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Abstract We study estimation and inference in a marginal proportional hazards model
that can handle (1) linear effects, (2) non-linear effects and (3) interactions between
covariates. The model under consideration is an amalgamation of three existing mar-
ginal proportional hazards models studied in the literature. Developing an estimation
and inference procedure with desirable properties for the amalgamated model is rather
challenging due to the co-existence of all three effects listed above. Much of the exist-
ing literature has avoided the problem by considering narrow versions of the model.
The object of this paper is to show that an estimation and inference procedure that
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accommodates all three effects is within reach. We present a profile partial-likelihood
approach for estimating the unknowns in the amalgamated model with the resultant
estimators of the unknown parameters being root-n consistent and the estimated func-
tions achieving optimal convergence rates. Asymptotic normality is also established
for the estimators.

Keywords Failure time · Hazard function · Profile local partial-likelihood ·
Root-n consistency

1 Introduction

The marginal proportional hazards model (Wei et al. 1989) is arguably the most popular
model for analyzing multivariate failure time data. A common feature of multivariate
failure time data is that failure times are often correlated (e.g., recurrences of a given
disease in clinical trials). Consider a random sample of n subjects where in each subject
there are m failure types. Let (i, j) denote the j th failure type in the i th subject, Ti j

be the failure time, Ci j be the censoring time, Xi j = min(Ti j , Ci j ) the observed
time, and �i j an indicator that equals 1 if Xi j is a failure time and 0 otherwise,
i = 1, . . . , n, j = 1, . . . , m. Further, let Ft,i j represent, up to time t , the failure,
censoring and covariate information for the j th failure type in the i th subject, as well
as the covariate information of other failure types in the i th subject. The marginal
hazard function for the j th type of failure of the i th subject is defined as λi j (t) =
limh↓0(h−1 P(Ti j ≤ t + h | Ti j > t, Ft,i, j )). The censoring times are assumed to be
independent of the failure times conditional on the covariates. The following marginal
proportional hazards model examined by Wei et al. (1989) permits covariate effects
on the hazard rate:

λi j (t) = λ0 j (t) exp{αTVi j (t)}, t ≥ 0, (1)

where λ0 j (t) is an unspecified baseline hazard function, Vi j (t) is a vector of covariates
and α is the corresponding vector of regression coefficients to be estimated. Model
(1) resembles the well-known Cox proportional hazards model for univariate failure
time data, but allows for the dependence of related failure times. The latter dependence
arises from the correlations between V· j (t)’s of different j’s. The regression parameters
in α are typically estimated by maximizing the failure specific partial likelihoods.
During the past decades, there have been considerable research efforts extending and
placing the marginal hazards model in more general contexts (e.g., Liang et al. 1993;
Prentice and Hsu 1997; Spiekerman and Lin 1998).

Model (1) and its extensions typically assume that the variables in the covariate
vector V enter the model linearly. The argument against the linear specification is that
it is mainly chosen for convenience; in practice, the true covariate effect can be more
complex than the log-linear effects. Non-parametric approaches are obvious alterna-
tives, but the rate of convergence of non-parametric estimators typically decreases
as the dimension of the model grows—this is the so-called curse of dimensionality
problem. Cai et al. (2007a) proposed to model the covariate effects on the hazard rate
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through a partially linear model, where the logarithm of the hazard rate depends on the
main exposure covariate of interest non-parametrically and other covariates linearly.
That is,

λi j (t) = λ0 j (t) exp{αTVi j (t) + g(Wi j (t))}, t ≥ 0, (2)

where Vi j (t) is a vector of covariates with linear effect on the logarithm of
λi j (t), Wi j (t) is an exposure covariate and g(·) is an unspecified smooth function.
Cai et al. (2007a) proposed a profile partial-likelihood estimation approach and estab-
lished the asymptotic normality of the estimators of the parameters in both the linear
and non-linear parts. When the (non-linear) interaction between the exposure variable
and a confounding covariate is of interest, Cai et al. (2007b) (see also Fan et al. 2006)
studied the varying-coefficient model

λi j (t) = λ0 j (t) exp{β(Wi j (t))
T Zi j (t) + g(Wi j (t))}, t ≥ 0, (3)

where Zi j (t) is a vector of covariates that interact with the main exposure covariate
Wi j (t) and β(.) is an unknown varying coefficient function which may depend on
Wi j (t). Cai et al. (2007b) illustrated the relevance of model (3) by an example, whereby
the exposure covariate is the patient’s age, and factors such as body mass index, serum
cholesterol level and smoking habit vary with the patient’s age in determining the risk
of death due to cardiovascular diseases. More recently, Cai et al. (2008) considered
the model

λi j (t) = λ0 j (t) exp{αTVi j (t) + β(Wi j (t))
T Zi j (t)}, t ≥ 0, (4)

which includes possible interactions between the exposure and confounding covariates
in the partially linear hazard regression. These authors further proposed a method based
on profile partial-likelihood for estimating the unknown parameters in (4), and showed
that the estimator of α is root-n consistent and the estimated function of β achieves
optimal convergence rates.

This paper goes beyond those of Cai et al. (2007a, 2007b, 2008) by considering the
model

λi j (t) = λ0 j (t) exp{αTVi j (t) + β(Wi j (t))
T Zi j (t) + g(Wi j (t))}, t ≥ 0, (5)

which combines (2), (3) and (4), and thus encompasses the merits of all three models,
namely, it can model linear and non-linear covariate effects as well as the possibility
of interactions between the covariates. An obvious theoretical appeal of (5) is that,
because it accounts for all three effects it is less prone to misspecification than its
narrow versions. From a practical standpoint, there is also a genuine need to consider
(5) since there are many settings for which (5) is appropriate. One such example
is given in Sect. 3.2, where a subset of data from the Busselton Population Health
Surveys is used to study the hazard rate for coronary heart disease (CHD). There, age
is taken to be W , the main exposure variable of interest; the covariates in Z are gender,
body mass index, cholesterol level and smoking status, which are the risk factors that
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possibly interact with age; V , the vector of covariates exerting linear effect on the
logarithm of hazard rate, is represented by a sole indicator variable of hypertension
symptom. The non-linear form of g(.) and the strong dependence of the time to CHD
on age are clearly evident from the results, which also reveal the significance of the
linear effect of hypertension symptom, and that gender, body mass index, cholesterol
level and smoking status produce effects that vary with age.

Model (5) is clearly relevant, but previous studies only considered narrow ver-
sions of it with either αTVi j (t) or g(Wi j (t)) removed from the model. Model (5)
is best analyzed using a profile local-partial likelihood estimation approach, but the
inclusion of g(.) and β(.) combined with the interaction effects between Zi j (t) and
Wi j (t) makes it much harder to derive asymptotic properties for the resultant esti-
mators of the unknowns. Although g(Wi j (t)) in (5) can be incorporated into (4)
through a dummy variable with a column of ones in Zi j (t), the local intercept of
g(.) will cancel out in the local partial-likelihood function. The only way to esti-
mate g(.) is by integrating the estimate of its derivative function g′(·) using the
trapezoidal rule (Hastie and Tibshirani 1993). This leads to a different estimation
rule for g(.) from that for β(·), making it extremely cumbersome to develop asymp-
totic results for the estimators of β(.) and g(.). The inclusion of αTVi j (t) and the
need to derive asymptotic properties of the estimator of α pose further technical
challenges. For this reason, the machinery and asymptotic results developed by
Cai et al. (2008) are inappropriate for model (5). It is precisely because of these tech-
nical challenges that Cai et al. (2007a, 2007b, 2008) considered only narrow versions
of model (5). Not surprisingly, the analytical tools developed in the above-mentioned
papers cannot be straightforwardly applied to develop asymptotic theory in the present
context.

The major scientific interest of this paper is to pursue an estimation and inference
procedure with asymptotically valid properties for the amalgamated model (5). We
demonstrate that such a procedure is in fact within reach in spite of the challenges
involved in deriving the asymptotic results. In addition to technical innovations, the
results developed in this paper also have important applications in view of the practi-
cal advantages offered by model (5) over the narrow models as mentioned above. The
rest of this paper is organized as follows. Section 2 is devoted to a presentation of the
main theoretical results of the paper. It begins by describing a local partial-likelihood
framework for estimating the unknown coefficient functions and parameters in (5);
the drawback of the local partial-likelihood approach is spelt out and a profile local
partial-likelihood approach which enables the derivation of an estimator of α that is
root-n consistent is described in detail along with a discussion of the proposed esti-
mators’ key asymptotic properties. Section 2 reports results of a simulation study that
investigates the properties of the proposed estimator of α and estimated functions of
β(.) and g(.) in finite samples. The proposed methodology is also illustrated in Sect. 2
using a subset of the data from the afore-mentioned Busselton Population Health Sur-
veys. Section 4 concludes. Proofs of the major theorems, and the technical conditions
and supporting lemmas that underline these theorems, are contained in a three-part
Appendix. In addition, an online supplementary document available at http://personal.
cb.cityu.edu.hk/msawan/research.htm provides the proofs to these supporting lemmas
and an additional theorem.
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2 Estimation and main results

As in Cai et al. (2007b), we drop the dependence of covariates on time with the
understanding that the methods and proofs developed are applicable to external time-
dependent covariates. Let R j (t) = {i : Xi j ≥ t} denote the set of the individuals at
risk prior to time t. By assuming independence of failure times from the same subject,
the partial-likelihood for model (5) may be written as

L(β(·), α, g(·)) =
m∏

j=1

n∏

i=1

{
exp{β(Wi j )

T Zi j + αTVi j + g(Wi j )}∑
l∈R j (Xi j )

exp{β(Wl j )T Zl j + αTVl j + g(Wl j )}

}�i j

.

(6)

Now, for any given point w0, by applying the Taylor series expansion, we have

β(w) ≈ β(w0) + β ′(w0)(w − w0) ≡ δ + γ (w − w0),

and g(w) ≈ g(w0) + g′(w0)(w − w0) ≡ a + b(w − w0). (7)

Using (7) for the data around w0 and introducing the kernel function, we obtain the
following logarithm of the local partial-likelihood

�n(δ, γ, α, b)

= 1

n

m∑

j=1

n∑

i=1

Kh(Wi j − w0)�i j ×
⎧
⎨

⎩δT Zi j +γ T Zi j (Wi j −w0)+αTVi j +b(Wi j −w0)

− log

⎛

⎝
∑

l∈R j (Xi j )

exp{δT Zl j +γ T Zl j (Wl j −w0)+αTVl j +b(Wl j −w0)}Kh(Wl j −w0)

⎞

⎠

⎫
⎬

⎭ ,

(8)

where Kh(·) = K (·/h)/h is a symmetric kernel function and h is a bandwidth.
Equation (8) may be derived along the lines of Fan et al. (1997). Suppose (8) is
maximized at (δ̂(w0), γ̂ (w0), α̂(w0), b̂(w0)). Then, β̂ = δ̂ is a local linear estimator
of the coefficient function β(·) at the point w0. An estimator of g′(·) at ω0 is simply the
local slope b̂(ω0), i.e., ĝ′(ω0) = b̂(ω0). The curve ĝ can be estimated by integrating
ĝ′(ω0), which may be approximated by the trapezoidal rule (Hastie and Tibshirani
1993). For the purpose of ensuring the identifiability of g(·), we set g(0) = 0 without
loss of generality. As mentioned previously, although (5) may be treated as a special
case of (4) by including a column of ones in Zi j (t) in (4), the local intercept for g(.)

will cancel out in the local partial-likelihood (8), rendering the technique and results
of Cai et al. (2008) inapplicable.

One can show that although the local partial-likelihood estimation (LPLE) approach
results in an estimator of β(·) that accomplishes the optimal rate of convergence, it
leads to an estimator of g(·) with an asymptotic variance that is inflated since g(·)
is estimated indirectly. Moreover, since only local data are used, the estimator of α
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cannot converge to the true parameter at a rate faster than the non-parametric regression
optimal rate of n−2/5. However, if one is to test α = 0 in (5), an estimator of α that
converges to α faster than the rate of n−2/5 is required to construct the test statistic.
Cai et al. (2007b) encountered similar difficulties when estimating g(·) in the context
of the narrow model (3), and similar problems concerning the estimators of α were
also noted in Cai et al. (2008), where the model of interest is (4). Like these previous
studies, our proposed solution is based on profile-likelihood, but there are additional
challenges since the combined model (5) includes both g(·) and α, which makes
the task of deriving asymptotic properties of estimators immensely more difficult.
Undoubtedly, the inability to express asymptotically the score function of α as an
integral of a predictable process with respect to a martingale due to the utilization
of all observed information for estimating g(·) is a major obstacle in the derivation
of asymptotic results. However, as we shall see, these derivations are made possible
using the asymptotic results developed in the Appendix.

2.1 Profile local partial-likelihood estimation (PLPLE)

To describe the PLPLE approach, define ϕ = (δT, γ T, b)T, X̃i j = (ZT
i j , ZT

i j (Wi j −
w0), (Wi j − w0))

T, Ni j (t) = I (Ti j ≤ t,�i j = 1) and Yi j (t) = I (Xi j ≥ t). As in
Cai et al. (2007b), we restrict our attention to the time interval [0, τ ] for convenience
purposes, where τ is a constant denoting the time of the end of the study. For a given α,
let ϕ̃(w0, α) be the maximum of the estimator ϕ̃(·, α) of ϕ(·), obtained by maximizing

�∗
n(ϕ, α, τ ) = n−1

m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j −w0)(ϕ

T X̃i j +αTVi j )dNi j (u)

−n−1
m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi −w0)

× log

{
n∑

l=1

Yl j (u) exp(ϕT X̃l j +αTVl j )Kh1(Wl j − w0)

}
dNi j (u) (9)

with respect to ϕ, and β̃(w0, α) and g̃(w0, α) be the respective maximums of the
corresponding estimators β̃(·, α) and g̃(·, α) of β and g(·), where h1 is the bandwidth
for estimating ϕ(·). Upon substituting these estimators into (8), we obtain the following
logarithm of the profile local partial-likelihood function:

�p(α) = 1

n

m∑

j=1

n∑

i=1

�i j ×
⎧
⎨

⎩β̃T(Wi j , α)Zi j + αTVi j + g̃(Wi j , α)

− log

⎛

⎝
∑

l∈R j (Xi j )

exp{β̃T(Wl j , α)Zl j + αTVl j + g̃(Wil j , α)}
⎞

⎠

⎫
⎬

⎭
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= 1

n

m∑

j=1

n∑

i=1

∫ τ

0
{β̃T(Wi j , α)Zi j (u) + αTVi j (u) + g̃(Wi j , α)}dNi j (u)

−1

n

m∑

j=1

n∑

i=1

∫ τ

0
log

(
n∑

l=1

Yl j (u) exp{β̃T(Wl j , α)Zl j (u)

+αTVl j (u) + g̃(Wl j , α)}
)

dNi j (u). (10)

Following previous studies that emphasize narrow versions of (5), we assume, for
the purpose of facilitating exposition, that Z ’s are independent of time, with the
understanding that the method discussed here is applicable to external time-dependent
covariates. Now, suppose that (10) is maximized at α = α̂p and let ϕ̂p = ϕ̃(w0, α̂p). The
estimators of α, β(·) and g(·) are α̂p, β̂p(w0) = β̃(w0, α̂p), and ĝp(w0) = g̃(w0, α̂p),
respectively, where ĝp(w0) may be obtained by integrating ĝ′

p(w0) = g̃′(w0, α̂p). A
backfitting algorithm similar to those developed by Cai et al. (2007a, 2008) may be
used to compute these estimators based on PLPLE. One strong feature of this algorithm
is that it takes care of the fact that g(·, α) is implicitly defined. Let wk(k = 1, 2, . . . , N )

be a grid of points on the range of the exposure variable W . The algorithm may be
succinctly summarized in the following steps:

Step 1. Initialization Set α̃, the initial estimator of α, to ᾱ = N−1∑N
k=1 α̂(wk), the

average of the local partial-likelihood estimator of α.
Step 2. Estimation of the non-parametric component Maximize �∗

n(ϕ, α̃, τ ) at each
grid point wk and obtain the non-parametric estimators β̃(·, α̃) and g̃(·, α̃) at
all the grid points. Then obtain the non-parametric estimator at point Wi j by
linear interpolation using the non-parametric estimators at the nearest grids to
Wi j . Let these grid points be wk1 and wk2 such that Wi j ∈ (wk1, wk2). These
non-parametric estimators may be written as

β̃(Wi j , α̃) = β̃(wk1, α̃) + (β̃(wk2, α̃) − β̃(wk1, α̃))
Wi j − wk1

wk2 − wk1
,

and g̃(Wi j , α̃) = g̃(wk1, α̃) + (g̃(wk2, α̃) − g̃(wk1, g̃))
Wi j − wk1

wk2 − wk1
.

Step 3. Estimation of parametric component With the estimates of α, β(·) and g(·)
obtained in the previous steps, maximize the profile partial-likelihood �p(α)

with β̃(·, α) = β̃(·, α̃) and g̃(·, α) = g̃(·, α̃) using the Newton–Raphson
algorithm.

Step 4. Iteration Iterate between Steps 2 and 3 until convergence. The final estimator
of α is α̂p.

Step 5. Re-estimation of the nonparametric component Set α to its final estimated
value α̂p from Step 4. The final estimators β̂p(·) and ĝp(·) are then β̃(·, α̂p)

and p̃(·, α̂p).
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Only a small number of iterations are expected of Step 4 as the initial estimator
of α is consistent. As for the number of iterations required for the Newton–Raphson
algorithm in Step 3, Robinson (1988) showed that if an initial parametric estimator has
rate O(n−a), the difference between the k-step Newton–Raphson estimator and the
maximum likelihood estimator is only of order Op(n−ak). Now, the initial estimators

of β(·) and g(·) in Step 3 have at least the rate Op(n− 1
5 ), and with k = 3, the order of

error is o(n−1/2). Thus, three iterations in the Newton Raphson algorithm are sufficient
to yield estimators of β(·) and g(·) that are sufficiently close to the maximum likelihood
estimators. Although Robinson (1988) theoretical results and the rule-of-thumb are
obtained for parametric models, results in other contexts (e.g., Cai et al. 2007a, 2008)
showed that they provide a good approximation to non-parametric applications.

The estimators β̂p(·), α̂p and ĝp(·) thus obtained also enable the derivation of
the following consistent estimator of the cumulative baseline hazard function �0 j =∫ t

0 λ0 j (u)du:

�̂0 j p(t) = 1

n

n∑

i=1

∫ t

0

dNi j (u)

n−1
∑n

l=1 Yl j (u) exp(β̂T
p (Wl j )Zl j (u) + α̂T

p Vl j (u) + ĝp(Wl j ))
.

2.2 Asymptotic properties

Notwithstanding the close analogy between the estimation steps described in the last
section and those for the narrow models discussed in the literature, obtaining asymp-
totic properties of the unknowns in the present context poses major difficulties. New
technical challenges arise because of the co-existence of α, g(·) and β(·) in (5). As
shown previously, β̂p(·), the estimator of β(·), is an implicit estimator, while ĝp(·),
the estimator of g(·), utilizes all information from the data. These make neither the
common martingale methods nor the techniques developed in Cai et al. (2007a, 2007b,
2008), applicable in analyzing the estimators’ asymptotic properties. In spite of these
difficulties, we derive and present in this section the asymptotic properties of these esti-
mators and establish their asymptotic normality. Our analysis is made possible through
the asymptotic theory developed in Lemmas 1–3 given in the Appendix, yielding an
asymptotic representation of the local linear kernel estimator of the varying-coefficient
function.

Our theoretical analysis relies on certain technical assumptions which are relegated
to Sect. 5.1 of the Appendix for ease of exposition. To introduce notations, let μi =∫

xi K (x)dx, and νi = ∫ xi K 2(x)dx . Denote A(u) = (ZT(u), V T(u))T,

P(u, z, v, w0) = P(X ≥ u|Z = z, V = v, W = w0), and

ρ(u, z, v, w0) = P(u, z, v, w0) exp{βT(w0)z + αTv + g(w0)}.

Also, define, for k = 0, 1, 2, j = 1, . . . m,

b jk(u) = b jk(u, w0) = f j (w0)E{ρ(u, Z j , v, w0)Z⊗k
j |w = w0},

t jk(u) = t jk(u, w0) = t jk(u, α0, w0) = f j (w0)E[ρ(u, Z j (u), Vj (u), w0) · Z⊗k
j (u)
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⊗V (u)|w = w0], and

t∗j (u) = t∗j (u, w0) = t jk(u, α0, w0) = f j (w0)E[ρ(u, Z j (u), Vj (u), w0) · ZT
j (u)

⊗V (u)|w = w0],

where f j (·) is the density of W j , and Z⊗k = 1, Z and Z ZT for k = 0, 1 and 2,
respectively. Additionally, set

b jk = b jk(w0) =
∫ τ

0
b jk(u, w0)d�0 j (u), and

bk =
m∑

j=1

b jk,

and wherever there is no ambiguity, we will drop the dependence of bk(u, w0) and
bk(w0) on w0. Furthermore, let

�∗ = �∗(w0) =
⎧
⎨

⎩

m∑

j=1

[
b2 −

∫ τ

0

b⊗2
j1 (u, w0)

b j0(u, w0)

]
d�0 j (u)

⎫
⎬

⎭

−1

and

A
∗ =

⎛

⎝
�∗−1 0p×p 0p

0p×p μ2b2 μ2b1

0T
p μ2bT

1 μ2b0

⎞

⎠ .

Note that b0 is a scalar.
We will now show that the estimator of α resulting from PLPLE is consistent and

asymptotically normal.

Theorem 1 Assume that conditions (C.1)–(C.8) in Appendix 5.1 are satisfied. Then,
α̂p → α0 with probability tending to one, where α̂p is the estimator of α that maximizes
the profile partial-likelihood �p(α) and α0 is the true value of α.

Proof See Appendix 5.2. �
Theorem 2 Assume that conditions (C.1)–(C.8) in Appendix 5.1 are satisfied. If
nh2

1 → ∞ and nh4
1 → 0, then the sequence of estimators in Theorem 1 satisfies

the following convergence property:

√
n(α̂p − α0)

L−→ N (0,�),

where � = I −1�∗ I −1,

I = I (α0) =
m∑

j=1

∫ τ

0

[
r j2(u, α0)

r j0(u, α0)
− r⊗2

j1 (u, α0)

r2
j0(u, α0)

]
r j0(u, α0)d�0 j (u),
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I (α0) and �∗ = �∗(α0) are positive definite, and

�∗(α0) = E

⎡

⎣
m∑

j=1

∫ τ

0

{[
V· j (u) + χ2(W· j )Z j + χ1(W· j ) − r j1(u, α0)

r j0(u, α0)

]

−Q(u, W· j )s(W· j )

}
dM· j (u)

⎤

⎦
2

.

The definitions of the terms embedded in I (α0) and �∗(α0) can be found in the
Appendix.

Proof See Appendix 5.2.

Remark 1 The unknown I and �∗ in � may be estimated by an empirical plug-
in method. Let Î and �̂∗ be the estimates. Hence we have �̂ = Î −1�̂∗ Î −1 as the
estimated asymptotic covariance of αp. Also, �̂ is consistent since both Î and �̂∗ are
consistent estimators of their respective unknowns.

Now, define the following Wald test statistic for the testing problem H0 : α =
α0 rmvs H1 : α �= α0:

Wn = n(α̂p − α0)
T�̂−1(α̂p − α0). (11)

The following theorem relates to the asymptotic null distribution of Wn .

Theorem 3 Let the conditions of Theorem 2 be satisfied. The asymptotic null distri-
bution of Wn is χ2(p), where p is the dimension of α.

Proof The proof is omitted as it is a straightforward consequence of Theorem 2.

Results for testing a subset of the coefficient of α may be developed analogously
to the above. The next theorem concerns the properties of estimators in the non-
parametric component of the model.

Theorem 4 Assume that conditions (C.1)–(C.8) in Appendix 5.1 are satisfied. If α̂p

is root n-consistent and nh5
1 is bounded, then

√
nh1[H1(ϕ̂p(w0, α̂p) − ϕ0) − bn(w0)] L−→ N (0, V(w0)),

where h1 is a bandwidth, H1 is a diagonal matrix with the first p diagonal ele-
ments equalling 1 and the remaining p+1 diagonal elements equalling h1, bn(w0) =
A

∗−1
B

∗
n(τ, w0), and V(w0) = A

∗−1�∗(τ, w0)A
∗−1σ(w0).
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Proof See Appendix 5.2.

Remark 2 The biases and variances, bn(w0) and V(w0)of the profile partial-likelihood

estimators H1(ϕ̂p(w0, α̂p)−ϕ0) can be estimated by b̂n(w0)= ˆ
A

∗−1
n (τ, w0)B̂∗

n(τ, w0)

and V̂(w0) = (nh1)
ˆ

A
∗−1
n (τ, w0)�̂∗

n(τ, w0)
ˆ

A
∗−1
n (τ, w0), respectively, where

Â∗
n(τ, w0) = 1

n

m∑

j=1

n∑

i=1

∫ τ

0
Kh1 (Wi j − w0)

�̂nj2(u, w0)�̂nj0(u, w0) − �̂⊗2
nj1(u, w0)

�̂2
nj0(u, w0)

dNi j (u),

B̂∗
n(τ, w0) = 1

n

m∑

j=1

n∑

i=1

∫ τ

0
Kh1 (Wi j − w0)

[
Ũi j (w0) − �̂nj1(u, w0)

�̂nj0(u, w0)

]
Yi j (u)λ̂i j p(u)du,

and

�̂∗
n(τ, w0) = h1

n

⎡

⎣
m∑

j=1

n∑

i=1

∫ τ

0
Kh1 (Wi j − w0)Ũi j (w0) − �̂nj1(u, w0)

�̂nj0(u, w0)
Yi j (u)λ̂i j p(u)du

⎤

⎦
⊗2

,

with

λ̂i j p(u) = exp{β̂T
p (Wi j )Zi j (u) + α̂T

p Vi j (u) + ĝp(Wi j )}λ̂0 j p(u),

�̂njk(u, w0) = �njk(u, α̂p, ϕ̂p(w0, α̂p)), k = 0, 1, 2, j = 1, . . . , m.

and Ũi j (·) and �njk(·, ·, ·) being defined in Appendix 5.1. Moreover, the estimator of
the covariance matrix � of α̂p is also available. We present the details in Remark 4 in
Appendix 5.1.

From Theorem 4, we have the following result on the asymptotic normality of the
estimators of β(·) and g(·):
Corollary 1

√
nh1

[
β̂p(w0, α̂p) − β0(w0) − h2

1μ2

2
σ−1(w0)β

′′
0 (w0)

]
L−→ N (0, v2

1(w0))

and
√

nh3
1[ĝ′

p(w0, α̂p) − g′
0(w0)] L−→ N (0, v2

2(w0)),

where v2
1(w0) = �∗ν0σ(w0) and v2

2(w0) = ν2μ
−2
2 σ(w0)

(
E[Z ZT] E Z

E ZT 1

)−1

.

Corollary 1 enables the derivation of the bandwidth that is optimal for estimating
βk , in the sense of minimizing the asymptotic weighted mean integrated square error

∫ ⎧⎨

⎩

[
h2

1μ2

2
σ−1(w)β ′′

k (w)

]2

+ 1

nh1
�∗

k (w)ν0σ(w)

⎫
⎬

⎭W (w)dw,
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where W (.) is a weighted function. This optimal bandwidth is given by

h1k,opt =
[ ∫

�∗
k (w)ν0σ(w)W (w)dw

∫
μ2

2β
′′2
k (w)σ−2(w)W (w)dw

] 1
5

n− 1
5 , (12)

where �∗
k and βk are the kth components of �∗ and β0, respectively.

Theorem 5 Suppose conditions (C1)–(C8) in Appendix 5.1 are satisfied. Then, we
have, for each j = 1, . . . , m,

�̂0 j p(t) −→ �0 j (t) and λ̂0 j p(t) −→ λ0 j (t)

uniformly on (0, τ ] in probability.

Proof Available from the online supplementary document at http://personal.cb.cityu.
edu.hk/msawan/research.htm.

2.3 Bandwidth selection via the K-fold cross-validation method

The optimal bandwidth h1k,opt in (12) contains unknown parameters. In practice,
data driven methods may be utilized for the selection of bandwidth. Here, we
adopt the K -fold cross-validation method based on the prediction error (Tian et al.
2005; Fan et al. 2006) for bandwidth selection.

To implement the method, we divide each fold data into K equal-sized subgroups
denoted by D jk ( j = 1, . . . , J , k = 1, . . . , K ). The kth prediction error is given by

P Ek(h) =
J∑

j=1

∑

i∈D jk

∫ τ

0
{Ni j (t) − Ê Ni j (t)}2d

⎧
⎨

⎩
∑

l∈D jk

Nl j (t)

⎫
⎬

⎭ ,

where

Ê Ni j (t) =
∫ t

0
I (Yi j ≥ t)�i j exp{α̂T

(−k,p)Vi j + β̂T
(−k,p)(Wi j )Zi j

+ ĝ(−k,p)(Wi j )}d�̂0 j (−k,p)(u).

The quantities α̂(−k,p), β̂(−k,p)(Wi j ), ĝ(−k,p)(Wi j ) and �̂0 j (−k,p)(u) are estimates
obtained using data from all subgroups other than the subgroup D jk . The opti-
mal bandwidth is then obtained by minimizing the total prediction error P E(h) =∑K

k=1 P Ek(h) with respect to h.
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3 A simulation study and a real data application

3.1 Simulation study

In this section, we compare the LPLE and PLPLE approaches in finite samples by sim-
ulations. The data are generated from a multivariate extension of the model of Clayton
and Cuzick (1985), where the joint survival function of (T1, . . . , TJ ) conditional on
(Z1, . . . , Z J ), (V1, . . . , VJ ) and (W1, . . . , WJ ) is given by

S(t1, . . . , tJ ; Z1, . . . , Z J , V1, . . . , VJ , W1, . . . , WJ )

=
⎧
⎨

⎩

J∑

j=1

S j (t j )
−1/θ −(J − 1)

⎫
⎬

⎭

−θ

, (13)

where S j (t) is the marginal survival probability of the j th failure type at time t , and
θ is a parameter representing the degree of dependence within a subject. Note that
ς = θ/(2 + θ) is Kendall’s rank correlation coefficient. In our simulations, we set
J to 3, and θ to 10.0 and 0.1, representing, respectively, low and high dependence
within a subject. We further assume that Ti j has an exponential marginal distribution
with the failure rate described by (5) and baseline hazard function depending on
time through λ0 j (t) = 4t3λ∗

0 j ; we set λ∗
0 j to 0.2, 1.0 and 1.5, for j = 1, 2 and 3,

respectively. Additionally, we set α = 0.8, β(W ) = (0.5W (1.5 − W ), sin 2W )T, and
g(W ) = 2 sin(2W ), where W is uniform over [0, 3]. Moreover, for each j = 1, 2, 3,
we let V· j ∼ N (0, 5) and Z · j = (Z · j1, Z · j2)

T ∼ N (0, �) such that Z · j1 and Z · j2

each have a variance of 5 and the covariance between Z · j1 and Z · j2 is
√

5. Along the
lines of Cai and Shen (2000), the failure times (ti1, ti2, ti3) are generated by

ti1 = [− log(1 − ui1)�(Zi1, Vi1, Wi1, λ
∗
01)]1/4,

ti2 = [θ log(1 − ai1 + ai1(1 − ui2)
(θ−1+1)−1

�(Zi2, Vi2, Wi2, λ
∗
02)]1/4, and

ti3 = [θ log(1−(ai1+ai2)+(ai1+ai2)−1)(1−ui3)
(θ−1+2)−1

�(Zi3, Vi3, Wi3, λ
∗
03)]1/4,

where ail = (1−uil)
−θ for l = 1, 2, i = 1, . . . , n, �(Z , V, W, λ) = exp{βT(W )Z +

αTV + g(W )}/λ∗ and (ui1, ui2, ui3) are independent Uniform random variables.
Moreover, we generate the censoring time C from a Uniform distribution over (0, c),
where c is a constant controlling the censoring rate; here, c is set to 5 and 15, cor-
responding to censoring rate of approximately 30 and 10 %, respectively. We use a
Gaussian kernel function in both LPLE and PLPLE, and the K -folder cross-validation
method to select the optimal bandwidth with K = 5. We set the sample size to n = 200
and the reported sampling properties are based on 200 replications.

Some representative results are displayed in Fig. 1a, h, where the fitted curves
of β(w) and g(w) based on LPLE and PLPLE under censoring rate of 10 % and
θ = 0.1, 10 are plotted alongside the curves of the actual functions. In the figures,
the solid curves represent the true functions, while the dotted and dashed curves are
the estimated functions based on LPLE and PLPLE, respectively. These curves show
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Fig. 1 These figures provide the estimated curves of β1(w), β2(w), g(w) and g′(w), with θ = 10 for a–d,
and θ = 0.1 for e–f. The censoring rate is set to 10 % in all cases. The solid, dotted and dashed curves
represent, respectively, the true function and estimated functions based on the LPLE and PLPLE approaches

that both LPLE and PLPLE result in estimated functions of β(w) and g(w) that are
very close to the corresponding true coefficient functions, indicating that the proposed
methods are not far from matching the true structure. Moreover, the observed results
seem to be invariant with respect to the degree of dependence within a subject, as the
shapes of the estimated curves do not change very much when θ alternates between
0.1 and 10. Other choices of censoring rates and θ have also been considered and the
results are largely similar. These are omitted for presentation here to conserve space,
but details are available on request from the authors.
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Table 1 Sampling performance of the LPLE and PLPLE when estimating α

θ c.r. (%) bias(α̂) bias(α̂p) SE(α̂) SE(α̂p) SD(α̂) SD(α̂p) CP(α̂) CP(α̂p)

10 10 0.0211 0.0077 0.0940 0.0292 0.1011 0.0325 0.9375 0.9435

30 0.096 0.063 0.1065 0.0326 0.1198 0.0484 0.9368 0.9451

0.1 10 −0.0014 −0.0006 0.0983 0.0296 0.1069 0.0450 0.9306 0.9375

30 0.0215 0.0201 0.1106 0.0333 0.1237 0.0543 0.9294 0.9404

The preceding analysis shows that the LPLE and PLPLE approaches are both effec-
tive in estimating the non-parametric components of the model and the two approaches
do not yield substantially different estimates of β(·) and g(·). Next, we present simu-
lation results on the properties of the estimators of α based on the two approaches. The
inference comparisons are in terms of magnitude of bias (bias), standard deviations
(SD), standard errors of the estimators (SE) and the proximity of actual confidence
interval coverage to the nominal target coverage of 95 % (CP). The results for samples
of size 200, θ = 0.1, 10 and censoring rate of 10 and 30 % are shown in Table 1. These
reported sampling properties are based on 200 replications.

Table 1 shows that for the cases considered, the PLPLE is less biased than the LPLE,
although the magnitudes of bias produced by the two estimators are not large relative
to the magnitude of the parameter being estimated (recall that α is set to 0.8). In terms
of SE and SD, the PLPLE is again superior to LPLE, and usually by a wide margin.
Other things being equal, an increase in the censoring rate (c.r.) generally leads to an
increase in standard deviations and standard errors of the estimates. When comparing
with respect to confidence interval widths, in all cases, the PLPLE exhibits widths that
are closer to the target 95 % level, irrespective of the levels of θ and the censoring
rate.

3.2 A real example

The following example, based on data from the Busselton Population Health Surveys,
concerns the effects of different factors on the risk of death due to CHD. The Bus-
selton surveys are a series of cross-sectional health surveys conducted in the town of
Busselton in Western Australia every 3 years from 1966 to 1981 by means of question-
naires and clinical visits. See Knuiman et al. (1994) for a detailed description of the
surveys. Cai et al. (2007b) used data from the same surveys to illustrate their proposed
method for estimating the unknown parameters in model (2). Our dataset comprises
2202 observations from participants of 619 families. Here, the main exposure variable
of interest is AGE (age in years), the covariates that possibly interact with AGE are
GENDER (1 for female and 0 for male), BMI (body mass index, in kg/m2), rm B M I 2,
CHOL (serum cholesterol level, in mmol/L), SMOKE1 (=1 for ex-smoker and 0 oth-
erwise) and SMOKE2 (=1 for current smoker and 0 otherwise). The covariate that
exerts linear effect on the logarithm of hazards rate is RXHYPER (=1 if participant is
diagnosed with hypertension). Thus, the model being considered is
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Fig. 2 Plot of prediction errors against different bandwidths for the Busselton Population Health Survey
data

λi (t |Fi ) = λ0(t |Fi ) exp(β1(AGEi ) ∗ GENDERi +β2(AGEi ) ∗ BMIi

+β3(AGEi ) ∗ BMI2
i + β4(AGEi ) ∗ CHOLi +β5(AGEi ) ∗ SMOKE1i

+β6(AGEi ) ∗ SMOKE2i + α ∗ RXHYPER + g(AGEi )).

In the dataset, the mean values of AGE, BMI and CHOL are 41.7, 24.8 and 5.65,
respectively, and the percentages of males, ex-smokers and current smokers are 49, 17
and 34 %, respectively. The main exposure variable, AGE (in years), ranges from 16.3
to 89. We divide [16.3, 89] equally into 100 intervals, and use all 101 boundary points
as grids. In our estimation, we select the bandwidth by the K -fold cross-validation
method with K = 10. As shown in Fig. 2, we found that the bandwidth of h1 = 21
(in years) yields the smallest prediction error.

Applying the proposed PLPLE technique, we obtain an α estimate of 0.1478 with a
standard error of 0.0348, and estimated coefficient functions as depicted in Fig. 3a, h.
The appropriateness of model (14), where linear, non-linear and interaction effects of
covariates are all included, is substantiated by the significance of α, the dependence of
the time to CHD on AGE (Fig. 3h), the non-liner form of the estimated g(·) (Fig. 3h),
and the clear indication that GENDER, BMI, BMI2, CHOL, SMOKE1 and SMOKE2
vary with AGE in producing significant effects on the hazards rate (Fig. 3a–f).
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Fig. 3 The estimated coefficient functions (solid lines) and their 95 % confidence limits (dashed lines)

4 Conclusions

In the context of a marginal proportional hazards model that incorporates linear, non-
linear and interaction effects between covariates, we have demonstrated a profile local-
partial likelihood approach that produces estimators with asymptotically valid results.
The resultant estimators also have attractive precision properties in finite samples. In
particular, inference performance of the estimators is comparable in bias magnitude
and standard errors to estimators resulting from the local-partial likelihood approach
while exhibiting the potential for smaller standard deviation and closer proximity of
actual confidence interval coverage to nominal target coverage. In addition, the pro-
file local-partial likelihood estimators exhibit robustness with respect to correlations
among survival times. Overall, the model presented in this paper, which amalgamates
several existing marginal proportional hazards models, represents a credible alternative
that deserves further attention from both applied and theoretical statisticians. There
are ways that the current lines of research can be extended that may result in an even
more effective procedure. For example, variable selection could be introduced into
the process and, when valid, could contribute to greater estimation efficiency. Work
in progress considers this along the lines of Fan and Li (2001, 2002, 2008).
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5 Appendix

This is a three-part Appendix organized as follows. Appendix 5.1 defines the notations
and gives the technical assumptions used in the lemmas and the proofs of theorems.
Appendix 5.2 provides the proofs of Theorems 1, 2 and 4, and Appendix 5.3 states
the supporting lemmas that underline these proofs. The proofs of these lemmas and
Theorem 5 are not included here as they are lengthy and tedious. We provide them in an
online supplementary document available at http://personal.cb.cityu.edu.hk/msawan/
research.htm.

5.1 Notations and assumptions

For ease of reference, we first define the notations and conditions to be used.
Let (ϒ,F ,P(α,β,g)) be a family of complete probability spaces with a history
F = {Ft } for an increasing right-continuous filtration Ft ⊂ F . We assume that
Wi j is Ft,i j−measurable, and Ni j (u), Vi j (u) and Zi j (u) are F−adapted. Write
Ft,i j = σ {Xi j ≤ u, Zi j (u), Vi j (u), Wi j , Yi j (u), 0 ≤ u ≤ t}, Ft = σ {Xi j ≤
u, Zi j (u), Vi j (u), Wi j , Yi j (u), i = 1, 2, . . . , n, j = 1, . . . , m, 0 ≤ u ≤ t}, and

Mi j (t) = Ni j (t) − ∫ T
0 λi j (u)du, i = 1, 2, . . . , n, j = 1, . . . , m. Obviously, Mi j (t)

is a Ft martingale, j = 1, 2, . . . , m.
Let ‖ · ‖ denote the L2−norm, and ‖ · ‖J be the sup-norm of a function or a process

on a set J . The support of the random variable W is denoted by W . For a compact
subset JW of W , we define the neighborhood set of JW as

JW,ε = {w : inf
w0∈JW

|w − w0| ≤ ε}

for some ε > 0.
Here, we assume that Z is time-independent. The time-dependent covariate Z model

can be similarly developed. To facilitate technical arguments, we reparametrize the pro-
file local partial-likelihood (9) by the transformation ϕ∗ = H1ϕ and Ũi j = H−1

1 X̃i j .
Then, we have

�̃∗
n(ϕ∗, α, τ ) = n−1

m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j − w0)(ϕ

∗T Ũi j (w0) + αTVi j (u))dNi j (u)

−n−1
m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j −w0) × log

{
n∑

l=1

Yl j (u) exp(ϕ∗T Ũl j (w0)

+αTVl j (u))Kh1(Wl j − w0)

}
dNi j (u), (14)

and

�njk(u, α, ϕ∗) = 1

n

n∑

i=1

S̃i j (u, α, ϕ∗)(Ũi j (w0))
⊗k Kh1(Wi j − w0), (15)
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for k = 0, 1, 2, and j = 1, . . . , m, with S̃i j (u, α, ϕ∗) = Yi j (u) exp{ϕ∗T
Ũi j (w0) +

αTVi j (u)}.
Given the identifiability condition ĝp(0, α) = 0, we have ĝp(w0, α) =∫ w0

0 ĝ′
p(w, α)dw. Let χn1(w0) and χn2(w0) be the first derivatives of ĝp(w0, α) and

β̂T
p (w0, α) with respect to α0, respectively. Also, let κn1(w0) and κn2(w0) be the second

derivatives of ĝp(w0, α) and β̂T
p (w0, α) with respect to α0, respectively.

Then for any α in a neighborhood of α0, by Taylor series expansion, we have

ĝp(w, α) ≈ ĝp(w, α0) + χT
n1(w0)(α − α0) + 1

2
(α − α0)

Tκn1(w0)(α − α0), and

β̂p(w, α) ≈ β̂p(w, α0) + χT
n2(w0)(α − α0) + 1

2
(α − α0)

Tκn2(w0)(α − α0).

Furthermore, Let C j2(u, w0) be a (2p + 1) × d-dimensional matrix with the first
p×d-dimensional sub-matrix defined as b−2

j0 (u)[b j0(u)t j1(u) − b j1(u) ⊗ t j0(u)] and
other elements 0. Also, let C j3(u, w0) be a (2p + 1) × d-dimensional matrix with
the last (p + 1) × d-dimensional sub-matrix defined as μ2b−2

j0 (u)
([b j0(u)Dw[t j1(u)]

−Dw[b j1(u)] ⊗ t j0(u)]T, [b j0(u)Dw[t j0(u)] − Dw[b j0(u)] ⊗ t j0(u)]T
)T and other

elements 0. Denote

C2(w0) =
m∑

j=1

∫ τ

0
C j2(u, w0)b j0(u, w0)d�0 j (u),

C3(w0) =
m∑

j=1

∫ τ

0
C j3(u, w0)b j0(u, w0)d�0 j (u),

χ1(Wi j ) = h−1
1

∫ Wi j

0
eT

1 A
∗−1(W )C2(W )dW +

∫ Wi j

0
eT

1 A
∗−1(W )C3(W )dW, and

χ2(Wi j ) = eT
pA

∗−1(Wi )C2(Wi j ) + eT
pA

∗−1(Wi j )h1C3(Wi j ),

where ep is a p × 2p + 1 matrix, with the first p diagonal elements equalling 1 and
remaining elements 0, and e1 is a 2p + 1-order vector with the last element equalling
1 and remaining elements 0. Also, let

r jk(u, α0) = E{ρ(u, V· j (u), Z · j , W· j )[V· j (u) + χT
2 (W· j )Z j + χT

1 (W· j )]⊗k}

for k = 0, 1, 2.
Our proofs require the following technical assumptions:

C.1. The kernel function K ≥ 0 is a bound, symmetric density function with compact
support.

C.2. nh1 → ∞ and h1 → 0, as n → ∞.
C.3. The density f j (·) of W1 j is of compact support and has a bounded second

derivative.
C.4.

∫ τ

0 λ0(u)du < ∞, for every j = 1, . . . , m. The function β0(·) and g0(·) have
continuous second-derivatives with g0(0) = 0.
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C.5. The conditional expectations

E[S̃i j (u, α, ϕ∗)Ũ⊗k
i j (w)|w0]

are equi-continuous in w0 ∈ ∪m
j=1supp( f j ), for k = 0, 1 and j = 1, . . . , m.

For k = 0, this conditional expectation has a continuous second derivative with
respect to w0.

C.6. b j1(u, w0) = E(Z |w0)b j0(u, w0) + Op(h1) and t j1(u, w0) = E(Z |w0) ⊗
t j0(u, w0) + Op(h1) for every w0 ∈ ∪m

j=1supp( f j ),
C.7. There exists a neighborhood A of α0 such that for k = 0, 1, 2, 3, and j =

1, . . . , m,

E

[
sup

(α,u)∈A×[0,τ ]
Y· j (u)||X̃1 j (u)||k exp{αTV· j (u)+βT(W· j )Z1 j +g(W· j )}

]
<∞.

C.8. The functions r j0(u, ·), r j1(u, ·) and r j2(u, ·) are continuous inα ∈ A, uniformly
in u ∈ [0, τ ]; r0 is bounded away from zero on A × [0, τ ], and r1 and r2 are
bounded on A × [0, τ ]. The matrices

I (α0) =
m∑

j=1

∫ τ

0

[
r j2(u, α0)

r j0(u, α0)
− r⊗2

j1 (u, α0)

r2
j0(u, α0)

]
r j0(u, α0)d�0 j (u),

and

�∗(α0) = E

⎡

⎣
m∑

j=1

∫ τ

0

{[
V· j (u) + χ2(W· j )Z j + χ1(W· j ) − r j1(u, α0)

r j0(u, α0)

]

−Q(u, W· j )s(W· j )

}
dM· j (u)

⎤

⎦
2

are positive definite, where the definition of Q(., .) can be found in Lemma 2 in
Appendix 5.3.

The above conditions are similar to those in Andersen and Gill (1982) and Fan et al.
(1997). Conditions C.1–C.5 are standard conditions for local partial-likelihood non-
parametric estimation. Conditions C.7–C.8 guarantee the local asymptotic quadratic
properties for the partial-likelihood function, and hence the asymptotic normality of
the estimators. See Andersen and Gill (1982) and Murphy and van der Vaart (2000)
for details.

Remark 3 It is easy to show that condition C.6 is satisfied as long as one of Z and
V is a non-random matrix. Furthermore, let Zi ≡ 1, i = 1, . . . p, then by assuming
that E[β(w)] = 0p for model identifiability, model (5) reduces to the semi-parametric
additive Cox hazards model,
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Inference in hazard model with varying coefficients 951

λi j (t) = λ0 j (t) exp

{ p∑

k=1

βk(Wi j (t)) + αTVi j (t) + g(Wi j (t))

}
.

Remark 4 To obtain a consistent estimator of the covariance matrix � of α̂p, we first
have to estimate I (α0) and�∗(α0) consistently. Let F̂j (w)be the empirical distribution
function of w based on the observed {Wi j }n

i=1. Write

b̂ jk(u, Wi j ) = Ê[Y· j (u) exp{β̂p
T
(Wi j )Z · j + α̂p

TV· j + ĝp(Wi j )}Z⊗k
· j |w = Wi j ],

t̂ jk(u, Wi j ) = Ê[Y· j (u) exp{β̂p
T
(Wi j )Z · j + α̂p

TV· j + ĝp(Wi j )}Z⊗k
· j ⊗ V· j (u)|w=Wi j ],

Ĉ j2(u, w0) =

⎛

⎜⎜⎝

b̂ j0(u)t̂ j1(u)−b̂ j1(u)⊗t̂ j0(u)

b̂2
j0(u)

0p×d

0T
d

⎞

⎟⎟⎠ ,

Ĉ2(w0) =
m∑

j=1

∫ τ

0
Ĉ j2(u, w0)b̂ j0(u, w0)d�̂0 j p(u),

Ĉ j3(u, w0) = μ2

⎛

⎜⎜⎜⎝

0p×d
b̂ j0(u)Dw[t̂ j1(u)]−Dw[b̂ j1(u)]⊗t̂ j0(u)

b̂2
j0(u)

b̂ j0(u)Dw[t̂ j0(u)]−Dw[b̂ j0(u)]⊗t̂ j0(u)

b̂2
j0(u)

⎞

⎟⎟⎟⎠ ,

Ĉ3(w0) =
m∑

j=1

∫ τ

0
Ĉ j3(u, w0)b̂ j0(u, w0)d�̂0 j p(u),

where Ê(·|·) is a consistent estimator of E(·|·) (e.g., the Nadaraya–Watson estimator,
or the local linear estimator). Then, the plug-in estimators of χ1(Wi j ) and χ2(Wi j ) are

χ̂1(Wi j ) = h−1
1

∫ Wi j

0
eT

1 Â
∗−1(W )Ĉ2(W )dW +

∫ Wi j

0
eT

1 Â
∗−1(W )Ĉ3(W )dW, and

χ̂2(Wi j ) = eT
pÂ

∗−1(Wi )Ĉ2(Wi j ) + eT
pÂ

∗−1(Wi j )h1Ĉ3(Wi j ),

respectively. Let the empirical estimator of rk(u, α0) be

r̂ jk(u, α0) = 1

n

n∑

i=1

Yi j (u) exp{β̂T
p (Wi j )Zi j + α̂T

p Vi j + ĝp(Wi j )}[Vi j + χ̂T
2 (Wi j )Zi j

+χ̂T
1 (Wi j )]⊗k .

Then, the empirical estimator of I (α0) is

Î (α0) = 1

n

m∑

j=1

n∑

i=1

�i j

[
r̂ j2(Xi j )

r̂ j0(Xi j )
− r̂⊗2

j1 (Xi j )

r̂0
2
(Xi j )

]
.
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The matrix �̂∗(α0) is defined as follows. Let the plug-in estimator of s(w) be ŝ(w) =∑m
j=1

∫ w

−∞ â(w∗)d F̂j (w
∗), where

â(w) =
∫ τ

0

[
Ê[Yi j (u) exp{β̂T

p (Wi j )Zi j + α̂T
p Vi j + ĝp(Wi j )}|w

= Wi j ]
{

Vi j + χ̂T
2 (Wi j )Zi j +χ̂T

1 (Wi j )− r̂ j1(u, α0)

r̂ j0(u, α0)

}]
· r̂−1

j0 (u, α0)d N̄· j (u)

is the plug-in estimator of a(w). Set the empirical plug-in estimator to

M̂i j (Xi j ) = �i j Ĝi j (Xi j ) − 1

n

n∑

k=1

�k j Yi j (X K j ) exp{β̂T
p (Wkj )Zkj + α̂T

p Vk j

+ĝp(Wkj )} ˆr j0
−1

(Xkj , α0)Ĝi j (Xkj ),

where Ĝi j (u) = Vi j + χ̂T
2 (Wi j )Zi j + χ̂T

1 (Wi j ) − r̂ j1(u,α0)

r̂ j0(u,α0)
− ŝ(Wi j )Q̂(u, Wi j ), with

Q̂(u, Wi j ), the plug-in estimator, defined as

Q̂(u, Wi j )=eT
1 μ2

⎧
⎪⎨

⎪⎩
Â

∗−1(Wi j )

⎛

⎜⎝
0p

Dw[t̂ j1(u,Wi j )]
t̂ j0(u,Wi j )

Dw[log(t̂ j0(u, Wi j ))]

⎞

⎟⎠+[Â∗−1(Wi j )]′
⎛

⎝
0p

Zi j

1

⎞

⎠

⎫
⎪⎬

⎪⎭
.

Then, the empirical estimator of �∗ is �̂∗ = 1
n

∑n
i=1[
∑m

j=1 M̂i j (Xi j )]⊗2.
Given the identifiability condition g̃(0, α)=0, we have g̃(w0, α)=∫ w0

0 g̃′(w, α)dw.
Recall that the global profile partial-likelihood is (10). By Taylor series expansion
around α0, we have

�p(α) = �p(α0) + (α − α0)
T ∂�p(α)

∂α

∣∣∣∣α=α0 + 1

2
(α − α0)

T ∂2�p(α)

∂α∂αT

∣∣∣∣
α=α0

×(α − α0) + Rn(α∗), (16)

where α∗ lies between α and α0, and

Rn(α∗) = 1

6

∑

j,k,l

(α j − α0 j )(αk − α0k)(αl − α0l)

[
∂3�p(α)

∂α j∂αk∂αl
|α = α∗

]
, (17)

with α j and α0 j being the j th elements of α and α0, respectively. It can be shown

from Lemma 1 in Appendix 5.3 that ∂3�p(α)

∂α j ∂αk∂αl
is bounded in probability, and hence

Rn(α) = Op(‖α − α0‖3) for α ∈ A.
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Inference in hazard model with varying coefficients 953

Note that ϕ∗T Ũi j = βT(Wi j )Zi j + g(Wi j ) − g(w0) + Op(h2
1). Simple algebra

shows that

E[�nj0(u, α0, ϕ
∗)] = e−g(w0)b j0(u, w0) + O(h2

1),

E[�nj1(u, α0, ϕ
∗)] = e−g(w0)

⎛

⎝
b j1(u, w0)

0p

0

⎞

⎠+ h1e−g(w0)μ2

⎛

⎝
0p

Dw[b j1(u, w0)]
Dw[b j0(u, w0)]

⎞

⎠

+O(h2
1),

E[�nj2(u, α0, ϕ
∗)] = e−g(w0)

⎛

⎝
b j2(u, w0) 0p×p 0p

0p×p μ2b j2(u, w0) μ2b j1(u, w0)

0T
p μ2bT

j1(u, w0) μ2b j0(u, w0)

⎞

⎠

+h1e−g(w0)μ2

⎛

⎝
0p×p Dw[b j2(u, w0)] Dw[b j1(u, w0)]

Dw[b j2(u, w0)] 0p×p 0p

Dw[bT
j1(u, w0)] 0T

p 0

⎞

⎠

+O(h2
1) (18)

and V ar [�nj0(u, α0, ϕ
∗)] = O( 1

nh1
), uniformly for u ∈ [0, τ ]. Then, using the same

argument as for Lemma 1 of Fan et al. (1997), we obtain

sup
0≤u≤τ

‖�nj1(u, α0, ϕ
∗)

�nj0(u, α0, ϕ∗)
− C j1(u, w0)‖ P−→ 0, (19)

and

�nj0(u, α0, ϕ
∗)�nj2(u, α0, ϕ

∗) − �⊗2
nj1(u, α0, ϕ

∗)
�2

nj0(u, α0, ϕ∗)
= A

∗
j (u, w0) + op(1) (20)

uniformly for u ∈ [0, τ ], where C j1(u, w0) =
(

bT
j1(u,w0)

b j0(u,w0)
, 0T

p, 0

)T

, and

A
∗
j (u, w0) =

⎛

⎜⎜⎜⎜⎝

b j2(u,w0)b j0(u,w0)−b⊗2
j1 (u,w0)

b2
j0(u,w0)

0p×p 0p

0p×p μ2
b j2(u,w0)

b j0(u,w0)
μ2

b j1(u,w0)

b j0(u,w0)

0T
p μ2

bT
j1(u,w0)

b j0(u,w0)
μ2

⎞

⎟⎟⎟⎟⎠
.

5.2 Proofs of Theorems 1, 2 and 4

Proof of Theorem 1 By Lemma 2 in Appendix 5.3, ∂�p(α)

∂α
|α=α0

P−→ 0. Thus, with
probability tending to one, for any small ε with a positive value, if α ∈ Sε = {α :
||α − α0|| < ε}, then

(α − α0)
T

[
∂�p(α)

∂α

∣∣∣∣
α=α0

]
≤ ε. (21)
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Let a be the minimum eigenvalue of positive definitive matrix I (α0). By Lemma 3 in
Appendix 5.3, we have, for all α ∈ Sε,

(α − α0)
T

[
∂2�p(α)

∂α∂αT

∣∣∣∣
α=α0

]
(α − α0) ≤ −aε2 (22)

with probability that tends to one. By the argument stated right after (17), with prob-
ability tending to one, there is a constant C > 0 such that

|Rn(α)| ≤ C · ε3. (23)

Upon substituting (21)–(23) in (16), we have, when ε is sufficiently small, with prob-
ability tending to one,

�p(α) − �p(α0) ≤ 0. (24)

Therefore, �p(α) has a local maximum in the interior of Sε, and with probability
tending to one, there exists a consistent estimator sequence α̂ of α0 which maximizes
the local profile partial-likelihood �p(α). Then, the desired results holds.

Proof of Theorem 2 The result of Lemma 3 in Appendix 5.3 implies that
∂2�p(α)

∂α∂αT |α=α0

P−→ −I (α0). Note that α̂p is consistent. Using the above expression
in (16), we have

�p(α̂p) = �p(α0) + (α̂p − α0)
T ∂�p(α)

∂α
|α=α0 −1

2
(α̂p − α0)

T I (α0)(α̂p − α0)

+op{(||α̂p − α0|| + 1√
n
)2}. (25)

Using Corollary 1 of Murphy and van der Vaart (2000) and Lemma 2 in Appendix 5.3,
we obtain

√
n(α̂p − α0)

= I −1(α0) · 1√
n

m∑

j=1

n∑

i=1

∫ τ

0

{[
Vi j (u) + χT

2 (Wi j )Zi j + χT
1 (Wi j ) − r j1(u, α0)

r j0(u, α0)

]

−Q(u, Wi j )s(Wi j )

}
dMi j (u) + op(1 + √

n||α̂p − α0||).

Then by the martingale Central Limit Theorem and Slutsky Theorem, we have

√
n(α̂p − α0)

D−→ N (0, I −1(α0)�
∗(α0)I −1(α0)).

The desired results thus hold.
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Proof of Theorem 4 By (14), ϕ̂∗
p ≡ ϕ̂∗

p(w0, α̂p) satisfies

∂�̃∗
n(ϕ̂

∗
p, w0, τ )

∂ϕ∗ = n−1
m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j − w0)

×
[

Ũi j (w0) − �nj1(u, α̂p, ϕ̂
∗
p)

�nj0(u, α̂p, ϕ̂∗
p)

]
dNi j (u) = 0. (26)

It can be shown from the assumption α̂p − α0 = Op(n−1/2) that

sup
u∈[0,τ ]

∥∥∥∥∥
�nj1(u, α̂p, ϕ̂

∗
p)

�nj0(u, α̂p, ϕ̂∗
p)

− �nj1(u, α0, ϕ̂
∗
p)

�nj0(u, α0, ϕ̂∗
p)

∥∥∥∥∥ = Op(n
−1/2).

Thus, ϕ̂∗
p satisfies

n−1
m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j −w0)

[
Ũi j (w0)−

�nj1(u, α0, ϕ̂
∗
p)

�nj0(u, α0, ϕ̂∗
p)

]
dNi j (u)= Op(n

−1/2).

We denote by Û (ϕ̂∗
p, w0) the left-hand side of the above equation. Then, Û (ϕ̂∗

p, w0) =
op(1/

√
nh1). By Taylor series expansion, we obtain

Û (ϕ∗
0 , w0) + ∂Û (ϕ̃∗, w0)

∂ϕ∗ (ϕ̂∗
p − ϕ∗

0 ) = op(1/
√

nh1), (27)

where ϕ̃∗ lies between ϕ̂∗
p and ϕ∗

0 , and hence ϕ̃∗ → ϕ∗
0 in probability. Simple algebra

shows that

−∂Û (ϕ∗
0 , w0)

∂ϕ∗ = 1

n

m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j − w0)

×�nj0(u, α0, ϕ
∗
0 )�nj2(u, α0, ϕ

∗
0 ) − �⊗2

nj1(u, α0, ϕ
∗
0 )

�2
nj0(u, α0, ϕ

∗
0 )

dNi j (u).
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It follows from (20) that

− ∂Û (ϕ∗
0 , w0)

∂ϕ∗ =
m∑

j=1

∫ τ

0
A

∗
j (u, w0)d Fw, j (u) + op(1)

=

⎛

⎜⎜⎝

m∑
j=1

[b2 − ∫ τ

0
b⊗2

j1 (u,w0)

b j0(u,w0)
]d�0 j (u) 0p×p 0p

0p×p μ2b2 μ2b1

0T
p μ2bT

1 μ2b0

⎞

⎟⎟⎠

=
⎛

⎝
�∗−1 0p×p 0p

0p×p μ2b2 μ2b1

0T
p μ2bT

1 μ2b0

⎞

⎠ = A
∗. (28)

By the Doob–Meyer decomposition, we have

Û (ϕ∗
0 , w0)=n−1

m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j −w0)

[
Ũi j (w0)− �nj1(u, α0, ϕ

∗
0 )

�nj0(u, α0, ϕ
∗
0 )

]
dMi j (u)

+n−1
m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j − w0)

[
Ũi j (w0) − �nj1(u, α0, ϕ

∗
0 )

�nj0(u, α0, ϕ
∗
0 )

]

×Yi j (u)λ0(u) exp{βT
0 (Wi j )Zi j (u) + αT

0 Vi j (u) + g0(Wi j )}du

�
m∑

j=1

dnj (τ ) + qn(τ ). (29)

Note that

exp{αTVi j (u)+βT(Wi j )Zi j (u)+g(Wi j )} − exp{αTVi j (u) + ϕ∗T Ũi j (w0) + g(w0)}
= exp{αTVi j (u) + ϕ∗T Ũi j (w0) + g(w0)}1

2
{[β ′′T(w0)Zi j (u) + g′′(w0)]

×(Wi j − w0)
2 + op(h

2
1)}(1 + Op(h

4
1)).

Then,

qn(τ ) = 1

2n

m∑

j=1

n∑

i=1

∫ τ

0
Kh1(Wi j − w0)

[
Ũi j (w0) − �nj1(u, α0, ϕ

∗
0 )

�nj0(u, α0, ϕ
∗
0 )

]

× exp{αT
0 Vi j (u) + ϕ∗T

0 Ũi j (w0) + g0(w0)}
×Yi j (u)λ0 j (u){[β ′′T

0 (w0)Zi j (u) + g′′
0 (w0)](Wi j − w0)

2}du + op(h
2
1).
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Hence we have

qn(τ ) = h2
1

2
μ2

⎛

⎝
�∗−1 0p×p 0p

0p×p 0p×p 0p

0T
p 0T

p 0

⎞

⎠ϕ′′
0 (w0) + op(h

2
1)

� B
∗
n(τ, w0) + op(h

2
1), (30)

where ϕ′′
0 (w0) = (β ′′

0 (w0), 0p, g′′
0 (w0))

T. Let d∗
nj (τ ) = √

nh1dnj (τ ). Then, combined
with (19), we have

Var

⎛

⎝
m∑

j=1

d∗
nj (τ )

⎞

⎠ = �∗(τ, w0) = �∗
1(τ, w0) + �∗

2(τ, w0),

where

�∗
1(τ, w0) =

m∑

j=1

�∗
j1(τ, w0) =

m∑

j=1

lim
n→∞ E〈d∗

nj , d∗
nj 〉(τ )

=
⎛

⎝
ν0�

∗−1 0p×p 0p

0p×p ν2b2 ν2b1

0T
p ν2bT

1 ν2b0

⎞

⎠ ,

and

�∗
2(τ, w0) = lim

n→∞ E

⎧
⎨

⎩h1

∑

k �=l

∫ τ

0
Kh1(W1k −w0)[Ũ1k − �nk1(u, α0, ϕ

∗
0 )

�nk0(u, α0, ϕ
∗
0 )

]dM1k(u)

×
∫ τ

0
Kh1(W1l − w0)[Ũ T

1l − �T
nl1(u, α0, ϕ

∗
0 )

�nl0(u, α0, ϕ
∗
0 )

]dM1l(u)

}
.

By conditions C.1–C.8, and results from Andersen and Gill (1982), it is easy to
show that the Lindeberg condition of d∗

n(τ ) holds. Then, we have

√
nh1(Û (ϕ∗

0 , w0) − B
∗
n(τ, w0))

L−→ N (0,�∗(τ, w0)).

Together with (27) and (28), this leads to

√
nh1(H1(ϕ̂p − ϕ0) − h2

1μ2

2
(β

′′T
0 (w0), 0T

p, 0)T)
L−→ N (0, V(w0)),

where

V(w0) =
(

ν0�
∗ 0p×p+1

0p+1×p Q∗
)

+ A
∗−1�∗

2(τ, w0)A
−1∗T
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with

Q∗ = ν2μ
−2
2

(
b2 b1

bT
1 b0

)−1

.

The proof of Theorem 4 is completed.

5.3 Lemmas for the proofs of main results

Let

Cnj (t) = n−1
n∑

i=1

Yi j (t)g(Wi j , (Wi j − w0)/h, Zi j (t), Vi j (t))Kh1(Wi j − w0)

for a function g(·, ·, ·, ·). The following Lemmas 1 and 3 are required for proving
Theorems 1, 2 and 4, while Lemma 2 is required for proving Theorems 1 and 2.

Lemma 1 Assume that conditions C.1 and C.4 hold. Suppose that g(·, ·, ·, ·) is contin-
uous in all of its four arguments, and E(g(W, u, Z(t), V (t))|W = w0) is continuous
at the point w0. If h1 → 0 so that nh1/ log n → ∞, then

sup
0≤t≤τ

|Cnj (t) − C j (t)| P−→ 0,

where C j (t) = f j (w0)
∫

E[Y (t)g(w0, u, Z j (t), Vj (t))|W j = w0]K (u)du, j =
1, . . . , m.

Proof The proof is similar to the proof of Lemma 1 in Fan et al. (2006), and is omitted
here for brevity.

Lemma 2 Assume the conditions C.1–C.8 hold. If nh2
1 → ∞ and nh4

1 → 0, then

√
n
∂�p(α)

∂α
|α=α0

= 1√
n

m∑

j=1

n∑

i=1

∫ τ

0

{[
Vi j (u) + χT

2 (Wi j )Zi j + χT
1 (Wi j ) − r j1(u, α0)

r j0(u, α0)

]

−Q(u, Wi j )s(Wi j )

}
dMi j (u) + op(1),

where Q(u, Wi j ) = eT
1 μ2{A∗−1(Wi j )

⎛

⎜⎝
0p

Dw[ts1(u,Wi j )]
ts0(u,Wi j )

Dw[log(t j0(u, Wrs))]

⎞

⎟⎠ + [A∗−1(Wi j )]′

⎛

⎝
0p

Zi j

1

⎞

⎠} and s(Wi j ) =∑m
l=1

∫ Wi j
−∞ al(Wi j ) fl(Wi j )dw.
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Proof See the online supplementary document at http://personal.cb.cityu.edu.hk/
msawan/research.htm.

Lemma 3 Suppose that conditions C.1–C.8 hold. Then,

∂2�p(α)

∂α∂αT

∣∣∣∣
α=α0

P−→ −I (α0).

Proof See the online supplementary document at http://personal.cb.cityu.edu.hk/
msawan/research.htm.
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