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Abstract In this paper, we present some distributional properties of the survival and
frailty distribution involved in the proportional odds (PO) frailty model. Stochastic
orderings are studied for this proportional odds frailty model. It is showed that negative
dependence arises in the PO frailty model as opposed to the proportional hazard frailty
model.

Keywords Likelihood ratio ordering · Failure rate ordering · Stochastic ordering ·
T P2(R R2) functions · Frailty distributions

1 Introduction

In survival analysis, Cox proportional hazard model is the most popular, but in certain
situations Cox model is inappropriate. The Cox model postulates that the covariates
have a fixed multiplicative effect on their hazard. Zucker and Yang (2006) note that
often it is more reasonable to suppose that the effect of the covariates on the hazard
diminishes over time. As an alternative, Bennett (1983a,b) introduced proportional
odds model defined by
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1 − S(t |z)
S(t |z) = 1 − S0(t)

S0(t)
exp(βT z)

where S(t |z) denotes the survival function under the covariates z and S0(t) is the
unspecified baseline survival function. Various authors including Cheng et al. (1995),
Cuzick (1988), Dabrowska and Doksum (1988), Lam and Leung (2001), Murphy et al.
(1997), Pettitt (1984), Shen (1998), Yang and Prentice (1999) and Wu (1995) consider
the estimation of the parameter in a semiparametric proportional odds model. Kirmani
and Gupta (2001) explored the structure, implication and properties of the proportional
odds model. Using a nonparametric rank-based empirical likelihood approach, Guan
and Peng (2011) studied the two sample proportional odds model and proposed a
simultaneous procedure to estimate the model parameter and assess the goodness-of-
fit. Murphy et al. (1997) remarked that the proportional odds model can be viewed as
a proportional hazard model with unobserved heterogeneity.

The proportional hazard model with unobserved heterogeneity has been studied in
the literature under the umbrella of proportional hazard (PH) frailty models. The PH
frailty model is given by

λ(t |v) = vλ0(t), t > 0 (1)

where λ0(t) is the baseline hazard rate independent of v and v is the unobserved
heterogeneity, known as the frailty. Frailty models have been used when groups of
subjects have responses that are likely to be dependent in some general way. For
example, in an animal carcinogenicity study, the responses of members of the same
litter are not likely to be independent. Liang et al. (1995) discuss the use of frailty
models when multiple events have been observed on the same subjects. The PH frailty
model has been extensively used in modeling survival data. We refer the reader to two
recent books of Hanagal (2011) and Duchateau and Janssen (2008) and the references
therein.

Economou and Caroni (2007) proposed maximum likelihood and nonlinear least
square methods to estimate the parameters in the purely parametric proportional odds
frailty model to real life survival data with right censoring observations using different
frailty distributions including Gamma, uniform on (1 − θ, 1 + θ) with θ ∈ (0, 1), and
Triangular distribution on (1 − θ, 1 + θ) with θ ∈ (0, 1). In the least square method,
Economou and Caroni (2007) proposed using stabilized probability plot method to
reduce the variability of the survival probabilities obtained from the well-known
Kaplan–Meier estimator and produced a data set with complete lifetimes and their
corresponding survival probabilities. A hypothetical distribution is then fit to this
derived data set using the least square procedure. Bootstrap confidence intervals were
used to make inferences on the model parameters. The numerical examples show that
the choice of Gamma frailty improves the fit of the simple log-logistic model (which
is close to the proportional frailty model). Their simulation and numerical examples
indicate the feasibility of implementing this computationally intensive proportional
odds frailty model.

As indicated in the numerical example in Economou and Caroni (2007), the choice
of frailty distribution affects the estimate of the baseline hazard as well as that of
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Proportional odds frailty model 899

conditional probabilities; see also Hougaard (1984, 1991, 1995, 2000), Heckman and
Singer (1984) and Agresti et al. (2004). Agresti et al. (2004) have demonstrated that a
considerable loss of efficiency can result from assuming a parameter distribution for
a random effect that is substantially different from the true distribution. These authors
observed that misspecification of the random effect has the potential for a serious drop
of the efficiency in the prediction of the random effects and the estimation of other
parameters. In this context, Gupta and Kirmani (2006), and Gupta and Gupta (2009,
2010) studied some general frailty model and their stochastic comparisons.

Similar to the PH frailty model, the purpose of this paper is to study the stochastic
orderings in the proportional odds (PO) frailty model. The PO frailty model is defined
as follows.

Assume that F(t |v) = P[T ≤ t |V = v] is the cumulative distribution of the
lifetime T given frailty V = v and F0 is the baseline cumulative distribution function
of the lifetime T. Assume further that the frailty random variable has density function
h(v). We define two odds functions based on F(t |v) and F0(t) as follows:

φ(t |v) = F̄(t |v)

1 − F̄(t |v)
, φ0(t) = F̄0(t)

1 − F̄0(t)
, (2)

F̄(t |v) and F̄0(t) are corresponding survival functions associated with F(t |v) and
F0(t). The proportional odds frailty model is defined by

φ(t |v) = vφ0(t). (3)

Note that Marshall and Olkin (1997) is a PO model. Also, see Marshall and Olkin
(2007). Its extensions and modifications have been studied by various authors including
Gupta and Peng (2009).

Since different distributions of frailty give rise to different population-level distri-
bution for analyzing survival data, it is appropriate to investigate how the comparative
effect of two frailties translates into the comparative effect on the resulting survival
distribution. The stochastic ordering, on various characteristics, of this model studied
in this paper address this problem. The comparisons are studied with respect to failure
rates, survival distributions and the mean residual life functions.

Our chief aim in this paper is to develop the properties of the model (3) and obtain
some results for the stochastic comparisons.

The following definitions will be used for various stochastic comparisons. Let X
and Y be non-negative absolutely continuous random variables with density functions
f (x) and g(x) and survival functions F̄(x) and Ḡ(x), respectively.

Then

1. X is said to be smaller than Y in the likelihood ratio ordering, written as X ≤LR Y ,
if f (x)/g(x) is non-increasing in x .

2. X is said to be smaller than Y in the failure (hazard) rate ordering, written as
X ≤FR Y or X ≤hr Y , if rF (x) ≥ rG(x) for all x . This means that Ḡ(x)/F̄(x)

increases in x .
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3. X is said to be smaller than Y in the stochastic ordering, written as X ≤st Y if
F̄(x) ≤ Ḡ(x) for all x .

4. X is said to be smaller than Y in the mean residual life ordering, written as X ≤MRL

Y , if μF (x) ≤ μG(x) for all x . Deshpande et al. (1990) show that X ≤MRL Y if
and only if

∫ ∞
x F̄(u)du/

∫ ∞
x Ḡ(u)du increases in x .

It is well known that

X ≤LR Y ⇒ X ≤FR Y ⇒ X ≤MRL Y

⇓
X ≤st Y.

To conclude this section, we present the following definition to be used in the
subsequent discussion.

Definition Let f (t, v) be a real valued function defined on [0,∞) × [0.∞). If, for
all 0 < t1 < t2 and 0 < v1 < v2,

f (t1, v1) f (t2, v2) ≤ (≥) f (t1, v2) f (t2, v1).

Then f (t, v) is called R R2(T P2).

It is useful to notice the following equivalent conditions:

1. A real value function f (t, v) is R R2(T P2) in [0,∞) × [0.∞).
2. f (t, v1)/ f (t, v2) is increasing (decreasing) in t > 0, 0 < v1 < v2.
3. ∂2[ln f (t, v)]/∂t∂v < (>)0.
4. If f (t, v) and f (t |v) are the joint and conditional densities, f (t |v) is R R2(T P2).

The organization of this paper is as follows. In Sect. 2, we present some distri-
butional properties of the survival and frailty distribution involved in the PO frailty
model. Stochastic orderings are studied in Sect. 3. Some conclusions and comments
are provided in Sect. 4.

2 Distributional properties of proportional odds frailty models

Before we study the properties of lifetime distribution associated with proportional
odds frailty model, we define some unconditional (population level) and conditional
(on frailty) survival functions. First, we define survival and failure rate functions.

F̄(t |v)

1 − F̄(t |v)
= v × F̄0(t)

1 − F̄0(t)
. (4)

From (4), we can also calculate the the conditional survival function

F̄(t |v) = v F̄0(t)

1 − (1 − v)F̄0(t)
= vφ0(t)

1 + vφ0(t)
. (5)
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Proportional odds frailty model 901

The corresponding conditional density is

f (t |v) = v f0(t)

[1 − (1 − v)F̄0(t)]2
= vφ0(t)λ0(t)

F0(t)[1 + vφ0(t)]2 , (6)

where λ0(t) is the baseline hazard rate function. The conditional hazard rate is given
by

λ(t |v) = f (t |v)

F̄(t |v)
= λ0(t)

F0(t)[1 + vφ0(t)] . (7)

Note that the hazard rate is defined to be the instantaneous rate which involves the con-
ditional probability limh→0 P(t ≤ T < t + h|T ≥ t)/h. Therefore, the population-
level hazard rate can be expressed as

λ(t) =
∫ ∞

0
λ(t |v)h(v|T ≥ t)dv,

where the conditional density function h(v|T ≥ t) for conditional random variable
V |T ≥ t can be found in the next few steps. We calculate the unconditional distribution
functions. The unconditional density function is given by

f (t) =
∫ ∞

0
f (t |v)h(v)dv =

∫ ∞

0

vφ0(t)λ0(t)h(v)

F0(t)[1 + vφ0(t)]2 dv. (8)

From (5), we can find the unconditional survival function

F̄(t) =
∫ ∞

0

vφ0(t)h(v)

1 + vφ0(t)
dv. (9)

Therefore, the population-level hazard rate can be expressed in terms of the conditional
hazard rate as follows

λ(t) = f (t)

F̄(t)
=

∫ ∞

0

vφ0(t)λ0(t)h(v)

F0(t)[1 + vφ0(t)]2 dv

/∫ ∞

0

vφ0(t)h(v)

1 + vφ0(t)
dv

=
∫ ∞

0

λ0(t)

F0(t)[1 + vφ0(t)]2

(
vh(v)/[1 + vφ0(t)]∫ ∞

0 {vh(v)/[1 + vφ0(t)]}dv

)

dv

=
∫ ∞

0
λ(t |v)

(
vh(v)/[1 + vφ0(t)]∫ ∞

0 {vh(v)/[1 + vφ0(t)]}dv

)

dv.

Therefore,

h(v|T > t) = vh(v)/[1 + vφ0(t)]∫ ∞
0 {vh(v)/[1 + vφ0(t)]}dv

(10)
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is the probability density function of random variable V |T > t . The population-level
hazard rate can be expressed as a weighted average of the conditional hazard rate as
follows

λ(t) =
∫ ∞

0
λ(t |v)h(v|T > t)dv =

∫ ∞

0
λ(t |v)dH(v|T > t) = EV |T >t [λ(t |V )].

(11)

The cumulative distribution of frailty V conditioning on T > t is given by

H(v|T > t) =
∫ v

0 {sh(s)/[1 + sφ0(t)]}ds
∫ ∞

0 {vh(v)/[1 + vφ0(t)]}dv
. (12)

With the above notations and descriptions of the conditional and unconditional dis-
tributions and hazard functions, we summarize some related properties in the following
theorem.

Theorem 1 Assume the proportional odds frailty model (3) holds. Then, for 0 < v1 <

v2, we have

1. λ(t |v) is a decreasing function of v.
2. The joint density function f (t, v) and the conditional density f (t |v) of T and V

are T P2.
3. F(t |v1)/F(t |v2) decreases in t , i.e., F(t |v) is T P2.
4. F̄(t |v1)/F̄(t |v2) decreases in t , i.e., F̄(t |v) is T P2.

Proof (1) It is obvious from the expression given in (7).
(2) Note that the joint density function of T and V is given by

f (t, v) = f (t |v)h(v) = vφ0(t)λ0(t)h(v)

F0(t)[1 + vφ0(t)]2 . (13)

Therefore,

f (t, v1)

f (t, v2)
= v1h(v1)

v2h(v2)

[
1 + v2φ0(t)

1 + v1φ0(t)

]2

= v1h(v1)

v2h(v2)

[

1 + v2 − v1

v1 + [φ0(t)]−1

]2

and

f (t |v1)

f (t |v2)
= v1

v2

[

1 + v2 − v1

v1 + [φ0(t)]−1

]2

.

Since φ0(t) is a decreasing function of t and v1 < v2, f (t, v1)/ f (t, v2) and
f (t |v1)/ f (t |v2) are decreasing functions of t . Hence, f (t, v) and f (t |v) are T P2
as functions of t and v.
(3) Note that

F(t |v1)

F(t |v2)
= 1 − F̄(t |v1)

1 − F̄(t |v2)
= 1 + v2 − v1

v1 + [φ0(t)]−1 .

Decreasing function φ0(t) implies that F(t |v1)/F(t |v2) decreases in t .
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Proportional odds frailty model 903

(4) We follow the same arguments as used in the proof of (3) to show the T P2 property
of F̄(t |v) as a function of t and v by observing the following

F̄(t |v1)

F̄(t |v2)
= v1

v2

[
1 + v2φ0(t)

1 + v1φ0(t)

]

= v1

v2

[

1 + v2 − v1

v1 + [φ0(t)]−1

]

.

The proof of the theorem is complete. 	

The behavior of survival function on the right tail is of practical importance. In

proportional odds frailty models, there are two distributions involved. We next see the
monotonicity of both lifetime variable and frailty variable on the right tail. From (12),
we can easily get

H̄(v|T > t) = 1 − H(v|T > t) =
∫ ∞
v

{sh(s)/[1 + sφ0(t)]}ds
∫ ∞

0 {vh(v)/[1 + vφ0(t)]}dv
. (14)

Note also that

F̄(t |V > v) = P(T > t, V > v)

P(V > v)
=

∫ ∞
v

{sh(s)/[1 + sφ0(t)]}ds
∫ ∞
v

h(s)ds
. (15)

The monotonicity of T and V on the right tail is summarized in the following.

Theorem 2 Assume the proportional odds frailty model (3) holds. We have

1. V stochastically increases in the right tail with respect to T. That is, H̄(v|T > t)
is increasing in t for t > 0.

2. T stochastically increases in the right tail with respect to V. That is, F̄(t |V > v) is
increasing in v for v > 0.

Proof (1) We take the first-order derivative of H̄(v|T > t) with respect to t , The
numerator of the resulting first-order derivative ∂ H̄(v|T > t)/∂t is

φ′
0(t)

[∫ ∞

v

sh(s)

1 + sφ0(t)
ds

∫ ∞

0

v2h(v)

[1 + vφ0(t)]2 dv −
∫ ∞

0

vh(v)

1 + vφ0(t)
dv

∫ ∞

v

v2h(v)

[1 + vφ0(t)]2 dv

]

= φ′
0(t)

∫ ∞

v

sh(s)

1 + sφ0(t)
ds

∫ ∞

0

vh(v)

1 + vφ0(t)
dv

⎡

⎣

∫ ∞
0

v2h(v)

[1+vφ0(t)]2 dv
∫ ∞

0
vh(v)

[1+vφ0(t)] dv
−

∫ ∞
v

s2h(s)
[1+sφ0(t)]2 ds

∫ ∞
v

sh(s)
[1+sφ0(t)] dv

⎤

⎦ .

Since φ0(t) is a decreasing function of t , that is, φ′
0(t) < 0, we only need to prove

that

A(v) =
∫ ∞

v

s2h(s)

[1 + sφ0(t)]2 ds
/ ∫ ∞

v

sh(s)

[1 + sφ0(t)]ds
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is an increasing function of v. To see this, we take first-order derivative of A(v)

with respect to v. Since s > v, the corresponding numerator, denoted by D(v), is

D(v) = vh(v)

1 + vφ0(t)

[∫ ∞
v

s2h(s)

[1 + sφ0(t)]2 ds − v

1 + vφ0(t)

∫ ∞
v

sh(s)

1 + sφ0(t)
ds

]

> 0

which implies that A(v) is an increasing function of v. Therefore, H̄(v|T > t)
increases in t .

(2) We take the first-order derivative of F̄(t |V > v) with respect to v and obtain

∂ F̄(t |V > v)

∂v
= h(v)

[∫ ∞
0 h(s)ds]2

[∫ ∞

v

sh(s)

1 + sφ0(t)
ds − v

1 + vφ0(t)

∫ ∞

v

h(s)ds

]

> 0

since s/[1 + sφ0(t)] > v/[1 + vφ0(t)] for all s > v. Therefore F̄(t |V > v) is
increasing in v.

	


Corollary 1 If proportional odds frailty model (3) holds, then E[V |T > t] is an
increasing function of t and E[T |V > v] is an increasing function of v.

Proof The above conclusion follows immediately by looking at the facts that E[V |T >

t] = ∫ ∞
0 H̄(v|T > t)dv and E[T |V > v] = ∫ ∞

0 H̄(t |V > v)dv. 	


The implication of Corollary 1 is obvious. Since proportional odds frailty model
has a decreasing conditional hazard λ(t |v) in v, less frail individuals die earlier than
others so that the remaining individuals are less robust (more frail). On the other
hand, as frailty increases, the hazard rate decreases so that the individual survival time
increases in the rest of the population.

Next, we study the mean residual life of the distributions. Let

μ0(t) =
∫ ∞

t F̄0(s)ds

F̄0(t)

be the mean residual life function at baseline. The mean residual life function condi-
tioning on V = v is given by

μ(t |v) =
∫ ∞

t F̄0(s|v)ds

F̄0(t |v)
.

The next theorem characterizes the monotonicity of the conditional mean residual
lifetime of T |V = v.

Theorem 3 Assume the proportional odds frailty model (3) holds. Then, for 0 < v1 <

v2, we have μ(t |v1) < μ(t |v2).
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Proportional odds frailty model 905

Proof We only need to show that μ(t |v) is an increasing function of v. Since survival
odds function φ0(t) decreases, i.e., φ0(s) < φ0(t) for all s > t , therefore

φ0(s)

1 + vφ0(s)
<

φ0(t)

1 + vφ0(t)
.

Next, we take the first-order derivative of μ(t |v) with respect to v and obtain

∂μ(t |v)

∂v
= 1 + vφ0(t)

φ0(t)

[
φ0(t)

1 + vφ0(t)

∫ ∞

t

φ0(s)

1 + vφ0(s)
ds −

∫ ∞

t

φ2
0(s)

[1 + vφ0(s)]2 ds

]

> 0

which implies that μ(t |v) increases in v > 0. 	


3 Stochastic orderings in proportional odds frailty models

Our main objective, in this section, is to see how some of the well-known stochastic
orderings between V1 and V2 translate into the orderings of T1 and T2. The first result
compares the frailty distribution of two groups, one surviving up to time t1, and the
other surviving up to time t2.

Theorem 4 Assume that the proportional odds frailty model (3) holds. Then, for
0 < t1 < t2, we have V |T > t2 ≥LR V |T > t1.

Proof We only need to show that h(v|T > t2)/h(v|T > t1) decreases in v. Let
c(t) = ∫ ∞

0 {vh(v)/[1 + vφ0(t)]}dv. From (10), we have

h(v|T > t2)

h(v|T > t1)
= c(t1)

c(t2)
× 1 + vφ0(t1)

1 + vφ0(t2)
= c(t1)

c(t2)

[

1 + φ0(t1) − φ0(t2)

v−1 + φ0(t2)

]

. (16)

Since φ0(t1) > φ0(t2) for 0 < t1 < t2, c(t1)/c(t2) are positive function of t1 and
t2. Therefore, (16) is an increasing function of v which implies that V |T > t2 ≥LR

V |T > t1. 	

The next result compares two frailties in a population that has survived up to t .

Theorem 5 Assume that the proportional odds frailty model (3) holds and furthermore
V1 ≤LR V2. Then, we have V1|T > t ≤LR V2|T > t .

Proof Let h1(v|T > t) and h2(v|T > t) be the pdf of V1|T > t and V2|T > t
respectively. The unconditional density functions of V1 and V2 are denoted by h1(v)

and h2(v), respectively. We will show that h1(v|T > t)/h2(v|T > t) is decreasing in
v. To this end,

h1(v|T > t)

h2(v|T > t)
= h1(v)

h2(v)
×

∫ ∞
0 {vh2(v)/[1 + vφ0(t)]}dv

∫ ∞
0 {vh2(v)/[1 + vφ0(t)]}dv

. (17)

123
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Note that the last fraction of two integrals are independent on v. V1 ≤LR V2 implies
that h1(v)/h2(v) is decreasing in v. Therefore (17) is decreasing in v meaning that
V1|T > t ≤LR V2|T > t . 	


Although the choice of frailty affects the estimate of baseline hazard, there are
no guidelines for selecting appropriate frailty distribution available in literature. The
common practice is to select the frailty distribution based on ease of mathematical
manipulation. From this perspective, we may be interested in what and how the sto-
chastic orderings in frailty variables translate into the lifetime variables under propor-
tional odds frailty model framework. The following theorems provide some insights
into these transitions of stochastic orders.

Theorem 6 Under proportional odds frailty model (3), if V1 ≤LR V2. Then, we have
T1 ≤FR T2.

Proof Let λ1(t) and λ2(t) be the population-level hazard rates corresponding to T1
and T2. We need to show that λ1(t) − λ2(t) > 0. From (11), we have

λ1(t) − λ2(t) =
∫ ∞

0
λ(t |v)h1(v|T > v)dv −

∫ ∞

0
λ(t |v)h2(v|T > v)dv

=
∫ ∞

0
λ(t |v)[h1(v|T > v) − h2(v|T > t)]dv

=
∫ ∞

0
λ(t |v)d[H1(v|T > v) − H2(v|T > t)]

=
∫ ∞

0

∂λ(t |v)

∂v
[H2(v|T > v) − H1(v|T > t)]dv.

We know from Theorem 1(1) that ∂λ(t |v)/∂v < 0. Next we prove that D(v|T > t) =
H2(v|T > v) − H1(v|T > t) > 0. From (12), we have

D(v|T > t) =
∫ v

0 {sh2(s)/[1 + sφ0(t)]ds}
∫ ∞

0 {vh2(v)/[1 + vφ0(t)]}ds
−

∫ v

0 {sh1(s)/[1 + sφ0(t)]ds}
∫ ∞

0 {vh1(v)/[1 + vφ0(t)]}

= R(t)

[∫ v

0 {sh1(s)/[1 + sφ0(t)]}ds
∫ v

0 {sh2(s)/[1 + sφ0(t)]}ds
−

∫ ∞
0 {vh1(v)/[1 + vφ0(t)]dv}

∫ ∞
0 {vh2(v)/[1 + vφ0(t)]}dv

]

,

where

R(t) =
∫ v

0 {sh2(s)/[1 + sφ0(t)]ds}
∫ ∞

0 {vh1(v)/[1 + vφ0(t)]}dv
> 0.

Observe that D(v|T > t) > 0 is equivalent to the fact that

B(v) =
∫ v

0 {sh1(s)/[1 + sφ0(t)]}ds
∫ v

0 {sh2(s)/[1 + sφ0(t)]}ds
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is a decreasing function of v. To see this, let Bb(v) be the numerator of the first-order
derivative of B(v) with respect to v. After some algebra, we have

Nb(v) = vh1(v)

1 + vφ0(t)

{∫ v

0

sh2(s)

1 + sφ0(s)
ds −

∫ v

0

h2(v)

h1(v)

sh1(s)

1 + sφ0(s)
ds

}

. (18)

Since V1 ≤LR V2 implies that h2(v)/h1(v) is an increasing function of v. Therefore,

h2(v)

h1(v)
>

h2(s)

h1(s)
for s < v. (19)

Nb(v) < 0 follows immediately from (19). That is, D(v|T > t) > 0 which completes
the proof. 	


Next, we will show that the likelihood ratio order between the two frailty variables
can be transmitted into the likelihood ratio order between the two unconditional time
variables.

Theorem 7 Under proportional odds frailty model (3), if V1 ≤LR V2, then we have
T1 ≤LR T2.

Proof Let A = B = [0,∞) and I = {1, 2}. From Theorem 4(2), we know that
f (t |v) is T P2 on A × B. Let g(v, i) = hi (v) be the p.d.f of V1 and V2, respectively,
for i = 1, 2. The given condition V1 ≤LR V2 implies that g(v, i) = hi (v) is T P2 on
B × I . The basic composition formula (B.1. Theorem, p. 697) in Marshall and Olkin
(2007) implies that

fi (t) =
∫ ∞

0
f (t |v)hi (v)dv

is T P2 on A × I , which furthermore implies that f1(t)/ f2(t) is decreasing in t .
Therefore, T1 ≤LR T2. 	

Remark The basic composition formula was generalized from the well-known Binet–
Cauchy formula in matrix theory and the proof is outlined in Karlin (1968). It is one
of the very useful properties of totally positive functions.

Comparison of failure rates is of practical importance in survival analysis. The next
result concerns the translation of failure rate ordering between the lifetime and the
frailty.

Theorem 8 Under proportional odds frailty model (3), if V1 ≤FR V2, then we have
T1 ≤FR T2.

Proof Let A = B = [0,∞) and I = {1, 2}. Define

g(t, v) = φ0(t)

1 + vφ0(t)
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where φ0(t) is the baseline survival odds function in the proportional odds frailty
model (3).

g(t, v1)

g(t, v2)
=

[
1 + v2φ0(t)

1 + v1φ0(t)

]2

=
[

1 + v2 − v1

v1 + φ−1
0 (t)

]2

is a decreasing function of t for 0 < v1 < v2. That is, g(t, v) is T P2 on A × B.
Note that the given condition V1 ≤FR V2 implies that H̄1(v)/H̄2(v) is decreasing
in v for v > 0, which implies that H(v, i) = H̄i (v) is T P2 on B × I . Let h1(v)

and h2(v) be density functions of frail variable V1 and V2 respectively. Observe that,
under proportional odds frailty model (3), the cumulative failure rate function can be
expressed as, for i = 1, 2,

F̄i (t) =
∫ ∞

0
F̄(t |v)hi (v)dv = −

∫ ∞

0
F̄(t |v)dH̄i (v)

=
∫ ∞

0

φ0(t)

[1 + vφ0(t)]2 H̄i (v)dv =
∫ ∞

0
g(t, v)H(v, i)dv.

The facts that g(t, v) is T P2 on A × B and H(v, i) is T P2 on B × I , by the basic
composition formula, imply that F̄i (t) is T P2 on A × I . Therefore, F̄1(t)/F̄2(t) is
decreasing in t meaning that T1 ≤FR T2. The proof is complete. 	


The stochastic order is used to compare the cumulative rates of two lifetime variables
at given time t . In frailty models, we are interested in whether this order can be
transmitted from frailty distributions to lifetime distributions. The following result
shows that the stochastic ordering is transmittable.

Theorem 9 Under proportional odds frailty model (3), if V1 ≤st V2 then we have
T1 ≤st T2.

Proof On one hand, we re-express (5) as

F̄(t |v) = vφ0(t)

1 + vφ0(t)
= 1 − 1

1 + vφ0(t)
.

Clearly, F̄(t |v) is an increasing function of v. Hence, ∂ F̄(t |v)/∂v > 0. Note that
V1 ≤st V2 implies that H̄1(v) − H̄2(v) < 0. On the other hand,

F̄1(t) − F̄2(t) =
∫ ∞

0
F̄(t |v)[h1(v) − h2(v)]dv

=
∫ ∞

0
F̄(t |v)d[H̄1(v) − H̄2(v)]

=
∫ ∞

0

∂ F̄(t |v)

∂v

[
H̄1(v) − H̄2(v)

]
< 0

for all t > 0. Hence, T1 ≤st T2. 	
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We next present the following result showing, in proportional odds frailty model,
how the failure rate ordering between two frailty variables will be shifted to mean
residual lifetime ordering between the two associated lifetime variables. To be more
specific, we have

Theorem 10 Under proportional odds frailty model (3), if V1 ≤FR V2, then we have
T1 ≤MRL T2.

Proof Let h1(v) and h2(v) be the probability density functions of frailty variables V1
and V2, respectively, and

F̄i (t) =
∫ ∞

0

vφ0(t)hi (v)

1 + vφ0(t)
for i = 1, 2,

be the CDFs of the two lifetime variables with associated frailties V1 and V2. By
Theorem 2.1(2) of Deshpande et al. (1990), T1 ≤MRL T2 is equivalent to the fact that∫ ∞

t F̄1(s)ds/
∫ ∞

t F̄2(s)ds is decreasing in t . In other words, we only need to show
that

∫ ∞
t F̄i (s)ds is T P2 on [0,∞) × {1, 2}. To this end, let

�i (t) =
∫ ∞

t
F̄i (s)ds =

∫ ∞

t

[∫ ∞

0

vφ0(s)hi (v)

1 + vφ0(s)
dv

]

ds

=
∫ ∞

0

[∫ ∞

t

vφ0(s)

1 + vφ0(s)
ds

]

hi (v)dv

= −
∫ ∞

0

[∫ ∞

t

vφ0(s)

1 + vφ0(s)
ds

]

dH̄i (v)

=
∫ ∞

0

[∫ ∞

t

φ0(s)

[1 + vφ0(s)]2 ds

]

H̄i (v)dv.

Since V1 ≤FR V2 implies that H̄i (v) is T P2 on [0,∞)×{1, 2}, according to the basic
composition formula, the theorem is proved if

g(t, v) =
∫ ∞

t

φ0(s)

[1 + vφ0(s)]2 ds

is T P2 on [0,∞) × [0,∞). For 0 < v1 < v2, define

G(t, v1, v2) = g(t, v1)

g(t, v2)
=

∫ ∞

t

φ0(s)

[1 + v1φ0(s)]2 ds
/ ∫ ∞

t

φ0(s)

[1 + v2φ0(s)]2 ds.

Let NG(t) be the numerator of the first-order derivative of G(t, v1, v2) with respect to
t , that is,

NG(t) = φ0(t)

[1 + v1φ0(t)]2

[(
1 + v1φ0(t)

1 + v2φ0(t)

)2∫ ∞

t

φ0(s)

[1 + v1φ0(s)]2 ds −
∫ ∞

t

φ0(s)

[1 + v2φ0(s)]2 ds

]

.
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Since ∂φ0(t)/∂t < 0,

∂

∂t

(
1 + v1φ0(t)

1 + v2φ0(t)

)2

= 2

(
1 + v1φ0(t)

1 + v2φ0(t)

)
∂φ0(t)

∂t
[v1 − v2] > 0,

that is,

(
1 + v1φ0(t)

1 + v2φ0(t)

)2

is an increasing function of t . So, we have

(
1 + v1φ0(t)

1 + v2φ0(t)

)2∫ ∞

t

φ0(s)

[1 + v1φ0(s)]2 ds <

∫ ∞

t

φ0(s)

[1 + v2φ0(s)]2 ds

which implies that NG(t) < 0. Therefore, G(t, v1, v2) = g(t, v1)/g(t, v2) is decreas-
ing in t for 0 < v1 < v2, or equivalently, g(t, v) is T P2 on [0,∞) × [0,∞) which
completes the proof. 	


As a final note, we point out that all the theorems in this section can be illustrated by
choosing specific distributions for frailty variables V1 and V2 and lifetime distributions
for T1 and T2 satisfying the conditions specified in the proportional odds frailty model
(3). To conclude this section, we present an example that illustrates the result in
Theorem 9 with specific distributions from the exponential family.

Example Let V1 and V2 be the two frailty variables having probability density dis-
tributions h1(v) = λ1 exp(−λ1v) and h2(v) = λ2 exp(−λ2v), respectively. Assume
further that λ1 ≥ λ2 implying that V1 ≤st V2. We choose baseline odds φ0(t) =
exp(−λ0t)/[1 − exp(−λ0t)] with λ0 > 0. The two lifetime variables T1 and T2 with
associated frailty variables V1 and V2 are given by

F̄1(t) =
∫ ∞

0

vλ1 exp(−λv)

exp(λ0t) − 1 + v
dv and F̄2(t) =

∫ ∞

0

vλ2 exp(−λv)

exp(λ0t) − 1 + v
dv.

Using integral by parts, we have

F̄1(t) − F̄2(t) =
∫ ∞

0

v[λ1 exp(−λ1v) − λ2 exp(−λ2v)]
exp(λ0t) − 1 + v

dv

= −
∫ ∞

0

[exp(λ0t) − 1][exp(−λ2v) − exp(−λ1v)]
[exp(λ0t) − 1 + v]2 dv ≤ 0,

since exp(−λ2v) − exp(−λ1v) ≥ 0 and exp(λ0t) ≥ 1. Therefore, T1 ≤st T2.
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4 Conclusion and comments

In the classical frailty model, the random frailty variable appears as a multiplicative
factor of the baseline hazard. In a similar manner, we have studied a proportional odds
frailty model where the proportionality parameter plays the role of the frailty. We
have presented some distributional properties of the survival and frailty distribution
involved in the PO frailty model. Stochastic orderings are investigated for this PO
frailty model. It is observed that the conditional failure rate, in the case of PO frailty
model, is a decreasing function of the frailty as opposed to the PH frailty model where
the conditional failure rate is an increasing function of the frailty. It is hoped that this
work will be useful for analyzing survival data.

Acknowledgments The authors are thankful to the referees for some useful comments which enhanced
the presentation.
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