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Abstract Analysis of variance is a standard statistical modeling approach for com-
paring populations. The functional analysis setting envisions that mean functions are
associated with the populations, customarily modeled using basis representations, and
seeks to compare them. Here, we adopt the modeling approach of functions as realiza-
tions of stochastic processes. We extend the Gaussian process version to allow nonpara-
metric specifications using Dirichlet process mixing. Several metrics are introduced
for comparison of populations. Then we introduce a hierarchical Dirichlet process
model which enables comparison of the population distributions, either directly or
through functionals of interest using the foregoing metrics. The modeling is extended
to allow us to switch the sampling scheme. There are still population level distributions
but now we sample at levels of the functions, obtaining observations from potentially
different individuals at different levels. We illustrate with both simulated data and a
dataset of temperature versus depth measurements at different locations in the Atlantic
Ocean.
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1 Introduction

In this paper we consider response models where the responses are functions indexed
by groups, with the goal to learn if the functions differ across groups and, if so, how
they differ. It is natural to refer to this setting as a functional analysis of variance
(ANOVA) problem, recognizing the challenges in comparing surfaces (uncountable
dimensional response) across populations rather than scalars (usual ANOVA) or vec-
tors (MANOVA).

Applications on R1 typically have time as the argument, for example progesterone
levels for groups of women (MacLehose and Dunson 2009; Nguyen and Gelfand
2011), mass spectroscopy data for different groups over time (Morris and Carroll
2006), dose response (white blood cell counts) indexed by cancer treatments (DeIorio
et al. 2004), and temperature profiles indexed by climate model (Kaufman and Sain
2010). As a different example (Rappold et al. 2007; Rodriguez et al. 2009) examine
temperature versus depth over different regions in the Atlantic Ocean. On R2, we
find investigation of brain images (Petrone et al. 2009) and, more generally, image
analysis (Nguyen and Gelfand 2011).

The contribution of this paper is to formulate the functional ANOVA problem in
a fully Bayesian nonparametric framework using suitable hierarchical modeling. In
particular, we begin with the Gaussian process (GP), then extend to the spatial Dirichlet
process (SDP) (Gelfand et al. 2005). Then, we introduce a novel hierarchical and
nested Dirichlet process (HDP) specification, which models the (random) distributions
which generate the functions, by adopting and extending the hierarchical modeling
of Teh et al. (2006) and Nguyen (2010). The novelty in our modeling framework is
in the ability to switch the sampling scheme. This is particularly applicable to the
setting for functional ANOVA which may require sampling at both functional level
and the levels of functions. In our modeling for functional ANOVA, we still have
random population-level distributions but now we sample at levels of the function,
obtaining observations from potentially different individuals at different levels. We
discuss metrics for comparing populations which are applicable under any of these
modeling specifications.

Notably, we work in the setting where we do not have a large number of observations
of the functions over the domain of the argument. Hence, we do not seek to learn about
the functions at fine detail, at high resolution of the argument. For the latter setting, it
might be advantageous to use special basis representations such as wavelets (Morris
and Carroll 2006). Rather, we seek to interpolate the functions over their domain, not
an activity of the high-resolution work. Hence we are drawn to GPs and processes
that extend GPs. Though we may not have many observations of the function, we do
not find a MANOVA model to be appropriate. For MANOVA, the components of the
vector need not be the same measurement variable. So, general covariance matrices
are introduced and these matrices are partitioned to obtain variance components. For
us, the components are measurements all on the same variable and we introduce
“structured” dependence between them.

The ANOVA setting presumes that the individual-level functions are “pre-
clustered”, i.e., they are already indexed by a population label. So, unlike usual
Dirichlet process settings, we are not primarily seeking to determine clusters that
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create groups of functions. (Such adaptive clustering or mixture modeling is often the
reason for adopting DP specifications.) In fact, we are proposing to use the DP struc-
ture primarily to compare the groups. Within a GP framework, we cannot talk about
groups being the same since this happens with probability 0; instead, we employ met-
rics to measure closeness; we develop such ideas below. If we move to SDPs, we can
have ties. That is, for a pair of groups, now the curves are either identical everywhere
or nowhere. Finally, when we work with the HDP and the nested HDP we move to a
comparison of the distributions that generate population-level features. Now, ties are
possible (only global with the HDP, local with the nested HDP) for realized curves
across populations. In the spirit of customary ANOVA hypothesis testing, priors that
allow such ties are natural for this setting; they capture the same vein as familiar
“spike and slab” priors for variable selection (see, e.g., Ishwaran and Sunil-Rao 2005
and references therein) which allow parameters (or differences in parameters) to have
positive prior probability (hence positive posterior probability) of being 0.

As in usual ANOVA settings, replications are required; to assess differences
between populations, we need to learn about the variability within populations. Simi-
larly, in the functional ANOVA setting, we are not seeking to cluster individuals within
populations. Rather, we are seeking to learn about the variability of individual obser-
vations, for us, individual curves, within a population, again, to facilitate comparison
of curves across populations.

Modern nonparametric ANOVA moves away from Gaussian error assumptions,
adopting population models that allow skewness, heavier tails, and multimodalities. It
also considers comparing other functionals, such as quantiles, across populations. We
are in this contemporary camp but in the setting of curves rather than scalars. In fact,
in our HDP and nested HDP versions, we compare distributions across populations
where such comparison can be done based upon local functionals (i.e., at the arguments
of the curves) yielding global functions.

The field of functional data analysis has benefitted from the seminal books of Ram-
say and Silverman (2006) (cf. Chapter 13), Ferraty and Vieu (2006). This work pro-
ceeds through the use of orthonormal basis representations for functions, typically
spline bases. As noted above, usually the functions of interest are over space and/or
time and the literature is substantial. Notable alternative applications include (Brum-
back and Rice 1998; Spitzner et al. 2003; Wang et al. 2005). These basis representations
provide explicit forms for the functions, i.e., finite dimensional parametric represen-
tations of the function.

Our approach is to view the entire function as unknown and to view it as a realization
of a stochastic process. In this regard, Gaussian processes are a customary place to
begin (Cressie 1993; Banerjee et al. 2004). The recent book chapter of Dunson (2010)
(Appendix C) provides a review of various Bayesian nonparametric approaches to
the modeling of functional data. Since we work within the Bayesian framework, we
use such processes and extensions of them as priors for the functions we model and
use the available data to update to posterior estimates of the functions. By introducing
nonparametric specifications, we move beyond the work of Kaufman and Sain (2010).
They confine themselves to the use of GPs in their Bayesian functional ANOVA
formulation and imitate classical ANOVA modeling by incorporating constraints on
the functions to identify them. They introduce pointwise and global credible intervals
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for comparison of curves, employing deviations relative to an appropriate “average”
curve. Our DP-based framework yields a much different model construction, resulting
in a different approach for comparison.

As noted above, we build our modeling in a sequential fashion and, as a by-product,
offer comparison between the GP and DP extensions of the GP. We employ simulated
data as a proof of concept to demonstrate the benefits of our more flexible modeling. We
also analyze a real dataset which considers the temperature versus depth relationship
for four different regions in the Atlantic Ocean.

The plan for the paper is as follows: in Sect. 2 we briefly review the Gaussian and
Spatial Dirichlet processes we will use to model realizations of functions. In Sect. 3
we move these models to our functional ANOVA setting, discussing summaries of
individual functions and comparison of functions. Section 4 proposes a new func-
tional ANOVA model based upon hierarchical Dirichlet processes. Section 5 takes
up the simulated and real examples while Sect. 6 closes with a summary and future
investigations.

2 Stochastic process models for random functions

As noted in the Introduction, we model our unknown functions as realizations of
stochastic processes. Gaussian processes are convenient to work with in this regard
since consistent specification of finite-dimensional distributions for GPs only requires
specification of a mean function and a valid covariance function. Formally, we will
write that θ(x) follows a GP over the set x ∈ D and specify E(θ(x)) = μθ(x) and
cov(θ(x), θ(x ′)) = C(x, x ′) where C is valid over D. Here we confine ourselves to
stationary forms and write C(x, x ′) as σ 2

Cρ(x − x ′;φC ) where ρ is a valid stationary
correlation function. For example, an exponential covariance function takes the form
C(x, x ′) = σ 2

C exp{‖x − x ′‖2/φC }.
Next, we turn to the spatial Dirichlet process, introduced by Gelfand et al. (2005).

We first recall the Dirichlet process (Ferguson 1973) which provides a random prob-
ability measure on spaces of distribution functions. A constructive definition was
introduced by Sethuraman (1994). In the univariate case, let {ωk, k = 1, 2, . . .}
and {φk, k = 1, 2, . . .} be independent sequences of i.i.d. random variables. Let
ωk ∼ Beta(1, γ ), γ a positive precision parameter and φk ∼ H , H a parametric
base distribution. Define β1 = ω1, βk = ωk

∏k−1
j=1(1 − ω j ), k = 2, 3, . . .. Notation-

ally, we will write that β ∼ GEM(γ ). Then, a realization from DP(γ, H) is almost
surely of the form

∑∞
k=1 βkδφk

. We note that we may also specify that k = 1, 2, . . . , K
where K < ∞, referred to as the finite DP or DPK , and the weights are drawn from
a K -dimensional Dirichlet distribution (Ishwaran and Zarepour 2002).

We can immediately extend this definition to accommodate a realization of a spatial
random field. Replace φk with φk,D = {φk(x) : x ∈ D}. Here, H can be a stationary
Gaussian random field and each φk,D is a realization from G0, i.e., a random surface
over D. Hence, we create a random process over D of the form G = ∑∞

k=1 βkδφk,D
,

centered at the process H and write G ∼ DP(γ, H). G describes a stochastic process of
random distributions and, since they were working in the spatial setting with D ⊆ R2,
(Gelfand et al. 2005) called this class of processes spatial or SDPs. We will use this
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terminology as well though, for us, x need not index geographic space. We can directly
verify that the set, G D , as a collection of random measures is a dependent Dirichlet
process (DDP) (MacEachern 1999). Furthermore, if H produces a.s. continuous real-
izations then the a.s. representation of G D ensures that G(θ(x)) − G(θ(x ′)) → 0
a.s. as ||x − x ′|| → 0. In other words, smoothness of realizations from DP(γ, H) is
determined by the choice of the covariance function of H . Conditions for almost sure
or mean square continuity are discussed in Kent (1989) and Stein (1999), respectively.

For θD = {θ(x) : x ∈ D} a realization from G, it is straightforward to verify
that E(θ(x) | G) =

∑
βkφk(x) and cov(θ(x), θ(x ′) | G) = ∑

βkφk(x)φk(x
′) −{∑

βkφk(x)
} {∑

βkφk(x
′)
}
. We smooth out the point masses of G by mixing against a

white noise process K (with mean 0 and variance τ 2) resulting in a random process over
D with continuous support. Operating formally, if θD | G ∼ G and Y D−θD | τ 2 ∼ κ ,
κ a density then f

(
Y D | G, τ 2

) = ∫
κ
(
Y D − θD | τ 2

)
G (dθD). Hence, ignoring the

mean, Y (x) = θ(x)+ ε(x) where θ(x) is from the SDP and ε(x) is white noise.
For the finite set of levels x1, . . . , xn , the induced mixture model becomes

f
(

Y | G(n), τ 2
)

=
∫

fNn

(
Y | θ , τ 2 In

)
G(n) (dθ) , (1)

where Y = (Y (x1), . . . ,Y (xn))
′ and θ = θ(n) = (θ(x1), . . . , θ(xn))

′ yields
f
(
Y |G(n), τ 2

)
a.s. of the form

∑∞
k=1 βk fN n( y|φk, τ

2 In), a countable location mix-
ture of normals. Given G(n) and τ 2, the resulting covariance matrix becomes CY =
τ 2 In + Cθ with (Cθ )i, j = Cov(θ(xi ), θ(x j ) | G(n)).

As evident from the representation of G, the SDP provides a nonstationary, non-
Gaussian process. From above, given G, two random curves θ1(x) and θ2(x) agree a.e.
with probability

∑
β2

k or else they disagree a.e. In the context of functional ANOVA,
this allows ties between the population functions.

3 Functional ANOVA using Gaussian processes and spatial Dirichlet processes

We now return to the functional ANOVA problem. We focus on the one-way layout
setting, initially specified as

Yui (x) = θu(x)+ εui (x), (2)

for i = 1, . . . , nu . Here, u = 1, 2, . . . ,U indexes the populations/treatments and i the
individuals within the populations. θu denotes the function/surface for population u.
Curves for individuals from population u are assumed to be conditionally independent
given θu , i.e., the εui are independent. In fact, for convenience, in the sequel we assume
that ε is a white noise process. This implies that all individual curves are almost surely
discontinuous even if the θu are continuous. Our choice here is for simplicity of
exposition; in some situations εui may be more suitably modeled as GP realizations
(see, e.g., Kaufman and Sain 2010). Here, individual error εui is assumed to be a white
noise process, i.e., εui (x) ∼ N (0, τ 2

u ) i.i.d. for i = 1, . . . , nu .
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As in usual ANOVA modeling, we assume that the data from all groups have been
re-centered around a mean curve μ. So, the θu are deviation curves and, in comparing
them, it is the functional variation around μ that we are interested in. Accordingly,
we endow the θu with a prior distribution with a mean curve μ, which may be again
endowed with a prior distribution; interest is in the differences between the θu’s.

For each population, we are interested in the variation, varθu(x), and correlation, i.e.,
for levels x1 and x2, corr(θu(x1), θu(x2)), respectively. Additionally, we are interested
in summaries of the curves obtained by integration over a given sub-region B ⊆ D of
interest:

m1(θu, B) =
∫

B
θu(x)

2 dx,

m2(θu, B) =
∫

B
I(θu(x) ≥ 0)dx,

m3(θu, B) =
∫

B
(θu(x))+dx .

In the sequel we suppress B which will often be D. Based on these summaries, to
compare θu and θv , the following measures are considered. Let

d1(θu, θv) = m1(θu − θv); d2(θu, θv) = m2(θu − θv);
and d3(θu, θv) = m3(θu − θv).

These “metrics” form the basis for the ANOVA comparisons of functional data. The
nonparametric curve specifications from the previous section allow us to specify the
prior probability that populations u and v are “the same’, as well as to elaborate the
nature of their differences using the above metrics. We then use the data to make these
comparisons a posteriori.

3.1 Functional ANOVA based on Gaussian processes

Suppose that a priori θu ∼ GP(μ,C), i.i.d. where C is the covariance function.
With observations at levels x1, . . . , xm , θu is now distributed as an m-variate normal
with mean (μ(x1), . . . , μ(xm)) and covariance matrix C . The common mean curve
μ can be taken to be random, and is endowed with a suitable prior distribution, e.g.,
a constant mean Gaussian process: (μ(x1), . . . , μ(xm)) ∼ GP(0, σ 2

μIm). (Here we
take the constant mean to be 0 for simplicity). The overall model specification is
summarized as follows:

H ≡ GP(μ,C), θu |H iid∼ H u = 1, 2, . . . ,U,

Y ui |θu
iid∼ N (θu, τ

2
u Im), for all i = 1, . . . , nu (3)

where, again, C(x, x ′) = σ 2
Cρ(x − x ′;φC ).
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Due to conjugacy, conditionally on the data and parameters M := (μ,C, τ, σ ), the
θu’s are independently distributed Gaussian processes with mean μ̃u and covariance
C̃u , respectively. Appendix A provides details. Also, conditionally on the data and
parameters M, (θu − θv) is distributed according to a Gaussian process GP(μ̃u −
μ̃v, C̃u,v), where covariance function C̃u,v = C̃u + C̃v . (To make prior/posterior
comparison, the ‘no data’ versions of the expressions below employ μu(x) and C .)

From Appendix B, (θu − θv)2 can be expressed as a sum of normal and chi-square
variables, and so we arrive at the following:

E[d1(θu, θv)|Data,M] =
∫

B
(μ̃u(x)− μ̃v(x))

2dx +
∫

B
C̃u,v(x)dx, (4)

Var[d1(θu, θv)|Data,M] = |B|
( ∞∑

k=1

2λ2
k + 4λk

∫

B
(μ̃u(x)− μ̃v(x))ψk(x)dx

)

,

(5)

where {λk}∞k=1 are the eigenvalues of the integral operator induced by covariance
kernel C̃u,v , whileψk are the corresponding eigenfunctions. (We use C̃u,v(x) to denote
C̃u,v(x, x)). The decomposition of the expectation into two terms is worth noting. The
first term contributes an integrated squared difference while the second contributes
cumulative spatial variation. To obtain E[d1(θu, θv)|Data], one has to integrate out M
yielding

E[d1(θu, θv)|Data] = E

[∫

B
(μ̃u(x)− μ̃v(x))

2dx +
∫

B
C̃u,v(x)dx |Data

]

,

var[d1(θu, θv)|Data] = varE[d1(θu, θv)|Data, M] + E[var[d1(θu, θv)|Data, M]].

Explicit expressions are no longer available, but the computation can be achieved by
sampling over M conditionally on the data.

For d2, note that for each x ∈ B, conditionally on the data and M, we have
Pr(θu(x)− θv(x) > 0) = (1 −�(−(μ̃u(x)− μ̃v(x))/C̃u,v(x))). So,

E[d2(θu, θv)|Data,M] =
∫

B
1 −�

(−(μ̃u(x)− μ̃v(x))

C̃u,v(x)

)

dx,

var[d2(θu, θv)|Data,M] =
∫

B

[

1 −�2

(

μ̃u(x1)− μ̃v(x1), μ̃u(x2)

−μ̃v(x2), C̃u,v(x1, x2)

)]

dx1dx2

−
[∫

B
1 −�

(−(μ̃u(x)− μ̃v(x))

C̃u,v(x)

)

dx

]2

.

Here, �2(m(x1),m(x2)), ρ(x1, x2)) := P(Z > 0), where Z is a bivariate
normal variable with mean (m(x1),m(x2)) and covariance matrix obtained from
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the covariance function ρ evaluated at x1 and x2 for x1 �= x2. For x1 = x2,
�2(m(x1),m(x2)), ρ(x1, x2)) := �(−m(x)/ρ(x1, x1)).

Turning to d3, it is also simple to obtain the mean expression for d3 as follows:

E[d3(θu, θv)|Data, M]=
∫

B

[

1−�
(−(μ̃u(x)−μ̃v(x))

C̃u,v(x)

)]

×
[

μ̃u(x)−μ̃v(x)+ φ(−(μ̃u(x)−μ̃v(x))/(C̃u,v(x)))

1−�(−(μ̃u(x)−μ̃v(x))/(C̃u,v(x)))

]

dx,

where φ is the density for a standard normal variable. The variance expression is
unwieldy and is omitted.

If the region B has irregular shape, the foregoing integrals may need to be com-
puted using Monte Carlo integration. Suppose we uniformly sample say, p levels
x01, . . . , x0p ∈ B, while eigenvalues of the integral operator of the covariance func-
tion given by the posterior distributions are computed from the induced Gram matrix
using levels x0t . In essence, these approximations yield

d̂1(θu, θv) := 1

p

p∑

t=1

(θu(x0t )− θv(x0t ))
2,

d̂2(θu, θv) := 1

p

p∑

t=1

I(θu(x0t )− θv(x0t ) ≥ 0),

d̂3(θu, θv) := 1

p

p∑

t=1

(θu(x0t )− θv(x0t ))+.

Under mild conditions, d1(θu, θv) − d̂1(θu, θv)
P−→ 0 as p → ∞. In fact,

Ed̂1(θu, θv) → Ed1(θu, θv), and var(d̂1(θu, θv)) → var(d1(θu, θv)). Note that p
does not depend on the available amount of data. Thus we can estimate the expecta-
tion and variance expression for d1 as accurately as we wish (given that we can obtain
exact expressions for d̂1). The same holds for d2 and d3. Moreover, by sampling over
the posterior distribution of the mean curves θu for all u ∈ V , we can obtain summaries
other than the means and variances.

3.2 An example

We illustrate the functional ANOVA from the previous subsection. We consider a two-
population problem. Using Gaussian process modeling, we generated two groups of
curves with sample size n1 = n2 = 20. The mean curves θu are random draws with
mean μ = 0 and the covariance function takes an exponential form with σθ = .5 and
ωθ = .02. The white noise variance τ1 = τ2 = .2 for both groups. The samples are
two groups of curves Yui (x) where x = 1, 2, . . . , 50, u = 1, 2 and i = 1, . . . , nu .
Figure 1 shows the two sets of observed curves.
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Fig. 1 Data set 1. Rightmost panel credible intervals and posterior means of mean curves
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Fig. 2 Distance measures for group 1 and group 2, using d1, d2, d3

The posterior inference procedure is described in detail in Appendix A. For prior
specification, we set aτu = 2 and bτu = 3 for u = 1, 2; aσu = 2 and bσu = 2
for u = 1, 2, and aμ = 10 and bμ = .01. We utilized distance measures d1, d2
and d3 described earlier, using illustrative domains B of the form [x, x + 10], for
x = [2, 4, 6, . . . , 40]. The posterior distributions of relevant parameters were obtained
by MCMC sampling, which were run for 10,000 iterations, the last 5,000 iterations of
which were used for the computation of the posterior distributions. See Fig. 1 (right
panel) for an estimate and credible intervals for the mean curves θu . The posterior
distributions for distance measures can be obtained in two ways, either through MCMC
samples for mean curves evaluated at 50 new levels uniformly generated from B,
or through analytic expression of conditional expectations given parameters, where
the parameters were obtained through MCMC samples. We employ the latter, “Rao-
Blackwellized” computation.

To illustrate the spatially varying posterior behavior of the distance measures pro-
posed in the previous subsection see Fig. 2, where a point x on the X axis is associated
with the interval [x, x + 10]. For small values of x , d1 has small but strictly posi-
tive posterior mean. As x slides to the middle region in the domain (e.g., x = 18),
the posterior mean for d1 increases to around 1 with probability close to 1, and as
x approaches 30, d1 decreases to the range of (.15, .2) with high probability. The
posterior distribution for d2 captures the probability that the mean curve of the first
population dominates that of the second population. For small values of x , this proba-
bility is close to .5, suggesting that the two populations share similar mean curves, and
as x approaches the middle of the interval, the probability decreases to 0, indicating
where the first population is dominated by the second population. d3 also captures
where a population is dominated by the other, and by how much.
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3.3 The SDP case

Now we proceed to replace the GP specification with the SDP, described in Sect. 2.
Applied to the model in (2), the overall hierarchical specification is summarized as

H ≡ GP(μ,C, G0|H ∼ DP(γ, H),

θu |G0
iid∼ G0 for all u ∈ V,

Y ui |θu
iid∼ N

(
θu, τ

2
u Im

)
, for all i = 1, . . . , nu; u ∈ V . (6)

Priors will be supplied for μ and C , as well as γ . Under these specifications, the θu’s
are iid draws from G0. The distribution G0 varies around prior H , with the amount of
variability governed by γ . It is worth noting that this model specification is richer than
and subsumes the one given by (3). In fact, letting γ → ∞, the induced prior given
by (6) converges in distribution to the one given by (3). Integrating over the random
measure G0, θu is distributed according to a GP distribution H , so that the variance
and correlation measures within each group are the same as what we obtained using
a GP prior in the previous section.

Next, consider the relationship between two groups u and v. Under the properties of
Dirichlet processes, and the fact that the Gaussian process distributions are non-atomic,
we obtain, a priori, that P(θu = θv|γ ) = 1

1+γ . Furthermore,

corr(θu(x1), θv(x2)|γ,C) = ρ(x1, x2)

(1 + γ )ρ(x1)ρ(x2)
. (7)

Turning to our metrics, for say d1, we have

P(d1(θu, θv) = 0|γ ) = 1

1 + γ
,

E[d1(θu, θv)|γ,C] = γ

1 + γ

∫

B
C(x, x)dx .

We can obtain similar expressions for d2 and d3. With regard to population comparison,
note the difference between the SDP and the GP modeling. With the GP prior, under
either d1, d2 or d3, with probability 1 there are no ties between θu and θv .

4 A new functional ANOVA model

We now specify a Bayesian nonparametric ANOVA model which differs from that
of the previous section and allows more detailed population comparison. The novelty
comes from now seeking comparison of the Gu’s, the random distributions that gen-
erate the curves for individuals in population u. We can compare the Gu’s directly or
compare features of these distributions, for instance, the functional that is the “mean-
at-a-point” functional. Furthermore, as we show below, the comparison can be carried
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out globally, i.e., an overall comparison of the Gu’s (Sect. 4.1) or locally, i.e., relative
to the random distributions at a given level x , Gu(x) (Sect. 4.2).

4.1 The global case

Our development proceeds from the hierarchical Dirichlet process modeling approach
of Teh et al. (2006). The idea of this approach is that the random Gu’s are i.i.d. draws
from a Dirichlet process, Gu ∼ DP(α,G0), for some base measure G0, which is
also random and is distributed according to another Dirichlet process, i.e., G0 ∼
DP(γ, H). G0 is a.s. a discrete probability measure, say G0 = ∑∞

k=1 βkδφk
. Hence,

the specification for Gu implies that the Gu’s share the same set of atoms that define
G0. This allows explicit comparison of the populations.

In particular, comparison can proceed through certain functionals of Gu . Denoting
Gu by {πuk,φk,D, k = 1, 2, . . .}, we have the mean functional, μ(Gu) = ∑

k πukφk
which plays the role of θu of the previous section. The mean functional enables us to
make connection with comparisons from the previous section, i.e., we immediately
have m1(θu, B), m2(θu, B), and m3(θu, B) and, for populations u and v, we have
d1(θu, θv), d2(θu, θv), and d3(θu, θv). Equivalently, we also use notation d1(Gu,Gv)

for d1(θu, θv) and so on. It is clear that there can be no ties between the mean function-
als; Pr(θu = θv) = 0. In computing the expressions associated with these quantities,
we only have to plug in the form of the mean functional. For instance, after some
minor calculation, we obtain

d1(θu, θv) =
∑

j

∑

k

(πu j − πv j )(πuk − πvk)

∫

B
φ j (x)φk(x)dx .

This is a special case of a Lr norm between Gu and Gv given as follows:

dLr (Gu,Gv) =
( ∫

B

∣
∣
∣
∣
∣

∑

k

(πuk − πvk)φk(x)

∣
∣
∣
∣
∣

r

dx

)1/r

.

Other functions, say based upon quantiles, can be studied for individual populations
and compared across populations (that is, the function arises as say the qth quantile of
the marginal distribution of Gu at x). Also, we can directly compare the Gu’s. There is
an extensive literature on comparing distributions, e.g., see Dudley (1976). For prob-
ability distributions on function spaces, comparisons using divergence measures may
be generally difficult due disjoint supports. This issue is circumvented by our hierar-
chical construction. (One may alternatively consider transportation distances Nguyen
2013, but this is outside the scope of the present paper). Indeed, because Gu and Gu

share the same support with probability one, the variational distance and the Kullback-
Leibler distance between Gu and Gv can be defined by taking the following forms,
respectively:
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dV (Gu,Gv) = 1

2

∑

k

|πuk − πvk |,

dK L(Gu,Gv) =
∑

k

πuk log(πuk/πvk).

It is important to recognize a key difference between this ANOVA specification
and that of the previous section. Now, we have Yui (x) = μ+ θui (x)+ εui (x). Draws,
θui from Gu are realized for each individual, i = 1, 2, . . . , nu , within population
u. Here, θu is never realized for any population; it is the population mean of these
curves. We have a model with random effects and a pure error term but with marginal
dependence across the i’s and also across the u’s. That is, though the Gu’s are con-
ditionally independent given G0, we have θui (x) = θvi ′(x) if say both draw φk(x)
and this happens with probability πukπvk . We can have ties for the individual-level
curves.

The full hierarchical specification is formally as follows:

H ≡ GP(μ,C), G0|H ∼ DP(γ, H),

Gu |G0 ∼ DP(α,G0), for all u ∈ V,

θui |Gu ∼ Gu for all i = 1, . . . , nu; u ∈ V,

Y ui |θui ∼ N
(
θui , τ

2
u Im

)
, for all i = 1, . . . , nu; u ∈ V . (8)

Under this prior specification, the components θui are iid draws from distribu-
tion Gu . The distribution Gu varies around G, with the amount of variability
governed by α. The distribution G in turn varies around H , with the amount of
variability governed by γ . We note here that the induced prior given by (8) is
richer than the one given by (6). Letting α → ∞, the model (8) tends to (6).
The distribution H (a Gaussian process) provides the support for a global pool
of mean curves, which in turn provide the support for the mean curves for each
population. Model fitting is a simple adaptation of Teh et al. (2006) to functional
data.

Suppose we are interested in a two-way ANOVA, i.e., now we have popula-
tions indexed by say factor u with levels u = 1, 2, . . . ,U and factor w with levels
w = 1, 2, . . . ,W . The preceding development is unchanged; we merely replace Gu

with Guw ≡ {πuwk,φk} and i = 1, 2, . . . , nuw. We draw θuw,i from Guw for each
individual i at levels u and w.

Interest would often be in “main” effects which are usually interpreted as marginal
effects for the levels u and w. In this setting, we can define Gu· = 1

W

∑
w Guw

and G ·w = 1
U

∑
u Guw. That is, Gu· = ∑

k πu·,kδφk
, similarly for G ·w. Comparison

between Gu· and Gu′· would be carried out as above. For the mean functional, we
immediately have θu· = 1

W

∑
w θuw, similarly for θ ·w. Last, the function θu·i =

1
W

∑
w θuwi is not meaningful. We are interested in marginal features of Guw, but not

in marginal curves at the individual level.
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4.2 Local comparison using a nested hierarchy of Dirichlet processes

From Sect. 4.1 we have seen that, using the hierarchical DP, one can view the func-
tional ANOVA problem through comparison of Gu’s. Here, we maintain the objective
of comparison of Gu’s but switch the sampling scheme. Now, we sample the func-
tions at levels, i.e., at choices of x , obtaining observations from potentially different
individuals at different levels. That is, in some settings, the data are such that, within
each population, we choose levels of x and at these levels, we sample individuals;
we do not sample curves for individuals. In particular, at level x ∈ D, within popula-
tion u we have observations Yui (x) for a set of individuals indexed by i . Associated
with Yui (x) is a θui (x) as in the previous section. But, in the absence of curve level
data for individual i , we do not envision drawing an entire θui (though it exists con-
ceptually). Rather, we envision θui (x) drawn from a random local distribution Qux

which is centered around Gux , the distribution at x under Gu . In particular, we assume
Qux ∼ DP(αu,Gux ), nesting the Q’s within the Gu’s. Extending the stick-breaking
notation of the previous section, we now add Qux = ∑∞

k=1 ωuxkδφk (x).
The implication is local selection of the θui (x). That is, θui (x1) = φk(x1) with

probability ωux1k while θui (x2) = φk(x2) with probability ωux2k . In the global model
described in the previous section, P(θui (x1) = φk(x1)) = P(θui (x2) = φk(x2)) =
πuk . In different words, were we to realize a set {θui (x), x ∈ D}, it would not be one of
the φk’s but rather, just a locally selected collection of θ ’s resulting in an everywhere
discontinuous surface. However, again, we do not think in terms of modeling a curve
for individual i , rather, just a θui (x) at a given x ∈ D. Again, we can have ties
across populations but now they are local; θui (x) = θvi ′(x) = φk(x) with probability
ωuxkωvxk .

We still view this construction as a functional ANOVA problem. Individuals are still
pre-clustered to populations. Still there is a population-level distribution Gu . Still we
can compare Gu’s across u. Still we can employ the same metrics as above to compare
the populations. All we have done is introduce another level to the DP specification, as
noted above, a level nested within the specification for Gu . Such additional flexibility is
arguably more appropriate with a sampling scheme that samples at different levels of x .

The overall hierarchical specification is summarized as follows:

H ≡ GP(μ,C), G0|H ∼ DP(γ, H),

Gu |G0 ∼ DP(α0,G0), for all u ∈ V,

Qux |Gu ∼ DP(αu,Gux ), θui (x)|Qux ∼ Qux for all i = 1, . . . , nu; u ∈ V,

Y ui |θui ∼ N
(
θui , τ

2
u Im

)
, for all i = 1, . . . , nu; u ∈ V . (9)

To fit this model, we use a demanding MCMC algorithm. Details are presented in
Appendix D.

We can more explicitly describe the model in Eq. (9) using a stick-breaking para-
metrization. Due to the discrete nature of Dirichlet process realizations, the random
measures G0,Gu all share the same support. The random measure Qux also shares
the same support as the Gu and G0 when the latter two are restricted to level x , for
any x ∈ D. Indeed, they can be expressed as follows:
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G0 =
∞∑

k=1

βkδφk ,

Gu =
∞∑

k=1

πukδφk ,

Qux =
∞∑

k=1

ωuxkδφk (x). (10)

As before, theφk are iid draws from the base measure H .β = (βk)
∞
k=1,πu = (πuk)

∞
k=1

and ωux = (ωuxk)
∞
k=1 are stick-breaking weight vectors satisfying the following hier-

archical specifications:

β|γ ∼ GEM(γ ), πu |β ∼ DP(α0,β) for all u ∈ V,

ωux |πu ∼ DP(αu,πu) for all u ∈ V, x ∈ D,

φk ∼ H for all k = 1, 2, . . . , (11)

zui (x)|πu ∼ ωux for all i = 1, . . . , nu; u ∈ V,

Yui (x)|zui , (φk)
∞
k=1 ∼ N

(
φzui (x)(x)|τ 2

u

)
for all i = 1, . . . , nu; u ∈ V ; x ∈ D.

(12)

As is the case with parametric hierarchical models, the hierarchical nonparametric
framework considered in this section also lends itself naturally to a decomposition
of variations for data within each group and between groups. Appendix C provides
details of the derivation of such decompositions.

5 Hierarchical Dirichlet process examples

Here we present two simulated examples and one real data analysis. The first simulation
example presents an unusual functional ANOVA setting. The second serves as a proof
of concept for the local nested HDP modeling. The real data analysis fully illustrates
all of the foregoing development.

5.1 Multi-modal non-stationary and non-Gaussian and globally sharing groups
of functional data

We consider a two-population setting where the first population uses one functional
atom, but the second is associated with two functional atoms with (latent) selection
probability 1/2 for each. See Fig. 3 for an illustration. One of the two functional
atoms in the second group is shared with the first group. Both functional atoms are
generated according to a Gaussian process with mean 0 and covariance specified
by σθ = 0.5, ωθ = 0.01. Data associated with a functional atom are obtained by
adding independent an white noise process with variance τu = 0.2 for both u =
1, 2. The sample sizes for the two groups are n1 = n2 = 40. The sample curves
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Fig. 3 Data set 2

Yui (x) are observed at 50 levels x = 1, . . . , 50 for i = 1, . . . , nu . For this data
set we use the global model described in Sect. 4.1 For prior specification, τ 2

u ∼
InGamma(aτu , bτu ) where aτu = 2, bτu = 1. The base measure H is also a mean-0
Gaussian process with σθ ∼ InGamma(aσ , bσ ) with aσ = 2, bσ = 1. In addition
ωθ = 0.01. (We use a slightly modified parameterization for covariance function
C(x, x ′) = σ 2

θ exp{−ωθ‖x − x ′‖2}). The concentration parameters are specified as
γ = 0.005 and α = 0.01. The posterior distributions of parameters and distance
measures of interest are obtained via MCMC samples.

Figure 4 (left) shows that while the number of functional clusters for group 1 is close
to 1 with high probability, for group 2 there are two functional clusters with probability
close to 1. Moreover, with high probability there are overall two functional clusters for
both groups. This implies that the functional cluster that underlies group 1 is in fact
also a functional cluster for group 2. The right panel in Fig. 4 illustrates the posterior
distributions for population meansμ(G1) andμ(G2). The tight credible interval bands
are due to the effect of averaging implicitly over sample curves. Additional compar-
isons can be performed on the basis ofμ(G1) andμ(G2) using distance measures such
as d1, d2 and d3, but these still do not always fully capture the heterogeneity between
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Fig. 4 Data set 2. Posterior distribution of the number of functional atoms (left). Right panel estimates of
population means μ(Gu) in two dash lines. Estimates of two functional atoms in dotted lines. (Note two
of the four lines at the top are almost indistinguishable in the plot)
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Fig. 5 Data set 2. Left panel group assignment—the first 40 curves belong to group 1, the second 40 curves
group 2. Right panel posterior probability that two sample curves share the same functional atom

and within the two groups. Because of the sharing of functional atoms at each MCMC
iteration, a visually appealing method for characterizing the variation between and
within each group of functional curves is to perform pairwise comparisons for sample
curves on the basis of the functional atoms that the curves are associated with, using
the same distance measures mentioned above.

Figure 5 (right) produces a heatmap in which each entry represents the posterior
probability that two given functional curves share the same functional atom. It shows
that all sample curves in group 1 share the same functional atom (cluster) with high
probability, and that the first 20 sample curves in group 2 also shares the same cluster
as that of group 1, while the remaining 20 sample curves in group 2 share another
functional cluster. A more detailed analysis is carried out using distance measure d1
with varying domains in Fig. 6. Each panel provides a different subregion as indicated
and the entries in the heatmaps provide the (posterior) mean of the distance between
the global atoms associated with two given sample curves. The heatmaps reveal the
need for differential numbers of curves within each population as well as the variability
within each group due to the variation between the functional atoms. The variation is
most pronounced for, e.g., the interval [1, 10]) and is negligible for, e.g., [21, 30]).

5.2 Functional ANOVA with sampling at levels of the functions

This simulation example is motivated by the ocean temperature data set. We employ the
nested HDP model developed in Sect. 4.2. Here, we create data from three populations.
The populations are regulated by three functional atoms, say, φ1,φ2 and φ3. These
functional atoms were generated according to a mean-0 Gaussian process with and
a covariance function given by parameters σφ = 1, ωφ = .01. Population 1 uses
only functional atom φ2, population 2 uses φ1 and φ2 with equal probabilities, while
population 3 uses φ2 and φ3 with equal probabilities. For each population u and level
x , observations Yui (x) are i.i.d. draws from a mixture of Gaussians with the means
given by the associating functional atom (φ1,φ2 orφ3) evaluated at x , and the variance
given by τ 2

u . We let τu = 0.1 for all u. The number of samples at level x is nux = 20
for all u’s and i’s. The set of x’s is [1, . . . , 10]. Figure 7 shows the data set.
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Fig. 7 Data set 3. Data given are collection of “dots”, not curves, indexed by group membership u, and
level x
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Fig. 8 Data set 3. Left panel posterior distribution of the functional atoms. Right panel mean estimate and
credible intervals (in dash) for the functional atoms. The “true” functional atoms are solid plots with square
markers

For prior specification, let τ 2
u ∼ InvGamma(aτu , bτu ) where aτu = 5, bτu = 1.

The concentration parameter γ is given a vague prior γ ∼ Gamma(aγ , bγ ) where
aγ = 1, bγ = .1, while other concentration parameters are set to α0 = 1 and αu = 1
for all u. The base measure H is a mean-0 Gaussian process with σφ = 1, ωφ = .01.

Again, the data here are a collection of observations Yui (x); we are not sampling
individual curves. However, the underlying assumption of our model is that there
exist functional atoms which provide the basis for underlying functional clusters that
regulate these groups of data. We are able to estimate not only these functional clusters,
but also infer about whether they are shared among the populations or not. Figure 8
(left panel) depicts the posterior distributions of the number of functional clusters
for each of the three populations. Population 3 has 2 functional clusters with high
probability, Population 2 is likely to have two functional clusters (as opposed to 1),
and Population 1 has either one or two clusters with approximately equal probabilities.
For population 1, there seems to be a disagreement with how the data was generated,
but a closer look reveals that the two functional atoms employed by population 2
and the one which is shared with population 1 are virtually indistinguishable for a
significant proportion of levels. Thus in the a posteriori analysis it makes sense to
have either of the two functional atoms provide the support for clusters in the data in
population 1. Figure 8 (right panel) depicts the mean estimate and credible intervals
for three functional atoms that provide overwhelming support for the data in all three
populations. The estimation of the functional atoms is very accurate.
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Table 1 Posterior mean (and
SD) of the mixing proportions
for the three dominant (in bold)
functional atoms for each group
of data

Group (u) πu1 πu2 πu3

1 0.9669 (0.0808) 0.0231 (0.0631) 0.0045 (0.0112)

2 0.4769 (0.1490) 0.5048 (0.1337) 0.0072 (0.0174)

3 0.0151 (0.0229) 0.5293 (0.1107) 0.4520 (0.1108)
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Fig. 9 Data set 3. Comparing number of local atoms across u and x

Following Sects. 4.1 and 4.2, Table 1 provides the (posterior) mean of the mixing
proportions for the three functional atoms with respect to each of the three popula-
tions. Accordingly, we obtain variational distances between groups: dV (G1,G2) =
0.49(±.11); dV (G2,G3) = 0.52(±0.09); dV (G1,G3) = 0.96(±.04). The KL dis-
tances tend to amplify the difference: dK L(G1,G2) ≈ 0.68; dK L(G1,G3) ≈
6.08; dK L (G2,G1) ≈ 3.21; dK L (G2,G3) ≈ 2.59; dK L (G3,G1) ≈ 16.79; dK L

(G3,G2) ≈ 8.02. But it is clear that populations G1 and G3 are the most distant
pair. Turning to local comparisons, Fig. 9 depicts the median and credible intervals
for the number of local clusters at each x and population u. There is significantly
more variability in population 2 and population 3 than in population 1. Note that for
population 1, the median number of local clusters is one for all x , where at most of
the x ≥ 4 there is a probability of having two local clusters. For population 2, the
median number of local clusters is two for all x , but for x ≥ 5 there is also a significant
probability that there is only one local cluster. This agrees with the fact that the two
functional atoms can be interchanged for x ≥ 4. For population 3, the median number
of local clusters is two, but there are levels with non-negligible probability of having
only one or three.

5.3 Analysis of an ocean temperature versus depth dataset

We consider a data set consisting of ocean temperature and depth measurements col-
lected at several locations in the Atlantic Ocean. The geographic separation naturally
divides the locations into four distinct groups—see the right panel of Fig. 10—which
we take as our populations. At each location the ocean temperature is recorded together
with the depth and the time where and when the measurement was obtained. The left
panel of Fig. 10 illustrates this data set. Because the temperatures are recorded at
different times (during the days, and across several days), we treat the data not as a
collection of functional curves, rather as a collection of temperatures Yui (x), where
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Fig. 10 Data set 4. Ocean temperature and depth data, collected in four groups in the Atlantic Ocean.
Left panel Y axis represents temperature (Celsius), and X axis represents depth (in meters). Measurements
from group 1 are illustrated in circles, Group 2’s are ’+’s, Group 3’s are ’x”s, Group 4’s are squares. The
geographical locations of the four groups are depicted in the right panel

u ∈ {1, 2, 3, 4}, x indexes the depth level, and i indexes the measurements obtained at
that depth level within group u. (There is not enough temporal structure in the dataset
to attempt to model time effects.) Again, we are interested in comparison among the
four groups based on the functional patterns of ocean temperature in terms of ocean
depth. There are a total of 4,917 such measurements within the first 500 m of depth.
The data set is generally unbalanced: some locations and/or depth levels have more
data than others. Moreover, the depths are not equally spaced.

Although locations of measurements obtained within each group are known, due
to their close proximity relative to the distances between the groups, we assume
that the measurements obtained within depth level are exchangeable. Furthermore,
the four groups are also viewed as exchangeable. The modeling, inference, and
analysis were described in Sect. 4. We grouped the data into 25 equally spaced
depth levels, each of which is 20 m long. The temperature measurements were re-
centered around 10◦ Celsius, and then re-scaled so that a majority of the measure-
ments fall within −[1, 1]. For prior specifications, for the white noise process we let
τu ∼ InvGamma(aτu , bτu ), where aτu = 5, bτu = 1. For the concentration parameters,
we let γ ∼ Gamma(aγ , bγ ) where aγ = 5, bγ = 1. We let α0 ∼ Gamma(aα0 , bα0)

where (aα0 , bα0) = (1, 1), while αu = 1 for all u = 1, . . . , 4. The base measure H is
specified as a mean-0 Gaussian Process, whose covariance function has the standard
exponential form with (σφ, ωφ) = (0.1, 0.5).

We next discuss the sensitivity of the hyperparameters in our hierarchical model.
Recall that σφ specifies the variance at a point and ωφ the smoothness of the Gaussian
process (which generates functional atoms). Small values of ωφ result in very smooth
functional atoms, while large values result in highly distinct (and less smooth) atoms.
Both extremes are avoided; our choice of σφ, ωφ reflects roughly the range of the
variance and smoothness based on an exploratory analysis of the data collected at
locations 3 and 4 (where the global clusters are mostly unimodal by visual inspec-
tion). The posterior inference is found to be robust in this range. Once the levels of
smoothness and variance for the functional atoms are specified, the hyperparameters
for the white noise variance τu are chosen to be highly non-informative. Turning to
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the Dirichlet processes’ concentration parameters, a robust choice is to restrict αu’s
and α0 to relatively small ranges (say, ≤ 1). Once these are fixed, the hyperparameters
for γ (the concentration parameter for the top level Dirichlet process) are chosen to
be highly non-informative. The rationale behind this hinges on the interactions of the
Dirichlet processes in multiple levels of a Bayesian nonparametric hierarchy. Such
a theory has emerged only recently (Nguyen 2013a). Finally, we note that for the
purpose of group comparisons using the proposed summaries, the resultant inference
appears quite robust to the choice of these hyperparameters, as we will see below.

The Gibbs sampling algorithm described in Appendix D is run for 5,000 iterations,
which took several days to complete on a personal desktop computer. While this
seems sufficient for our purpose, for larger scale data sets that have more depth levels
(say, in the order of thousands) approximate variational methods may be considered
to help speed up the Gibbs sampler. An example of such a strategy developed for a
substantially more complex hierarchical model can be found in Nguyen and Gelfand
(2011).

The posterior distribution of the number of functional atoms associated with the
functional temperature-depth trends in the four groups have the support between 5
and 9, with a strong mode at 6, suggesting there are 6 dominant functional patterns.
Figure 11 shows the posterior mean and credible intervals of these functional pat-
terns. Table 2 offers the contributions of each of these individual functional patterns
within each group of data. It provides strong evidence regarding the functional varia-
tions between the groups, and in some cases, within a group. In particular, group 1 is
overwhelmingly associated with functional curve (atom) φ1. This also implies single
functional behavior of depth versus temperature within group 1. Group 3 and group
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Fig. 11 Data set 4. Posterior means and (.05,. 95) credible intervals of the functional atoms
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Table 2 Posterior mean (and SD) of the mixing proportions for the three dominant (in bold) functional
atoms for each group of data

Group (u) πu1 πu2 πu3 πu4 πu5 πu6

1 0.96 (0.01) 0.00 (0) 0.02 (0.01) 0.00 (0) 0.00 (0) 0.00 (0)

2 0.02 (0.09) 0.74 (0.09) 0.06 (0.03) 0.00 (0) 0.12 (0.02) 0.00 (0.02)

3 0.04 (0.14) 0.01 (0.02) 0.02 (0.02) 0.90 (0.14) 0.01 (0.02) 0.00 (0)

4 0.03 (0.13) 0.02 (0.03) 0.02 (0.03) 0.89 (0.14) 0.01 (0.02) 0.00 (0)

Table 3 Estimates of
dK L (Gu ,Gv)

G1 G2 G3 G4

G1 0 9.2 (5.5) 6.1 (3.3) 7.1 (3.9)

G2 8.5 (6.0) 0 6.7 (4.2) 6.3 (5.0)

G3 7.1 (4.1) 7.0 (3.8) 0 0.3 (0.3)

G4 7.2 (4.6) 7.0 (4.4) 0.3 (0.4) 0

4 also have largely single functional behavior, with most of the contributions (89 %)
coming from functional curve (atom) φ4, and small contributions coming from φ1.
In fact, the decompositions represented by π are almost indistinguishable between
the two groups. Group 2 exhibits very heterogeneous functional behavior; there are
contributions from more than four functional curves, φ1,φ2,φ3,φ5. Using KL dis-
tance measures to compare between groups in Table 3, it is evident that group 3 and
4 exhibit very similar functional behaviors, while group 2 is most different from the
other groups. It is useful to examine the posterior distributions of the variance τ 2

u for
the noise processes associated with the functional curves. In particular, the posterior
mean for τ1 is very small (0.42(0.10)), suggesting the highly predictable behavior of
temperature in group 1. τ3 is largest (2.07(0.25)), perhaps due to the relative sparsity
of measurements obtained within group 3, in spite of the fact that the overall behavior
of group 3 and 4 are very similar. For completeness for τ2 we have 0.93(0.52) and for
τ4 we have 1.84(0.22).

Figure 12 illustrates the posterior mean and credible intervals for d2(μ(Gu),

μ(Gv)), providing detailed comparison in temperature versus depth behavior in the
four groups. For instance, group 1 has consistently higher temperature than group 2,
while group 3 and group 4 are very similar. Using d3, it is observed that the difference
between group 3 and 2 increases with lower depth. Despite the sparse and unbalanced
data in some of the groups, our functional modeling approach provides relatively fine-
scaled comparisons across depth levels. Figure 13 reveals in more detail the variations
in the number of local clusters in each of the four groups. Again, the number of local
clusters within group 1 is 1 (supported by φ1 with overwhelming probability. The
number of local clusters in group 3 and 4 are 1 with overwhelming probability at shal-
low depths (less than 300 m for group 3), but at deeper depths they are also associated
with local clusters supported by φ1. Group 2 has up to five local clusters at shallow
depth levels, but the number of local clusters decreases to 2 at deeper depth levels. In
other words, more functional variation in the temperature behavior is observed near
the ocean surface for group 1 than at the deeper levels.
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Fig. 12 Data set 4. Posterior distributions of distance measures d2 and d3, applied to windows of depth
interval [x, x + 4] × 20 m
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Fig. 13 Data set 4. Comparing number of local clusters that vary with depth level x . The plots show
posterior mean (solid) and (.05,. 95) credible intervals

6 Summary and future work

We have presented a sequence of models for the functional ANOVA problem which
enables comparison between populations in ways not previously considered in the lit-
erature. In particular, our hierarchical DP versions permit comparison of the (random)
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functions that define the populations using various metrics and over chosen subdo-
mains. Also, we can provide comparison of the random distributions that generate
the functions for individuals within the populations. Through simulation examples
and a set of temperature versus depth data, the rich inferential possibilities have been
revealed.

An opportunity for future work is to look at the comparison of the populations
dynamically. With a suitable data (e.g., temperature versus depth relationships for
various geographically defined groups collected across years), we can imagine a func-
tional ANOVA model at each time point. Explicit modeling might be developed utiliz-
ing a state space specification. Novel inference would include the assessment of how
differences between populations are evolving in time.

Appendix A: Inference of mean curves under GP prior

This section provides standard expressions for conditional expectation and variance
of population mean curves given a collection of functional data. Suppose that the
data Y = {Yui (x)} are observed at the same set of levels x1, . . . , xm . In the fol-
lowing we use M to collect all model parameters, M = (μ,C, σ, τ ). Given Y
and M, θu = (θu(x1), . . . , θu(xm)) are independent for u ∈ V . Let x01, . . . , x0p

be p levels that are either placed regularly in B, or uniformly sample from B. For
a given population u, we need to derive the posterior distribution for both θu , and
θ0u := (θu(x01), . . . , θu(x0p)).

Let Cu,C0u be the a priori covariance matrices for θu and θ0u , respectively, while
Ru be the covariance matrix of size m × p for the two as given by the GP with
covariance function C. We have

θu |Data, M ∼ Nm(μ̃u, C̃u),where

C̃
−1
u = C−1

u +
(

nu/τ
2
u

)
Im,

C̃
−1
u μ̃u = C−1

u μ+
(

1/τ 2
u

) nu∑

i=1

Y ui .

We have θ0u |θu, M ∼ Np(m̃, S̃) where

m̃ = m0u + RT
u C−1

u (θu − μ),

S̃ = C0u − RT
u C−1

u Ru,where

m0u = (μ(x01), . . . , μ(x0p)).

Due to conditional independence relation, θ0u ⊥ Data|θu, M, so we have

[θ0u |Data, M] ∝
∫

[θ0u |θu, M] × [θu |Data, M]dθu .
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Standard calculations yield

θ0u |Data, M ∼ Np

(
μ̃0u, C̃0u

)
,where

μ̃0u = m0u + RT
u C−1

u (μ̃u − μ),

C̃0u = S̃ + RT
u C−1

u C̃u C−1
u Ru .

Finally, we need to sample M = (μ,C, τ, σ ) conditionally on the data. This can
be achieved via Gibbs sampling.

1. Conditional for μ: This is normal with covariance matrix and mean specified by

C−1
μ =

∑

u

(
Cu + τ 2

u Im

)−1 +
(

1/σ 2
μ

)
Im,

C−1
μ μμ =

∑

u

(
Cu + τ 2

u Im

)−1
nu∑

i=1

Y ui .

2. Conditional for τ u , for each u: Endow τu with igamma(aτu , bτu ), then the condi-
tional for τ 2

u is also igamma with updated parameters bτu := aτu + mnu/2 and
bτu := bτu + ∑nu

i=1 ‖Y ui − θu‖2/2.
3. Conditional for σμ. Endow σμ with igamma(aμ, bμ) then the conditional for σ 2

μ is
updated by aμ := aμ + m/2 and bμ = b + 1/2‖μ‖2.

4. Conditional for Cu , for each u: Cu is parameterized by exponential form, so that
Cu(x1, x2) = σ 2

Cu
Su where Su(x1, x2) = exp −φu(x1 − x2)

2. Endow σ 2
Cu

with
igamma(aCu , bCu ), which is updated via aCu = aCu + m/2 and bCu := bCu +
1
2 (θu − μ)T S−1(θu − μ). φu is updated via a symmetric Metropolis update, with

an acceptance rate equal to min(1, exp − 1
2σ 2

u
(θu − μ)T (S̃

−1
u − S−1

u )(θu − μ)).

Appendix B: Properties of summary metrics

Suppose that θ is distributed according to a Gaussian process on a closed domain
B ⊂ R with mean μ and covariance function C . C can be viewed as a positive
semidefinite kernel. Moreover, assume that

∫
C(x1, x2)dx1dx2 < ∞, and consider

the integral operator LC : L2(B) → L2(B) induced by the kernel C:

LC f (x) =
∫

B
C(x, x ′) f (x ′)dx ′.

This is a self-adjoint, positive and compact operator with a countable systems of non-
negative eigenvalues {λk}∞k=1 and associated eigenfunctions {ψk}∞k=1 which form an
orthonormal basis of L2(B). By Mercer’s theorem, C admits the following decom-
position: C(x, x ′) = ∑∞

k=1 λkψk(x)ψk(x
′). Here the series converges absolutely for

each pair x, x ′ and uniformly in B. For each k ∈ N+, define
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ηk =
∫

B
(θ(x)− μ(x))ψk(x)dx .

By Karhunen–Loève’s theorem applied to Gaussian processes, θ can be written as θ =
μ+∑∞

k=1 ηkψk , where the convergence is almost sure and is uniform in x . Moreover,
the collection of coefficients {ηk} are independent mean-0 Gaussian variables with
variance var(ηk) = λk , for any k ∈ N+.

It is simple to obtain that m1(θ) can be expressed in terms of a sum of chi-square
and normal variables:

m1(θ) = ‖μ‖2 +
∞∑

k=1

η2
k + 2

∞∑

k=1

ηkμ
Tψk .

Due to the mutual independence of ηk’s, we obtain that

E[m1(θ)|μ,C] = ‖μ‖2 +
∞∑

k=1

λk = ‖μ‖2 +
∫

B
C(x, x)ds.

The variance takes the form

var[m1(θ)|μ,C] = E

⎡

⎣

( ∞∑

k=1

η2
k + 2

∞∑

k=1

ηkμ
Tψk −

∞∑

k=1

λk

)2∣
∣
∣
∣μ,C

⎤

⎦

=
∞∑

k=1

2λ2
k + 4λk

(
μTψk

)2
,

where we have used the fact that Eηk = Eη3
k = 0; Eη2

k = λk , Eη4
k = 3λ2

k . Although the
λk andψk are determined directly from C , except for some special cases closed forms
are not available. In practice one might consider sampling for the variance instead.

Appendix C: Decomposition of variance and correlation

First, we study the relations among random measures in the model. G0 is a random
measure that varies around H = GP(μ,C), where the variation is governed by γ .
For each group u, Gu is a random measure that varies around G0, where the variation
is governed by α. For each level x and group u, Qux varies around Gu , where the
variation is governed by αu . Because G0 ∼ DP(γ, H), due to elementary properties
of Dirichlet processes for any measurable set A of functions

E[G0(A)
2|H ] = 1

γ + 1
H(A)+ γ

γ + 1
H(A)2,

var[G0(A)|H ] = 1

γ + 1
(H(A)− H(A)2).
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Turning to the random measures Gu for each u ∈ V ,

var[Gu(A)|G0] = 1

α + 1
(G0(A)− G0(A)

2).

Marginalizing out G0, we have

var[Gu(A)|H ] = E[var[Gu(A)|G0]|H ] + var[E[Gu(A)|G0]|H ]
= 1

α + 1
(H(A)− E[G0(A)

2|H ])+ var[G0(A)|H ]

=
(

1

γ + 1
+ γ

(γ + 1)(α + 1)

)

(H(A)− H(A)2). (13)

Next, for the random measures Qux at each level x ∈ D, for any measurable set Ax ,
as before

var[Qux (Ax )|Gu] = 1

αu + 1
(Gu(Ax )− Gu(Ax )

2),

so that

var[Qux (Ax )|G0] = E[var[Qux (Ax )|Gu]|G0] + var[E[Qux (Ax )|Gu]|G0]
= 1

αu + 1
E[(Gu(Ax )− Gu(Ax )

2)|G0] + var[Gu(Ax )|G0]

=
(

1

α + 1
+ α

(α + 1)(αu + 1)

)

(G0(Ax )− G0(Ax )
2).

Marginalizing out G0, we have

var[Qux (Ax )|H ] = E[var[Qux (Ax )|G0]|H ] + var[E[Qux (Ax )|G0]|H ]
=
(

1

γ + 1
+ γ

(γ + 1)(α + 1)
+ γα

(γ + 1)(α + 1)(αu + 1)

)

×(H(Ax )− H(Ax )
2). (14)

Next, let A and B are measurable sets with respect to observations at x1 and x2,
respectively. For φ ∼ H , let Hx1(A) = P(φ(x1) ∈ A|H) and Hx1,x2(A, B) =
P(φ(x1) ∈ A;φ(x2) ∈ B|H). Then similar calculation yields, for measure G0

cov[G0(A),G0(B)|H ] = 1

γ + 1
(Hx1,x2(A, B)− Hx1(A)Hx2(B)).

For measure Gu , we have

cov(Gu(A),Gu(B)|H) =
(

1

γ + 1
+ γ

(γ + 1)(α + 1)

)

×(Hx1,x2(A, B)− Hx1(A)Hx2(B)).
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Similarly, for Qux :

cov(Qux (A), Qux (B)|H)=
(

1

γ+1
+ γ

(γ + 1)(α+1)
+ γα

(γ+1)(α+1)(αu +1)

)

×(Hx1,x2(A, B)− Hx1(A)Hx2(B)).

In all expressions above, a priori, the concentration parameters regulate the fraction of
variance or correlation that are passed from one level in the Bayesian hierarchy to the
next, starting from the base measure H , which regulates the dependence with respect
to covariate x . Last, we note that similar calculations can be carried out between
populations. We omit the details.

Appendix D: Posterior computation for the model in (9)

We recall and introduce key notations: φk is a random draw from H , ψ t a random
draw from G0, ϕur a random draw from Gu . Finally, θui (x) is a random draw from
Qux .

Let kt denote the index of the φk associated with the functional atom ψ t , i.e.,
ψ t = φkt

. Let tur denote the index of the ψ t associated with the functional atom ϕur
in group u, i.e., ϕur = ψ tur

. Let r x
ui denote the index of the ϕur (x) associated with

the atom θui (x), i.e., θui (x) = ϕur x
ui
(x). The local and functional atoms are related by

θui (x) = ϕur x
ui
(x) = ψ tur x

ui
(x) = φktur x

ui

(x).

Recall that a priori G0 ∼ DP(γ, H). Due to a standard property of a Dirichlet
process, conditioning on the global factors φk’s and the index vector k, the posterior
distribution of G0 is distributed according to a DP: [G0|k,φ1, . . . ,φK ] ∼ DP(γ +
q·,

γ H+∑K
k=1 qkδφk

γ+q· ), where qk = #{t : kt = k} denotes the number of ψ t ’s associating

with φk , and q· = ∑K
k=1 qk . This implies an explicit representation for G0 as follows:

G0 =
K∑

k=1

βkδφk
+ βnewGnew

0 ,

β = (β1, . . . , βK , βnew) ∼ Dir(q1, . . . , qK , γ ),

Gnew
0 ∼ DP(γ, H). (15)

Similarly, conditionally on G0, the random distributions Gu are independent across
the group indices u. In particular, given G0, k, tu and the φk’s, the posterior of Gu

is distributed as [Gu |G0, k, t, (φk)
K
k=1] ∼ DP(α0 + mu·,

α0G0+∑K
k=1 mukδφk

α0+mu· ), where

muk = #{r : ktur = k}, the number of ϕur associated with φk , and mu· = ∑K
k=1 muk .

This implies the following representation for Gu : Gu = ∑K
k=1 πukδφk

+ πunewGnew
u ,

where Gnew
u ∼ DP(α0βnew,Gnew

0 ) and

πu = (πu1, . . . , πuK , πunew) ∼ Dir(α0β1 + mu1, . . . , α0βK + muk, α0βnew).

(16)
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Once more, conditionally on Gu , the random distributions Qux are independent across
levels x . In particular, given Gu , k, tu , rx

u , and the φk’s, the posterior of Qux is
distributed as

[
Qux |Gu, k, tu, rx

u, (φk)
K
k=1

]
∼ DP

(

αu + nux ·,
αuGux + ∑K

k=1 nuxkδφk (x)

αu + nux ·

)

,

where nuxk = #{i : ktur x
ui

= k}, the number of θui (x) associated with φk(x), and

nux · = ∑K
k=1 nuxk . This implies the following representation for Qux :

Qux =
K∑

k=1

ωuxkδφk (x) + ωuxnew Qxnew
u ,

ωux = (ωux1, . . . , ωux K , ωuxnew)

∼ Dir (αuπu1 + nux1, . . . , αuπuK + nux K , αuπunew) ,

Qxnew
u ∼ DP

(
αuπunew,Gxnew

u

)
. (17)

The above characterization suggests a straightforward Gibbs sampling algorithm
by constructing a Markov chain for (φk)

K
k=1, k, t, r). To simplify the implementation

by avoiding the book-keeping steps of the index variables, we will consider a modified
block Gibbs sampling algorithm by constructing a Markov chain for the count variables
(e.g., q,m, n) instead. We will still need the index variable zuxi , which denotes the
index of the global atom φk that local atom θui (x) is associated with, i.e., zuxi = ktur x

ui
.

Note that the likelihood of the data involves only the zuxi variables, and that nux can
be calculated directly in terms of zuxi ’s:

nuxk =
∑

i

I(zuxi = k).

We proceed to describe a block Gibbs sampler by considering a Markov chain for
(φ, q,m, n, z,β,π ,ω).

Sampling β,π ,ω. Conditional probabilities: [β|q, γ ] × ∏
u[πu |mu,β, α0] ×∏

u
∏

x [ωux |nux ,πu, αu] are given by Eqs. (15–17).
Sampling of z. Note that a priori, zuxi |ωux ∼ ωux . Let n−uxi

uxk denote the number
of data items in the group u and level x , except yui (x), associating with the mixture
component k. Then,

p
(

zuxi = k|z−uxi ,ω,φk,Data
)

=
⎧
⎨

⎩

(
αuπuk + n−uxi

uxk

)
F
(
yui (x)|φk(x)

)
if k is previously used

αuπunew f yui (x)
uxknew(yui (x)) if k = knew,

where f yui (x)
uxknew(yui (x)) = ∫

F(yui (x)|φ(x))d H(φ(x)) is the prior density of yui (x).
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Sampling of mu . Recall that muk is the number of functional atoms ϕur associated
with φk within each group u. This set of functional atoms ϕur ’s can be subdivided
into disjoint subsets associated with levels x ∈ D when the functional atoms ϕur are
first generated. Let muxk be the number of such functional atoms corresponding to the
level x . To be precise,

muxk = #
{

r x
ui : zuxi = ktur x

ui
= k for some i

}
,

muk =
∑

x∈D

muxk .

muxk corresponds to the number of partitions among the nuxk atoms θui (x) such
that zuxi = k. To obtain the distribution of muxk , consider the distribution of r x

ui
conditionally on Gu (i.e., πu , φk’s). Note that given Gu , the Qux are independent
across x’s. For each atom θui (x), the probability of being assigned to an existing atom
ϕur (x) such that ktur = k is

p
(

r x
ui = r |ktur = k, r−uxi ,πu

)
∝ n−uxi

ux ·r

while the probability of being assigned to a new atom ϕurnew(x) is

p
(

r x
ui = rnew|kturnew = k, r−uxi ,πu

)
∝ αuπuk,

where n−uxi
ux ·r := #{i ′ : r x

ui ′ = r; uxi �= uxi ′}, the number of data items at group
u and level x except yui (x) that are associated with ϕur . This implies that muxk is
the number of partitions that arise in a population of nuxk data items, whose dis-
tribution is distributed according to a Dirichlet process with concentration parame-
ter αuπuk . It was shown by Antoniak (1974) that the distribution of muxk has the
form

p
(

muxk = m|z,m−uxk,πu

)
= �(αuπuk)

�(αuπuk + nuxk)
s(nuxk,m)(αuπuk)

m,

where s(n,m) are unsigned Stirling number of the first kind.

Sampling q. The conditional distribution of q can be obtained in a similar manner as
m. It can be shown that qk = ∑

u∈V quk where quk = #{t : ktur = k for some r}.
Moreover, quk is the number of partitions that arise in a population of muk atoms,
whose distributed according to a Dirichlet process with concentration parameter
α0βk :

p
(

quk = q|z, q−uk,β
)

= �(α0βk)

�(α0βk + muk)
s(muk, q)(α0βk)

q .

Sampling φ. The conditional distribution for φ can be obtained easily. Suppose that
the prior distribution H for φk is given by a mean function μ and covariance function
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C, which is reduced to a covariance matrix Ck when restricted to a finite number of
covariate values for x . Then the posterior distribution for φk is also Gaussian with
mean and covariance expressions given as follows:

C̃
−1
k = C−1

k +
∑

u∈V

diag

(

· · · ,
∑

x

nuxk, · · ·
)

/τ 2
u ,

C̃
−1
k μ̃k = C−1

k μk +
(

· · · ,
∑

u∈V

nu∑

i=1

Yui (·)I(zu·i = k)/τ 2
u , · · ·

)T

.
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