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Abstract We propose two substantive extensions to the saddlepoint-based bootstrap
(SPBB) methodology, whereby inference in parametric models is made through a
monotone quadratic estimating equation (QEE). These are motivated through the first-
order moving average model, where SPBB application is complicated by the fact that
the usual estimators, method of moments (MOME), least squares, and maximum like-
lihood (MLE), all have mixed distributions and tend to be roots of high-order polyno-
mials that violate the monotonicity requirement. A unifying perspective is provided by
demonstrating that these estimators can all be cast as roots of appropriate QEEs. The
first extension consists of two double saddlepoint-based Monte Carlo algorithms for
approximating the Jacobian term appearing in the approximated density function of
estimators derived from a non-monotone QEE. The second extension considers infer-
ence under QEEs from exponential power families. The methods are demonstrated
for the MLE under a Gaussian distribution, and the MOME under a joint Laplace
distribution for the process.
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1 Introduction

Many statistical applications involve inference primarily on a (scalar) parameter θ

in the presence of a finite dimensional nuisance parameter λ. Paige et al. (2009)
considered a class of problems in which the estimator θ̂ of θ is a solution of

�(θ; θ0,λ0) ≡ �0(θ) = yᵀAθ y = 0, (1)

where Aθ is a conformable symmetric matrix whose entries are functions of θ , and
the random vector y ∼ N(μθ0,λ0

, �θ0,λ0) is normally distributed with mean μ0 ≡
μθ0,λ0

and covariance matrix �0 ≡ �θ0,λ0 , where we make explicit the dependence
of these quantities on the true or hypothesized values of θ = θ0 and λ = λ0. We call
�0(θ) a quadratic estimating equation (QEE). The multivariate normality immediately
furnishes a closed-form expression for the moment generating function (MGF) of
the QEE. If the QEE is monotone in θ , then it is possible to relate the cumulative
distribution function (CDF) or probability density function (PDF) of θ̂ to that of �0(θ).
The nuisance parameter(s) λ is dealt with by substituting a conditional maximum
likelihood estimator (MLE) λ̂θ . Using saddlepoint approximations, it is then possible
to accurately approximate the distribution of the estimator of interest. Confidence
intervals for θ can be produced by inverting (or pivoting) this distribution.

Paige et al. (2009) developed the SaddlePoint-Based Bootstrap (SPBB) methodol-
ogy in a coherent manner. Their choice of name reflects the fact that the technique is
identical to a parametric bootstrap, but with (slow) Monte Carlo simulation replaced
by (fast) saddlepoint approximation. The essential steps of this approach are:

(i) formulation of an estimating equation for the estimator of interest;
(ii) substitution of conditional MLEs for any nuisance parameters, resulting in a

monotone (in θ ) profile estimating equation in the form of a QEE having the
estimator as its unique root;

(iii) a distributional assumption for the data vector y which ensures the QEE has a
closed-form expression for the MGF;

(iv) inversion of the MGF of the QEE to produce accurate saddlepoint approximations
to the CDF or PDF of the estimator; and

(v) pivoting of this CDF to produce a confidence interval (C.I.) for the parameter of
interest.

A saddlepoint approximation for the CDF of θ̂ at any specified value t in its support
can now be obtained from the formula of Lugannani and Rice (1980)

F̂
θ̂
(t; θ0,λ0)= F̂�(t) (0; θ0,λ0)

=
{

�(ŵ)+φ(ŵ)
[
ŵ−1−û−1

]
, if E [�(t)] �=0,

1
2 +K ′′′

�(t)(0; θ0,λ0)
[
72π K ′′

�(t)(0; θ0,λ0)
3
]−1/2

, if E [�(t)]=0,
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where ŵ = sgn(ŝ)[−2K�(t)(ŝ; θ0,λ0)]1/2, û = ŝ[K ′′
�(t)(ŝ; θ0,λ0)]1/2, and �(·) and

φ(·) denote, respectively, the CDF and PDF of a standard normal random variable.
A corresponding formula for the PDF follows from Daniels (1983). Dropping the
subscript on �(·) for notational expediency, these formulas are functions of the cumu-
lant generating function (CGF) of �(t), denoted by K�(t) (s; θ0,λ0), and its first few
derivatives with respect to both s and t . The most computationally expensive step
involves finding ŝ at each point t , by solving the (nonlinear) saddlepoint equation

∂

∂s
K�(t) (s; θ0,λ0)

∣∣∣∣
s=ŝ

≡ K ′
�(t)

(
ŝ; θ0,λ0

) = 0.

The result, upon substitution of the conditional MLE λ̂θ0 for the nuisance parameter
λ0, is the CDF approximation

F
θ̂
(t; θ0,λ0) ≈ F̂

θ̂

(
t; θ0, λ̂θ0

)
= F̂�(t)

(
0; θ0, λ̂θ0

)
,

which is third-order accurate over sets of bounded central tendency. With θ̂obs the
estimated θ obtained from the observed sample, this leads immediately to an automatic
approximate percentile confidence set construction method, where the lower and upper
bounds (θL , θU ) of the desired (1 − α)100% (equi-tailed) C.I. for θ0 are determined
by solving

F̂
θ̂

(
θ̂obs; θL , λ̂θL

)
= 1 − α/2 and F̂

θ̂

(
θ̂obs; θU , λ̂θU

)
= α/2,

or equivalently,

F̂
�(θ̂obs)

(
0; θL , λ̂θL

)
= 1 − α/2 and F̂

�(θ̂obs)

(
0; θU , λ̂θU

)
= α/2. (2)

Paige et al. (2009) showed that the resulting SPBB C.I. is 2nd-order accurate in
the sense of Hall (1988), so that the coverage probability of a nominal (1 − α)100%
C.I. is 1−α+ O(n−1). The profiling out of λ limits the general applicability of SPBB,
but when it is possible it provides a device for eliminating nuisance parameters in the
absence of a pivotal quantity. Extensive examples include AR(1) time series models
(Paige and Trindade 2008); nonlinear parameters in conditionally linear nonlinear
regression and ratios of regression parameter problems (Paige et al. 2009; Paige and
Fernando 2008); smoothing parameters in penalized spline models with independent
errors (Paige and Trindade 2013) and with correlated errors (Paige and Trindade 2010).

All indications are that SPBB yields a C.I. with length and coverage probability
that compares very favorably with those obtained from competing methods, many
of which have 2nd or 3rd order accuracy, and some of which are exact. As Young
(2009) concludes, the parametric bootstrap with the conditional MLE substituted for
the nuisance parameter (what he calls the “constrained bootstrap”) generally yields the
easiest route to O(n−3/2) inference. Additionally, SPBB enjoys faster computational
speeds. Paige and Trindade (2013) compared the performance of bootstrap, exact, and
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SPBB methods for inference on the smoothing parameter in penalized spline models
under a variety of optimality criteria, such as those commonly denoted by ML, REML,
GCV, and AIC. A key insight in Paige and Trindade (2013) and Paige and Trindade
(2010) was a unification of all these criteria by viewing the estimator as the root
of an appropriate QEE. In benchmark comparisons, Paige and Trindade (2013) find
SPBB to be an order of magnitude faster than exact methods devised for ML and
REML, and two orders of magnitude faster than the bootstrap. In summary, not only
does SPBB compete well with exact methods (e.g. ML and REML), but is also the
only computationally feasible alternative where no other methods exist (e.g. GCV and
AIC). Furthermore, in all instances where a comparison can be made, SPBB appears
to deliver a performance that is nearly exact.

Although SPBB has proven to be very successful, the most serious restrictions
occur in steps (ii) and (iii). In a general situation, the profiled estimating equation
may not be a QEE, and even if it is, may not be one in normal random variables. In
fact, as we shall show, all that is required is that the underlying estimating equation
�(θ) has a tractable MGF, or indeed, that it can be approximated with one. Also,
even though the monotonicity requirement can be relaxed to just assuming that there
exists an interval where this happens and within which with high probability the MLE
lies (assured by the appropriate regularity conditions guaranteeing consistency and
asymptotic normality), this tends to happen only for larger sample sizes. Since the real
utility of SPBB is its good small-sample performance (inherited from the accuracy of
the saddlepoint approximation), it would be of interest to find a solution that would
not compromise this aspect of the methodology.

The purpose of this paper is to, therefore, extend SPBB in these directions. Although
we strive for general results, these will be illustrated with respect to the first-order
moving average model or MA(1) in time series (e.g. Brockwell and Davis 1991)

Xt = θ0 Zt−1 + Zt , Zt ∼ iid (0, σ 2), (3)

where {Zt } is sequence of zero-mean independent and identically distributed (iid)
random variables with variance σ 2. Seemingly a simple model, for n observations the
(Gaussian) MLE for the (true) coefficient θ0 can be expressed as the root of a QEE,
but is a polynomial of degree (approximately) 2n in θ , as is shown in Section 2. The
small-sample properties of the MLE were discussed by Cryer and Ledolter (1981),
from which it emerges that it is a mixture of a continuous density on (−1, 1) and point
masses at ±1 (this is also true of simpler estimators like method of moments and least
squares). Basic issues in the asymptotic regimes were only recently settled by Davis
and Dunsmuir (1996). From this perspective, the unit-root case of θ0 = −1 deserves
special attention as it has implications concerning, for example, over-differencing of
a series. Thus, devising unit-root tests, and investigating the asymptotics of unit-root
and near unit-root settings, has been the subject of some activity (Tanaka 1990; Davis
et al. 1995; Davis and Dunsmuir 1996; Davis and Song 2011).

Application of SPBB in this setting is, therefore, challenging. For estimators like
method of moments which is endowed with a monotone QEE, the existing methodol-
ogy works well. For estimators with a non-monotone QEE like the MLE, the results
can be poor for small sample sizes. This is due to the Daniels (1983) approach for con-
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Extensions of SPBB inference 965

structing the Jacobian being heavily dependent on the monotonicity. As a solution we
propose in Sect. 3 that the Jacobian be computed via the method of Skovgaard (1990).
Since the latter relies on the computation of an intractable conditional expectation, we
propose an algorithm to saddlepoint approximate the underlying conditional density.
Implementation then proceeds by either numerically integrating this density, or via a
Monte Carlo scheme such as importance sampling.

Section 4 considers SPBB generalizations to estimating equations under distribu-
tions with tractable QEE MGF promise such as skew-normal and elliptically contoured
families. A member of the latter we focus on is the exponential power (EP) distribution
introduced by Gomez et al. (1998). An expression is developed for the MGF of an EP
QEE that is “closed-form” to within a one-dimensional integral. To be amenable to
SPBB, however, the expression must furnish tractable derivatives for the logarithm of
the MGF. We show how these can be obtained by Laplace approximating the integral
after truncation of the characteristic polynomial expansion for a key determinant term
appearing in the integrand. The method is shown to work well under monotone QEEs.

2 SPBB for the Gaussian MA(1)

Consider the QEE in (1) with θ̂ as the target estimator. As outlined in Paige et al. (2009),
under monotonicity of the QEE, θ̂ is its unique root, and one then has that either θ̂ ≤
t ⇔ �(t) ≤ 0 or θ̂ ≤ t ⇔ �(t) ≥ 0. If we assume the former (monotone decreasing)
case without loss of generality, this leads to the device P(θ̂ ≤ t) = P(�(t) ≤ 0),
and so the CDF of θ̂ at t , denoted by F

θ̂
(t), can be expressed in terms of the CDF

of �(t) at 0, denoted by F�(t)(0). Furthermore, if y is multivariate normal, one has
a closed-form expression for the MGF of �(t), and this permits one to accurately
(saddlepoint) approximate F

θ̂
(t) via F̂�(t)(0). Pivoting this approximated CDF then

allows for the construction of a test and C.I. In this section, we apply the method to
explore the small-sample properties of some common estimators of the MA(1) model.

Let In denote the (n ×n) identity matrix, and Jn the (n ×n) symmetric matrix with
1 on the first-order off-diagonals (and zero otherwise). For a vector of observations
x = [x1, . . . , xn]ᵀ from model (3), we note from Cryer and Ledolter (1981) that the
Gaussian profile log-likelihood for θ is proportional to �(θ) ∝ − log(xᵀ�−1

θ |�θ |1/nx),
where

�θ = θ Jn + (1 + θ2)In . (4)

Thus, maximization of �(θ) to obtain the MLE θ̂ML is equivalent to determining an
appropriate root of the QEE �ML(θ) = xᵀ[∂(�−1

θ |�θ |1/n)/∂θ ]x ≡ xᵀA(ML)
θ x. Cryer

and Ledolter (1981) also provide an explicit expression for the entries of the matrix
�−1

θ |�θ |1/n , and note that �(θ) = �(1/θ), from which it follows that ±1 is always a
critical value of �(θ) and hence there is a positive probability that the MLE occurs at
the invertibility boundary. As such, the estimator is a mixture of a continuous density
on (−1, 1) and point masses at ±1. Values of θ = ±1 result in a non-invertible
MA(1), and the probabilities of such occurring for the MLE were further investigated
by Anderson and Takemura (1986).
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966 R. L. Paige et al.

Other common estimators are (unconditional) least squares, conditional least
squares (CLSE), and method of moments (MOME). Their respective densities exhibit
the same mixture distribution structure as the MLE, and all are expressible also as
the root of a QEE. The unconditional least squares estimator is essentially identical
to the MLE, and we will not discuss it further. The MOME is obtained by equating
the sample autocovariances of the process to their model counterparts, resulting in the
estimator (Brockwell and Davis 1991, § 8.5)

θ̂MoM = 1[ρ̂1>1/2] +
1 −

√
1 − 4ρ̂2

1

2ρ̂1
1[|ρ̂1|≤1/2] − 11[ρ̂1<−1/2],

where ρ̂1 = (xᵀJnx)/(xᵀ2Inx) is the sample autocorrelation function (acf) at lag 1.
It can be obtained as the unique root of the monotone QEE �MoM(θ) = xᵀA(MoM)

θ x,

where the form of A(MoM)
θ is given in Proposition 1 below. The CLSE is defined as the

minimizer of the least-squares expression S(θ) = ∑n
t=1 z2

t (e.g. Cryer and Chan 2008,
§7.2; Shumway and Stoffer 2011, §3.6). Appealing to the invertible representation of
the MA(1) process Zt = ∑∞

j=0 (−θ) j Xt− j , and substituting into S(θ) gives the
criterion

S(θ) = x2
1 + (x2 − θx1)

2 +
(

x3 − θx2 + θ2x1

)2

+ · · · +
(

xn − θxn−1 + .... + (−θ)n−1 x1

)2
,

which is obtained by setting non-observed values of Xt equal to (their mean value
of) zero. As shown by Plosser and Schwertz (1977), this is equivalent to minimizing
the expression xᵀ�−1

θ x, and thus the resulting estimator, θ̂LS, is an appropriate root of

the QEE �LS(θ) = xᵀA(LS)
θ x. We summarize these findings and give the form of the

respective QEEs in the following proposition.

Proposition 1 With In, Jn, and �θ as in (4), the estimators θ̂MoM , θ̂L S, and θ̂M L

described above are obtained equivalently as appropriate roots of the QEE �(θ) =
xᵀAθ x, where the form of the symmetric matrix Aθ , |θ | < 1, is given in each respective
case as follows.

MOME: A(MoM)
θ = (1 + θ2)Jn − 2θ In, and the resulting QEE �MoM (θ) =

xᵀA(MoM)
θ x is monotone in θ over the interval |θ | < 1.

CLSE: A(L S)
θ = �−1

θ [Jn + 2θ In]�−1
θ .

MLE: A(M L)
θ = 2θ[1−(n+1)θ2n+nθ2n+2]

(1−θ2)2 �−1
θ − n(1−θ2n+2)

1−θ2 �−1
θ [Jn + 2θ In]�−1

θ .

Proof For |ρ̂1| ≤ 1/2, the MOME is obtained by equating model and sample acf’s at
lag 1

ρ1 = θ

1 + θ2
set= xᵀJnx

xᵀ2Inx
= ρ̂1 �⇒ �MoM(θ) ≡ xᵀ[(1 + θ2)Jn − 2θ In]x = 0.
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Extensions of SPBB inference 967

To see why �MoM(θ), being a quadratic in θ , is monotone over |θ | < 1, it suffices
to show that its turning point θ̃ must occur outside the interval (−1, 1). To this end,
differentiating and setting equal to zero yields

∂�MoM(θ)

∂θ
= xᵀ[2θ Jn − 2In]x set= 0 �⇒ θ̃ = xᵀJnx

xᵀInx
= 1

2ρ̂1
.

Now, since |ρ̂1| ≤ 1/2, we have |2ρ̂1| ≤ 1 which implies |θ̃ | ≥ 1, and the result
follows. The result for CLSE follows straightforwardly by differentiating the QEE
xᵀ�−1

θ x. For the MLE case, see Wickramasinghe (2012). For implementation pur-
poses, note that Plosser and Schwertz (1977) gave the form of the (i, j)th element of
�−1

θ as

�−1
θ (i, j) = (−θ) j−i (1 − θ2i )(1 − θ2(n+1− j))

(1 − θ2)(1 − θ2(n+1))
, i ≤ j and |θ | < 1. ��

All estimators are consistent and asymptotically normal, i.e.
√

n(θ̂ − θ)
d−→

N (0, vθ ), where the asymptotic variance is given by vθ = 1 − θ2 for the CLSE
and MLE, and vθ = (1 + θ2 + 4θ4 + θ6 + θ8)/(1 − θ2)2 for the MOME (Brock-
well and Davis 1991, §8.5). Probabilities of the MLE occurring at the non-invertible
boundary values ±1 were computed by Cryer and Ledolter (1981) for the relatively
simple case of n = 2. For larger n, this is a difficult task due to the lack of an explicit
criterion for determining when the MLE and CLSE occur on the boundary. For the
MOME, however, the criterion is simply |ρ̂1| > 1/2, and SPBB can, therefore, be
routinely used since the fact that ρ̂1 can be expressed as a ratio of quadratic forms
yields the following equivalence in terms of QEEs,

P(θ̂MoM = −1) = P
(
xᵀ[Jn + In]x < 0

)
and P(θ̂MoM = +1)

= P
(
xᵀ[Jn − In]x > 0

)
.

Table 1 shows some values of these saddlepoint approximated MOME probabilities
for sample sizes n = {10, 20}, and θ0 = {0.4, 0.8}. Also included for later reference
are Monte Carlo approximations to the corresponding probabilities for the MLE.

Table 1 Approximate probabilities for the MOME (MoM) and MLE (ML) to occur at the non-invertible
boundary values of ±1 for samples of size n from a Gaussian MA(1) model with coefficient θ0 and σ 2 = 1

n θ0 P(θ̂MoM = −1) P(θ̂MoM = +1) P(θ̂ML = −1) P(θ̂ML = +1)

10 0.4 0.00000 0.00006 0.017 0.188

10 0.8 0.00000 0.00008 0.007 0.498

20 0.4 0.00000 0.00003 0.001 0.058

20 0.8 0.00000 0.00009 0.000 0.364

The MOME and MLE values were obtained via saddlepoint and Monte Carlo approximation, respectively
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968 R. L. Paige et al.

Remark 1 In all cases, and for the remainder of this paper, it suffices to consider an
MA(1) with σ 2 = 1. The reason for this is that QEE-based inference is invariant to
scale parameters. If θ̂ is a root of xᵀAθ x with σ a one-dimensional scale parameter
for x, then z = x/σ is scale-free. Thus, we obtain

0 = xᵀA
θ̂
x = σ 2(x/σ)ᵀA

θ̂
(x/σ) = σ 2zᵀA

θ̂
z,

so that θ̂ is also a root of an equivalent QEE with σ = 1.

Figure 1 displays SPBB-approximated PDF’s for the 3 estimators of θ in Proposi-
tion 1 (MOME, CLSE, MLE), for samples of size n = {10, 20} and θ0 = {0.4, 0.8}.
The AN curve is the PDF of a N (θ, (1 − θ2)/n), which corresponds to the asymptoti-
cally normal distribution for the CLSE and MLE. In this regard, we notice a substantial
deterioration in the performance of the AN approximation for low sample sizes and
θ0 close to the invertibility boundary. As is well-known the MOME exhibits substan-
tial bias; its only real utility being to initialize optimization algorithms for nonlinear
estimators like MLE and CLSE.

Theoretical justification for the use of saddlepoint CDF approximations in mixed
distributions is provided by Lund et al. (1999). Although justification of the same
for the PDF is not yet a settled issue, the PDF plots in Fig. 1 help shed light on the
matter. To assess their accuracy, a common tool is the calculation of percent relative
errors (PREs). Let F̂sim(t) and F̂sad(t) denote, respectively, the true and saddlepoint
approximated CDF at t , where the true CDF is estimated empirically (based on 106

simulations). The PRE at t is then defined as follows:

−1.0 −0.5 0.0 0.5 1.0
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0.
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Fig. 1 Saddlepoint approximated densities of the 3 estimators of θ in Proposition 1 (MOME, CLSE, MLE)
for the moving average coefficient θ in samples of size n from an MA(1) model. The AN curve corresponds
to the asymptotically normal PDF for the CLSE and MLE
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Fig. 2 Percent relative errors (PREs) for the saddlepoint approximated densities of the 3 estimators of θ

in Proposition 1 (MOME, CLSE, MLE) for the moving average coefficient θ0 in samples of size n from an
MA(1) model

PRE(t) =

⎧⎪⎨
⎪⎩

F̂sad(t)−F̂sim(t)
F̂sim(t)

100, if F̂sim (t) ≤ 0.5,

F̂sim(t)−F̂sad(t)
1−F̂sim(t)

100, if F̂sim (t) > 0.5.

Figure 2 displays PREs for the SPBB-approximated PDF’s of the 3 estimators
(MOME, CLSE, MLE) in Fig. 1. As expected, the PREs for MOME are fairly low
(±20 %). Those for MLE can be quite high, but what is surprising is that the PREs for
CLSE are the lowest of all (±10 %).

Let us now consider the construction of SPBB confidence bounds for θ based
on the MOME θ̂ . For a vector of observations x = [x1, . . . , xn]ᵀ from model (3),
let θ̂obs denote the observed MOME value. Suppose that θ̂ has a point mass at −1
of size p1 and a point mass at +1 of size p2 (and is continuous otherwise). Then,
p1 ≤ F

θ̂
(θ̂obs|θ0) ≤ 1 − p2, for −1 < θ̂obs < +1. It follows that F

θ̂
(θ̂obs|θ0) has

a mixed distribution; it takes on the value −1 with probability p1, the value 1 with
probability p2, and is uniform on (−1, 1) with probability 1 − p1 − p2.

If we are interested in a nominal 95 % C.I., we will have coverage whenever 0.025 ≤
F

θ̂
(θ̂obs|θ0) ≤ 0.975. Also note that we will have underage when F

θ̂
(θ̂obs|θ0) < 0.025,

this corresponds to the situation where the C.I. lies completely below θ0. Similarly,
overage occurs when F

θ̂
(θ̂obs|θ0) > 0.975, and in this situation the C.I. lies completely

above θ0. As an example, generating a 95 % lower confidence bound (θL , 1) would
involve solving the equation F

θ̂
(θ̂obs|θL) = α, with α = 0.05 if F

θ̂
(·|θ0) is monotone

increasing in θ0, andα = 0.95 if F
θ̂
(·|θ0) is monotone decreasing in θ0. In the context of
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Table 2 Empirical lengths and coverage probabilities for nominal 95 % lower, upper, and two-sided (inter-
val) confidence bounds for parameter θ0 produced via MOME, according to the methods: SPBB, nonpara-
metric bootstrap (Boot), and asymptotic normal (AN)

95 % Confidence Settings Coverage probability Average length

Bound type n θ0 SPBB Boot AN SPBB Boot AN

Lower 10 0.4 1.000 1.000 1.000 1.435 1.802 0.875

10 0.8 0.997 1.000 1.000 1.899 1.774 1.442

20 0.4 1.000 1.000 1.000 1.110 1.830 0.764

20 0.8 1.000 1.000 1.000 0.950 1.790 1.681

Upper 10 0.4 0.900 0.452 1.000 1.945 1.749 1.675

10 0.8 0.903 0.315 0.246 1.998 1.989 1.906

20 0.4 0.919 0.451 1.000 1.894 1.709 1.531

20 0.8 0.916 0.311 0.313 1.998 1.985 1.876

Interval 10 0.4 0.940 0.432 0.997 1.484 1.438 0.561

10 0.8 0.948 0.358 0.259 1.336 1.653 1.300

20 0.4 0.953 0.717 1.000 1.095 1.560 0.334

20 0.8 0.960 0.524 0.693 1.005 1.692 1.616

Results are based on 1000 realizations, each of sample size n, simulated from a Gaussian MA(1) model
with σ 2 = 1

SPBB, and with F̂�(θ) denoting the saddlepoint approximation to the CDF of �MoM(θ)

given in Proposition 1, this 95% lower confidence bound would be produced by
solving

F̂
�(θ̂obs)

(0 | θL) =
⎧⎨
⎩

0.05, if F
�(θ̂obs)

(0|θ0) monotone increasing in θ0,

0.95, if F
�(θ̂obs)

(0|θ0) monotone decreasing in θ0.
(5)

Table 2 shows the result of some simulations carried out to compare the length and
coverage probability of nominal 95 % MOME confidence bounds for the sample sizes
and θ0 settings as in Table 1. Three methods are compared: SPBB, nonparametric boot-
strap (Boot), and the asymptotic normal approximation (AN). The “Lower” bounds
correspond to (5); the “Upper” to the same but with the roles of the monotonicity
switched; and “Interval” to an equal probability split C.I. obtained according to (2)
with α = 0.05. Each set of results is based on 103 simulations.

As expected, the bootstrap method performs poorly, and the asymptotic method only
marginally better, both missing the nominal coverage in almost all cases. It is perhaps
surprising that SPBB does so well, especially in the two-sided confidence bounds.
This is a vindication for the parametric bootstrap, of which SPBB is an approximation;
but of course it is accomplished orders of magnitude faster. Results for the interval
lengths are somewhat mixed, but it is practically pointless to compare lengths when
the coverages are far off nominal.
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3 Extensions to non-monotone estimating equations

Monotonicity of the QEE in (1) is one of the key points of SPBB, permitting the
implementation of step (iv) as explained in the Sect. 1. Without the monotonicity, one
no longer has the simple equivalence of events that enables saddlepoint approximation
of the CDF of θ̂ through that of �(t). This is also a key assumption in the Daniels
(1983) saddlepoint approximation for the PDF of θ̂ in the context of QEEs,

f̂
θ̂
(t) = f̂�(t)(0)JD(t), f̂�(t)(0) = M�(t)

(
ŝ
)

√
2π K ′′

�(t)

(
ŝ
) , JD(t) = −1

ŝ

∂K�(t)(ŝ)

∂t
,

(6)

where M�(t)(s) and K�(t)(s) denote, respectively, the MGF and CGF of �(t) evalu-
ated at s, and ŝ solves the saddlepoint equation K ′

�(t)(ŝ) = 0, with K ′(s) ≡ ∂K (s)/∂s.
Butler (2007, §12.2.1) provides an illuminating proof of this result, and gives an expres-
sion for f̂

θ̂
where the Jacobian term is in the form of a conditional expectation

f̂
θ̂
(t) = f̂�(t)(0)JS(t), JS(t) = E

[|�̇(t)| | �(t) = 0
]
, �̇(t) ≡ ∂�(t)/∂t, (7)

which is due to Skovgaard (1990) and Spady (1991). Although more computationally
challenging, the PDF approximation in (7) does not require monotonicity of �(t)
in t .

The fact that JS(t) constitutes an intractable conditional expectation would seem-
ingly rule out an application of (7). However, we propose the following approach that
combines a double-saddlepoint approximation (a device for approximating a condi-
tional density) with a Monte Carlo scheme. Defining Ut ≡ �(t) and Vt ≡ �̇(t) to
ease notation, the basic strategy is as follows:

JS (t) = E [|Vt ||Ut = 0] =
∫

|v| fVt |Ut (v|u = 0) dv ≈
∫

|v| f̂Vt |Ut (v|u = 0)dv

≈ 1

m

m∑
i=1

|zi |, (8)

where v1, . . . , vm is a random draw from f̂Vt |Ut (v|u = 0), the (double-saddlepoint)
approximation to the PDF fVt |Ut , which, adapted from Butler (2007, §4.2) for the case
u = 0, is given by

f̂Vt |Ut (v|u = 0) =
[ |K ′′

Ut ,Vt

(
ŝ1, ŝ2

) |
K ′′

Ut

(
ŝ0

)
]− 1

2 e−ω̂2/2

√
2π

. (9)

To define its ingredients, we start with the joint CGF of (Ut , Vt ),

KUt ,Vt (s1, s2) = log[E exp{s1Ut + s2Vt }] = −1

2
log

∣∣∣In − 2σ 2�θ(s1 At + s2 Ȧt )

∣∣∣ ,
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972 R. L. Paige et al.

from which we obtain KUt (s0) = KUt ,Vt (s0, 0) as the marginal CGF of Ut . If we let
K ′

Ut ,Vt
(s1, s2) denote the gradient vector and K ′′

Ut ,Vt
(s1, s2) the Hessian matrix of the

joint CGF,

K ′
Ut ,Vt

(s1, s2)=
⎡
⎣ ∂KUt ,Vt (s1,s2)

∂s1

∂KUt ,Vt (s1,s2)

∂s2

⎤
⎦ , K ′′

Ut ,Vt
(s1, s2)=

⎡
⎢⎣

∂2 KUt ,Vt (s1,s2)

∂s2
1

∂2 KUt ,Vt (s1,s2)

∂s1∂s2

∂2 KUt ,Vt (s1,s2)

∂s1∂s2

∂2 KUt ,Vt (s1,s2)

∂s2
2

⎤
⎥⎦ ,

then the two-dimensional saddlepoint (ŝ1, ŝ2) solves K ′
Ut ,Vt

(ŝ1, ŝ2) = [0, v]ᵀ. Sim-

ilarly, K ′
Ut

(s0) = ∂KUt (s0)/∂s0, K ′′
Ut

(s0) = ∂2 KUt (s0)/∂s2
0 , and the saddlepoint ŝ0

solves the equation K ′
Ut

(ŝ0) = 0. Finally,

ω̂ = sgn(ŝ2)

√
2

[
KUt (ŝ0) − KUt ,Vt (ŝ1, ŝ2) + ŝ2v

]
.

Details of the computation, including expressions for the derivatives of the CGF’s
(obtained by elementary matrix calculus), can be found in Wickramasinghe (2012).
To avoid computing normalizing constants for the double-saddlepoint approximated
PDF’s, a Monte Carlo scheme like importance sampling can be used. With g(z) an
appropriate instrumental density, the proposed implementation to compute f̂

θ̂
(t) via

(7) would then proceed according to Algorithm 1 as follows.

Algorithm 1 For a sufficiently large integer m, instrumental density g(z), and a grid
of values t ∈ [−1, 1], do:

• draw an iid sample z1, . . . , zm from g(z);
• for i = 1, . . . , m, obtain f̂Vt |Ut (zi |0) ≡ f (zi ) from (9);
• form the importance sampling approximation to JS(t) as

ĴS(t) =
∑m

i=1 |zi | f (zi )/g(zi )∑m
i=1 f (zi )/g(zi )

;

• obtain f̂�(t)(0) from (6), and set f̂
θ̂
(t) = f̂�(t)(0) ĴS(t).

For efficiency reasons, the instrumental distribution g should have heavier tails than
the target f (Robert and Casella 2004), and a t distribution with 3 degrees of freedom
seems to be a reasonable default choice. Note that a numerical integration method
like Gauss quadrature could be used to approximate JS(t) instead, but the importance
sampling approach has the advantage of not requiring the computation of the normal-
izing constant in the saddlepoint approximated f̂

θ̂
(t), which, therefore, lessens the

computational burden.
In fact, making use of the double-saddlepoint approximation to the CDF, the fol-

lowing alternate algorithm that relies on the probability integral transform could be
used instead. The trade-off between these two is that Algorithm 2 does not require the
selection of an instrumental density with its associated efficiency issues, but it does
require greater programming effort to determine the saddlepoints ŝ0, ŝ1, and ŝ2, which
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Extensions of SPBB inference 973

have to be found multiple times in the inherent CDF inversion operation of the second
step.

Algorithm 2 For a sufficiently large integer m, and a grid of values t ∈ [−1, 1], do:

• draw an ordered iid sample z1 ≤ · · · ≤ zm from a uniform distribution on (0, 1);
• for i = 1, . . . , m, find the value yi that solves F̂Vt |Ut (yi |0) = zi , the double-

saddlepoint approximation to the CDF of Vt |Ut (Butler 2007, §4.2);
• form the empirical approximation to JS(t) as

ĴS(t) = 1

m

m∑
i=1

|yi |;

• obtain f̂�(t)(0) from (6), and set f̂
θ̂
(t) = f̂�(t)(0) ĴS(t).

Figure 3 shows saddlepoint approximations to the PDF’s of the MLE of θ0 for the
MA(1) model settings considered in Fig. 1. The approximations are based on the two
Jacobians: Daniels from equation (6), and Skovgaard from equation (7) obtained via
Algorithm 1. For comparison with the “truth”, the empirical PDF is represented by the
histograms (based on 106 simulated replicates), and is displayed with the exclusion of
the point masses at θ = ±1. For meaningful comparisons, all the PDF’s are, therefore,
normalized to integrate to unity.
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Fig. 3 Saddlepoint approximated densities of the MLEs of θ in Proposition 1 for the moving average
coefficient θ0 = 0.4 (left panels) and θ0 = 0.8 (right panels), in samples of size n = 10 (top panels)
and n = 20 (bottom panels) from an MA(1) model, using two different Jacobians: Skovgaard (solid) and
Daniels (dashed). The empirical PDF displayed in the histograms is based on 106 simulated replicates
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From this we can see that the Daniels method completely misses the point masses.
The fact that the MLE QEE is monotone with high probability here is responsible
for the excellent quality of the Daniels approximation in the open interval (−1, 1).
The Skovgaard method on the other hand seems to pick up the point masses, as the
PDF shows a tendency to curve upward close to the upper end of the support at 1,
and thus gives a much more realistic picture of the true state of affairs. This tendency
of saddlepoint approximations to exhibit smooth jumps at point masses was already
noted by Lund et al. (1999). As a final note, a C.I. could be obtained by numerical
integration of the approximate PDF.

4 Extensions to estimating equations with tractable MGFs

Consider the QEE �0(θ) defined in (1). The multivariate normality immediately fur-
nishes a closed-form expression for its MGF as

M�0(θ) (s;μ0, �0)=exp
{

sμᵀ
0 (In −2s�0 Aθ )

−1 Aθμ0

}
|In −2s�0 Aθ |−1/2 . (10)

In this section, we consider extensions of SPBB which still result in a tractable or
“near-tractable” MGF for the underlying estimating equation, and thus permit the
implementation of step (iii) outlined in the Introduction.

4.1 Estimating equations of linear quadratic form type

A straightforward generalization of (10) occurs if the estimating equation�(·) contains
linear and constant terms,

�(θ) = cθ + bᵀ
θ y + yᵀAθ y = 0, (11)

where cθ and bθ are, respectively, scalar and vector-valued constants (possibly depend-
ing on θ ). If y is Gaussian as above, and defining �−1

θ ≡ �−1
0 − 2s Aθ , the resulting

MGF becomes

M�(θ) (s;μ0, �0) = M�0(θ) (s;μ0, �0)

× exp
{
(cθ + bᵀ

θ μ0)s + (
2bᵀ

θ �θ Aθμ0 + bᵀ
θ �θ bθ /2

)
s2

}
.

An application of this is if the underlying estimating equation g(y; θ) is a function
that is itself not a QEE, but can be approximated as such via a Taylor series expansion to
second-order terms, so that g(y; θ) ≈ �(θ). An example is presented by Feuerverger
and Wong (2000), where it is desired to approximate the distribution of a scalar-valued
function of a Gaussian random vector of returns. They show how the tractable MGF
of (11) leads directly to a saddlepoint approximation for the desired distribution. This
kind of scenario is subsumed as a special case of the simple SPBB approach, which
can handle instances when only the estimating equation giving rise to the estimator of
interest is known.
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Extensions of SPBB inference 975

4.2 Skew-normal and elliptically contoured families

Generalizations of the Gaussian distribution with tractable QEE MGF promise include
the extensively studied elliptically contoured and skew-normal families. The latter is a
relatively recent innovation; see for instance Azzalini and Dalla Valle (1996), Azzalini
and Capitanio (1999), Branco and Dey (2001), Gupta and Huang (2002), Gupta et al.
(2004), Huang and Chen (2006), and Wang et al. (2009). Some of these references
provide closed-form expressions for the MGF of a quadratic form, the starting point
for SPBB implementation.

The elliptically contoured family is extensively documented in Fang et al. (1990),
Fang and Anderson (1990), and Fang and Zhang (1990). The n-dimensional random
vector y ∼ ECn (μ, �, φ) is elliptically contoured with location and dispersion para-
meters μ and �, if its characteristic function is of the form �(s) = eisᵀμφ(sᵀ�s) for
some function φ(u), u ∈ R. An equivalent characterization is through the “generator”
function h(·) of the PDF, in which case we write y ∼ ECn (μ, �, h), with PDF

f (y)=|�|−1/2cnh (z)≡|�|−1/2g(z), with z =(y − μ)ᵀ�−1(y−μ) ∈ R
+, (12)

where cn is a known normalizing constant.
Provost and Cheong (2002, Lemma 2) presented an expression for the PDF of

y ∼ ECn (μ, �, φ), as

f (y) =
∫ ∞

0
w (t) φn (y;μ, �/t) dt, (13)

where φn (y;μ, �/t) denotes the PDF of an n-dimensional normal with mean μ and
covariance matrix �/t , and w(t) is a “weighting” function that is defined through the
inverse Laplace transform of f (t), with t = (y − μ)ᵀ�−1(y − μ)/2 ≡ z/2, denoted
by L−1

f (t). More explicitly, we have

w(t) = (2π)n/2 |�|1/2 t−n/2L−1
f (t) , with

∫ ∞

0
w (t) dt = 1, (14)

which results in the following relationship between the PDF at z and w(t),

f (z) = (2π)−n/2 |�|−1/2
∫ ∞

0
tn/2e−t z/2w (t) dt.

With this construct, and if the weighting function can be analytically obtained, it is
possible to derive an integral representation for the MGF of a QEE in elliptically
contoured random variables. Since w(·) integrates to 1 over R

+, the resulting MGF
can be regarded as an infinite mixture of normal MGF’s.

Proposition 2 (MGF of Elliptical QEE) Let y ∼ ECn (μ0, �0, φ) be an n-
dimensional elliptically contoured random vector with PDF f (t), t = (y − μ0)

ᵀ�−1
0

(y − μ0)/2, and weighting function w(t) as defined by (14). Define the QEE
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976 R. L. Paige et al.

�EC
0 (θ) ≡ yᵀAθy, where μ0 and �0 are functions of the parameter of interest θ0

and nuisance parameter vector λ0. Then, provided the integral converges in a neigh-
borhood of s = 0, the MGF of �EC

0 (θ) is given by

M�EC
0 (θ) (s;μ0, �0) =

∫ ∞

0
w (t) M�0(θ) (s;μ0, �0/t) dt, (15)

where M�0(θ) (s;μ0, �0/t) is the expression in (10) with �0/t replacing �0.

Proof This result follows straightforwardly by writing out the n-dimensional integral
that defines M�EC

0 (θ)(·), substituting expression (13) in for the PDF, interchanging the
order of integration in the resulting double integral, and noticing that the inner integral
defines the MGF of �0(θ) with respect to a normal with mean μ0 and covariance
matrix �0/t . ��

Remark 2 Note that inverse Laplace transform L−1
f (t) is by definition a positive

integrable function. When it is continuous and does not have infinite jumps, such as
one would see in a Dirac delta function, then it could be viewed as the unnormalized
PDF of some random variable. Therefore, the saddlepoint PDF could in principle be
used to approximate L−1

f (t). The issue of the unknown normalization constant would
then be handled using the condition that the approximate weight function integrates
to one, as in (14).

Some noteworthy special cases of the elliptically contoured family with finite
moments of all orders are presented in Table 3. The weighting function for the normal
is the Dirac delta centered at 1. Two versions of multivariate Laplace are presented.
The Laplace-A, proposed by Kotz et al. (2001, Chap. 5), has an explicit form for the
characteristic function but not the PDF, which makes the calculation of the weight-
ing function intractable as far as we can determine (but could be approximated as in
Remark 2). The Laplace-B listed here is a scaled version of the “bilateral exponential”
in Table 1 of Provost and Cheong (2002). Both the Gaussian and Laplace-B are special
cases of the multivariate exponential power (EP) sub-family proposed by Gomez et
al. (1998), with shape parameters β = 1 and β = 1/2, respectively. The EP is a
multivariate generalization of the univariate exponential power distribution1, where
β > 0 controls the thickness of the tails: for β < 1, the tails are heavier than the
normal, and β → ∞ results in a uniform. Gomez et al. (1998) originally termed this
power exponential, but later realized the inadvertent switching of the names (Gomez
et al. 2002).

If y ∼ E Pn (μ, �, β) denotes an n-dimensional EP random vector, the values μ, �,
and β play the role of location, scale, and shape parameters, with PDF given by

1 Also variously called Subbotin, Generalized Error Distribution (Mineo and Ruggieri 2005), and Gener-
alized Normal Distribution (Nadarajah 2005), with slight differences in the parametrizations.
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f (z) = n�(n/2)

πn/2�(1 + n
2β

)21+ n
2β

|�|−1/2 exp{−zβ/2}, z = (y − μ)ᵀ�−1(y − μ).

The mean and variance are related to the location and scale parameters by the relations

E(y) = μ, and Var(y) =
21/β�

(
n+2
2β

)
n�

(
n

2β

) �. (16)

It is obvious that y ∼ E Pn (μ, �, β) implies y ∼ ECn (μ, �, h), with generator
function h(z) = exp{−zβ/2}. For more on the EP and some results for the MA(1)
under EP noise and EP likelihood, see Barnard et al. (2013).

4.3 SPBB computations for non-gaussian QEE’s

SPBB computations with multivariate skew-normal distributions will be relatively
straightforward since the relevant MGF’s are given in closed-form. In contrast, com-
putations with elliptically contoured data will be more involved since the calculation
of the MGF for the QEE in Proposition 2 requires (one-dimensional) integration. How-
ever, this is not necessarily an impediment to implementation of SPBB, since it does
not require numerical inversion of the MGF and the ill-conditioned problems it brings.
One possible solution is to utilize a Laplace approximation e.g., Butler (2007).

We apply this idea to the MA(1) model (with σ 2 = 1) when the data follow
a Laplace-B distribution, x ∼ E Pn

(
μ0 = 0, �0 = (4n + 4)−1�θ0 , β = 1/2

)
. From

Proposition 2, and with w(t) as given in the last row of in Table 3, we then have the
following expression for the MGF of �(θ) = xᵀAθx,

M�(θ) (s) =
∫ ∞

0
w(t) |In − (2s/t)�0 Aθ |− 1

2 dt ≡ cn

∫ ∞

0
e−q(t)dt,

cn = �(n/2)

�(n)2(5+n)/2
√

π
, (17)

Table 3 Some elements of the elliptically contoured family

Distribution φ(u) g(z) w(t)

Gaussian e−u/2 (2π)−n/2e−z/2 δ(t − 1)

Laplace-A (1 + u/2)−1 2(2π)−n/2(z/2)(2−n)/4 K1−n/2(
√

2z) Intractable

Laplace-B Not Explicit (2π)−n/2�(n/2)

�(n)21+n/2 e−√
z/2 �(n/2)e−1/(8t)t−(n+3)/2

�(n)2(5+n)/2√
π

The Laplace-A is that proposed by Kotz et al. (2001, Chap. 5) with an explicit characteristic function,
but whose PDF involves a modified Bessel function of the 2nd kind. Both the Gaussian and Laplace-B are
elements of the EP sub-family (Gomez et al. 1998), with shape parameters β = 1 and β = 1/2, respectively
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where q(t) = 1/(8t) + (3/2) log(t) + (1/2) log[p(t)] and p(t) = |t In − 2s�0 Aθ |.
We can now appeal to a Laplace approximation for the integral,

∫ ∞

0
e−q(t)dt ≈

√
2πe−q(t̂)√

q ′′(t̂)
,

where the interior point t̂ ≡ t̂(s, θ, θ0) is the global minimum of q(t) over (0,∞).
Progress in terms of SPBB from here on requires explicit expressions for the first

and second derivatives of M�(θ)(s) with respect to s and θ . This in turns means that an
explicit expression for t̂ is needed. Noting that p(t) is the characteristic polynomial
of the matrix 2s�0 Aθ , we can expand and then truncate it as follows,

p(t) = tn − tr(2s�0 Aθ )t
n−1 + intermediate terms + (−1)n|2s�0 Aθ |

= p̃(t) + O(s2), where p̃(t) = tn − tr(2s�0 Aθ )t
n−1.

The justification for truncating p(t) ≈ p̃(t) is that higher order terms are O(s2), for
|s| → 0. Since the behavior of M�(θ)(s) in the neighborhood of s = 0 is the key
component in the saddlepoint equation, the linear term should play the principal role
in the resulting approximations. Substitution of p̃(t) in the expression for q(t), calling
the result q̃(t), and differentiation in t leads to

q̃ ′(t) = − 1

8t2 + n + 2

2t
+ 1

2[t − tr(2s�0 Aθ )] .

Equating this expression to zero to find the minimum is now seen to result in a quadratic
equation in t , and thus a closed-form solution for t̂ is obtained. Note that convergence
of (17) is assured for small enough |s|, since at s = 0 we have

M�(θ) (0) =
∫ ∞

0
t−(n+3)/2e−1/(8t)dt = 1

cn
.

All that remains in implementing SPBB are explicit expressions for the first and
second derivatives of M�(θ)(s) with respect to s and θ , but these can now be routinely
obtained by careful application of the chain rule (Wickramasinghe 2012). Figure 4
shows the results for MOME. The histograms represent the exact PDF, and are obtained
via simulation (based on 104 replications). One possible problem with the stratagem
of truncating p(t) is that the saddlepoint approximation may be less accurate in the
tails. However, the plots in Fig. 4 show that even for small sample sizes like 5 and 10
this does not seem to be an issue.

5 Summary

Two substantive extensions to the SPBB methodology of Paige et al. (2009) have
been proposed, whereby inference for a scalar parameter of interest is made through
its underlying QEE. The first tackled the issue of non-monotone QEEs, by providing
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Fig. 4 Simulated (histograms) and SPBB approximated (dashed lines) PDF’s for the MOME of the coef-
ficient θ0 of an MA(1) model (σ 2 = 1) under a Laplace-B distribution for the data

an alternative expression for the Jacobian term in the saddlepoint approximation to
the density of the estimator. Application to common estimators in the MA(1) model,
such as least squares and maximum likelihood, revealed that the existing approach
works well when the QEE is monotone with high probability. When this fails, the
Skovgaard Jacobian can alternatively be employed, which also seems to detect the
existence of point masses in estimators with mixed distributions. Monte Carlo-based
algorithms were proposed to deal with the intractable conditional expectation arising
in its computation.

The second extension considered saddlepoint approximations to the density of
estimators when the QEE is non-Gaussian. In this case, one has to search for an
alternative suitable distributional structure that leads to a tractable expression for the
MGF of the QEE. Two possibilities are the skew-normal (Gupta and Huang 2002) and
exponential power (Gomez et al. 1998) families, both being flexible enough to include
the normal as a special case. The multivariate Laplace version of the exponential
power was illustrated in the MA(1) context, by developing an expression for the
QEE MGF that is closed-form to within a one-dimensional integral. We showed how
tractable derivatives for the logarithm of this MGF can then be obtained by Laplace
approximating the integral after truncation of the characteristic polynomial expansion
for the problematic determinant term in the integrand. This leads to a reasonably
accurate approximation for the desired densities.

In future work, it would be interesting to address the issue of C.I. construction
under these two extensions. With monotonicity holding, the CDF of the estimator
for a multivariate Laplace QEE can be obtained analogously to the PDF, and SPBB
inference is thus implemented with little additional effort. Without monotonicity, one
lacks the straightforward mapping of events that makes SPBB possible, and our best
recommendation would be numerical integration of the approximated density.
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