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Abstract We propose simple estimation of the location parameter for a density that
is unbounded at the mode. The estimator maximizes a modified likelihood in which the
singular term in the full likelihood is left out, whenever the parameter value approaches
a neighborhood of the singularity location. The consistency and super-efficiency of
this maximum leave-one-out likelihood estimator is shown through a direct argument.
The importance for estimation within parametric families is discussed and illustrated
by an example involving the gamma mixture of normal distributions.

Keywords Unbounded likelihood · Location parameter · Super-efficiency ·
Generalized asymmetric Laplace distribution

1 Introduction

The classical problem of the location parameter estimation frequently serves as an
illustration of how the asymptotic theory can be used to identify an estimator with
some optimal properties. In particular, the asymptotics for the maximum likelihood
estimators (MLE) has been established not only under the so-called regular conditions
but also when the density has a cusp at its mode. The history here goes back to
the Ph.D. Thesis of Prakasa Rao, Rao (1996), and the subsequent related paper Rao
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(1968), where consistency and super-efficiency of the MLE of the location parameter
have been demonstrated for a bounded density with a cusp at the mode.

Estimation of the location can be also considered for an unbounded density. This
case has been first approached in Ibragimov and Khasminskii (1981a) and later sum-
marized in the influential monograph Ibragimov and Khasminskii (1981b), where, to
deal with the unboundedness of the likelihood, Bayesian estimation has been consid-
ered. There, as well as in Rao (1996), weak convergence of the log-likelihood ratio
process to an appropriately defined Gaussian process has been established yielding the
consistency for the MLE, whenever this is well defined, or otherwise for Bayesian-type
estimators.

This work also deals with the unbounded density case but instead of resorting to
the Bayesian approach we modify the likelihood approach. A modification is needed
since the likelihood is unbounded at each data point and the classical MLE is not even
properly defined. To remedy this issue, we propose to leave a singular term out from
the full likelihood in a neighborhood of the datum location which leads to the concept
of the leave-one-out likelihood function, for a formal definition see Sect. 3.2, Eq. (1).
The estimator δ̂ is defined as the maximizer of the leave-one-out likelihood. Under
rather natural conditions it is shown that δ̂ is consistent. Moreover, a lower bound
for the rate of convergence is established showing, in particular, that the estimator
is super-efficient, i.e. its rate is faster than in the classical case of n−1/2. The proof
presented is completely self-contained, direct, and uses only elementary arguments.
Consequently, it is formally independent of any other asymptotic results, including
these for the convergence of the likelihood ratio process. Nevertheless, the intuitive
reason for the supper-efficiency is the rate of convergence of the likelihood ratio
process (or its moments as exploited in this work). Namely, for the densities that are
unbounded this rate is faster than under the standard regular conditions, see Lemma 5
(this faster rate is tied to the asymptotics of the density around the location parameter
as presented in Lemma 4).

The idea of leaving out a trouble causing factor in the likelihood seems to be
quite natural and, in fact, has been recently proposed in the problem of estimation of
parameters for a finite mixtures of normal densities in Seo and Kim (2012). Despite
general similarities between the approaches, neither the estimators nor the results of
that work translate to the setup of this paper.

The paper is organized as follows: Section 2 motivates the problem and, in particular,
points at convenience of the method when used in a general multi-parameter setup. In
Sect. 3, we present the assumptions and the main result which is Theorem 1. In Sect. 4,
we formulate and prove the lemmas that eventually lead to the proof of Theorem 1
presented in Sect. 5. Finally, in the Appendix, we present an example illustrating
how a version of the EM algorithm can be applied to maximize the leave-one-out
likelihood.

2 Motivation

Although in this work we concentrate on the location parameter, the applicability
of the approach extends to the multi-parameter context. The leave-one-out likeli-
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hood function presents only a slightly modified likelihood and thus the maximizers
over other than location parameters would have the asymptotic properties dictated
by the classical MLE theory given, of course, that appropriate assumptions of the
likelihood are satisfied. For this reason, the proposed estimation of location in the
unbounded density case is not only of a theoretical interest but also have important
implications for actual estimation problems. In fact, there are natural parametric fam-
ilies for which estimation in the presence of unboundedness becomes an important
practical issue. This study was inspired by investigation of applicability of the EM
algorithm to parameter estimation for linear models involving the generalized Laplace
distributions.

Recall a generalized Laplace random variable X admits the representation X =
δ + μ� + σ

√
�Z , where � has Gamma distribution with the shape τ and scale

one, while Z has the standard normal distribution, see Kotz et al. (2001) for details.
This class is made of infinitely divisible distributions, is closed under the convolu-
tions and the corresponding Lévy motions are referred to as the Laplace motions (in
mathematical finance, specially in the symmetric case, these models are naturally
known as the gamma variance processes). The density of X is of the form p(x)|x |α ,
where α = 2τ − 1 and p(x) being a function that is bounded and non-negative
around zero.

The explicit form of the density involves one of the Bessel functions so the distri-
bution is also referred to as the Bessel function distribution. To maximize the likeli-
hood one has to resort to numerical methods and, for example, the EM (expectation-
maximization) algorithm can be conveniently employed to evaluate the MLE of the
parameters (δ, μ, σ, τ ). We refer to Protassov (2004) for a presentation of such an
approach applied to a subclass of the generalized hyperbolic distributions (the latter
were introduced by Barndorff-Nielsen (1978) and include also the generalized Laplace
distributions). Since the range of values of τ is a’priori not known, one can not exclude
a possibility of an unbounded density, which occurs when τ < 1/2, i.e. −1 < α < 0.
In fact, the value of τ is tied to the grid of sampling for spatial or temporal models
involving the Laplace motion—the finer grid the smaller value of τ which typically
leads to an unbounded density.

The EM algorithm can be adopted to the leave-one-out likelihood by not account-
ing in each loop for the observation that is closest to the evaluated values of the
location parameter. This is actually the EM algorithm applied to a penalized log-
likelihood where the penalty term is − log f (xk(δ̂)

), in which it resembles the method
of Chen et al. (2008). In these applications, the EM algorithm preserves the fundamen-
tal monotonicity property entertained by the original EM method of Dempster et al.
(1977). In the resulting approximations, the estimate of δ has the same super-efficient
asymptotic behavior as demonstrated in this work, while the estimates of μ, σ and
τ behave asymptotically in the same way as the MLE under the standard regularity
conditions. The formal argument supporting these statements in full generality is left
for another occasion. However in the Appendix we do discuss main steps in such an
EM approach when applied to the maximizing for the leave-one-out likelihood for the
generalized Laplace distributions.

It should be mentioned that the proposed method is useful also in the case when
the densities are bounded for all values in the interior of the parameters range but may
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Fig. 1 Left The full log-likelihood (solid line) vs. the leave-one-out log-likelihood (dashed line) used for
the sample of the size n = 10 (top) and n = 500 (bottom). In the bottom figure the dashed line cannot be
distinguished from the lower envelope of the log-likelihood. Right Asymptotics and super-efficiency of the
estimator: the optimal rate—straight thin line, the estimated rate from Monte Carlo simulation—thick line, a
trajectory of the absolute estimation error |δ̂n − δ0| with increasing sample size—thin line. For comparison
the rate of MLE under regular assumptions is given by the dashed line

become unbounded if the parameters reach boundaries of the range. Let us mention two
examples when this is of importance. Firstly, for the generalized Laplace distribution, if
τ ∈ [1/2, 1) and σ > 0, then the generalized Laplace density is bounded. However, if
the parameter value for σ reaches the boundary σ = 0, then the distribution approaches
the gamma distribution with the shape τ ∈ [1/2, 1) which constitutes an example of
unbounded density. In consequence, using the leave-one-out method allows to avoid
ensuing problems. The second case relates to the fact that the generalized Laplace
distributions represent a special and the only unbounded density case of the generalized
hyperbolic distributions. Here again the leave-one-out method can be applied to deal
with the unboundedness due to the parameters approaching the values corresponding
to a generalized Laplace distribution.

For illustration of the leave-one-out likelihood and the discussed properties of the
estimator, we performed a small Monte Carlo (MC) study based on samples gen-
erated from an asymmetric generalized Laplace distribution with (δ0, μ, σ, τ ) =
(1,−0.5, 1, 0.4). In Fig. 1 (left), the full likelihood is compared to the leave-one-
out one (dashed line) in a small sample size case (n = 10, top) and a large sample size
case (n = 500, bottom) cases. We can clearly observe the smoothing effect offered by
the method.

The asymptotic behavior of the estimator is illustrated in Fig. 1 (right), where,
on the logarithmic scale, we see the optimal rate (straight thin line) and the rate for
the proposed estimator obtained through MC simulations. The latter is represented
here by 90 % MC-sample quantiles of |δ̂n − δ0| computed for 1,000 MC samples
and for a number of sizes n (thick line). For comparison, a trajectory of |δ̂n − δ0|
evaluated for the subsequently increased n values of a single large sample is represented
by the thin line. Finally, the dashed line on the graph corresponds to the regular
rate of convergences n−1/2, from which we clearly see a super-efficient rate of the
estimator.
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3 The maximum leave-one-out likelihood estimator and its super-efficiency

3.1 Assumptions

Through the remainder of the paper, let X1, . . . , Xn be an iid sample from a distribution
given by a density f (x −δ0) that is differentiable everywhere except for δ0. Recall that
the Fisher information for a location parameter associated with a density f is defined
as I f = E[((log f )′(X))2] = E[ f ′2/ f 2(X)], where X is a random variable with
the distribution defined by f . In our case the Fisher information is not finite due to
the assumed unbounded behavior of f around zero so instead we use the incomplete
Fisher information defined for ε > 0 as I f (ε) = E[ f ′2/ f 2(X)

∣
∣|X | > ε]. We assume

that

A1 f (x) = p(x)|x |α, α ∈ (−1, 0), p has bounded derivative on R\{0} and, for
some ε0 > 0, is non-zero and continuous either on [−ε0, 0] or on [0, ε0].

A2 There exists b > 0 such that f (x) = O(|x |−b−1) when |x | → ∞.
A3 For some (and thus for all) ε > 0 the Fisher information I f (ε) is finite.

3.2 Maximum leave-one-out likelihood estimator

Here we introduce the estimator and present several convenient representations of the
leave-one-out likelihood ratio process.

Let us denote

k(δ) = argmin
k∈{1,...,n}

|Xk − δ|,

with the convention that if there are two indices we take the one for which correspond-
ing Xk(δ) is on the right hand side of δ. Define the estimator δ̂ = δ̂n as the argument
that maximizes

l(δ) = ln(δ) =
∏n

i=1 f (Xi −δ)

f (Xk(δ)−δ)
. (1)

Note here that l(δ) is a cadlag function (the left hand side continuous) and converging
to zero at infinity so there is a maximizer (if there are more than one maximizer, we
choose, for example, the smallest one). We also observe that ûn = δ̂n − δ0 is the
maximizer of

Z(u) = Zn(u) = l(u+δ0)
l(δ0)

= f (Xk(δ0)−u−δ0)

f (Xk(u+δ0)−δ0)

∏

i �=k(δ0),i �=k(u+δ0)

f (Xi − u − δ0)

f (Xi − δ0)
.

By introducing the event Ci,δ = {k(δ) �= i} and its indicator function ICi,δ , we
obtain the following convenient representations of the above functions

l(δ) =
n
∏

i=1

f (Xi − δ)
ICi,δ =

n
∑

k=1

ICc
k,δ

n
∏

i=1,i �=k

f (Xi − δ), (2)
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and

Z(u) =
n
∏

i=1

f (Xi − δ0)
−ICi,δ0

n
∏

i=1

f (Xi − u − δ0)
ICi,u+δ0

=
⎛

⎝

n
∑

l=1

ICc
l,δ0

n
∏

i=1,i �=l

1/ f (Xi −δ0)

⎞

⎠ ·
⎛

⎝

n
∑

k=1

ICc
k,δ0+u

n
∏

j=1, j �=k

f (X j −u−δ0)

⎞

⎠ .

(3)

3.3 The main result

The purpose of this paper is to establish consistency of δ̂n which is done together with
getting a super-efficient rate of convergence in the following result.

Theorem 1 Let f satisfy the above assumptions and let δ̂n be the maximizer of ln
given by (1). Then δ̂n is a consistent estimator of δ0 and for any β < 1/(1 + α):

lim
n→∞ nβ(δ̂n − δ0)

p= 0. (4)

4 Lemmas and the proof of the theorem

Additionally to the notation and assumptions of the previous section, we also use what
follows. For λ > 0 and L > 0:

Aλ = An,λ =
⎧

⎨

⎩
min

i, j=1,...,n
i �= j

|Xi − X j | > λ

⎫

⎬

⎭
, (5)

BL = Bn,L =
{

max
i=1,...,n

|Xi − δ0| < L

}

. (6)

In our argument the variable L is eventually increasing without bound so whenever
the symbol O(Lρ) is used for some ρ, it means that lim supL→∞ |O(Lρ)|/Lρ < ∞.
Finally, for compactness of our formulations, we define Sr (u0) = [u0 − r, u0 + r ].

We start with a result about the rate of convergence of the minimal distance between
Xi ’s.

Lemma 1 Assume that a sequence of positive numbers λn has the following asymp-
totics for a certain c > 0:

λn = O
(

n−1− 1
α+1 −c

)

.

Then for An = An,λn defined through (5) we have

lim
n→∞ P(An) = 1.
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Proof Since λn ≤ D · n−1− 1
α+1 −c for some D > 0, it is enough to show the result for

λn = D · n−1− 1
α+1 −c. Define

Cn =
{

Xn+1 ∈
n
⋃

i=1

[Xi − λn, Xi + λn]
}

.

We first demonstrate that for a proof it is sufficient to show that C = lim supn→∞ Cn is
of probability zero, which is equivalent to saying that with probability one the number
of times that an observation Xn+1 is inside of ∪n

i=1[Xi − λn, Xi + λn] is finite.
To see this consider an outcome ω from Cc. Then there exists n0 such that for

n > n0:

|Xn+1(ω) − Xi (ω)| > λn, i = 1, . . . , n.

For such n0, let

ε0 = min
i, j=1,...,n0

i �= j

|Xi (ω) − X j (ω)|

while n1 be such that for n > n1 > n0 we have λn < ε0. Take n > n1 and note that the
minimum of |Xi (ω) − X j (ω)| over all pairs (i, j) such that i, j = 1, . . . , n, i �= j is
obtained as the minimum of the numbers standing on the left hand side of the following
inequalities

min
i, j=1,...,n0

i �= j

|Xi (ω) − X j (ω)| > λn,

min
i=1,...,n0

|Xi (ω) − Xn0+1(ω)| > λn0 ≥ λn,

min
i=1,...,n0+1

|Xi (ω) − Xn0+2(ω)| > λn0+1 ≥ λn,

...

min
i=1,...,n−1

|Xi (ω) − Xn(ω)| > λn−1 ≥ λn .

Consequently the outcome ω has to be in An for each n > n1, which proves that

Cc ⊂ lim inf
n→∞ An .

Thus if A denotes the right hand side event in the above and P(Cc) = 1, then

1 = P(Cc) ≤ P(A) = lim
n→∞ P

⎛

⎝
⋂

k≥n

Ak

⎞

⎠ ≤ lim inf
n→∞ P(An) ≤ lim sup

n→∞
P(An) ≤ 1

and consequently it is indeed enough to show that P(C) = 0.

123



26 K. Podgórski, J. Wallin

To prove the latter, by the Borel–Canteli lemma, it is enough to show that P(Cn)’s
form a convergent series. To this end notice that by Assumption A1, the density of Xi

is bounded except at δ0. Hence there exists sufficiently small u > 0 and an interval
neighborhood I of zero and of the diameter not exceeding u such that f (x) = p(x)|x |α
for x ∈ I is larger than the value f (y) for any y /∈ I . Thus if a subset D ⊂ R has
measure at most u, then

P(Xn+1 ∈ D) =
∫

D
p(x − δ0)|x − δ0|α dx

≤
∫

I
p(x)|x |α dx ≤ P(X ∈ [−u + δ0, u + δ0]).

Using this fact, the convergence of nλn to zero, and independence of Xn+1 from
Xn = (X1, . . . , Xn), we obtain for sufficiently large n:

P(Cn) = P

(

Xn+1 ∈
n
⋃

i=1

[Xi − λn, Xi + λn]
)

= E

[

P

(

Xn+1 ∈
n
⋃

i=1

[Xi − λn, Xi + λn]∣∣Xn

)]

≤ P(X ∈ [−nλn + δ0, nλn + δ0]).

Note that there exists K > 0 such that for sufficiently small u we have P(X ∈
[−u + δ0, u + δ0]) ≤ K uα+1, so for sufficiently large n:

P(Cn) ≤ K (nλn)
α+1 ≤ K

(

n−1/(α+1)−c
)α+1 = K n−1−c(α+1)

and thus convergence of the series holds. �
The next lemma is a quite obvious consequence of Assumption A2.

Lemma 2 If n/Lb
n converges to zero, then for Bn = Bn,Ln given in (6):

lim
n→∞ P(Bn) = 1.

Proof By A2, the following inequality holds for some K > 0 and sufficiently large
L:

P (|X − δ0| ≤ L) ≤ 1 − K L−b

and the result follows immediately from

P(Bn) = P

({

max
i=1,...,n

|Xi − δ0| < Ln

})

≤
(

1 − K L−b
n

)n
,

which holds for sufficiently large n. �
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In the proof of the next result we use Assumption A3, i.e. the finiteness of the
partial Fisher information. Let us introduce the following function that is also used in
the proof of Lemma 4:

v(x) = p′(x)|x |
2p1/2(x)

+ α

2
sign(x)p1/2(x), (7)

and note that it is bounded in neighborhood of zero. Moreover for x �= 0:

( f 1/2)′(x) = f ′(x)

2 f 1/2(x)
= |x |α/2−1v(x). (8)

Lemma 3 There exists K > 0 such that for each x0 ∈ R , c < 1 and r ∈ (0, c/2):

∫

[−c,c]c
sup
|h|<r

| f 1/2(x) − f 1/2(x − h)| · f 1/2(x + x0) dx ≤ Kr (α+1)/2. (9)

Proof First by the Schwartz inequality

∫

[−c,c]c
sup
|h|<r

| f 1/2(x) − f 1/2(x − h)| f 1/2(x + x0) dx

≤
(
∫

[−c,c]c
sup
|h|<r

( f 1/2(x) − f 1/2(x − h))2 dx

)1/2

= 1

2

(
∫

[−c,c]c
sup
|h|<r

(∫ h

0

f ′

f 1/2 (x − y) dy

)2

dx

)1/2

.

By the Jensen inequality and then by the Fubini theorem

∫

[−c,c]c
sup
|h|<r

(∫ h

0

f ′

f 1/2 (x − y) dy

)2

dx

≤
∫

[−c,c]c
sup
|h|<r

(

h
∫ h

0

f ′2

f
(x − y) dy

)

dx

= r
∫ r

0
4
∫

[−c,c]c
|x − y|α−2v2(x − y) dx dy

= r
∫ r

0
4
∫

[−c+y,y+c]c
|s|α−2v2(s) ds dy.

Note that for y ∈ [0, r ] we have −c + y < −c + r < −r and y + c > c > r .
Combining this with the boundedness of v in a neighborhood of zero, we obtain that
for some K0 and for each ε > 0:
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∫

[−c+y,y+c]c
2|s|α−2v2(s) ds ≤

∫

[−r,r ]c
2|s|α−2v2(s) ds

=
∫ ε

r
2|s|α−2v2(s) ds+

∫ −r

−ε

2|s|α−2v2(s) ds+ 1

2
I f (ε)

≤ K0

∣
∣
∣
∣

∫ ε

r
sα−2 ds

∣
∣
∣
∣
+ 1

2
I f (ε)

≤ K0

2 − α
|rα−1 − εα−1| + 1

2
I f (ε)

≤ K 2rα−1,

where K is some positive constant independent of r and c. From these inequalities we
obtain

∫

[−c,c]c
sup
|h|<r

| f 1/2(x) − f 1/2(x − h)| f 1/2(x + x0) dx ≤ Kr (α+1)/2,

which concludes the proof. �
The following result stands behind a super-efficient rate of convergence that is

eventually obtained in the proof of the main theorem.

Lemma 4 There exist B > 0 and K > 0 such that for each s ∈ R:

E

[
f 1/2(X − s)

f 1/2(X)

]

≤ 1 − K min(|s|α+1, B). (10)

Proof Let us set r(x, s) = ( f 1/2(x + s) − f 1/2(x))2 and note

E

[
f 1/2(X − s)

f 1/2(X)

]

= 1

2

(∫

f (x) dx +
∫

f (x − s) dx −
∫

r(x, s) dx

)

= 1 − 1

2

∫

r(x, s) dx .

Note that r(s) = ∫

r(x, s) dx is a continuous non-negative function taking value 2 at
infinity, zero at s = 0, which is also its unique global minimum. Consequently, it is
enough to show that r(s) is O(sα+1).

Consider be a one-sided neighborhood of zero, say [0, ε0], where v being negative
is separated from zero by, say, −L , L > 0. Then for positive s and x such that
x + s ∈ [0, ε0] we have

r(x, s) =
(∫ s

0
( f 1/2)′(t + x) dt

)2

=
(∫ s

0
(x + t)α/2−1v(x + t) dt

)2

≥ L2
(∫ s

0
(x + t)α/2−1 dt

)2

= 4L2

α2 sα

(( x

s
+ 1

)α/2 −
( x

s

)α/2
)2

.
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Using this we get for positive s < ε0/2:

∫

r(x, s) dx ≥
∫ ε0/2

0
r(x, s) dx

≥ 4L2

α2 sα+1
∫ ε0/(2s)

0
((y + 1)α/2 − yα/2)2 dy

≥ 4L2

α2

∫ 1

0
((y + 1)α/2 − yα/2)2 dy · sα+1.

The argument for negative s follows the same way. �
The preceding result is explicitly used only in the following lemma, which plays a
central role in our proof of the main result.

Lemma 5 There exist positive constants K1, K2 such that for all n ∈ N, γ and λ both
in (0, 1), if r ∈ (0, λ/6) and |u0| > γ , then

E

[

IAλ∩BL sup
u∈Sr (u0)

Z1/2(u)

]

≤ O(La)r
α
2 n2(1 − K1γ

1+α + K2r
1+α

2 )n−2, (11)

where a = max(0, (1 − b)/2).

Proof We note that the left hand side does not depend on δ0 so let us assume that
δ0 = 0. Let us take arbitrary values λ, r, γ and u0 that satisfy the required conditions
(K1, K2 will come later). By (3)

sup
u∈Sr (u0)

Z1/2(u) ≤
n
∑

l=1

ICc
l,0

n
∏

i=1
i �=l

f −1/2(Xi ) ·
n
∑

k=1

sup
u∈Sr (u0)

ICc
k,u

n
∏

j=1
j �=k

f 1/2(X j − u).

(12)

Let us note that

Cc
k,u =

⎛

⎝

n
⋃

i �=k

Cc
i,u

⎞

⎠

c

=
n
⋂

i �=k

Ci,u .

Moreover, since in Aλ all observations are at least λ apart and in Ci,u the value Xi is
not the closest to u the distance between Xi and u must be at least λ/2 which gives

{|Xi − u| ≥ λ/2} ⊇ Aλ ∩ Ci,u .

For u ∈ Sr (u0), by the triangle inequality

Ci,u0,r
def= {|Xi − u0| ≥ λ/2 − r} ⊇ {|Xi − u| ≥ λ/2}.
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Thus for each k = 1, . . . , n:

IAλ sup
u∈Sr (u0)

ICc
k,u

n
∏

i=1,
i �=k

f 1/2(Xi −u) ≤ sup
u∈Sr (u0)

n
∏

i=1,
i �=k

f 1/2(Xi −u)ICi,u0,r (13)

and for each l = 1, . . . , n we have

IAλ ICc
k,0

n
∏

i=1,
i �=k

f −1/2(Xi ) ≤
n
∏

i=1,
i �=k

I|Xi |>λ/2

f 1/2(Xi )
. (14)

Combining (12), (13), and (14) we obtain

IAλ sup
u∈Sr (u0)

Z1/2(u) ≤
n
∑

k,l=1

sup
u∈Sr (u0)

n
∏

i=1,
i �=k

f 1/2(Xi − u)ICi,u0,r

n
∏

j=1,
j �=l

I|X j |>λ/2

f 1/2(X j )
.

For i = 1, . . . , n let us define

Ỹi = IL>|Xi |>λ/2

f 1/2(Xi )
,

Ȳi (u) = f 1/2(Xi − u)ICi,u0,r .

Then we obtain

IAλ∩BL sup
u∈Sr (u0)

Z1/2(u) ≤
n
∑

k,l=1

Ỹk sup
u∈Sr (u0)

Ȳl(u)

n
∏

i=1,
i �=k,
i �=l

Ȳi (u)Ỹi .

As a result of previous equation and by independence, we obtain

∫

Aλ∩BL

sup
u∈Sr (u0)

Z1/2(u) dP

≤
n
∑

k,l=1

E[Ỹk] · E

⎡

⎢
⎢
⎢
⎢
⎣

sup
u∈Sr (u0)

Ȳl(u)

n
∏

i=1,
i �=k,
i �=l

Ȳi (u)Ỹi

⎤

⎥
⎥
⎥
⎥
⎦

= n2
E[Ỹ1] · E

[

sup
u∈Sr (u0)

Ȳ1(u)

n
∏

i=3

Ȳi (u)Ỹi

]

≤ n2
E[Ỹ1] · E

[

sup
u∈Sr (u0)

Ȳ1(u)

]

· E

[

sup
u∈Sr (u0)

Ȳ1(u)Ỹ1

]n−2

. (15)
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In what follows, we bound each of the three expectations on the right hand side of the
above inequality.

First, by Assumption A2, E[Ỹ1] ≤ ∫ L
−L f 1/2(x) dx = O(La), where a =

max(0, (1 − b)/2). To deal with the second expectation, notice that by Assump-
tion A1 on f (x) there is a constant K0 > 0 such that f (x) ≤ K0 min(|xα|, 1) ≤
K0(λ/2−2r)α , since 0 < λ/2−2r < 1. Therefore, if |u−u0| ≤ r and |x −u0| ≥ λ/2,
then |x − u| ≥ λ/2 − 2r and thus

sup
u∈Sr (u0)

Ȳ1(u) ≤ K0(λ/2 − 2r)α/2 ≤ K0rα/2,

where the last inequality holds since λ > 6r .
The final expectation requires a few more steps. First, using the triangle inequality

yields

Ỹ1 · sup
u∈Sr (u0)

Ȳ1(u) ≤ Ỹ1 ·
(

Ȳ1(u0) + sup
|h|<r

|Ȳ1(u0 + h) − Ȳ1(u0)|
)

.

Then from Lemma 3 there exists K2 such that

E

[

Ỹ1 · sup
|h|<r

|Ȳ1(u0 + h) − Ȳ1(u0)|
]

≤
∫

[−λ/2+r,λ/2−r ]c
sup
|h|<r

| f 1/2(s − h) − f 1/2(s)| · f 1/2(s + u0) ds

≤ K2r (1+α)/2

and from Lemma 4:

E[Ỹ1 · Ȳ1(u0)] ≤ 1 − K1 min(γ 1+α, b).

Putting all the three bounds together in (15) completes the proof. �
Chebyshev’s inequality combined with the inequality 1 + a ≤ ea yields the fol-

lowing corollary to the above lemma.

Corollary 1 There exist positive constants K1 and K2 such that for all n ∈ N, γ and
λ both in (0, 1), if r ∈ (0, λ/6) and |u| > γ , then

P

(

IAλ∩BL sup
u∈Sr (u)

Z(u) ≥ 1

)

≤ O(La)r
α
2 n2e−(n−2)

(

K1γ
α+1−K2r (1+α)/2

)

,

where a = max(0, (1 − b)/2).

Lemma 5 will enter the proof of the main theorem through the following result,
which is a consequence of the above corollary.
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Lemma 6 Let δ̂L be the maximizer of l(δ) over [−L +δ0, L +δ0]. There exist positive
constants K1 and K2 such that for all n ∈ N, γ and λ both in (0, 1), if r ∈ (0, λ/6),
then

P(Aλ ∩ BL ∩ {|δ̂L − δ0| > γ }) ≤ O(La+1)r
α
2 −1n2e−(n−2)

(

K1γ
α+1−K2r (1+α)/2

)

,

(16)

where a = max(0, (1 − b)/2).

Proof From the definition of δ̂L , ûL = δ̂L − δ0 maximizes Z(u) over [−L , L] and
thus Z(ûL) ≥ Z(0) = 1. Consequently, if |ûL | > γ , then

sup
u∈[−γ,γ ]c∩[−L ,L]

Z(u) ≥ 1.

This leads to

P(Aλ ∩ BL ∩ {|δ̂L − δ0| > γ }) ≤ P

(

IAλ∩BL sup
u∈[−γ,γ ]c∩[−L ,L]

Z(u) ≥ 1

)

.

Let Sr (uk), k = 1, . . . , 2[L/r ] + 1 be a cover of [−γ, γ ]c ∩ [−L , L], such that
|uk | > γ . By Corollary 1:

P

(

Aλ ∩ BL ∩
{

sup
u∈[−γ,γ ]c∩[−L ,L]

Z(u) ≥ 1

})

= P

⎛

⎝

2[L/r ]+1
⋃

k=1

{IAλ∩BL sup
u∈[−γ,γ ]c∩Sr (uk )

Z(u) ≥ 1}
⎞

⎠

≤
2[L/r ]+1
∑

k=1

P

(

IAλ∩BL sup
u∈Sr (uk )

Z(u) ≥ 1

)

≤ O(La)r
α
2 −1n2e−(n−2)

(

K1γ
α+1−K2r (1+α)/2

)

.

�

5 Proof of Theorem 1

Here we present our proof of the main theorem.

Proof Set β < 1/(1 + α). Let Ln = ns 2
1+b , with s being a positive constant that will

be set later but at the moment we require only that Ln > n3/b. Further, let λn be set
so that Lemma 1 is satisfied.

Because of Lemmas 1 and 2, the events An,λn and Bn=Bn,n3/b that are defined
through (5) and (6), respectively, have probabilities converging to one. Consequently,
it is sufficient to show that for each γ > 0:
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lim
n→∞ P(An,λn ∩ Bn ∩ {nβ |δ̂n − δ0| > γ }) = 0.

Let γn = γ n−β and note that since Bn ⊆ Bn,Ln :

P(An,λn ∩ Bn ∩ {|δ̂n − δ0| > γn})
≤ P(An,λn ∩ Bn,Ln ∩ {γn < |δ̂n −δ0| ≤ Ln})+P(Bn ∩ {|δ̂n −δ0| > Ln}). (17)

Let us consider the first term on the right hand side and take a sequence rn so that
rn ≤ λn/6. Then, by Lemma 6, for a = max(0, (1 − b)/2):

lim sup
n→∞

P(An,λn ∩ Bn,Ln ∩ {γn < |δ̂n − δ0| ≤ Ln})

≤ lim sup
n→∞

O(Lβ+1
n )n2r

α
2 −1

n e
−(n−2)

(

K1γ
1+α
n −K2r (1+α)/2

n

)

.

By choosing rn so that nr (1+α)/2
n ≤ n−d for some d > 0, we have for suitably

chosen h > 0, ε, and K > 0:

lim sup
n→∞

P(An,λn ∩ Bn,Ln ∩ {γn < |δ̂n − δ0| ≤ Ln}) ≤ lim
n→∞ nhe−nε+K n−d = 0.

The second term on the right hand side of (17) also converges to zero as shown
next. Since {|δ̂n − δ0| > Ln} ⊆ {sup|u|>Ln

Z(u) ≥ 1} and by a direct application of
Chebyshev’s inequality it is enough to show

lim
n→∞ E

[

IBn sup
|u|>Ln

Z1/2(u)

]

= 0. (18)

To this end note that on Bn , |Xi | ≤ n3/b + |δ0|, thus for sufficiently large n, for
|u| > Ln and on Bn :

|Xi − u| ≥ |u| − |Xi | ≥ Ln − n3/b − |δ0| = O(Ln).

From this, Assumption A2, and by the choice of Ln :

IBn f 1/2(Xi − u) ≤ IBn K |Xi − u|−(b+1)/2 ≤ O(L−(b+1)/2
n ) = O(n−s).

In consequence,

IBn sup
|u|>Ln

Z1/2(u) ≤ On−1(n−s)IBn

∏

i �=k(δ0)

f −1/2(Xi − δ0). (19)
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Using the representation (2), we have

∏

i �=k(δ0)

f −1/2(Xi − δ0) =
n
∑

k=1

ICc
k,δ0

n
∏

i=1,i �=k

f −1/2(Xi − δ0)

≤
n
∑

k=1

n
∏

i=1,i �=k

f −1/2(Xi − δ0).

By Assumption A2, we also have

E(I|X−δ0|<L f −1/2(X − δ0)) = O(Lc),

where c = (1 − b)+/2, which along with the mutual independence of Xi ’s yields

E

⎡

⎣IBn

∏

i �=k(δ0)

f −1/2(Xi − δ0)

⎤

⎦ ≤ n
(

E

[

I|X−δ0|≤n3/b f −1/2(X − δ0)
])n−1

≤ nOn−1(n3c/b).

Putting this together with (19), for sufficiently large n we obtain

E

[

IBn sup
|u|>Ln

Z1/2(u)

]

≤ nOn−1(n3c/b−s),

where s as of now was not set yet. Thus by taking s > 3c/b + 1 we make the right
hand side converging to zero, which concludes the proof. �

6 Concluding remarks

We have demonstrated that the maximum leave-one-out likelihood estimator is con-
sistent and has a superefficient rate of convergence. The rate of convergence does not
differ by a power factor from n−1/(1+α) which would be the optimal rate of conver-
gence. In fact, the proof of the main theorem yields a bit stronger conclusion stating
that the lower bound on the rate of convergence differs from the optimal rate only
by a certain power-of-logarithm factor. However, the presented proof does not yield
the optimal rate and an open question is if this rate is actually reached by the esti-
mator. In Polfeldt (1970b) and Polfeldt (1970a), this rate was proven optimal for the
minimal variance estimation of the location. There an estimator achieving this rate is
constructed. This optimal rate is also obtained in Ibragimov and Khasminskii (1981b)
for the Pitman estimators.

It is worth stressing again that the leave-one-out estimator unlike the other estima-
tors has the advantage that it can be easily implemented through the MLE approach
in a general multi-parameter setup, for example, when scale or/and shape parame-
ters are present. Optimization algorithms such as the gradient based methods, see
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Lange (1995), and/or a modified EM algorithm are well suited for maximization of
the leave-one-out likelihood. In the Appendix we demonstrate how the monotonicity
property can be obtained for a modification of the EM algorithm for the leave-one-out
likelihood. Investigation of effectiveness of such algorithms deserves a separate study.

Appendix

Here we present a formalized approach to the maximizing the leave-one-out likelihood
by means of the EM algorithm and in the presence of an other than location parameter.
Although the majority of the presented argument is valid in a fairly general setup, we
focus an example of a symmetric generalized Laplace distribution.

Specifically, we consider estimation of a vector of parameters θ0 = (δ0, σ0) of a
symmetric (μ = 0) generalized Laplace distribution with some known shape para-
meter τ < 0.5. See Sect. 2 for the definitions and the notation. In our setup, the
observed values are Yi = σ0

√
�i Zi + δ0, i = 1, . . . , n and the complete set of vari-

ables is X = (�1, . . . , �n, Y1, . . . , Yn). The density fθ0(y) of Yi ’s is having the form
pσ0(y − δ0)|y − δ0|2τ−1 for some bounded and non-vanishing around zero function
pσ0 (cf. Kotz et al. 2001).

We need some additional notation and definitions. For a vector y = (y1, . . . , yn) ∈
R

n , let (|yi1 − δ|, . . . , |yin − δ|) be the order statistics of (|y1 − δ|, . . . , |yn − δ|) and
consider the permutation πδ(1, . . . , n) = (i1, . . . , in). By slightly abusing notation
we also write

πδ(y) = (yi1 , . . . , yin ) = (yδ
0, . . . , yδ

n−1).

Thus for a given δ ∈ R, πδ becomes a mapping from the Euclidean space R
n into to

its subset Rδ = πδ(Rn). Clearly, if y ∈ Rδ , then |y1 − δ| ≤ |y2 − δ| ≤ · · · ≤ |yn − δ|.
We further extent this notation by writing πδ(x) for (γ1, . . . , γn, πδ(y)).

For Yδ = πδ(Y), we consider the conditional distributions of the vector Ỹδ =
(Y δ

1 , . . . , Y δ
n−1) given Y δ

0 = y0. This distribution has the density denoted by gθ (ỹ|y0)

and is defined on Rδ
y0

= {ỹ ∈ R : (y0, ỹ) ∈ Rδ}. Similarly, we consider the conditional
density of the vector Xδ = πδ(X) conditionally on Yδ = y ∈ Rδ , denoted by kθ (x|y)

for x ∈ R
n+ × {y}; and, finally, the density of the distribution of Xδ given Y δ

0 = y0 for
x ∈ R

n+ × {y0} × Rδ
y0

is denoted by hθ (x|y0).
We note the key relation that connects the leave-one-out likelihood l(θ) = l(δ, σ ),

as defined in (1) but in the presence of the additional parameter σ , with the conditional
distribution gθ :

gθ (y1, . . . , yn−1|y0) = (n − 1)!
F(θ, y0)n−1 fθ (y1) · · · fθ (yn−1) = Cn,θ,y0 · l(θ), (20)

where F(θ, y0) = 1 − ∫ |y0−δ|
−|y0−δ| fθ (s) ds, Ỹδ = y = (y1, . . . , yn−1), and Cn,θ,y0 =

(n − 1)!/F(θ, y0)
n−1. In our following discussion, we simply consider the max-

imization of l(θ) as it would be equivalent to the maximization of Ly(θ) =
gθ (y1, . . . , yn−1|y0). Formally, it is not entirely obvious since the constant Cn,θ,y0 is
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dependent on θ . However, we note that the y0 is closer to δ than any other yi ’s and, by
our assumptions, if y0 is in the vicinity of δ, then F(θ, y0) ≈ 1−2|y0 −δ|2τ pσ (y−δ),
which can be separated from zero. In the result, the value of the maximizer will not
be significantly effected by the presence of Cn,θ,y0 . It is beyond the scope of this
note to analytically investigate the above claim and thus from now on we discuss
maximization of Ly(θ) = gθ (y1, . . . , yn−1|y0).

The function Ly(θ) can be viewed as the likelihood function given that Ỹδ = y
is observed. Formally y is obtained from the actual observations by excluding the
observation that is closest to δ, where δ is not the true parameter of the distribution;
thus the properties of the maximizer of Ly(θ) can not be deduced directly from the
properties of the MLE for such likelihood. Consequently, the main result of this paper
(or rather its version in which l(θ) is replaced by Ly(θ)) is needed to justify the
consistency of such estimator.

To obtain the EM algorithm for maximizing Ly(θ) we repeat the standard steps as
presented for example in Wu (1983). Namely, the following two fundamental facts
hold for any fixed value of incomplete observations y ∈ Rδ′

:

Ly(θ) =
∫

R
n+×{y}

log hθ

(

πδ(x)|yδ
0

)

kθ ′(x|y) dx

−
∫

R
n+×{y}

log kθ (π
δ(x)|πδ(y)) · kθ ′(x|y) dx (21)

and ∫

R
n+×{y}

log kθ (π
δ(x)|πδ(y)) · kθ ′(x|y) dx

≤
∫

R
n+×{y}

log kθ ′(πδ′
(x)|πδ′

(y)) · kθ ′(x|y) dx.

The proof is standard and thus we omit it here.
These two conditions guarantee the monotonicity of Ly(θ̂i ) in i , where θ̂i are the

updates of the algorithm based on the maximizing the first term of the right hand side
of (21), which we denote as Qy(θ |θ ′).

Let us now discuss how this maximization procedure avoids δ̂i being trapped at
one of the Y1, . . . , Yn – the problem that the EM algorithm does not protect against;
this is because the likelihood is infinite at δ’s equal to any of the observations. The
local maxima are equal to infinity due to the unboundedness of the likelihood. In our
discussion we use the explicit form of a symmetric generalized Laplace density fθ .
Let s(γ ) be the density of gamma distribution with the shape parameter τ < 0.5 and
the scale equal to one and define

M(y, y′; θ |θ ′) =
∫∞

0

(

log s(γ )√
2πσ 2γ

− (y−δ)2

2σ 2γ

)

s(γ )√
2πσ ′2γ

e
− (y′−δ′)2

2σ ′2γ dγ

fθ ′ (y′)

= P(y′, θ ′) − log(2πσ 2)

2
− (y − δ)2

2σ 2 N (y′, θ ′),
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where

N (y′, θ ′) =
∫∞

0
1
γ

s(γ )√
2πσ ′2γ

e
− (y′−δ′)2

2σ ′2γ dγ

fθ ′ (y′)
,

P(y′, θ ′) =
∫∞

0 log s(γ )√
γ

· s(γ )√
2πσ ′2γ

e
− (y′−δ′)2

2σ ′2γ dγ

fθ ′ (y′)
.

Straight computations lead us to

Qy(θ |θ ′) =
n−1
∑

i=0

M(yδ
i , yδ′

i ; θ |θ ′) − log fθ (yδ
0) − (n − 1) log

(

F(θ, yδ
0)/(n − 1)!)

(22a)

=
n−1
∑

i=0

P(yδ′
i , θ ′) − n

2
log(2πσ 2) −

n−1
∑

i=0

(yδ
i − δ)2

2σ 2 N (yδ′
i , θ ′) (22b)

− log fθ (yδ
0) − (n − 1) log

(

F(θ, yδ
0)/(n − 1)!) . (22c)

If we would not consider the leave-one-out algorithm, the maximization would be
based solely on the function of δ that is listed in (22b); this is a simple quadratic
function of δ and the maximum is easily found in the explicit form. However, in the
unbounded density case, the algorithm would reach a value δ̂i = y0 in the i th step
and in the next step the solution would favor the same δ̂i+1 = y0. Consequently the
algorithm updates would be trapped in the local maximum.

In the version of the EM algorithm that is discussed above, the term in (22c) punishes
choosing the value δ̂i+1 close to y0 because − log fθ (yδ

0) converges to minus infinity at
δ approaching yδ

0. It effectively pushes δi away from any particular observation. This
has a similar effect to taking out the term M(yδ

0, yδ′
0 ; θ |θ ′) from the right hand side of

the first line of (22a) and thus explains why the algorithm relates to the leave-one-out
approach.
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