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Abstract In this paper, we consider a scale adjusted-type distance-based classifier
for high-dimensional data. We first give such a classifier that can ensure high accu-
racy in misclassification rates for two-class classification. We show that the classifier
is not only consistent but also asymptotically normal for high-dimensional data. We
provide sample size determination so that misclassification rates are no more than a
prespecified value. We propose a classification procedure called the misclassification
rate adjusted classifier. We further develop the classifier to multiclass classification.
We show that the classifier can still enjoy asymptotic properties and ensure high accu-
racy in misclassification rates for multiclass classification. Finally, we demonstrate
the proposed classifier in actual data analyses by using a microarray data set.

Keywords Asymptotic normality · Distance-based classifier · HDLSS ·
Sample size determination · Two-stage procedure

1 Introduction

High-dimensional data situations occur in many areas of modern science, such as
genetic microarrays, medical imaging, text recognition, finance, chemometrics, etc. A
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984 M. Aoshima, K. Yata

common feature of high-dimensional data is that the data dimension is high, however,
the sample size is relatively small. This is the so-called “HDLSS” or “large p, small
n” situation where p/n → ∞; here p is the data dimension and n is the sample
size. Substantial work had been done on the asymptotic behavior of eigenvalues of the
sample covariance matrix in the limit as p → ∞, see Johnstone (2001) and Paul (2007)
under Gaussian assumptions and Baik and Silverstein (2006) under non-Gaussian but
i.i.d. assumptions. Those literatures handled the cases when p and n increase at the
same rate, i.e. p/n → c > 0. The asymptotic behaviors of high-dimensional, low-
sample-size (HDLSS) data were studied by Hall et al. (2005), Ahn et al. (2007) and
Yata and Aoshima (2012a) when p → ∞ while n is fixed. They explored conditions to
give a geometric representation of HDLSS data. The HDLSS asymptotic study usually
assumes either the normality for the population distribution or a ρ-mixing condition for
the dependency of random variables in a sphered data matrix, see also Jung and Marron
(2009). However, Yata and Aoshima (2009) succeeded in investigating consistency
properties of both eigenvalues and eigenvectors of the sample covariance matrix in
general settings such as including the case when all eigenvalues are in the range
of sphericity. In addition, Yata and Aoshima (2010) created the cross-data-matrix
(CDM) methodology that provides effective inference on the eigenspace for HDLSS
data. Aoshima and Yata (2011a,b) developed a variety of inference, including two-
class classification, for high-dimensional data based on geometric representations of
HDLSS data and presented sample size determination to ensure prespecified accuracy.
In this paper, we make a first attempt on multiclass classification for high-dimensional
data, ensuring accuracy in misclassification rates. The key is a scale adjusted-type
distance-based classifier for multiclass classification.

Suppose we have independent and p-variate populations, πi , i = 1, . . ., k, having
unknown mean vector μi and unknown covariance matrix Σ i (≥ O) for each πi . We
do not assume that Σ1 = · · · = Σk . Let θ = (μ1, . . .,μk,Σ1, . . .,Σk). The eigen-
decomposition of Σ i is given by Σ i = H iΛi HT

i , where Λi is a diagonal matrix of
eigenvalues, λi1 ≥ · · · ≥ λi p ≥ 0, and H i is an orthogonal matrix of the corresponding
eigenvectors. We have independent and identically distributed (i.i.d.) observations,
xi1, . . ., xini , from each πi , where xi j = (xi1 j , . . ., xipj )

T, j = 1, . . ., ni . We assume

ni ≥ 2, i = 1, . . ., k. Let xi j = H iΛ
1/2
i zi j +μi , where zi j is considered as a sphered

data vector from a distribution with the zero mean vector and the identity covariance
matrix.

In this paper, we assume the following model as necessary:

xi j = Γ i yi j + μi (1)

for i = 1, . . ., k; j = 1, . . ., ni , where Γ i is a p × ri matrix for some ri > 0 such that
Γ iΓ

T
i = Σ i , and yi j , j = 1, . . ., ni , are i.i.d. random vectors having E( yi j ) = 0 and

Var( yi j ) = Iri . Here, Iri denotes the identity matrix of dimension ri . See Bai and
Saranadasa (1996) and Chen and Qin (2010) for the model. Let yi j = (yi1 j , . . ., yiri j )

T

for all i, j . As for yi j , i = 1, . . ., k, we assume that

(A-i) The fourth moments of each variable in yi j are uniformly bounded, E(y2
iq j y2

is j )= 1 and E(yiq j yis j yit j yiu j ) = 0 for all q �= s, t, u.
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Misclassification rate adjusted classifier 985

Note that (1) includes the case that Γ i = H iΛ
1/2
i and yi j = zi j . We assume the

following assumptions for Σ i s as necessary:

(A-ii)
tr(Σ4

i )

tr(Σ2
i )

2
→ 0 and

tr(Σ iΣ l)

tr(Σ2
j )

∈ (0,∞) as p → ∞ for i, j, l = 1, . . ., k.

Here, for a function, f (·), “ f (p) ∈ (0,∞) as p → ∞” implies lim inf p→∞ f (p) >

0 and lim supp→∞ f (p) < ∞. Note that “tr(Σ4
i )/tr(Σ2

i )
2 → 0 as p → ∞” is

equivalent to the condition that “λi1/tr(Σ2
i )

1/2 → 0 as p → ∞”.

Remark 1 If πi is Np(μi ,Σ i ), (A-i) naturally follows. If all λi j s are bounded such
as λi j ∈ (0,∞) as p → ∞, (A-ii) trivially holds. For a spiked model such as
λi j = ai j pαi j ( j = 1, . . ., ti ) and λi j = ci j ( j = ti + 1, . . ., p) with positive
constants, ai j s, ci j s and αi j s, and positive integers ti s, (A-ii) holds under the condition
that αi j < 1/2 for j = 1, . . ., ti (< ∞); i = 1, . . ., k. See Yata and Aoshima (2010)
for the details of a spiked model. As an interesting example, (A-ii) holds for Σ i ′ =
ci ′(ρ

|i− j |qi ′
i ′ ), i ′ = 1, . . ., k, where ci ′ and qi ′ are positive constants and 0 < ρi ′ < 1.

Let x0 be an observation vector of an individual belonging to one of the k pop-
ulations. We estimate μi and Σ i by xini = ∑ni

j=1 xi j/ni and Sini = ∑ni
j=1(xi j −

xini )(xi j − xini )
T/(ni − 1). When k = 2, a typical classification rule is that one

classifies an individual into π1 if

(x0 − x1n1)
T S−1

1n1
(x0 − x1n1) − log

{
det(S2n2)

det(S1n1)

}

< (x0 − x2n2)
T S−1

2n2
(x0 − x2n2), (2)

and into π2 otherwise. However, the inverse matrix of Sini does not exist in HDLSS
context (p > ni ). When Σ1 = Σ2, Saranadasa (1993) considered substituting the
identity matrix I p for Sini . Bickel and Levina (2004) considered the inverse matrix
defined by only diagonal elements of the pooled sample covariance matrix. Yata and
Aoshima (2012a) considered using a ridge-type inverse covariance matrix derived by
the noise reduction methodology. When Σ1 �= Σ2, Dudoit et al. (2002) considered
using the inverse matrix defined by only diagonal elements of Sini . Aoshima and Yata
(2011a) considered substituting {tr(Sini )/p}I p for Sini by using the difference of a
geometric representation of HDLSS data from each πi and showed that a quadratic
classifier has misclassification rates which are no more than a prespecified value. On the
other hand, Hall et al. (2005) and Marron et al. (2007) considered distance weighted
classifiers. Hall et al. (2005, 2008) and Chan and Hall (2009) considered distance-
based classifiers. The previous references mainly discussed two-class classification in
high-dimensional, low sample size settings.

In this paper, we consider a scale adjusted-type distance-based classifier given by
Chan and Hall (2009). In Sect. 2, we develop such a classifier that can ensure high
accuracy in misclassification rates for two-class classification. We show that the clas-
sifier is not only consistent but also asymptotically normal for high-dimensional data.
In Sect. 3, we provide sample size determination so that misclassification rates are
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no more than a prespecified value. We propose a classification procedure called the
misclassification rate adjusted classifier. In Sect. 4, we further develop the classifier
to multiclass classification when k ≥ 3. This is the first attemp t on multiclass clas-
sification ensuring accuracy in misclassification rates. We show that the classifier can
still enjoy asymptotic properties and ensure high accuracy in misclassification rates
for multiclass classification. Finally, in Sect. 5, we demonstrate the proposed classifier
in actual data analyses by using a microarray data set.

2 Two-class classification

Throughout this section, we assume k = 2. We consider a classification rule that is
given by substituting the identity matrix I p for Sini in (2) as follows: one classifies
an individual into π1 if

(

x0 − x1n1 + x2n2

2

)T

(x2n2 − x1n1) − tr(S1n1)

2n1
+ tr(S2n2)

2n2
< 0 (3)

and into π2 otherwise. Here, −tr(S1n1)/(2n1) + tr(S2n2)/(2n2) is a bias-correction
term. On the other hand, Chan and Hall (2009) considered a scale-adjusted distance-
based classifier as follows: One classifies an individual into π1 if

n1∑

j=1

||x0 − x1 j ||2
n1

−
n2∑

j=1

||x0 − x2 j ||2
n2

−
n1∑

i=1

n1∑

j=1

||x1i − x1 j ||2
2n1(n1 − 1)

+
n2∑

i=1

n2∑

j=1

||x2i − x2 j ||2
2n2(n2 − 1)

< 0 (4)

and into π2 otherwise. We note the classifier given by (3) is equivalent to (4).

2.1 Consistency of the classifier

We denote the error of misclassifying an individual from π1 (into π2) or π2 (into π1)
by e(2|1) or e(1|2), respectively. Let Δ = ||μ1 − μ2||2 and

w(x0|n1, n2) =
(

x0 − x1n1 + x2n2

2

)T

(x2n2 − x1n1) − tr(S1n1)

2n1
+ tr(S2n2)

2n2
.

We consider asymptotic properties of w(x0|n1, n2) under the following assumptions:

(A-iii)
(μ1 − μ2)

TΣ i (μ1 − μ2)

Δ2 → 0 as p → ∞ for i = 1, 2;

(A-iv)
max j=1,2 tr(Σ2

j )

niΔ2 → 0 as p → ∞ either when ni is fixed or ni → ∞ for

i = 1, 2.
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Theorem 1 Assume (A-iii) and (A-iv). Then, we have as p → ∞ that

w(x0|n1, n2)

Δ
= (−1)i

2
+ op(1) when x0 ∈ πi

for i = 1, 2. For the classifier given by (3), we have as p → ∞ that

e(2|1) → 0 and e(1|2) → 0. (5)

Remark 2 If one can assume that max j=1,2{tr(Σ2
j )}/Δ2 → 0 as p → ∞, it follows

naturally that (A-iii) and (A-iv) hold from the fact that (μ1 − μ2)
TΣ i (μ1 − μ2) ≤

Δλi1 ≤ Δtr(Σ2
i )

1/2. Then, one can claim Theorem 1 even when ni is fixed for i = 1, 2.

Remark 3 Chan and Hall (2009) gave (5) for a different distance-based classifier under
different assumptions.

Here, we consider a quadratic classifier given by Aoshima and Yata (2011a). By
substituting {tr(Sini )/p}I p for Sini in (2), they proposed the following classification
rule: One classifies an individual into π1 if

p||x0 − x1n1 ||2
tr(S1n1)

− p||x0 − x2n2 ||2
tr(S2n2)

− p log

{
tr(S2n2)

tr(S1n1)

}

− p

n1
+ p

n2
< 0 (6)

and into π2 otherwise. Here, −p/n1 + p/n2 is a bias correction term. Let Δ� =
Δ+ tr(Σ1 −Σ2)

2/{2 maxi=1,2 tr(Σ i )}. Then, from the results given by Aoshima and
Yata (2011a), we have the following theorem.

Theorem 2 Assume that tr(Σ1)/tr(Σ2) ∈ (0,∞) as p → ∞ and lim supp→∞
{Δ/tr(Σ i )} < ∞ for i = 1, 2. Assume also that

(AY-i)
tr(Σ2

i )tr(Σ1 − Σ2)
2

tr(Σ i )2Δ2
�

→ 0 as p → ∞ for i = 1, 2;

(AY-ii)
(μ1 − μ2)

TΣ i (μ1 − μ2)

Δ2
�

→ 0 as p → ∞ for i = 1, 2;

(AY-iii)
max j=1,2 tr(Σ2

j )

niΔ2
�

→ 0 as p → ∞ either when ni is fixed or ni → ∞ for

i = 1, 2.

For the classifier given by (6), we have (5) as p → ∞ under (1) with (A-i).

Remark 4 If we can assume that max j=1,2{tr(Σ2
j )}/Δ2

� → 0 and tr(Σ1)/tr(Σ2) ∈
(0,∞) as p → ∞, it follows that (AY-i) to (AY-iii) hold even when ni is fixed
for i = 1, 2. It should be noted that if one can assume that lim inf p→∞ |tr(Σ1)/

tr(Σ2) − 1| > 0 and tr(Σ2
i )/tr(Σ i )

2 → 0 as p → ∞ for i = 1, 2, we can claim that
max j=1,2{tr(Σ2

j )}/Δ2
� → 0 as p → ∞ even when μ1 = μ2 (i.e., Δ = 0).
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The conditions (AY-ii) and (AY-iii) are milder than (A-iii) and (A-iv) from the
fact that Δ� ≥ Δ. On the other hand, the classifier given by (3) holds (5) without
assuming (1) with (A-i). Hence, we recommend that the experimenter should use
the classifier given by (6) if Δ� is sufficiently larger than Δ when (1) with (A-i) is
assumed. Otherwise, i.e. if Δ� is not sufficiently larger than Δ or if (1) with (A-i) (or
(AY-i)) is not assumed, the experimenter is recommended to use the classifier given
by (3).

Remark 5 Let Δ̂ = ||x1n1 − x2n2 ||2 −∑2
i=1 tr(Sini )/ni and Δ̂� = Δ̂ + tr(S1n1 −

S2n2)
2/{2 maxi=1,2 tr(Sini )}. Note that Eθ (Δ̂) = Δ. Under (A-iv), it holds that

Δ̂/Δ = 1 + op(1). Under the assumptions of Theorem 2, it holds that Δ̂�/Δ� =
1 + op(1). Thus by using Δ̂ and Δ̂�, one can check whether Δ� is sufficiently larger
than Δ or not.

2.2 Simulation

We used computer simulations to compare the performance of the classifiers. We
generated xi j −μi , j = 1, 2, . . ., (i = 1, 2) independently from a pseudorandom p-
variate t-distribution, tp(0,Σ i , ν) with mean zero, covariance matrix Σ i and degrees
of freedom ν. Note that tp(0,Σ i , ν) converges to Np(0,Σ i ) as ν → ∞. We set

μ2 = 0, Σ1 = c1 B(0.3|i− j |1/3
)B and Σ2 = c2 B(0.3|i− j |1/3

)B, where

B = diag[{0.5 + 1/(p + 1)}1/2, . . ., {0.5 + p/(p + 1)}1/2]. (7)

We considered two cases for μ1: (a) μ1 = (1, . . ., 1, 0, . . ., 0)T whose first 	p2/3

elements are 1, and (b) μ1 = (0, . . ., 0, 1, . . ., 1)T whose last 	p2/3
 elements are 1.
Here, 	x
 denotes the smallest integer ≥ x . Note that Δ = ||μ1 − μ2||2 = 	p2/3

and tr(Σ2

i ) = O(p), i = 1, 2. One can check that (A-iii) and (A-iv) are met even for
fixed ni s from the fact that (μ1 − μ2)

TΣ i (μ1 − μ2) ≤ Δλi1 ≤ Δtr(Σ2
i )

1/2. We con-
sidered three cases: (I) p = 2s, s = 5, . . ., 10, (n1, n2) = (10, 10), (c1, c2) =
(1, 1) and ν = 25 for (a) and (b); (II) p = 2s, s = 5, . . ., 10, (n1, n2) =
(10, 20), (c1, c2) = (0.8, 1.2) and ν = 25 for (b); and (III) p = 500, (n1, n2) =
(10, 20), (c1, c2) = (0.8, 1.2) and ν = 10(10)60 for (b). Note that Δ� = Δ in case
(I) and Δ� = Δ + p/15 in cases (II) and (III). We compared the classifiers, (3),
(6) and the following three classifiers: (i) DLDA given by Dudoit et al. (2002) and
Bickel and Levina (2004); (ii) DQDA given by Dudoit et al. (2002); and (iii) the
hard-margin linear support vector machine (HM-LSVM) given by Vapnic (1999). The
rule of diagonal linear discriminant analysis (DLDA) is given for x0 ∈ π1 (or π2)
by

{x0 − (x1n1 + x2n2)/2}T S−1
d (x2n2 − x1n1) < 0 (or ≥ 0),

where Sd = diag(s1n, . . ., spn), s jn =∑2
i=1
∑ni

l=1(xi jl − xi jni )
2/(n1 + n2 − 2) and

xi jni = ∑ni
l=1 xi jl/ni . The rule of diagonal quadratic discriminant analysis (DQDA)

is given for x0 ∈ π1 (or π2) by
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Misclassification rate adjusted classifier 989

Fig. 1 The left panel displays e in case of (a) μ1 = (1, . . ., 1, 0, . . ., 0)T and the right panel displays e in
case of (b) μ1 = (0, . . ., 0, 1, . . ., 1)T. In each diagram, A, B, C, D and E denote (3), (6), DLDA, DQDA and
HM-LSVM, respectively, for ν = 25, (c1, c2) = (1, 1), (n1, n2) = (10, 10) and p = 2s (s = 5, . . ., 10)

Fig. 2 In case of (b) μ1 = (0, . . ., 0, 1, . . ., 1)T, the left panel displays e(2|1), the middle panel displays
e(1|2) and the right panel displays e. In each diagram, A, B, C, D and E denote (3), (6), DLDA, DQDA
and HM-LSVM, respectively, for ν = 25, (c1, c2) = (0.8, 1.2), (n1, n2) = (10, 20) and p = 2s (s =
5, . . ., 10). In the left panel, e(2|1) is not described for D because the rate was too high

(x0 − x1n1)
T S−1

d(1)(x0 − x1n1) − (x0 − x2n2)
T S−1

d(2)(x0 − x2n2)

− log

{
det(Sd(2))

det(Sd(1))

}

< 0 (or ≥ 0),

where Sd(i) = diag(s(i)1ni , . . ., s(i)pni ) and s(i) jni = ∑ni
l=1(xi jl − xi jni )

2/(ni − 1).
Note that the HDLSS data (p > n1 + n2) are linearly separable by a hyper-
plane. Thus we used the hard-margin support vector machine. We checked 2000
times for x0 ∈ πi (i = 1, 2) about whether each rule does (or does not) classify
x0 correctly and defined Pir = 0 (or 1) accordingly for each πi . We calculated
e(2|1) = ∑2000

r=1 P1r/2000 and e(1|2) = ∑2000
r=1 P2r/2000 as estimates of e(2|1) and

e(1|2). Note that the standard deviation of the estimates are less than 0.011. Also, we
calculated an error rate, e = {e(2|1) + e(1|2)}/2.

In Fig. 1, we plotted only e for case (I) since e(1|2) and e(2|1) were of almost the
same rate under the settings as n1 = n2 and Σ1 = Σ2. In Figs. 2 and 3, we plotted
e(2|1), e(1|2) and e for cases (II) and (III), respectively. In each diagram, A, B, C,
D and E denote (3), (6), DLDA, DQDA, and HM-LSVM, respectively. We observed
that (3) gives a preferable performance for both e(2|1) and e(1|2) in those cases.
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990 M. Aoshima, K. Yata

Fig. 3 In case of (b) μ1 = (0, . . ., 0, 1, . . ., 1)T, the left panel displays e(2|1), the middle panel displays
e(1|2) and the right panel displays e. In each diagram, A, B, C, D and E denote (3), (6), DLDA, DQDA and
HM-LSVM, respectively, for p = 500, (c1, c2) = (0.8, 1.2), (n1, n2) = (10, 20) and ν = 10(10)60. In
the left panel, e(2|1) is not described for D because the rate was too high

In Fig. 1, (6) gave a little worse performance compared to (3). On the other hand,
(6) gave a preferable performance for the unbalanced cases as observed in Figs. 2
and 3. In Fig. 3, (6) gave a better performance compared to (3) when ν is large and it
gave a bad performance when ν is not large enough for πi s to satisfy (A-i). However,
(3) seems to perform well even when ν = 10.

We observed that DLDA gives a better performance compared to (3) for case
(a) in Fig. 1. However, DLDA gave a worse performance for case (b) even in
Fig. 1. This is probably due to the distance between the two populations. As for
(3), Δ = ||μ1 − μ2||2 = 	p2/3
 is considered as the distance for both the cases,
(a) and (b). Let Σd = diag(σ1(d), . . ., σp(d)) having σ j (d) = Eθ (s jn). As for
DLDA, Δd = (μ1 − μ2)

TΣ−1
d (μ1 − μ2) is considered as the distance. Note that

Eθ {w(x0)DL |x0 ∈ π2} − Eθ {w(x0)DL |x0 ∈ π1} = Δd , where w(x0)DL =
{x0 −(μ1 +μ2)/2}TΣ−1

d (μ2 −μ1). Then, Δd =∑	p2/3

j=1 σ−1

j (d) > Δ for (a) and Δd =
∑p

j=p+1−	p2/3
 σ−1
j (d) < Δ for (b). This is probably the reason about (3) vs. DLDA.

We observed from Figs. 2 and 3 that DLDA and HM-LSVM give an unbalanced
performance between e(2|1) and e(1|2) and DQDA leads an undesirable performance
for e(2|1) as p increases. This is probably due to the bias of those classifiers when p
is large. For example, let us denote Σd(i) = diag(σ(i)1, . . ., σ(i)p), i = 1, 2, having
σ(i) j = Eθ (s(i) jni ), and assume σ(i) j s are known. Then, the classifier for DQDA is
given by w(x0)DQ = (x0−x1n1)

TΣ−1
d(1)(x0−x1n1)−(x0−x2n2)

TΣ−1
d(2)(x0−x2n2)−

log{det(Σd(2))}+ log{det(Σd(1))}. It holds that Eθ {w(x0)DQ} = p+ p/n1 − p/n2 −
tr(Σd(1)Σ

−1
d(2))−(μ1−μ2)

TΣ−1
d(2)(μ1−μ2)−log{det(Σd(2))}+log{det(Σd(1))} when

x0 ∈ π1. Hence, the bias of w(x0)DQ is p/n1− p/n2 which becomes formidably large
as p increases. Furthermore, if σ(i) j s are unknown, DQDA would cause extra bias for
the estimation. Recently, Huang et al. (2010) gave bias corrected DLDA and DQDA.
However, they gave a bias correction only when the population is Gaussian. As for HM-
LSVM, Chan and Hall (2009) gave a scale-adjusted SVM. On the other hand, the clas-
sifier by (3) is unbiased even when the population is non-Gaussian and it always holds
that Eθ {w(x0|n1, n2)} = (−1)iΔ/2 for x0 ∈ πi . This is probably the main reason
why the classifier by (3) gives a preferable performance for both e(2|1) and e(1|2) as p
increases. See Chan and Hall (2009) for numerical comparisons among the classifiers
by (3) (or (4)) and other distance-based classifiers including the scale-adjusted SVM.
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2.3 Asymptotic normality of the classifier

Let

δi =
{

tr(Σ2
i )

ni
+ tr(Σ1Σ2)

ni ′
+ tr(Σ2

1)

2n1(n1 − 1)
+ tr(Σ2

2)

2n2(n2 − 1)

}1/2

(8)

for i( �= i ′) = 1, 2. We assume an extra assumption:

(A-v)
(μ1 − μ2)

TΣ i (μ1 − μ2)

δ2
i

→ 0 as p → ∞ and n j → ∞, j = 1, 2, for

i = 1, 2.

Under (A-v), note that Varθ {w(x0|n1, n2)}/δ2
i = 1 + o(1) when x0 ∈ πi for i = 1, 2.

We have the following theorem.

Theorem 3 Assume (1) with (A-i). Assume also (A-ii) and (A-v). Then, we have as
p → ∞ and ni → ∞, i = 1, 2, that

w(x0|n1, n2) − (−1)iΔ/2

δi
⇒ N (0, 1) when x0 ∈ πi for i = 1, 2, (9)

where “⇒” denotes the convergence in distribution and N (0, 1) denotes a random
variable distributed as the standard normal distribution.

Remark 6 From Theorem 3, for the classifier given by (3), we have as p → ∞ and
ni → ∞, i = 1, 2, that

e(2|1) = Φ

(−Δ

2δ1

)

+ o(1) and e(1|2) = Φ

(−Δ

2δ2

)

+ o(1) (10)

under (A-ii), (A-v) and (1) with (A-i), where Φ(·) denotes the cumulative distribution
function of a N (0, 1) random variable.

Remark 7 Yata and Aoshima (2012b) showed asymptotic normality for (3) under
different conditions such as ni s are fixed. Chan and Hall (2009) showed asymptotic
normality for the distance-based classifier given by (4) under different assumptions.

Let us consider an example such as πi : Np(μi , Σ i ), i = 1, 2, having
μ1 = 0 and μ2 = (1, . . ., 1, 0, . . ., 0)T whose first 	tr(Σ2

1)
1/2
 elements are 1.

Here, Σ1 = B(0.3|i− j |1/3
)B and Σ2 = 1.2B(0.3|i− j |1/3

)B, where B is defined
by (7). We set n1 = log2 p and n2 = 2 log2 p. Note that Δ = ||μ1 − μ2||2 =
	tr(Σ2

1)
1/2
 = tr(Σ2

1)
1/2{1+o(1)}, Δ/δ1 = (1/n1+1.2/n2)

−1/2{1+o(1)}, Δ/δ2 =
(1.2/n1 + 1.44/n2)

−1/2{1 + o(1)} and δ2
2/δ2

1 = 1.2{1 + o(1)} as p → ∞. We
considered the cases of p = 2s, s = 3, . . ., 14. Independent pseudorandom 2000
observations of w(x0|n1, n2) were generated when x0 ∈ π1 or π2. In the end of
the r th replication, we checked whether the rule (3) does (or does not) classify
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992 M. Aoshima, K. Yata

Fig. 4 When (n1, n2) = (log2 p, 2 log2 p) and p = 2s (s = 3, . . ., 14), the left panel displays
e(2|1) (dashed line) and Φ{−Δ/(2δ1)} (solid line) and the right panel displays e(1|2) (dashed line) and
Φ{−Δ/(2δ2)} (solid line)

Fig. 5 The histograms of w(x0|n1, n2)/δ1 for x0 ∈ π1 or π2 together with the probability densities of A:
N {−Δ/(2δ1), 1} and B: N {Δ/(2δ1), δ2

2/δ2
1} when p = 32 and p = 1024

x0 correctly and defined Pir = 0 (or 1) accordingly for each πi . We calculated
e(2|1) = ∑2000

r=1 P1r/2000 and e(1|2) = ∑2000
r=1 P2r/2000 as estimates of e(2|1) and

e(1|2). Note that the standard deviation of the estimates is less than 0.011. From
Remark 6, we also calculated Φ{−Δ/(2δ1)} and Φ{−Δ/(2δ2)}. In Fig. 4, we plotted
e(2|1) and e(1|2) together with Φ{−Δ/(2δi )}, i = 1, 2. As expected theoretically,
we observed that the plots become close to Φ{−Δ/(2δi )} as p increases. In Fig. 5, we
gave two histograms of w(x0|n1, n2)/δ1 for x0 ∈ π1 or π2 when p = 32 (= 25) and
p = 1024 (= 210). From Theorem 3, we also displayed the asymptotic probability den-
sities of w(x0|n1, n2)/δ1, N {−Δ/(2δ1), 1} when x0 ∈ π1 and N {Δ/(2δ1), δ

2
2/δ2

1}
when x0 ∈ π2. When p = 32, the histogram appears different from the prob-
ability density. However, when p = 1024, it becomes close to the probability
density.

3 Misclassification rate adjusted classifier for two-class classification

In this section, we develop a scale-adjusted distance-based classifier that ensures mis-
classification rates are no more than a prespecified value. The advantage of the classifier
is quite robust and applicable to multiclass classification.
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3.1 Sample size determination to control misclassification rates

We are interested in designing a classifier that ensures both e(2|1) ≤ α and e(1|2) ≤ β

when Δ ≥ ΔL for prespecified constants, α, β ∈ (0, 1/2) and ΔL (> 0). We assume
ΔL = o{mini=1,2 tr(Σ2

i )
1/2}. We adjust the classification rule in (3) by using some

tuning parameter, γ , as follows: one classifies an individual into π1 if

w(x0|n1, n2) < γ (11)

and into π2 otherwise. Let zα be a constant such that P{N (0, 1) ≥ zα} = α. We
consider ni s satisfying δi ≤ ΔL/(zα + zβ) for i = 1, 2, where δi is defined by (8).
From the fact that tr(Σ1Σ2) ≤ {tr(Σ2

1)tr(Σ
2
2)}1/2, it holds for i ′ �= i that

δ2
i ≤ tr(Σ2

i )

ni − 1
+ tr(Σ2

i ′)
1/2 max j=1,2 tr(Σ2

j )
1/2

ni ′ − 1
≤ max

j=1,2
tr(Σ2

j )
1/2

2∑

i=1

tr(Σ2
i )

1/2

ni − 1
.

Let σ = maxi=1,2 tr(Σ2
i )

1/2. Then, we find the sample size for each πi as

ni ≥ (zα + zβ)2σ

Δ2
L

tr(Σ2
i )

1/4
2∑

j=1

tr(Σ2
j )

1/4 + 1 (= Ci , say). (12)

Note that Ci/p → 0, i = 1, 2, as p → ∞ under the condition that maxi=1,2
{tr(Σ2

i )}/Δ2
L = o(p). We also note that ni → ∞, i = 1, 2, as p → ∞ from

the fact that ΔL = o{mini=1,2 tr(Σ2
i )

1/2}. Then, we have the following theorem.

Theorem 4 Assume (1) with (A-i). Assume also (A-ii) and (A-iii). Let γ = ΔL(zα −
zβ)/{2(zα + zβ)} in (11). Then, for the classification rule given by (11) with (12), it
holds as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β when Δ ≥ ΔL .

Remark 8 One can design ΔL by using the two sample test given by Aoshima and
Yata (2011a,b) or Chen and Qin (2010). Under the regularity conditions, it holds as
p → ∞ and ni → ∞, i = 1, 2, that

Δ̂ − Δ

κ
⇒ N (0, 1),

where Δ̂ is defined in Remark 5 and

κ =
{

2
2∑

i=1

Wini

ni (ni − 1)
+ 4

tr(S1n1 S2n2)

n1n2

}1/2
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994 M. Aoshima, K. Yata

having Wini defined by (16). It follows that Pθ (Δ̂/κ − zα′ ≤ Δ/κ) → 1 − α′ for
given α′ ∈ (0, 1/2). Thus, one may design a lower bound of Δ by

ΔL = Δ̂ − κzα′

for sufficiently small α′. Then, it holds that ΔL/Δ = 1 + op(1) under (A-iii) and (1)
with (A-i) when tr(Σ2

i )/(n
2
i Δ

2) → 0, i = 1, 2.

3.2 Two-stage procedure

Since Σ1 and Σ2 are unknown, it is necessary to estimate Ci in (12) with some pilot
samples. We proceed with the following two steps:

1. Choose mi (≥ 4) satisfying

mi

Ci
≤ 1,

Ci

m2
i

→ 0 and
Ci

mi

tr(Σ4
i )

tr(Σ2
i )

2
→ 0 as p → ∞ under (A-ii) (13)

for i = 1, 2. Note that mi holds (13) when it follows that mi/Ci ∈ (0, 1) as
p → ∞. Take pilot samples, xi j , j = 1, . . ., mi , of size mi from each πi . Then,

calculate Wimi for each πi according to (16). Let σ̂ = maxi=1,2 W 1/2
imi

. We recall
that 	x
 denotes the smallest integer ≥ x . Define the total sample size for each πi

by

Ni = max

⎧
⎨

⎩
mi ,

⎡

⎢
⎢
⎢

(zα + zβ)2σ̂

Δ2
L

W 1/4
imi

2∑

j=1

W 1/4
jm j

⎤

⎥
⎥
⎥

+ 1

⎫
⎬

⎭
. (14)

2. For each i , if Ni = mi , do not take any additional samples from πi and otherwise,
that is if Ni > mi , take additional samples, xi j , j = mi + 1, . . ., Ni , of size
Ni − mi from πi . By combining the initial samples and the additional samples,
calculate xi Ni and Si Ni , i = 1, 2. Then, we classify an individual into π1 if

w(x0|N1, N2) < γ, (15)

and into π2 otherwise, where γ = ΔL(zα − zβ)/{2(zα + zβ)}.
We have the following theorem.

Theorem 5 Assume (1) with (A-i). Assume also (A-ii) and (A-iii). Then, for the clas-
sification rule given by (15) with (13) and (14), it holds as p → ∞ that

lim sup e(2|1) ≤ α and lim sup e(1|2) ≤ β when Δ ≥ ΔL .

Remark 9 If Δ� is sufficiently larger than Δ, we recommend to use the two-stage
classification procedure based on (6) that was developed by Aoshima and Yata (2011a).

123



Misclassification rate adjusted classifier 995

Remark 10 Under (A-ii), (13) and (1) with (A-i), it holds as p → ∞ that
Varθ {Wimi /tr(Σ2

i )} = o(C−1
i ). Then, we claim as p → ∞ that Ni/Ci = 1 + op(1),

which is in the HDLSS situation in the sense that Ni/p = op(1) under the condition
that maxi=1,2{tr(Σ2

i )}/Δ2
L = o(p).

Remark 11 Under (1) with (A-i), it holds as mi → ∞, i = 1, 2, that Ni

/ max{Ci , mi } = 1+op(1). Hence, by comparing mi with Ni , one may check whether
(13) holds or not from the fact that mi holds (13) when mi/Ci ∈ (0, 1) as p → ∞.

Remark 12 One may choose mi (≥ 4) such as satisfies mi/Ci > 1 for some i . Then,
the assertion in Theorem 5 is still claimed. However, it may cause over-sampling in
the sense that Ni/Ci > 1 w.p.1.

3.3 Simulation

In order to examine the performance of the classifier given by (15) with (13) and
(14), we used computer simulations. Independent pseudo random observations were
generated from πi : Np(μi ,Σ i ), i = 1, 2. We considered Σ1 = B(0.3|i− j |1/3

)B and

Σ2 = B(0.4|i− j |1/3
)B, where B is defined by (7). We set μ1 = (1, . . ., 1, 0, . . ., 0)T

whose first 30 elements are 1 and μ2 = (0, . . ., 0)T, so that Δ = ||μ1 − μ2||2 = 30.
We prespecified ΔL = 30. We set mi = 	0.5 × (Ci − 1)
 + 1, i = 1, 2, where Ci is
defined by (12). We considered four cases: (a) p = 400 when (α, β) = (0.1, 0.1), (b)
p = 1200 when (α, β) = (0.1, 0.1), (c) p = 400 when (α, β) = (0.05, 0.15), and
(d) p = 1200 when (α, β) = (0.05, 0.15).

By averaging the outcomes from 2000 (= R, say) replications, the findings were
summarized in Table 1. Under a fixed scenario, suppose that the r th replication ends
with Ni = nir (i = 1, 2) observations for r = 1, . . ., R. Let ni = R−1∑R

r=1 nir and

Table 1 Accuracy of the classifier given by (15) with (13) and (14)

Ci ni ni − Ci V (ni ) e( j |i) s{e( j |i)}
When (α, β) = (0.1, 0.1)

p = 400: (m1, m2) = (8, 9)

π1 14.43 14.85 0.42 16.12 0.085 0.00624

π2 16.1 16.74 0.64 29.85 0.102 0.00675

p = 1200: (m1, m2) = (22, 24)

π1 41.72 41.97 0.26 14.89 0.084 0.00619

π2 46.92 47.16 0.24 30.31 0.099 0.00668

When (α, β) = (0.05, 0.15)

p = 400: (m1, m2) = (9, 10)

π1 15.69 15.95 0.25 14.28 0.044 0.00456

π2 17.53 17.99 0.46 26.92 0.152 0.00802

p = 1200: (m1, m2) = (24, 27)

π1 45.56 46.0 0.45 16.11 0.033 0.00397

π2 51.25 51.77 0.52 33.23 0.133 0.00758
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996 M. Aoshima, K. Yata

V (ni ) = (R − 1)−1∑R
r=1(nir − ni )

2. In the end of the r th replication, we checked
whether the classifier does (or does not) classify x0 from πi correctly and defined
Pir = 0 (or 1) accordingly for each i . We calculated e(2|1) = R−1∑R

r=1 P1r and
e(1|2) = R−1∑R

r=1 P2r as estimates of e(2|1) and e(1|2). Their estimated standard
errors were given by s{e( j |i)} for i �= j , where s2{e( j |i)} = R−1e( j |i){1 − e( j |i)}.
Throughout, the classifier given by (15) with (13) and (14) gave adequate performances
for all the cases when considered those standard errors.

3.4 Estimation of tr(Σ2)

Throughout this section, we omit the subscript with regard to the class. Yata and
Aoshima (2013) gave a method called the extended cross-data-matrix (ECDM)
methodology that is an extension of the CDM methodology developed by Yata and
Aoshima (2010). The ECDM methodology can be applied to obtain an unbiased esti-
mator of tr(Σ2) as follows: we assume n ≥ 4. Let n(1) = 	n/2
 and n(2) = n − n(1).
Let

V n(1)(k) =
{

{�k/2
 − n(1) + 1, . . ., �k/2
} if �k/2
 ≥ n(1),

{1, . . ., �k/2
} ∪ {�k/2
 + n(2) + 1, . . ., n} otherwise;

V n(2)(k) =
{

{�k/2
 + 1, . . ., �k/2
 + n(2)} if �k/2
 ≤ n(1),

{1, . . ., �k/2
 − n(1)} ∪ {�k/2
 + 1, . . ., n} otherwise

for k = 3, . . ., 2n − 1, where �x
 denotes the largest integer ≤ x . Let #(S) denote
the number of elements in a set S. Note that #(V n(l)(k)) = n(l), l = 1, 2, V n(1)(k) ∩
V n(2)(k) = ∅ and V n(1)(k) ∪ V n(2)(k) = {1, . . ., n} for k = 3, . . ., 2n − 1. Also, note
that i ∈ V n(1)(i+ j) and j ∈ V n(2)(i+ j) for i < j (≤ n). Let

xn(1)(k) = n−1
(1)

∑

j∈V n(1)(k)

x j and xn(2)(k) = n−1
(2)

∑

j∈V n(2)(k)

x j

for k = 3, . . ., 2n − 1. Then, Yata and Aoshima (2013) gave an estimator of tr(Σ2)

by

Wn = 2un

n(n − 1)

n∑

i< j

{
(xi − xn(1)(i+ j))

T(x j − xn(2)(i+ j))
}2

, (16)

where un = n(1)n(2)/{(n(1) −1)(n(2) −1)}. Note that Eθ (Wn) = tr(Σ2). We have the
following theorem.

Theorem 6 Assume (1) with (A-i). Then, it holds that

Varθ

(
Wn

tr(Σ2)

)

= 4

n2 {1 + o(1)} + O

{
tr(Σ4)

tr(Σ2)2n

}

as n → ∞ either when p → ∞ or p is fixed.
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Misclassification rate adjusted classifier 997

Further, if x j is Gaussian, it holds that Varθ {Wn/tr(Σ2)} = 4{1 + o(1)}/n2 +
8tr(Σ4){1 + o(1)}/{tr(Σ2)2n} as n → ∞ either when p → ∞ or p is fixed. Bai and
Saranadasa (1996) and Srivastava (2005) considered an estimator of tr(Σ2) by Vn =
c−1

n {tr(S2
n)− tr(Sn)

2/(n − 1)} with cn = (n − 2)(n + 1)/(n − 1)2. They showed that,
when x j is Gaussian, it holds that Eθ (Vn) = tr(Σ2) and Varθ {Vn/tr(Σ2)} = 4{1 +
o(1)}/n2+8tr(Σ4){1+o(1)}/{tr(Σ2)2n}. It should be noted that Vn is not an unbiased
estimator unless x j s are Gaussian. In addition, one cannot claim Varθ {Vn/tr(Σ2)} <

∞ unless the eighth moments of each variable in y j are uniformly bounded.

4 Multiclass classification

In this section, we consider k (≥ 3)-class classification for high-dimensional data. Let

Yi (x0|ni ) = ||x0 − xini ||2 − tr(Sini )

ni

for i = 1, . . ., k. We consider a classification rule in which one classifies an individual
into πi if

max

{

argmin
j=1,...,k

Y j (x0|n j )

}

= i. (17)

For the case that argmin j=1,...,kY j (x0|n j ) = {i1, . . ., il} with integers l ∈ [2, k] and
i1 < · · · < il , we have that max{argmin j=1,...,kY j (x0|n j )} = il . Note that the dif-
ference, Y1(x0|n1)/2 − Y2(x0|n2)/2, coincides with the classifier, w(x0|n1, n2), dis-
cussed in Sect. 2.1.

4.1 Asymptotic properties of the classifier

Let Δi j = ||μi − μ j ||2 for i, j = 1, . . ., k; i �= j . We assume the followings:

(A-vi)
(μi − μ j )

TΣ i (μi − μ j )

Δ2
i j

→ 0 as p → ∞ for i, j = 1, . . ., k; i �= j ;

(A-vii)
maxi ′=1,...,k tr(Σ2

i ′)

niΔ
2
i j

→ 0 as p → ∞ either when ni is fixed or ni → ∞ for

i, j = 1, . . ., k; i �= j .

We denote the error of misclassifying an individual from πi (into another class) by
e(i).

Theorem 7 Assume (A-vi) and (A-vii). Then, for the classification rule given by (17),
we have as p → ∞ that

e(i) → 0 for i = 1, . . ., k.
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998 M. Aoshima, K. Yata

Remark 13 If one can assume that maxi ′=1,...,k{tr(Σ2
i ′)}/Δ2

i j → 0 as p → ∞ for
i, j = 1, . . ., k; i �= j , it follows naturally that (A-vi) and (A-vii) hold. Then, one can
claim Theorem 7 even when ni is fixed for i = 1, . . ., k.

Let

δi j =
{

tr(Σ2
i )

ni
+ tr(Σ iΣ j )

n j
+ tr(Σ2

i )

2ni (ni − 1)
+ tr(Σ2

j )

2n j (n j − 1)

}1/2

for i, j = 1, . . ., k; i �= j . We assume an extra assumption:

(A-viii)
(μi − μ j )

TΣ i (μi − μ j )

δ2
i j

→ 0 as p → ∞ and ni ′ → ∞, i ′ = 1, . . ., k,

for i, j = 1, . . ., k; i �= j .

Theorem 8 Assume (1) with (A-i). Assume also (A-ii) and (A-viii). We have as p →
∞ and ni → ∞, i = 1, . . ., k, that

Yi (x0|ni ) − Y j (x0|n j ) + Δi j

2δi j
⇒ N (0, 1) when x0 ∈ πi

for i, j = 1, . . ., k; i �= j .

Corollary 1 Assume (1) with (A-i). Assume also (A-ii) and (A-viii). For the classi-
fication rule given by (17), we have as p → ∞ and ni → ∞, i = 1, . . ., k, that

e(i) ≤
k∑

j ( �=i)=1

Φ{−Δi j/(2δi j )} + o(1) for i = 1, . . ., k.

4.2 Sample size determination to control misclassification rates

Let Δi = min j ( �=i)=1,...,k Δi j for i = 1, . . ., k. We are interested in design-
ing a classifier having e(i) ≤ αi when Δi ≥ Δi L for all i = 1, . . ., k, where
αi ∈ (0, 1/2) and Δi L (> 0), i = 1, . . ., k, are prespecified constants. We
assume Δi L = o{tr(Σ2

i )
1/2}, i = 1, . . ., k. Let σ = maxi=1,...,k tr(Σ2

i )
1/2 and

σi = max j ( �=i)=1,...,k tr(Σ2
j )

1/2. Let α(i) = min j ( �=i)=1,...,k α j . Then, we find the
sample size for each πi as

ni ≥ (zαi /(k−1) + zα(i)/(k−1))
2σ

Δ2
i L

tr(Σ2
i )

1/4{tr(Σ2
i )

1/4 + σ
1/2
i } + 1 (= Ci , say).

(18)

According to (18), we take samples from each πi in order to calculate Yi (x0|ni ).
We consider the following classification procedure:

[Misclassification rate adjusted classifier (MRAC)]

(Step 1) Set i = 0.
(Step 2) Put i = i + 1. If i = k, go to Step 4; otherwise go to Step 3.

123



Misclassification rate adjusted classifier 999

(Step 3) If it holds that

Yi (x0|ni ) − Y j (x0|n j ) < max(Δi L ,Δ j L)
zαi /(k−1) − zα j /(k−1)

zαi /(k−1) + zα j /(k−1)

for all j = i + 1, . . ., k, go to Step 4; otherwise go to Step 2.
(Step 4) Classify x0 into πi .

Note that P{N (0, 1) ≥ zαi /(k−1)} = αi/(k − 1). We have the following theorem.

Theorem 9 Assume (1) with (A-i). Assume also (A-ii) and (A-vi). Then, for the MRAC
with (18), it holds as p → ∞ that

lim sup e(i) ≤ αi (19)

when Δi ≥ Δi L for i = 1, . . ., k.

Remark 14 If we consider the classification satisfying e(i) ≤ α ∈ (0, 1/2) when
Δi ≥ Δi L for i = 1, . . ., k, one can find the sample size for each πi as ni ≥
Δ−2

i L 4z2
α/(k−1)σ tr(Σ2

i )
1/4{tr(Σ2

i )
1/4 + σ

1/2
i } + 1. Then, under (A-ii), (A-vi) and (1)

with (A-i), for the classifier given by (17), it holds as p → ∞ that lim sup e(i) ≤ α

when Δi ≥ Δi L for i = 1, . . ., k.

Remark 15 From Remark 8, we have a lower bound of Δi j for i, j = 1, . . ., k; i �= j ,
by

Δi j L = ||xini − x jn j ||2 − tr(Sini )/ni − tr(S jn j )/n j − κi j zα′ ,

where α′ ∈ (0, 1/2) and κi j = [2Wini /{ni (ni − 1)} + 2W jn j /{n j (n j − 1)} +
4tr(Sini S jn j )/(ni n j )]1/2 having Wini according to (16). Thus, one may design a lower
bound of Δi by Δi L = min j ( �=i)=1,...,k Δi j L for sufficiently small α′. Then, it holds
that Δi L/Δi = 1 + op(1) under (A-vi) and (1) with (A-i) when tr(Σ2

i )/(n
2
i Δ

2
i ) → 0

for i = 1, . . ., k.

4.3 Two-stage procedure

In order to estimate Ci s in (18), we proceed with the following two steps:

1. Choose mi (≥ 4) satisfying (13) for each πi . Take pilot samples, xi j , j = 1, . . ., mi ,
of size mi from each πi . Then, calculate Wimi for each πi according to (16). Let

σ̂ = maxi=1,...,k W 1/2
imi

and σ̂i = max j ( �=i)=1,...,k W 1/2
jm j

. Define the total sample
size for each πi by

Ni =max

{

mi ,

⌈
(zαi /(k−1) + zα(i)/(k−1))

2σ̂

Δ2
i L

W 1/4
imi

(
W 1/4

imi
+ σ̂

1/2
i

)
⌉

+1

}

. (20)
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2. For each i , if Ni = mi , do not take any additional samples from πi and otherwise,
that is if Ni > mi , take additional samples, xi j , j = mi +1, . . ., Ni , of size Ni −mi

from πi . By combining the initial samples and the additional samples, calculate
xi Ni and Si Ni , i = 1, . . ., k. Then, follow MRAC by using Yi (x0|Ni ) instead of
Yi (x0|ni ).

Theorem 10 Assume (1) with (A-i). Assume also (A-ii) and (A-vi). Then, for the
MRAC with (13) and (20), (19) holds as p → ∞ when Δi ≥ Δi L for i = 1, . . ., k.

Remark 16 Under (A-ii), (13) and (1) with (A-i), it holds as p → ∞ that Ni/Ci =
1 + op(1), which is in the HDLSS situation in the sense that Ni/p = op(1) under the
condition that max j=1,...,k{tr(Σ2

j )}/Δ2
i L = o(p).

Remark 17 One may take mi (≥ 4) such as satisfies mi/Ci > 1 for some i . Then, the
assertion in Theorem 10 is still claimed. However, it may cause over-sampling in the
sense that Ni/Ci > 1 w.p.1.

4.4 Simulation

In order to examine the performance of the MRAC with (13) and (20), we used
computer simulations. We considered three classes having a non-Gaussian distribu-
tion generated by yi jl = (8/10)1/2wi jl , where wi jl , j = 1, . . ., p (l = 1, 2, . . .) are
independently distributed as t-distribution with 10 degrees of freedom for each πi (i =
1, 2, 3). Note that E(yi jl) = 0, E(y2

i jl) = 1, and yi jl , j = 1, . . ., p (i = 1, 2, 3; l =
1, 2, . . .) are independent. Let xil = H iΛ

1/2
i (yi1l , . . ., yipl)

T + μi (i = 1, 2, 3; l =
1, 2, . . .), whereΛi = HT

i Σ i H i . Then, the population distribution of xil satisfies (A-i)

for each πi . We considered Σ1 = B(0.3|i− j |1/3
)B, Σ2 = B(0.4|i− j |1/3

)B and Σ3 =
1.2B(0.3|i− j |1/3

)B, where B is defined by (7). We set μ1 = (1, . . ., 1, 0, . . ., 0)T

whose first 40 elements are 1, μ2 = (0, . . ., 0, 1, . . ., 1, 0, . . ., 0)T whose 40 elements
(21st to 60th) are 1, and μ3 = (0, . . ., 0)T. Then, we had Δi = 40 for i = 1, 2, 3.
We prespecified Δi L = 40, i = 1, 2, 3. We set mi = 	0.5 × (Ci − 1)
 + 1 for
each πi , where Ci is defined by (18). We considered four cases: (a) p = 400 when
(α1, α2, α3) = (0.1, 0.1, 0.1), (b) p = 1200 when (α1, α2, α3) = (0.1, 0.1, 0.1),
(c) p = 400 when (α1, α2, α3) = (0.05, 0.1, 0.15), and (d) p = 1200 when
(α1, α2, α3) = (0.05, 0.1, 0.15).

In Table 2, we summarized the findings obtained by averaging the outcomes from
2000 (= R, say) replications in each case. Under a fixed scenario, suppose that the
r th replication ends with Ni = nir (i = 1, 2, 3) observations for r = 1, . . ., R.
Let ni = R−1∑R

r=1 nir and V (ni ) = (R − 1)−1∑R
r=1(nir − ni )

2. In the end of
the r th replication, we checked whether the MRAC does (or does not) classify an
individual from πi correctly and defined Pir = 0 (or 1) accordingly for each i . We
calculated e(i) = R−1∑R

r=1 Pir , i = 1, 2, 3, as estimates of e(i)s. Their estimated
standard errors were given by s{e(i)}, i = 1, 2, 3, where s2{e(i)} = R−1e(i){1 −
e(i)}. Throughout, the MRAC with (13) and (20) gave adequate performances for all
the cases when considered those standard errors.
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Table 2 Accuracy of the MRAC with (13) and (20)

Ci ni ni − Ci V (ni ) e(i) s{e(i)}
When (α1, α2, α3) = (0.1, 0.1, 0.1)

p = 400: (m1, m2, m3) = (8, 9, 9)

π1 13.44 14.57 1.13 14.06 0.044 0.00456

π2 15.62 16.77 1.14 27.78 0.06 0.00531

π3 15.24 16.4 1.16 18.78 0.114 0.00711

p = 1200: (m1, m2, m3) = (20, 24, 23)

π1 38.73 39.34 0.61 14.96 0.029 0.00375

π2 45.46 46.32 0.87 30.8 0.082 0.00612

π3 44.18 45.01 0.83 18.7 0.083 0.00615

When (α1, α2, α3) = (0.05, 0.1, 0.15)

p = 400: (m1, m2, m3) = (9, 10, 9)

π1 15.94 17.03 1.1 12.73 0.034 0.00402

π2 18.56 19.58 1.02 26.81 0.061 0.00535

π3 16.21 17.02 0.81 15.7 0.143 0.00782

p = 1200: (m1, m2, m3) = (24, 28, 25)

π1 46.3 46.96 0.65 16.95 0.032 0.00391

π2 54.38 55.0 0.62 39.22 0.051 0.0049

π3 47.11 47.65 0.54 19.87 0.129 0.00748

5 Example

We analyzed gene expression data given by Armstrong et al. (2002) in which the
data set consists of 12582 (= p) genes. We had three classes of leukemia sub-
types, that is, π1: acute lymphoblastic leukemia (24 samples), π2: mixed-lineage
leukemia (20 samples), and π3: acute myeloid leukemia (28 samples). We prespecified
(α1, α2, α3) = (0.1, 0.2, 0.05), so that α(1) = 0.05, α(2) = 0.05, and α(3) = 0.1. We
set m1 = m2 = m3 = 10. According to Remark 15, by setting α′ = 0.05 and ni =
mi (= 10), i = 1, 2, 3, we had Δ12L = 5.96×109, Δ13L = 2.37×1010, and Δ23L =
7.81 × 109. Thus, we prespecified Δ1L = min(Δ12L , Δ13L) = 5.96 × 109, Δ2L =
min(Δ12L , Δ23L) = 5.96 × 109, and Δ3L = min(Δ13L , Δ23L) = 7.81 × 109.

By using pilot samples of size m1 = m2 = m3 = 10, we calculated W1m1 =
2.59 × 1019, W2m2 = 2.16 × 1019, W3m3 = 2.51 × 1019, σ̂ 2 = 2.59 × 1019, σ̂ 2

1 =
2.51 × 1019, and σ̂ 2

2 = σ̂ 2
3 = 2.59 × 1019 according to (16). From (20), the total

sample size for π1 was given by

N1 = max

{

10,

⌈
(zα1/(k−1) + zα(1)/(k−1))

2σ̂

Δ2
1L

W 1/4
1m1

(
W 1/4

1m1
+ σ̂

1/2
1

)
⌉

+ 1

}

= 20.

Similarly, we had N2 = 16 and N3 = 12. We investigated the accuracy of the
MRAC with (N1, N2, N3) = (20, 16, 12) by using remaining samples of sizes
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Table 3 Average misclassification rates of the MRAC for m1 = m2 = m3 = 10 and for
(Δ1L ,Δ2L ,Δ3L ) = (5.96 × 109, 5.96 × 109, 7.81 × 109)

(α1, α2, α3) e(1) e(2) e(3) (N1, N2, N3)

(0.2, 0.2, 0.2) 0.074 0.127 0.075 (11, 10, 10)

(0.2, 0.2, 0.1) 0.058 0.093 0.069 (14, 13, 10)

(0.2, 0.1, 0.1) 0.072 0.093 0.072 (14, 16, 11)

(0.1, 0.2, 0.05) 0.053 0.133 0.056 (20, 16, 12)

(0.1, 0.1, 0.1) 0.054 0.108 0.072 (17, 16, 11)

(0.1, 0.1, 0.05) 0.045 0.11 0.059 (20, 19, 12)

(0.1, 0.05, 0.1) 0.06 0.06 0.073 (20, 19, 12)

(0.05, 0.1, 0.1) 0.045 0.08 0.064 (20, 19, 12)

When αi ≤ 0.05 for at least two πi s, the result was not available within the data sets

24 − N1 = 4, 20 − N2 = 4 and 28 − N3 = 16 for πi , i = 1, 2, 3. We randomly split
the data sets for πi , i = 1, 2, 3, into training sets of sizes (N1, N2, N3) = (20, 16, 12)

and test sets of sizes (4, 4, 16). We proceeded with the MRAC by calculating
Yi (x0|Ni ), i = 1, 2, 3, based on a training data set and checked the accuracy by
using a test data set for each πi . We repeated this procedure 100 times. Then, we
had the average of the misclassification rates as e(1) = 0.053, e(2) = 0.133,
and e(3) = 0.056 for πi , i = 1, 2, 3. Similarly, for various settings of αi s, we
investigated the performance of the MRAC for m1 = m2 = m3 = 10 and for
(Δ1L ,Δ2L ,Δ3L) = (5.96 × 109, 5.96 × 109, 7.81 × 109). We summarized the
results in Table 3. The MRAC seems to give good performances in such a HDLSS
situation.

6 Proofs

6.1 Proof of Theorem 1

We have for x0 ∈ πi that

Eθ {w(x0|n1, n2)} = (−1)i Δ

2
and

Varθ {w(x0|n1, n2)} = tr(Σ2
i )

ni
+ tr(Σ1Σ2)

n j
+

2∑

i=1

tr(Σ2
i )

2ni (ni − 1)

+ (μ1 − μ2)
T(Σ i + Σ j/n j

)
(μ1 − μ2),

where j �= i . From the fact that tr(Σ1Σ2) ≤ {tr(Σ2
1)tr(Σ

2
2)}1/2, it holds that

Varθ {w(x0|n1, n2)/Δ} → 0 under (A-iii) and (A-iv). Thus by using Chebyshev’s
inequality, we obtain as p → ∞ that w(x0|n1, n2)/Δ = (−1)i/2 + op(1) for
x0 ∈ πi , i = 1, 2. This concludes the proof. ��
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6.2 Proof of Theorem 2

We first consider the case when x0 ∈ π1. Under (AY-ii) and (AY-iii), it holds
that Varθ {||xini − μi ||2 − tr(Sini )/ni } = O{tr(Σ2

i )/n2
i } = o(Δ2

�), Varθ {(xini −
μi )

T(x0 − μ1)} = O{tr(Σ iΣ1)/ni } = O{max j=1,2 tr(Σ2
j )/ni } = o(Δ2

�), i = 1, 2,

and Varθ {(x0 −μ1−x2n2 −μ2)
T(μ1−μ2)} = (μ1−μ2)

T(Σ1+Σ2/n2)(μ1−μ2) =
o(Δ2

�). Thus by using Chebyshev’s inequality, we obtain that

||x0 − μ1 − (x1n1 − μ1)||2 − tr(S1n1)/n1 = ||x0 − μ1||2 + op(Δ�);
||x0 − μ1 − (x2n2 − μ2) + μ1 − μ2||2 − tr(S2n2)/n2

= ||x0 − μ1||2 + Δ + op(Δ�).

We have under (AY-iii) and (1) with (A-i) that Varθ {tr(Sini )} = O{tr(Σ2
i )/ni }

= o(Δ2
�), i = 1, 2, and Varθ (||x0 − μ1||2) = O{tr(Σ2

1)}, so that tr(Sini ) =
tr(Σ i ) + op(Δ�), i = 1, 2, and ||x0 − μ1||2 = tr(Σ1) + Op{tr(Σ2

1)
1/2}. Note

that Δ�/tr(Σ i ) = O(1), i = 1, 2, under tr(Σ1)/tr(Σ2) ∈ (0,∞) as p → ∞ and
lim supp→∞{Δ/tr(Σ i )} < ∞ for i = 1, 2. Letw(x0)AY = p||x0−x1n1 ||2/tr(S1n1)−
p||x0−x2n2 ||2/tr(S2n2)− p log{tr(S2n2)/tr(S1n1)}− p/n1+ p/n2. Then, under (AY-i)
to (AY-iii) and (1) with (A-i), we have that

w(x0)AY

p
= ||x0 − μ1 − (x1n1 − μ1)||2 − tr(S1n1)/n1

tr(S1n1)
− log

{
tr(S2n2)

tr(S1n1)

}

−||x0 − μ1 − (x2n2 − μ2) + μ1 − μ2||2 − tr(S2n2)/n2

tr(S2n2)

= ||x0 − μ1||2 + op(Δ�)

tr(Σ1) + op(Δ�)
− ||x0 − μ1||2 + Δ + op(Δ�)

tr(Σ2) + op(Δ�)

− log

{
tr(Σ2) + op(Δ�)

tr(Σ1) + op(Δ�)

}

= ||x0 − μ1||2{tr(Σ2) − tr(Σ1)}
tr(Σ1)tr(Σ2)

− Δ

tr(Σ2)
− log

{
tr(Σ2)

tr(Σ1)

}

+op{Δ�/tr(Σ1)} + op{Δ�/tr(Σ2)}

= tr(Σ2) − tr(Σ1)

tr(Σ2)
− Δ

tr(Σ2)
+ log

{
tr(Σ1)

tr(Σ2)

}

+ op{Δ�/tr(Σ1)}.
(21)

Note that log{tr(Σ1)/tr(Σ2)} = {tr(Σ1) − tr(Σ2)}/tr(Σ2) − {1 + o(1)}{tr(Σ1)

−tr(Σ2)}2/{2tr(Σ2)
2} under tr(Σ1)/tr(Σ2) → 1 as p → ∞. Then, for the case
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when tr(Σ1)/tr(Σ2) → 1 as p → ∞, we have from (21) that

w(x0)AY tr(Σ2)

pΔ�

= − Δ

Δ�

− {tr(Σ1 − Σ2)}2

2Δ�tr(Σ2)
+ op(1) = −1 + op(1).

Next, we consider the case when lim inf p→∞ |tr(Σ1)/tr(Σ2) − 1| > 0. Note that
1−tr(Σ1)/tr(Σ2)+log{tr(Σ1)/tr(Σ2)} < 0 under tr(Σ1)/tr(Σ2) �= 1. Thus we have
from (21) that w(x0)AY /p ≤ 1 − tr(Σ1)/tr(Σ2) + log{tr(Σ1)/tr(Σ2)} + op(1) < 0
w.p.1. Hence, we conclude the result when x0 ∈ π1. When x0 ∈ π2, we have the
result similarly. Thus the proof is completed. ��

6.3 Proof of Theorem 3

We first consider the case when x0 ∈ π1. We have from (A-ii) and (A-v) that

w(x0|n1, n2) + Δ/2 = (x0 − μ1)
T{(x2n2 − μ2) − (x1n1 − μ1)} + op(δ1). (22)

Let

v1 j = − (x0 − μ1)
T(x1 j − μ1)/n1

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}1/2

, j = 1, . . ., n1;

v1n1+ j = (x0 − μ1)
T(x2 j − μ2)/n2

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}1/2

, j = 1, . . ., n2.

Note that
∑n1+n2

j=1 Eθ (v
2
1 j ) = 1 and

n1+n2∑

j=1

v1 j = (x0 − μ1)
T{(x2n2 − μ2) − (x1n1 − μ1)}

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}1/2

.

Then, it holds for j = 2, . . ., n1 + n2, that Eθ (v1 j |v1 j−1, . . ., v11) = 0. We consider
applying the martingale central limit theorem given by McLeish (1974). Refer to
Section 2.6 in Ghosh et al. (1997) for the details of the martingale central limit theorem.
Let us write that x0−μ1 = Γ 1 y0 = Γ 1(y01, . . ., y0r1)

T andΓ i = (γ i1, . . ., γ iri
), i =

1, 2. Note that

v2
1 j =

∑r1
i,i ′,l,l ′ γ

T
1iγ 1i ′ y0i y1i ′ jγ

T
1lγ 1l ′ y0l y1l ′ j/n2

1

tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2

, j = 1, . . ., n1;

v2
1n1+ j =

∑r1
i,l

∑r2
i ′,l ′ γ

T
1iγ 2i ′ y0i y2i ′ jγ

T
1lγ 2l ′ y0l y2l ′ j/n2

2

tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2

, j = 1, . . ., n2.
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Under (1) with (A-i), we can evaluate for s = 1, 2, that

Eθ

⎧
⎪⎨

⎪⎩

⎛

⎝
r1∑

i,l

rs∑

i ′,l ′
γ T

1iγ si ′ y0i ysi ′ jγ
T
1lγ sl ′ y0l ysl ′ j

⎞

⎠

2
⎫
⎪⎬

⎪⎭

= tr(Σ1Σ s)
2 + Eθ

⎧
⎪⎨

⎪⎩

⎛

⎝
r1∑

i �=l

rs∑

i ′ �=l ′
γ T

1iγ si ′ y0i ysi ′ jγ
T
1lγ sl ′ y0l ysl ′ j

⎞

⎠

2
⎫
⎪⎬

⎪⎭

+O

{

tr(Σ1Σ sΣ1Σ s) +
r1∑

i=1

γ T
1iΣ sγ 1iγ

T
1iΣ sγ 1i +

rs∑

i=1

γ T
siΣ1γ siγ

T
siΣ1γ si

}

= 3tr(Σ1Σ s)
2 + O{tr(Σ1Σ sΣ1Σ s)} (23)

from the facts that

r1∑

i=1

γ T
1iΣ sγ 1iγ

T
1iΣ sγ 1i ≤

r1∑

i,l

γ T
1iΣ sγ 1lγ

T
1lΣ sγ 1i = tr(Σ1Σ sΣ1Σ s);

rs∑

i=1

γ T
siΣ1γ siγ

T
siΣ1γ si ≤ tr(Σ1Σ sΣ1Σ s).

Let I (·) be the indicator function. Note that tr(Σ1Σ2Σ1Σ2) ≤ tr(Σ2
1Σ

2
2). Then, by

using Chebyshev’s inequality and Schwarz’s inequality, from (23) and (A-ii), we have
for Lindeberg’s condition that

n1+n2∑

j=1

Eθ {v2
1 j I (v2

1 j ≥ τ)}

≤
n1+n2∑

j=1

Eθ (v
4
1 j )

τ
=

n1∑

j=1

O

[
{tr(Σ2

1)
2 + tr(Σ4

1)}/n4
1

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}2

]

+
n1+n2∑

j=n1+1

O

[
{tr(Σ1Σ2)

2 + tr(Σ1Σ2Σ1Σ2)}/n4
2

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}2

]

= O

[
tr(Σ2

1)
2/n3

1 + tr(Σ1Σ2)
2/n3

2

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}2

]

→ 0

for any τ > 0. Now, under (1) with (A-i), we can evaluate for s, s′ = 1, 2, and j �= j ′
that
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Eθ

⎧
⎨

⎩

⎛

⎝
r1∑

i,l

rs∑

i ′,l ′
γ T

1iγ si ′ y0i ysi ′ jγ
T
1lγ sl ′ y0l ysl ′ j

⎞

⎠

×
⎛

⎝
r1∑

i,l

rs′∑

i ′,l ′
γ T

1iγ s′i ′ y0i ys′i ′ j ′γ
T
1lγ s′l ′ y0l ys′l ′ j ′

⎞

⎠

⎫
⎬

⎭

= Eθ

⎧
⎨

⎩

⎛

⎝
r1∑

i,l

γ T
1iΣ sγ 1l y0i y0l

⎞

⎠

⎛

⎝
r1∑

i,l

γ T
1iΣ s′γ 1l y0i y0l

⎞

⎠

⎫
⎬

⎭

= tr(Σ1Σ s)tr(Σ1Σ s′) + 2tr(Σ1Σ sΣ1Σ s′) + O
( r1∑

i=1

γ T
1iΣ sγ 1iγ

T
1iΣ s′γ 1i

)

= tr(Σ1Σ s)tr(Σ1Σ s′) + 2tr(Σ1Σ sΣ1Σ s′)

+O[{tr(Σ1Σ sΣ1Σ s)tr(Σ1Σ s′Σ1Σ s′)}1/2] (24)

from the fact that

r1∑

i=1

γ T
1iΣ sγ 1iγ

T
1iΣ s′γ 1i ≤ {

r1∑

i=1

(γ T
1iΣ sγ 1i )

2}1/2{
r1∑

i=1

(γ T
1iΣ s′γ 1i )

2}1/2

≤ {tr(Σ1Σ sΣ1Σ s)tr(Σ1Σ s′Σ1Σ s′)}1/2.

Note that tr(Σ3
1Σ2) ≤ {tr(Σ4

1)tr(Σ1Σ2Σ1Σ2)}1/2 = o{tr(Σ2
1)tr(Σ1Σ2)} and

tr(Σ2
1Σ

2
2) ≤ tr(Σ4

1)
1/2tr(Σ4

2)
1/2 = o{tr(Σ2

1)tr(Σ
2
2)} = o{tr(Σ1Σ2)

2} under (A-ii).
Then, by using Chebyshev’s inequality, we have from (23)–(24) and (A-ii) that

Pθ

⎛

⎝
∣
∣
∣

n1+n2∑

j=1

v2
1 j − 1

∣
∣
∣ ≥ τ

⎞

⎠

= O

[
tr(Σ4

1)/n2
1 + {tr(Σ4

1)tr(Σ1Σ2Σ1Σ2)}1/2/(n1n2) + tr(Σ2
1Σ

2
2)/n2

2

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}2

]

+ O

[
tr(Σ2

1)
2/n3

1 + tr(Σ1Σ2)
2/n3

2

{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}2

]

→ 0

for any τ > 0. Thus it holds that
∑n1+n2

j=1 v2
1 j = 1 + op(1). Hence, by using the

martingale central limit theorem, we obtain that

n1+n2∑

j=1

v1 j ⇒ N (0, 1). (25)
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Note that δ1/{tr(Σ2
1)/n1 + tr(Σ1Σ2)/n2}1/2 → 1 under (A-ii). Then, by combining

(22) with (25), we conclude the result when x0 ∈ π1. When x0 ∈ π2, we have the
same arguments. The proof is completed. ��

6.4 Proof of Theorem 4

We first consider the case when x0 ∈ π1. We have from (12) that δ1 ≤ ΔL/(zα +
zβ). Here, (A-iii) implies (A-v) for i = 1 when lim inf p→∞ δ1/Δ > 0. Then, from
Theorem 3, we claim for (11) that

1 − e(2|1) = Pθ

{

w(x0|n1, n2) + ΔL(zβ − zα)

2(zα + zβ)
< 0

}

= Pθ

{
w(x0|n1, n2) + Δ/2

δ1
<

Δ

2δ1
+ ΔL(zα − zβ)

2δ1(zα + zβ)

}

≥ Pθ

{
w(x0|n1, n2) + Δ/2

δ1
<

ΔL zα

δ1(zα + zβ)

}

≥ Pθ {N (0, 1) < zα} + o(1) → 1 − α

when Δ ≥ ΔL and lim inf p→∞ δ1/Δ > 0. When δ1/Δ → 0 as p → ∞, it holds that
Varθ {w(x0|n1, n2)}/Δ2 → 0 under (A-iii). Thus we can claim that

1 − e(2|1) = Pθ

{
w(x0|n1, n2)

Δ
<

ΔL(zα − zβ)

2Δ(zα + zβ)

}

= Pθ

{

op(1) <
1

2
+ ΔL(zα − zβ)

2Δ(zα + zβ)

}

→ 1

when Δ ≥ ΔL and δ1/Δ → 0 as p → ∞. Next, when lim inf p→∞ δ1/Δ = 0
and lim supp→∞ δ1/Δ �= 0, one can claim lim sup e(2|1) ≤ α by considering the
convergent subsequence of δ1/Δ. Hence, we conclude the result when x0 ∈ π1. When
x0 ∈ π2, we have the result similarly. Thus the proof is completed. ��

6.5 Proof of Theorem 5

From (13), it holds as p → ∞ that |Ni − Ci | = op(C
1/2
i ) under (A-ii) and (1) with

(A-i). Then, we write that |Ni − Ci | = Op(ωC1/2
i ), where ω (> 0) is a variable such

that ω → 0 as p → ∞. Let Ci L = �Ci − (ωCi )
1/2
, i = 1, 2. From the fact that

|Ni − Ci | = op{(ωCi )
1/2}, we can claim as p → ∞ that max{mi , Ci L} ≤ Ni <

Ci + (ωCi )
1/2 w.p.1. Then, in a way similar to the proofs of Theorems 2.4 and 2.5 in

Aoshima and Yata (2011a), we have that

w(x0|N1, N2) = w(x0|C1L , C2L) + op(ΔL) + op(Δ)
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when x0 ∈ πi (i = 1, 2). From the fact that Ci L/Ci → 1 as p → ∞, similarly to the
proof of Theorem 4, we can conclude the results. ��

6.6 Proof of Theorem 6

From (23) and (24), it holds as n → ∞ that

Varθ

[
2
∑n

i< j {(xi − μ)T(x j − μ)}2

tr(Σ2)n(n − 1)

]

= 4

n2 {1 + o(1)} + O

{
tr(Σ4)

tr(Σ2)2n

}

.

Thus we can evaluate as n → ∞ that

Varθ

(
Wn

tr(Σ2)

)

= Varθ

[
2
∑n

i< j {(xi − μ)T(x j − μ)}2

tr(Σ2)n(n − 1)

]

{1 + o(1)}

= 4

n2 {1 + o(1)} + O

{
tr(Σ4)

tr(Σ2)2n

}

.

This concludes the proof. ��

6.7 Proof of Theorem 7

Under (A-vi) and (A-vii), we have as p → ∞ that {Yi (x0|ni ) −Y j (x0|n j )}/Δi j =
−1 + op(1) when x0 ∈ πi for j = 1, . . ., k; j �= i . Thus it holds as p → ∞ that
Yi (x0|ni ) − Y j (x0|n j ) < 0 w.p.1 when x0 ∈ πi for j = 1, . . ., k; j �= i . Thus we
have that Pθ [max{argmin j=1,...,kY j (x0|n j )} = i] → 1 when x0 ∈ πi . This concludes
the proof. ��

6.8 Proofs of Theorem 8 and Corollary 1

From Theorem 3, we have under (A-i), (A-ii) and (A-viii) that {Yi (x0|ni )−Y j (x0|n j )+
Δi j }/(2δi j ) ⇒ N (0, 1) when x0 ∈ πi for j = 1, . . ., k; j �= i . Then, from Bon-
ferroni’s inequality, we have that 1 − e(i) ≥ 1 −∑k

j ( �=i)=1 Φ{−Δi j/(2δi j )} + o(1)

when x0 ∈ πi . This concludes the proofs. ��

6.9 Proof of Theorem 9

From (18), we have that

δ2
i j ≤ max

l=1,...,k
{tr(Σ2

l )
1/2}

{
tr(Σ2

i )
1/2

ni − 1
+ tr(Σ2

j )
1/2

n j − 1

}

≤ max(Δ2
i L , Δ2

j L)

(zαi /(k−1) + zα j /(k−1))2 .
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Note that Δi j ≥ max(Δi L , Δ j L) when Δi ≥ Δi L , i = 1, . . ., k. Then, in a way
similar to the proof of Theorem 4, we have for j �= i that

Pθ

{
Yi (x0|ni ) − Y j (x0|n j )

2δi j
≥ max(Δi L ,Δ j L)

2δi j

zαi /(k−1) − zα j /(k−1)

zαi /(k−1) + zα j /(k−1)

}

(= e( j |i), say)

≤ αi

k − 1
+ o(1)

when x0 ∈ πi . Then, from Bonferroni’s inequality, we have that 1 − e(i) ≥ 1 −∑k
j ( �=i)=1 e( j |i) ≥ 1 − αi + o(1) when x0 ∈ πi . This concludes the proof. ��

6.10 Proof of Theorem 10

In a way similar to the proofs of Theorems 5 and 9, we can conclude the results. ��
Acknowledgments We would like to thank an associate editor and two anonymous referees for their
valuable comments.
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