nα

i, j=1(i j�−1
i j )

, (5)

where the �−1
i j are the coordinates of the matrix �−1. Then,

θ̃N − θ = N

∑Nα

i, j=1

(
j�−1

i j SH
i
N

)

∑Nα

i, j=1

(
i j�−1

i j

) . (6)

Thus,

E|θ̃N −θ |2 = N 2

∑Nα

i, j,k,l=1

(
jl�−1

i j �−1
kl E
(

SH
i
N

SH
k
N

))

(∑Nα

i, j=1

(
i j�−1

i j

))2 = N 2

∑Nα

i, j,k,l=1

(
jl�−1

i j �−1
kl �ik

)

(∑Nα

i, j=1

(
i j�−1

i j

))2 .

Note that

Nα∑
i, j,k,l=1

(
jl�−1

i j �−1
kl �ik

)
=

Nα∑
j,k,l=1

(
jl�−1

kl

(
Nα∑
i=1

�−1
i j �ik

))

=
Nα∑

j,k,l=1

(
jl�−1

kl δ jk

)

=
Nα∑

j,l=1

(
jl�−1

jl

)
,

and consequently

E|θ̃N − θ |2 = N 2

∑Nα

i, j=1

(
i j�−1

i j

)

= N 2−2H

∑Nα

i, j=1

(
i jm−1

i j

) ,
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Maximum likelihood estimator for the sub-fractional Brownian 79

where m−1
i j are the coefficients of the matrix M−1 with M = (mi j )i, j=1,...,Nα , mi j =

i2H + j2H − 1
2 [(i + j)2H + |i − j |2H ]. Let x be the vector (1, 2, . . . , Nα) ∈ RNα

.
We use the inequality

x ′M−1x ≥ ||x ||22
λmax

,

where λmax is the largest eigenvalue of the matrix M . Thus, we have

E|θ̃N − θ |2 ≤ N 2−2H λmax
||x ||22

.

Since 12 + 22 + · · · + n2 = n(n+1)(2n+1)
6 , we know that ||x ||22 ≈ 1

3 N 3α . On the other
hand, by the Gerschgorin circle theorem (see Golub and van Loan 1996, Theorem
8.1.3), we have

λmax ≤ max
i=1,2,...,Nα

Nα∑
j=1

|mi j | ≤ C1 Nα(2H+1),

with C1 a positive constant. Finally,

E|θ̃N − θ |2 ≤ C1 N (2−2H)(1−α), (7)

and this goes to zero if and only if α > 1.
Let us summarize the above discussion.

Theorem 1 Let (SH
t )t∈[0,T ] be a sub-fractional Brownian motion with Hurst para-

meter H ∈ ( 1
2 , 1) and let α > 1. Then, the estimator (5) is L p-consistent for any

p ≥ 1.

Proof Since for every N the random variable θ̃N − θ is a centered random variable,
it holds that, for some positive constant cp depending on p,

E|θ̃N − θ |p ≤ cp

(
E|θ̃N − θ |2

) p
2 ≤ cpC

p
2

1 N p(1−H)(1−α),

and this converges to zero as N → ∞ since α > 1. �
It is also possible to obtain the almost sure convergence of the estimator to the true

parameter from the the estimate (7).

Theorem 2 Let (SH
t )t∈[0,T ] be a sub-fractional Brownian motion with Hurst para-

meter H ∈ ( 1
2 , 1) and let α > 1. Then, the estimator (5) is strong consistent, that is

θ̃N
a.s.−−→ θ , as N → ∞.

Proof Using Chebyshev’s inequality,

P
(

|θ̃N − θ | >
1

N γ

)
≤ cpC

p
2

1 N pγ N p(1−H)(1−α),
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80 N. Kuang, H. Xie

for some γ > 0. To apply the Borel–Cantelli lemma, we need to find a strictly positive
γ such that

∑
N≥1

N pγ N p(1−H)(1−α) < ∞.

One needs pγ + p(1 − H)(1 − α) < −1, and this is possible if and only if α > 1. �
Remark 1 Let us comment on the problem of estimation of the diffusion parameter in
the model (3). Assume that the sub-fractional Brownian motion is replaced by σ SH

in (3), with σ ∈ R. In this case, it is known that the sequence

N 2H−1
N−1∑
i=0

(
X i+1

N
− X i

N

)2
,

converges (in L2 and almost surely) to σ 2. Thus. we easily obtain an estimator for
the diffusion parameter using such quadratic variations. For this reason, we assume
throughout this paper that the diffusion coefficient is equal to 1.

3 MLE based on random walk

In this section, we propose a new model: we replace in (3) the sub-fractional Brownian
motion SH by its associated disturbed random walk

SH,N
t :=

[Nt]∑
i=1

√
N

(∫ i
N

i−1
N

c(H)nH

( [Nt]
N

, s

)
ds

)
ξ

(N )
i , t ∈ [0, T ],

where the ξ
(N )
i are i.i.d. random variables with zero-mean and variance equal to 1 and

nH (t, s) is defined by (4) and [x] denotes the greatest integer not exceeding x and

c(H) =
√

�(1+2H) sin(π H)
π

. Now, we prove that the sequence SH,N converges weakly

as N → ∞ in the Skorohod topology to the sub-fractional Brownian motion SH .

Theorem 3 The random walk SH,N converges weakly to the sub-fractional Brownian
motion SH in the Skorohod space.

Proof The proof is adapted from that of Theorem 1 in Sottinen (2001). The proof
consists of showing that the finite-dimensional distributions of SH,N converge to those
of SH and then showing that SH,N is tight.

Let us consider the limiting finite-dimensional distributions. For arbitrary a1, . . . ,

ad ∈ R and t1, . . . , td ∈ [0, T ], we want to show that

Y (N ) :=
d∑

k=1

ak SH,N
tk
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Maximum likelihood estimator for the sub-fractional Brownian 81

converges to a normal distribution with variance E
(∑d

k=1 ak SH
tk

)2
. Let us calculate

the limiting variance of Y (N ). Denote (σ (N ))2 := DY (N ) which is the variance of
Y (N ). Now,

(
σ (N )
)2 =c2(H)

d∑
k,l=1

akal N
[N T ]∑
i=1

∫ i
N

i−1
N

nH

( [Ntk]
N

, s

)
ds
∫ i

N

i−1
N

nH

( [Ntl ]
N

, s

)
ds. (8)

By the mean value theorem, (8) is equal to

c2(H)

d∑
k,l=1

akal
1

N

[N T ]∑
i=1

nH

( [Ntk]
N

, s(N )
i,k

)
nH

( [Ntl ]
N

, s(N )
i,l

)
, (9)

for some s(N )
i,k , s(N )

i,l ∈ ( i−1
N , i

N

]
. Since the functions nH (t, ·) are continuous and

decreasing in (0, T ], we obtain that the inner sum in Formula (9) is equal to

1

N

[N T ]∑
i=1

nH

( [Ntk]
N

, u(N )
i

)
nH

( [Ntl ]
N

, u(N )
i

)
, (10)

for some

u(N )
i ∈
[
min
(

s(N )
i,k , s(N )

i,l

)
, max
(

s(N )
i,k , s(N )

i,l

)]
⊆
(

i − 1

N
,

i

N

]
.

Using the fact that the kernel nH (·, ·) is continuous with respect to both arguments
and that the maps t �→ [Nt]

N converge uniformly to the identity map in [0, T ], we see
that (10) is a Riemann type sum. It follows that (9), and hence (σ (N ))2, converges to

c2(H)

d∑
k,l=1

akal

∫ T

0
nH (tk, s)nH (tl , s)ds = E

(
d∑

k=1

ak SH
tk

)2

.

Let us now write Y (N ) as a sum in i .

Y (N ) =
[N T ]∑
i=1

√
Nξ

(N )
i

d∑
k=1

ak

∫ i
N

i−1
N

c(H)nH

( [Ntk]
N

, s

)
ds =:

[N T ]∑
i=1

Y (N )
i .

Lindeberg’s condition is satisfied if for all ε > 0 we have

lim
N→∞

1

(σ (N ))2

[N T ]∑
i=1

E
(

Y (N )
i

)2
I{∣∣∣Y (N )

i

∣∣∣>εσ(N )
} = 0. (11)
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82 N. Kuang, H. Xie

We give an upper bound for the random variables
(

Y (N )
i

)2
. By Cauchy–Schwartz

inequality and the facts that nH (·, s) is increasing and nH (t, ·) is decreasing, we
obtain

(
Y (N )

i

)2 = Nc2(H)
(
ξ

(N )
i

)2 ( d∑
k=1

ak

∫ i
N

i−1
N

nH

( [Ntk]
N

, s

)
ds

)2

≤ Nc2(H)
(
ξ

(N )
i

)2
A

(∫ i
N

i−1
N

nH (T, s) ds

)2

≤ c2(H)(ξ
(N )
i )2 A

∫ i
N

i−1
N

n2
H (T, s) ds

≤ c2(H)(ξ
(N )
i )2 A

∫ 1
N

0
n2

H (T, s) ds

= c2(H)(ξ
(N )
i )2 Aδ(N ), (12)

where A :=
(∑d

k=1 ak

)2
and δ(N ) := ∫

1
N

0 n2
H (T, s) ds. We obtain

{∣∣∣Y (N )
i

∣∣∣ > εσ (N )
}

⊆
{

c2(H)
(
ξ

(N )
i

)2
Aδ(N ) > ε2

(
σ (N )
)2} =: D(N )

(
ξ

(N )
i

)
.

(13)

Using inequality (12) and the inclusion (13), we obtain

E
(

Y (N )
i

)2
I{∣∣∣Y (N )

i

∣∣∣>εσ(N )
} ≤
(
σ

(N )
i

)2
c2(H)E

(
ξ

(N )
i

)2
I

D(N )
(
ξ

(N )
i

)

=:
(
σ

(N )
i

)2
c2(H)Eξ2ID(N ) ,

where ξ := ξ
(1)
1 , D(N ) := D(N )

(
ξ

(1)
1

)
and
(
σ

(N )
i

)2 := D
(

Y (N )
i

)
. Using this upper

bound to the Lindeberg’s condition (11), we obtain

1

(σ (N ))2

[N T ]∑
i=1

E
(

Y (N )
i

)2
I{∣∣∣Y (N )

i

∣∣∣>εσ(N )
}≤
(
σ

(N )
1

)2 + · · ·+
(
σ

(N )
[N T ]
)2

(
σ (N )
)2 c2(H)Eξ2ID(N )

= c2(H)Eξ2ID(N ) .

Since n2
H (T, ·) is integrable, δ(N ), and consequently c2(H)Eξ2ID(N ) , tends to zero.

Hence, (11) holds and the convergence of the finite-dimensional distributions follows.
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It remains to prove the tightness. Let s < t be arbitrary time points. Using Cauchy–
Schwartz inequality, we obtain

E
(

SH,N
t − SH,N

s

)2 = c2(H)E

([Nt]∑
i=1

√
N
∫ i

N

i−1
N

(
nH

( [Nt]
N

, u

)
− nH

( [Ns]
N

, u

))
duξ

(N )
i

)2

= c2(H)

[Nt]∑
i=1

(√
N
∫ i

N

i−1
N

(
nH

( [Nt]
N

, u

)
− nH

( [Ns]
N

, u

))
du

)2

≤ c2(H)

[Nt]∑
i=1

∫ i
N

i−1
N

(
nH

( [Nt]
N

, u

)
− nH

( [Ns]
N

, u

))2

du

≤ c2(H)

∫ t

0

(
nH

( [Nt]
N

, u

)
− nH

( [Ns]
N

, u

))2

du

≤
[(

2 − 22H−1
)

∨ 1
] ∣∣∣∣

[Nt]
N

− [Ns]
N

∣∣∣∣
2H

. (14)

Let now s < t < u be arbitrary. Using Cauchy–Schwartz inequality again and the
bound (14), we obtain

E
∣∣∣SH,N

t − SH,N
s

∣∣∣
∣∣∣SH,N

u − SH,N
t

∣∣∣ ≤
(

E
(

SH,N
t − SH,N

s

)2) 1
2
(

E
(

SH,N
u − SH,N

t

)2) 1
2

≤
[(

2 − 22H−1
)

∨ 1
] ∣∣∣∣

[Nt]
N

− [Ns]
N

∣∣∣∣
H ∣∣∣∣

[Nu]
N

− [Nt]
N

∣∣∣∣
H

≤
[(

2 − 22H−1
)

∨ 1
] ∣∣∣∣

[Nu]
N

− [Ns]
N

∣∣∣∣
2H

.

If now u − s ≥ 1
N , we have

E
∣∣∣SH,N

t − SH,N
s

∣∣∣
∣∣∣SH,N

u − SH,N
t

∣∣∣ ≤
[(

2 − 22H−1
)

∨ 1
]
|2(u − s)|2H . (15)

If on the other hand u −s < 1
N , then either s and t or t and u lie in the same subinterval[m

N , m+1
N

)
for some m. Thus, the left hand side of (15) is zero. Therefore, (15) holds

for all s < t < u. Recalling now that H > 1
2 and by Theorem 15.6 of Billingsley

(1968), we have the tightness of SH,N . Therefore, we finish the proof of this theorem.
�

Now, we turn to estimate the drift parameter θ on the basis of the observations

Xt j+1 = Xt j + θ(t j+1 − t j ) +
(

SH,N
t j+1

− SH,N
t j

)
,

where t j = j
N , j = 0, 1, . . . , Nα −1 and X0 = 0. We will assume again that we have

at our disposal a number Nα of observations and we use a discretization of order 1
N

of the model. Denoting X j = Xt j , we can write
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84 N. Kuang, H. Xie

X j+1 = X j + θ

N
+
(

SH,N
j+1
N

− SH,N
j

N

)
, j = 0, 1, . . . , Nα − 1,

and

X j+1 = X j + θ

N
+

j∑
i=1

fi jξ
(N )
i + Fjξ

(N )
j+1, (16)

where

Fj = √
Nc(H)

∫ j+1
N

j
N

nH

(
j + 1

N
, s

)
ds,

and

fi j = √
Nc(H)

∫ i
N

i−1
N

(
nH

(
j + 1

N
, s

)
− nH

(
j

N
, s

))
ds.

Using (16), for j ∈ {1, . . . , Nα}, each ξ
(N )
j can be expressed explicitly in terms of

X1, . . . , X j and θ . More precisely, we have

(X1, . . . , X j )
′ = θ

N
(1, 2, . . . , j)

′ + B(ξ
(N )
1 , . . . , ξ

(N )
j )

′
,

where B = (bi j ) with bi j = √
Nc(H)

∫ i
N

i−1
N

nH

(
j

N , s
)

ds. Then

(
ξ

(N )
1 , . . . , ξ

(N )
j

)′
= B−1(X1, . . . , X j )

′ − θ

N
B−1(1, 2, . . . , j)

′
. (17)

Using (16) and (17), we can write for j ∈ {0, 1, . . . , Nα − 1},

X j+1 = X j + θ

N
(1 + α j ) + h j (X1, . . . , X j ) + Fjξ

(N )
j+1, (18)

where the functions h j and the α j depend on the bi j , and the fi j .
The α j satisfy

α0 = 0,

α1 = − f11

F0
,

α j = −
j∑

i=1

fi j

Fi−1
(1 + αi−1), (19)
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Maximum likelihood estimator for the sub-fractional Brownian 85

since

X j+1 = X j + θ

N
+

j∑
i=1

fi j

Fi−1

(
Xi − Xi−1 − hi−1(X1, . . . , Xi−1)

− θ

N
(1 + αi−1)

)
+ Fjξ

(N )
j+1.

From now on, we will assume that the r.v. ξ (N )
i follows a standard normal law N (0, 1).

Then, given X1, . . . , X j the random variable X j+1 is conditionally Gaussian and the
conditional density of X j+1 given X1, . . . , X j can be written as

fX j+1/X1,...,X j (x j+1/x1, . . . , x j )

= 1√
2π F2

j

exp

⎛
⎜⎝−1

2

(
x j+1 − x j − h j (x1, . . . , x j ) − θ(1+α j )

N

)2

F2
j

⎞
⎟⎠.

The likelihood function of X1, . . . , X Nα can be expressed as

L (θ, x1, . . . , xNα ) = fX1 (x1) fX2/X1 (x2/x1) · · · fX Nα /X1,...,X Nα−1 (xNα /x1, . . . , xNα−1)

=
Nα−1∏

j=0

1√
2π F2

j

exp

⎛
⎜⎝−1

2

(
x j+1 − x j − h j (x1, . . . , x j ) − θ(1+α j )

N

)2

F2
j

⎞
⎟⎠.

This leads to the expression of the MLE

θ̂N = N

∑Nα−1
j=0

(1+α j )(X j+1−X j −h j (X1,...,X j ))
F2

j∑Nα−1
j=0

(1+α j )
2

F2
j

, (20)

with

θ̂N − θ =
N
∑Nα−1

j=0
ξ

(N )
j+1(1+α j )

Fj∑Nα−1
j=0

(1+α j )
2

F2
j

. (21)

By the independence of ξ
(N )
i , we can write

E
∣∣∣θ̂N − θ

∣∣∣
2 = N 2E

⎛
⎜⎝
∑Nα−1

j=0
ξ

(N )
j+1(1+α j )

Fj∑Nα−1
j=0

(1+α j )
2

F2
j

⎞
⎟⎠

2

= N 2

∑Nα−1
j=0

(1+α j )
2

F2
j

. (22)
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Remark 2 Clearly the estimator (20) is unbiased.

Remark 3 From (21), we obtain

√∑Nα−1
j=0

(1+α j )
2

F2
j

N
(θ̂N − θ) ∼ N (0, 1),

since ξ
(N )
j+1, j = 0, . . . , Nα − 1 are i.i.d N (0, 1). But from (6), we cannot get the

similar result because SH
i
N
, i = 1, . . . , Nα, are not independent, even though they

follow normal distribution.

Let us study the L p-consistency of (20). We prove here the following.

Theorem 4 Assume that α > 1. Then, the estimator θ̂N given in (20) is L p-consistent
for any p ≥ 1.

To prove Theorem 4, we need the following two lemmas.

Lemma 1 There exists a positive constant C, such that

∫ Nα

N

0
n2

H

(
Nα

N
, s

)
ds ≤ C

(
Nα

N

)2H

. (23)

Proof Using the definition of nH (t, s) defined by (4), we have

∫ Nα

N

0
n2

H

(
Nα

N
, s

)
ds =
∫ Nα

N

0

22−2H πs3−2H

�2(H − 1
2 )

(∫ Nα

N

s
(x2 − s2)H− 3

2 dx

)2

ds.

Since

∫ Nα

N

s
(x2 − s2)H− 3

2 dx = 1

2H − 1

∫ Nα

N

s

1

x
d(x2 − s2)H− 1

2

= 1

2H − 1

⎧
⎨
⎩

N

Nα

[(
Nα

N

)2

− s2

]H− 1
2

+
∫ Nα

N

s

(x2 − s2)H− 1
2

x2 dx

⎫
⎬
⎭

≤ 1

2H − 1

⎧⎨
⎩

N

Nα

[(
Nα

N

)2

− s2

]H− 1
2

+
[(

Nα

N

)2

−s2

]H− 1
2 ∫ Nα

N

s

1

x2 dx

⎫⎬
⎭

= 1

(2H − 1)s

[(
Nα

N

)2

− s2

]H− 1
2

,
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we obtain

∫ Nα

N

0
n2

H

(
Nα

N
, s

)
ds ≤ 22−2H π

(2H −1)2�2(H − 1
2 )

∫ Nα

N

0
s1−2H

[(
Nα

N

)2

−s2

]2H−1

ds

= 22−2H π

(2H − 1)2�2(H − 1
2 )

(
Nα

N

)2H ∫ 1

0
(1 − s2)2H−1s1−2H ds

= 21−2H πβ(2H, 1 − H)

(2H − 1)2�2(H − 1
2 )

(
Nα

N

)2H

,

where β(a, b) = ∫ 1
0 xa−1(1 − x)b−1dx is the usual Beta function. Thus, (23) holds

with

C = 21−2H πβ(2H, 1 − H)

(2H − 1)2�2(H − 1
2 )

. (24)

�

Lemma 2 We have

E
∣∣∣θ̂N − θ

∣∣∣
2 ≤ c2(H)C N (2−2H)(1−α), (25)

where a positive constant C is defined by (24) and c2(H) = �(1+2H) sin(π H)
π

.

Proof By taking the sum from 1 to Nα − 1 in the recurrence formula (19), we can
write

Nα−1∑
j=1

α j = −
Nα−1∑

j=1

j∑
i=1

fi j

Fi−1
(1 + αi−1)

= −
Nα−1∑
i=1

1 + αi−1

Fi−1

Nα−1∑
j=i

fi j

= −
Nα−1∑
i=1

1 + αi−1

Fi−1

[√
Nc(H)

∫ i
N

i−1
N

(
nH

(
Nα

N
, s

)
− nH

(
i

N
, s

))
ds

]

= −
Nα−1∑
i=1

1 + αi−1

Fi−1

[√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds − Fi−1

]
.
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So,

Nα−1∑
j=1

α j =
Nα−1∑
i=1

(1 + αi−1) −
Nα−1∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds

= Nα−1+
Nα−1∑
i=1

αi − αNα−1−
Nα−1∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds,

which gives

αNα−1 = Nα − 1 −
Nα−1∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds. (26)

On the other hand, by the recurrence relation (19), we get

αNα−1 = −
Nα−1∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds

+
Nα−1∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα − 1

N
, s

)
ds. (27)

From (26) and (27), we will deduce (changing Nα − 1 into Nα)

Nα =
Nα∑
i=1

1 + αi−1

Fi−1

√
Nc(H)

∫ i
N

i−1
N

nH

(
Nα

N
, s

)
ds

=
Nα−1∑
i=0

1 + αi

Fi

√
Nc(H)

∫ i+1
N

i
N

nH

(
Nα

N
, s

)
ds,

and from the bound
(∑n

i=1 ai bi
)2 ≤ (∑n

i=1 a2
i

) (∑n
i=1 b2

i

)
, we obtain

N 2α ≤
Nα−1∑
i=0

(
1 + αi

Fi

)2 Nα−1∑
i=0

(√
Nc(H)

∫ i+1
N

i
N

nH

(
Nα

N
, s

)
ds

)2

≤ c2(H)

Nα−1∑
i=0

(
1 + αi

Fi

)2 ∫ Nα

N

0
n2

H

(
Nα

N
, s

)
ds

≤ c2(H)C

(
Nα

N

)2H Nα−1∑
i=0

(
1 + αi

Fi

)2

(by Lemma 1).
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Then,

Nα−1∑
i=0

(
1 + αi

Fi

)2

≥ N 2α

c2(H)C

(
Nα

N

)−2H

,

and this and (22) will imply

E
∣∣∣θ̂N − θ

∣∣∣
2 ≤ c2(H)C N (2−2H)(1−α),

where C is defined by (24). �
Proof of Theorem 4 Note that, by Lemma 2,

E
∣∣∣θ̂N − θ

∣∣∣
p ≤ cp

(
E
∣∣∣θ̂N − θ

∣∣∣
2
) p

2 ≤ cpcp(H)C
p
2 N p(1−H)(1−α),

then, the proof of Theorem 4 is easily obtained since α > 1. �
By Chebyshev’s inequality and the Borel–Cantelli lemma, we can get the following

result.

Theorem 5 Assume that α > 1. The estimator (20) is strong consistent, that is

θ̂N
a.s.−−→ θ , as N → ∞.

Proof It is similar to the proof of Theorem 2, therefore we omit it here. �

4 Simulations and comparison

It is obvious that θ t := Xt
t is also the consistent estimator of θ and has the asymptotic

normality. In fact,

θ t = Xt

t
= θ + SH

t

t
,

thus,

t1−H

√
2 − 22H−1

(θ t − θ) ∼ N (0, 1).

In this section, we compare θ̂N given by (20), θ̃N given by (5) with θ t by numerical
simulations.

We have simulated the observations X1, · · · , X Nα for different values of H :
0.55, 0.75 and 0.90 and for the parameter of discretization N = 30 and the true
value of θ = 1. For each case, we calculate 1,000 estimations of θ̂N , θ̃N and θ t (take
t = Nα−1) and Table 1 shows the mean and the standard deviation (SD) of these
estimations. In all of the cases, we use α = 2. From the data in Table 1, it seems that
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Table 1 Mean and standard deviation of three parameter estimators

H θ̂N θ̃N θ t

(
t = Nα−1

)

Mean SD Mean SD Mean SD

0.55 1.0025 0.0452 0.9897 0.2559 0.9910 0.1967

0.75 0.9966 0.1771 0.9638 1.0633 1.0149 0.3373

0.90 0.9941 0.1671 0.9215 1.9010 1.0064 0.3711
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Fig. 1 Histogram of three normalized estimators( I: θ̂N , II: θ̃N and III: θ t )

θ̂N is better than θ t and θ t is better than θ̃N . Therefore the new proposed estimator θ̂N

has superiority.
Figure 1 depicts the histogram of normalized estimators θ̂N , θ̃N and θ t with N =

30, H = 0.55, α = 2 and t = Nα−1. We can draw a conclusion that θ̂N , θ̃N and θ t

have asymptotic normalities from the Fig. 1, though we cannot prove the asymptotic
normality of θ̃N in theory. The simulations confirm the theoretical results proved in
Theorem 1, Theorem 4 and Remark 3.
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