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Abstract This paper proposes an estimation method for superposed spatial point pat-
terns of Neyman—Scott cluster processes of different distance scales and cluster sizes.
Unlike the ordinary single Neyman—Scott model, the superposed process of Neyman—
Scott models is not identified solely by the second-order moment property of the
process. To solve the identification problem, we use the nearest neighbor distance
property in addition to the second-order moment property. In the present procedure,
we combine an inhomogeneous Poisson likelihood based on the Palm intensity with
another likelihood function based on the nearest neighbor property. The derivative of
the nearest neighbor distance function is regarded as the intensity function of the rota-
tion invariant inhomogeneous Poisson point process. The present estimation procedure
is applied to two sets of ecological location data.
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688 U. Tanaka, Y. Ogata

1 Introduction

The Neyman—Scott process (see Neyman and Scott (1958)), originally proposed as
the model of galaxy distribution, is well-known cluster point process. The model first
generates unobservable parent points according to a homogeneous Poisson process.
Then, each parent point generates a random number of descendants that scatter around
the parent location according to a spatial density function. The parameter estimation
method usually uses the least squares of the discrepancies between the values of the
empirical L-function and the theoretical L-function corresponding to a parameterized
Neyman—Scott process model (e.g., Diggle (1983, p. 74), Cressie (1993, p. 666) and
Stoyan and Stoyan (1996)), where the L-function is the normalized square root of
the K-function of Ripley (1977). As an alternative to the L-function, Stoyan and
Stoyan (1996) recommend the use of the pair-correlation function g(r) of the point
process, essentially the derivative of the K-function of Ripley (1977), to reduce the
dependencies of residuals in the sum of squares of the residuals.

For sensitive parameter estimation and model selection, it would be advantageous to
obtain the maximum likelihood estimates. However, this has not been possible owing
to the following difficulties: (1) the data-set does not specify what events are the parents
(cluster centers), (2) the relationship between the clustered points (descendants) and
the attribution of their cluster center are not specified in the given data-set, and (3) the
ranges of clusters are overlapping with each other so that their ranges are not specific.
Indeed, Baudin (1981) showed that the likelihood function cannot be described in
an analytically closed form. Therefore, instead of the ordinary maximum likelihood
estimation, Tanaka et al. (2008b) proposed a maximum likelihood procedure based
on the Palm intensity function, which is proportional to the pair-correlation function
between descendant points. Roughly speaking, the Palm intensity does not address
the configurations of given point coordinates of data but their difference vectors.

Now, suppose that we have a few Neyman—Scott processes that are independent
of one another, that is, they have different parents (cluster centers) intensities, mean
cluster sizes, and location distributions of the descendants relative to their parent.
In this study, we focus on estimating all parameters of each component process by
observing the superposed configuration of these descendants.

However, the Palm intensity alone cannot identify such a superposed Neyman—Scott
process (see Tanaka et al. (2008b)). In this study, we shall overcome this difficulty
by the additional use of a likelihood function based on the nearest neighbor distance
(NND) function, that is, the shortest distance from a given location to the nearest point.

As applications, we will apply the present estimation procedure to two plant location
data-sets obtained from Cressie (1993) and Diggle (1983).

2 Maximum Palm-likelihood estimation
2.1 Preliminaries on clustering point process models
For the remainder of this study, we assume that the processes have the following

characteristics: we consider two Neyman—Scott processes with different parameter
values. We restrict our work to two-dimensional Euclidean space (see Tanaka et al.
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Identification and estimation of superposed Neyman—Scott 689

(2008b) for a detailed account). The superposed Neyman—Scott spatial cluster process
is defined to be the union of all descendant points in both processes. Furthermore, the
observed window is prescribed to be a unit square with periodic boundary conditions
(a torus), on which the considered processes are stationary and isotropic. Finally, we
restrict ourselves to the case where the density functions are rotation invariant, two-
dimensional Gaussian distributions with different scale parameters relative to each
other, each of which is called a Thomas process (see Thomas (1949)).

2.2 Thomas processes and their superposition

Let the parents of the two processes be distributed according to homogeneous Poisson
processes with intensity rates p; and w2, and the numbers of descendants have a
Poisson distribution with mean values v; and v;. Then, each descendant is located
close to its parent (cluster center) and is distributed independently according to density
functions ¢4, (x, y) and g, (x, y) with parameters o and o7, respectively, where (x, y)
is the location relative to the corresponding parent. Here, we restrict ourselves to
the case in which the density functions g,, and g, are two-dimensional Gaussian
distributions N (0, 0;21), where I is a two-dimensional identity matrix. These are
called Thomas processes (see Thomas (1949)). Because the distribution is rotation
invariant, the polar coordinate representation with respect to the distance r is given as
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We consider the superposed point pattern of these two Thomas processes (see Fig. 1).
Here, we should note that the superposed Thomas process is different from the
Neyman—Scott process with the mixture of Gaussian distributions agq, (r) + (1 —
a)qs (r),0 < a < 1 (see Tanaka et al. (2008b)).

Fig. 1 A simulated realization Superposed Thomas process
of a superposed Thomas process

with different parameter sets

1.0
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690 U. Tanaka, Y. Ogata

2.3 Palm intensities of the cluster process models

The statistical methods of the present paper are based on the second-order proper-
ties of point processes (e.g., Daley and Vere-Jones (2003), Chapter 8). Of particular
importance is the Palm intensity function 1, (-) (see Ogata and Katsura (1991)), or the
second-order intensity. The Palm intensity function can be heuristically described as
follows: let x be any point in R? at a distance r from the origin o. Then, the occurrence
rate at x, provided that a point is at 0, is

Lo(X)dx = Pr({N(dx) = 1IN ({o}) = 1}) D

for an infinitesimal set dx, where N stands for a counting measure. Given stationarity
and isotropy, A,(x) depends only on the distance r of x from o, and the function is
then written as A, (r).

The relationships between the Palm intensity function and both the pair-correlation
function g(r) and the K-function are A,(r) = Ag(r) and A,(r) = AK'(r)/Qmr),
respectively, where K’ is the first-order derivative of K with respect to the distance r.

For both Thomas models, from (Daley and Vere-Jones, 1988, Sect. 8.1), we know
that

; V; r2 .
Ao (F)ZMivi-I—WeXP _W » i=12 )

Figure 2 shows a simulated realization of the Palm intensity function, that is, the
superposition of all difference vectors between point coordinates.

Moreover, by a simple calculation, the Palm intensity functions of superposed
Thomas processes with distance density functions is obtained as

Thomas process Realization of the Palm intensity
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Fig.2 A simulated point pattern of a Thomas process (left) and the realization of its Palm intensity (right).
The right panel is obtained by superposing the point patterns, and all point coordinates are shifted so that

each point is at the origin. In the case of a Neyman-Scott clustering process, the Palm intensity is most
dense around the origin of the resulting point pattern
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ho(r) = A+ avy r? n (I —a), r2 3)
r) = exp | — expl—= |,
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where A = p1v1 + ppv; is the total intensity of the process and a = vy /A is the
fraction of the first Thomas process relative to the total intensity of the superposed
process.

2.4 log-Palm-likelihood

Let {1} be each individual vector coordinate of a Neyman—Scott process on the torus
W = [0, 1]?. Tanaka et al. (2008b) assumed that the distribution of the differences
Vij=v¢j—yifori=1,...,n,j=1,...,n,i # j were well approximated by an
inhomogeneous Poisson process that is rotation invariant and has intensity N (W), (r)
centered at o, as illustrated in Fig. 2. The corresponding log-likelihood function of the
point pattern, called the Palm-likelihood function, is then

R
log L(u, v, ) = > log{N(W)~Xo(rij)}—N(W)/ Ao(r) - 277 dr.
{i.); i), rij <R} 0

“)

Here, the sum is taken over all pairs i, j such that the distance r;; between ; and
¥ ; is smaller than R, where R is sufficiently greater than the range of correlation of
the process, i.e., the minimum value of r such that A,(r) = A. The parameter R must
be estimated before fitting the parametric model, which is not difficult if one uses a
non-parametric estimate of the pair-correlation function. Assuming the distances are
measured with respect to the periodic boundary condition, in the numerical likelihood
calculations of the present study, the window is always transformed to the standardized
rectangle W = [0, 1] x [0, A], where A > 1 and R is taken as 1/2, which means that
the non-constant range of the Palm intensity function is assumed to be less than 1/4
of the rectangle’s shorter side. Tanaka et al. (2008b) demonstrated the accuracy and
robustness of the maximum Palm-likelihood estimates (MPLEs) through simulations
of various Neyman—Scott models with general distance distributions. The computing
and simulation codes are provided in Tanaka et al. (2008a).

For the present superposed Thomas model, the log-Palm-likelihood is given by

log L(u1, vi, o1, 2, V2, 02)

2 2
avi rij (1 — a)v2 rij
- > tog {2 + -2 exp (- -
8 ’ + 4012 %P ( 4612) + 40,2 xp 4052

{i,j;i#], rij<R}

R? R?
—NW) [nkRz + av; Il—exp (—40—2)] + (I—a)vy [1 — exp (—40—2) H,
1 2

®)
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where A = u1v; 4+ ppv; is the total intensity of the process and a = vy /A is the
fraction of the first Thomas process relative to the total intensity. The MPLEs of the
parameters i1, vi, 01, (42, V2, and o7 of the Thomas models are those which maximize
the function given in (5).

However, non-unique MPLE solutions are anticipated because of the identification
problem of the Palm intensity (3). This problem arises from the fact that the respective
values A, avy and (1 — a)v; can take the same values for different sets of w1, uz, vi,
vy and a with a = vy /A (see Table 1 and Table 3 for numerical examples), while
the MPLEs of the scaling parameters o and o7 are uniquely determined. This means
that the MPLE of [11(a), D1(a), fi2(a) and D;(a) are uniquely determined once the
ratio a is fixed.

Therefore, another criterion is needed to estimate the ratio a in order to determine
each component of the Thomas processes. In the next section, we will use the NND
function for this purpose.

3 Nearest neighbor distance maximum likelihood estimation
3.1 Nearest neighbor distance likelihood

Let X be a Neyman—Scott process, and let dist(vr, X) denote the shortest distance from
an arbitrary location v to the nearest point of the process X. As such, the cumulative
distribution function F (r) = Pr({ dist(ys, X) < r}) is denoted as the spherical contact
distance function or empty space function. Then, the location of a point ¢y € X,
G(r) = Pr({dist(y, X\¥) < r[{¥}}) is denoted as the NND function (see Baddeley
et al. (2007)).

Let F,/(r) and G,/ (r) fori = 1,2 be a spherical contact distance function and
an NND function, respectively, for each individual Neyman—Scott process associated
with the set of MPLE parameters restricted for an arbitrary a = vy /A, as described
in the previous section. Then, following Van Lieshout and Baddeley (1996), G, (r) of
the superposed process satisfies the relation

=G =af1 =G0} {1 - A0}

+a-o{1-F'0}H{1-6-20) ©)

for any » > 0.

Let g, be the derivative of G,, which plays a central role in the maximum NND-
likelihood procedure, as described later.

For parametric statistical analysis, we assume that the difference coordinates of all
nearest neighboring pairs are well approximated by an inhomogeneous Poisson process
with the intensity function g, (r), which is centered at the origin. The approximation
relies on limit theorems that demonstrate that properly scaled superposition (stacking)
of nearly independent point patterns results in a Poisson process (Daley and Vere-
Jones, 2008, Sect. 11.2).
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Identification and estimation of superposed Neyman—Scott 693

The function g, () can be regarded as the inhomogeneous Poisson intensity function
of r in the normalized distance space [0, 1]. Then, the log-likelihood function log L (a)
is of the following form:

N(W)

log L(a) = Z logga(rj) —Ga(1/2), 0=a=<l, (N
j=I

where r; denotes the NND (contact distance) for each individual, and the number 1/2
is owing to the periodic boundary condition over the unit square. Here, we assume
that the range of the NND is sufficiently less than 1/2 to satisty G,(1/2) = N(W) for
all a. We call the function given in (7) the log-NND-likelihood function.

In this procedure, we assume that the log-NND-likelihood function is smooth and
unimodal with respect to the parameter a, at least in the neighborhood of the maximum
log-NND-likelihood estimate. The case where F,(r) and G,/ (r) fori = 1,2 are
independent of a meets the required conditions. However, it is not so easy to show
this accurately, especially under the restricted parameter space of the MPLE solution,
as stated in the previous section. Through simulation experiments, we will see that
the conditions of smoothness and local concavity hold at least in the neighborhood of
the local maximum, even under such MPLE restrictions. In the following section, we
describe the algorithm to attain the maximum log-NND-likelihood function under the
restricted parameter space of the MPLE solution.

3.2 Calculation of the log-NND-likelihood function

For a superposed Neyman—Scott process, analytic calculation of the log-NND-
likelihood function is difficult owing to its complicated explicit form of an NND
function associated with the ratio a. The log-NND-likelihood function requires a com-
plicated analytic expression of F/ and J/ for Neyman—Scott processes (see Stoyan and
Stoyan (1994) and Van Lieshout and Baddeley (1996)). Thus, we are forced to numer-
ically evaluate the log-NND-likelihood function given in (7). The proposed estimation
procedure is summarized in the following steps:

1. Obtain the unique solution of the MPLEs (i, ¢1, C2, 01, 02), where ¢; = avy and
¢» = (1 — a)vy, as described in Sect. 2.4.

2. Set a value for the ratio 0 < a < 1, so that {u;(a), vi(a),o;} fori = 1,2 are
uniquely determined.

3. Generate two Thomas configurations from the above parameters, and superpose
them. Then, calculate the NND r; for respective points j.

4. Repeat step 3 on the order of 100 times until the histogram of the estimate of the
NND density function g, (r;) and cumulative function éa (rj) start to show a well
defined and consistent shape. First, the number of NND points are calculated for
the estimation of g, (r;) in the disjoint intervals of the distances centered at 0.05.
Then, the points are summed up for the estimation of éa (rj) for the calculation of
the log-NND-likelihood function.
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Fig. 3 The left panel shows locations of BC data points. In the right panel, signs “—" mark the log-NND-
likelihood values of the superposed Thomas model estimated from 100 simulations at each a, and the circle
marks their mean value. The curved and horizontal lines are the best-fitted polynomial function and its
maximum, respectively

5. Calculate the log-NND-likelihood function given in (7) for the NND r; for respec-
tive points of the data j.

6. Repeat steps 3-5 to determine the variability of the log-NND-likelihood function
and to use these for the estimation of the log-NND-likelihood function at the value a.

7. Go to step 2 and repeat the above steps for different a-values to search for the
maximum log-NND-likelihood function.

To delineate the smooth log-NND-likelihood function, log L (a), with respect to a
given in (7), the least squares method is applied for the simulated samples in step 6 by
fitting polynomials to the data, the optimal order of which is determined by the AIC
(see Akaike (1974)).

4 Applications to ecological data sets
4.1 Case study 1: Bramble canes data

The left panel of Fig. 3 shows the locations of 359 newly emergent bramble canes
(BCs), as discussed in Diggle (1983). The BC data points in the figure are scaled
in the unit square while the original data were collected in a 9m x 9m square (see
Hutchings (1979)).

We first apply the MPLE method to the data-set to restrict the most likely parameter
subspace, which is given in Table 1. Table 1 lists the estimates of A = vy + uavy,
avy, (1 —a)v,, o1 and o3 for the superposed Thomas model. In particular, A= 349.37,
which is close to the total number of data points (N (W) = 359). Here, Tanaka et al.
(2008b) showed that regardless of the non-identifiability problem, this superposed
Thomas model is better fitted by the AIC using the MPLE than the single Neyman—
Scott process using the mixture of Gaussian distributions agq, (r) + (1 — a)ge, (1)
withany 0 < o < 1.
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Identification and estimation of superposed Neyman—Scott 695

Table 1 MPLE of the superposed Thomas processes applied to the BC data points

Model Superposed Thomas process
Parameters A avy (I —a) o1 o)
MPLE 349.37 0.91 4.57 0.00355 0.0477

Table 2 Estimates by the maximum NND-likelihood estimate a together with the MPLE values (see
Table 1) for the BC data points

Model Superposed Thomas process
Parameters n1 %) vy vy o1 o2 a
Estimates 137.6 12.3 1.52 114 0.00355 0.0477 0.60

Now, to obtain unique values of w1, v, (2, and vz, we need to determine the a-value
in [0, 1]. For this, we applied the maximum NND-likelihood estimation procedure
described above to derive the most likely unique values of the superposed Thomas
processes. Thus, we calculated the log-NND-likelihood function log L(a;) for a; =
0.05i,i =1,2,...,19, as explained in Sect. 3.

In the right panel of Fig. 3, signs “—"" at each @; mark the estimates of log L(a;)
given in (7) from 100 simulations for the superposed Thomas model with constraint
of parameters as given in Table 1, and each circle indicates their mean value. Because
these vary considerably, we fit a polynomial function by the least squares method to
all of the simulated data {log L (a;); j = 1,...,100, i =1, ..., 19}. The best-fitted
order of the polynomial was determined by the AIC (see Akaike (1974)). The hori-
zontal line indicates the maximum value of the polynomial curve, which was attained
at approximately @ = 0.60. From this, we derived the solution of all parameters of the
superposed Thomas model provided in Table 2.

To examine the reproducibility of the estimated model, we repeat the same proce-
dures for a simulated point pattern of the superposed Thomas process with the para-
meters given in Table 2. Figure 4 shows one of the simulated point patterns (left panel)
and the log-NND-likelihood values, as described above. The simulated point pattern
looks similar to the BC data points in Fig. 3, and the maximum log-NND-likelihood
function for this data is attained at a = 0.6 again.

Tanaka et al. (2008b) graphically demonstrated the goodness-of-fit of the estimated
model using the empirical and theoretical Palm intensity instead of the K -statistics.
Here, we show density of the NND function g, (r) to confirm how the NND-statistics
of the estimated model are consistent with that of the BC data points. Figure 5 shows
the estimated densities of the nearest neighbor distances {g,} from simulated data
using the superposed Thomas models with the MPLE estimates given in Table 1 for
respective a-values, as indicated in the figure caption. Comparing with the empirical
NND estimate circles from the BC data points, we see that the maximum NND estimate
solid white line is fairly unbiased. From these, the model with @ = 0.6 seems better
fitted to the data than other a-values.
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Simulated example of Superposed
Thomas process
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Fig. 4 The left panel shows one of the simulated point patterns in Table 2, and the right panel displays a
re-estimation summary for the simulated data, where the layout is equivalent to that shown in Fig. 3

Superposed Thomas process
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Fig. 5 Estimated densities of nearest neighbor distances {g,} against r in log scale from simulated data
using the superposed Thomas models with the MPLE estimates given in Table 1, for respective a-values
raginga = 0.0li fori = 1, ..., 99. The gray scales of the lines correspond to the a-values in the gray scale
table shown to the right of the figure. The circles are histograms from the BC data points, and the white
solid line in the panel is from the maximum log-NND-likelihood estimate @ = 0.6 given in Table 2

@ Springer



Identification and estimation of superposed Neyman—Scott 697

4.2 Case study 2: The Longleaf Pine data

Figure 6 shows the locations of 584 Longleaf Pine Trees taken from Cressie (1993).
Also pertinent to this study is Rathbun and Cressie (1994). The longleaf pine (LLP)
data point coordinates were scaled to a unit square from the original scale size (200m
x 200m).

As in the previous case study, we first applied the MPLE method to the data-set
in order to restrict the most likely parameter subspace. Table 3 lists the MPLEs of
A = wivy + pava, avy, (1 — a)vy, o1 and oy for the superposed Thomas model.
Here, we should note that this superposed Thomas process with the MPLE given in
Table 3 is better fitted than the Neyman—Scott process using the mixture of Gaussian
distributions agq, (r) + (1 — @)qq, (r) forany O < o < 1 in the sense of the AIC (see
Tanaka et al. (2008b)).

To obtain a set of unique values of w1, vy, 12, and vo, we need to determine the
a-value in [0, 1]. Thus, we calculated the log-NND-likelihood function log L (a;) for
ai =0.05i,i =1,2,...,19, as explained in Sect. 3.

In the right panel of Fig. 6, signs “—” at each a; indicate the estimates of
log L(a;) given in (7) from 100 simulations for the superposed Thomas model with
the constraint of parameters, as given in Table 3. Because these vary considerably,
we fit a polynomial function by the least squares method to all simulated data

Longleaf Pine Trees Superposed Thomas process
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Fig. 6 The left panel shows locations of the LLP data points. In the right panel, signs “—" marks the

log-NND-likelihood values of the superposed Thomas model estimated from 100 simulations at each a,
and the circle indicates their mean value. The curved and horizontal lines mark the best-fitted polynomial
function and its maximum, respectively

Table 3 MPLE of the superposed Thomas processes applied to the LLP data points

Model Superposed Thomas process
Parameter A avy (1 —a) o1 5}
MPLE 562.11 293 24.0 0.0134 0.136
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Table 4 Estimates by the maximum NND-likelihood estimate a together with the MPLE values (see
Table 3) for the LLP data points.

Model Superposed Thomas process
Parameter ni %) V] ) o1 (o) a
Estimates 30.9 8.45 7.28 39.9 0.0134 0.136 0.40

Simulated example of Superposed

Thomas process Superposed Thomas process
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Fig. 7 The left panel shows a simulated point pattern using the data given in Table 4, and the right panel
is the re-estimation for the data where the signs and curves are equivalent to that described in Fig. 6

{logLj(a;); j = 1,...,100,i = 1,...,19}. The best-fitted order of the polyno-
mial is determined by the AIC (see Akaike (1974)). Here, we see that the mean
values of the estimates at respective a; are on the estimated curve. The horizontal line
indicates the maximum value of log L (a). From computing the corresponding value
of the estimated log L(a) at each a, the maximum of the polynomial curve is attained
at @ = 0.40. This value is used to determine the solution of all parameters of the
superposed Thomas model, which are listed in Table 4.

To evaluate the reproducibility of the estimated model, we apply the same analysis
procedures to a simulated point pattern of the superposed Thomas process using the
parameters given in Table 4. Figure 7 shows the point pattern (left panel) and the
re-estimated log-NND-likelihood values as described in Fig. 4. The simulated point
pattern looks similar to the LLP data points given in Fig. 6.

We show the density of the NND function to confirm how the NND-statistics of
the estimated model are consistent with that of the LLP data points. Figure 8 shows
the estimated densities of nearest neighbor distances {g,} from the simulated data
using the superposed Thomas models with the MPLE estimates given in Table 3 for
respective a-values, as indicated in the figure caption. Comparison with the empirical
NND estimate (circles) derived from the LLP data points reveals that the maximum
NND-likelihood estimate (solid white line) is fairly unbiased. From these results, the
model with a = 0.4 seems better fitted to the data than the other a-values.
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Superposed Thomas process
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Fig. 8 The estimated density function of nearest neighbor distances of the LLP data points. The lines are
same as that in Fig. 5 except that the solid white line represents the NND density for a = 0.4

5 Concluding remarks

This paper summarizes estimation difficulties associated with superposed Neyman—
Scott cluster models with different sizes and scales of clusters. Because not all parame-
ters can be uniquely determined by the Palm intensity function method or second-order
characteristics (see Tanaka et al. (2008b)), additional criteria for model fitting must be
employed. Here, the likelihood function based on the NND distribution was considered
and implemented.

The Palm-likelihood is not the only alternative to maximum likelihood estimation.
For example, the composite likelihood method is a pseudo-likelihood approach for
estimating the spatial point patterns; see Baddeley and Turner (2000), Mrkvicka and
Molchanov (2005), Guan (2006), Mgller and Waagepetersen (2007), and Guan et al.
(2011). The Palm-likelihood estimation method is closely related to the composite like-
lihood method suggested in Waagepetersen (2007), but the Palm-likelihood method
is numerically simpler than the composite likelihood method in Guan (2006) because
of a simpler form of the normalization term. Furthermore, the maximum likelihood
estimation procedure was attempted through a simulation-based Bayesian method
in, for example, McKeague and Loizeaux (2002), and Van Lieshout and Baddeley
(2002). The Bayesian method is not feasible at present owing to its highly intensive
computational burden.

Prokesova and Vedel Jensen (2013) proved the consistency and asymptotic nor-
mality of the Palm-likelihood method. Hence, the error estimates of the parameters
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are obtained by the inverse Hessian matrix of the log-Palm-likelihood function. How-
ever, it is not easy for us to evaluate the efficiency relative to the maximum likelihood
estimate at present. It might be possible to evaluate the efficiency numerically using
a Markov chain Monte Carlo simulation in the future. The error of the maximum
log-NND-likelihood estimate can be observed in Figs. 3, 4, 6, and 7, which does not
show very high sensitivity owing to the low number of simulated points. By the same
reason as given above, it is also difficult to obtain the efficiency of the parameter.

Once we can fix the estimated parameters by the methods in Tanaka et al. (2008b)
and the proposed method, we can proceed to estimate the posterior distribution of
locations of cluster centers of the different types (Ogata and Tanaka (2013)). Then,
this Bayesian inference can be directly applied to the problem of probabilistic dis-
crimination of spatial clusters.

The dimension of the space of the sample points and boundary conditions can be
generalized, as discussed in Tanaka et al. (2008b).

6 Appendix: Strong consistency of the maximum NND-likelihood estimator

In this appendix, we formulate the strong consistency of the maximum NND-likelihood
estimator of a given in (7). Its detailed proof is omitted here because the argument is
lengthy and it is almost a literal translations of that provided by Prokesova and Vedel
Jensen (2013), who showed that the maximum Palm-likelihood estimator satisfied
the strong consistency under certain conditions. We recall the notion needed in the
statement of the theorem on the strong consistency of the maximum NND-likelihood
estimator, in which a convex averaging sequence of windows {W,, },,cn is founded and
stated as follows: all the windows W,, are bounded and convex Borel sets, W,, C W,
for all n and the inradii

p(Wy) :=sup{ p; By(x) C W, Ix },

where B, (x) is a ball with its center at x and of radius p > 0, converges to co as
n — oo (refer Daley and Vere-Jones (1988), Daley and Vere-Jones (2003), and Daley
and Vere-Jones (2008)).

We denote by ap € (0, 1) a true parameter. Under the assumption that the log-NND-
likelihood function of (7) is differentiable, we indicate by U, (a) the score function
computed from observations in the window W,, for a given homogeneous point process
X, namely

Un(a) : > 9 log gax — )
a) = ————— —loggs(x —y
' NWu © Br(O) |\ xrlwranron 99 o

_ N(X N (W, © Br(0) d /R J
NW, 0 Br(0)) da Jo 5"

where © signifies Minkowski subtraction, R > 0 is some constant, and x and y run
such that dist(x, y) < r for each r € [0, R], in which dist is the nearest neighbor

@ Springer



Identification and estimation of superposed Neyman—Scott 701

contact distance. We denote by a,, the NND-likelihood estimator obtained from U, (a),
i.e., Uy(a,) = 0. Then, we can state the desired result of the strong consistency as
follows:

Theorem 1 Ler X be a stationary ergodic point process observed in a convex aver-
aging sequence of windows {Wy},en of RY. Assume that |EqoUn(a)| = 0 only when
a = ao and that g,(r) is of class C! wirh respectto a € [0, 1] and r € Bg(0), where
[, denotes the mean value with respect to the distribution of the point process with
a = ag. Then a, is a strongly consistent estimator of ag, i.e., 4, — ag Pr-a.s.

Because we consider the case where the intensity function given in (7) to be approx-
imated by that of an inhomogeneous Poisson process is g,, the proof of Theorem 1
shall be parallel to that of Prokesova and Vedel Jensen (2013), who considered the
case where the Palm intensity was approximated by the intensity function of an inho-
mogeneous Poisson process.
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