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and random samples from number partitions

Masaaki Sibuya

Received: 31 October 2011 / Revised: 11 June 2013 / Published online: 2 October 2013
© The Institute of Statistical Mathematics, Tokyo 2013

Abstract Motivated by marine ecological data on species abundance, with the record
of subsamples, two problems are investigated in this paper, assuming the Ewens–
Pitman sampling formula: One is the prediction of the number of new species if the
catch is continued, and the other is how the number of species will decrease in random
subsamples. Related statistics and extended models are also considered. A tool for the
work is the generalized Stirling numbers of three variables.

Keywords Bell polynomials · Gibbs partitions · Partition data · Pólya’s urn model ·
Random number partitions · Random sum models · Size index · Trawl fishery ·
Waiting time.

1 Introduction

1.1 Random partition data

The basic data of ecological surveys on species abundance are the count, ci , of indi-
viduals of the i th species, i = 1, . . . k, where k is the number of different species, and
n = c1 +· · ·+ ck is the total number of observed individuals. We assume that species
of zero count is neglected and that the order of the species is irrelevant. That is, the
observation is a partition of n to a sum of k positive integers. Let Pn,k denote the set
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834 M. Sibuya

of all such partitions and Pn := ⋃n
k=1 Pn,k . For modeling species abundance data, it

is natural to regard them as a realization of the random partition, a probability measure
on Pn . Charalambides (2007) serves as an introduction to random partitions. A strat-
egy for modeling partition data is discussed by Hoshino (2012). A celebrated random
partition is the Ewens–Pitman sampling formula (EPSF), developed in population
genetics, and thoroughly and profoundly investigated by Pitman (2006).

Assume that an EPSF partition in Pm,k is observed, and the observation on
Pm+n,m = 1, 2, . . . is continued. The conditional process started from Pm,k will
be called restart EPSF. Statistics of the restart process are investigated, and, for exam-
ple, the moments of the number of new species are shown. In the framework of the
nonparametric Bayesian statistics (Ferguson 1973), our prediction is the nonparamet-
ric estimation in the consistent Gibbs random partition, and some basic results are
shown in Lijoi et al. (2007, 2008). EPSF is a typical consistent Gibbs process, and the
distributions of its statistics are expressed in closed forms. Further, EPSF belongs to
the random sum models of the Gibbs partitions, which are not consistent, except for
EPSF, and less flexible. However, more known models are available.

Subsampling in species abundance survey In ecological surveys of fish or small
insects, thousands of individuals are caught, and a part of the catch is randomly selected
and species of all individuals in the subsample are identified. See, e.g., Heales et al.
(2000, 2003a,b) and van Ark and Meiswinkel (1992). Researchers are anxious about
the possible inhomogeneity of subsampling and larger fluctuation of subsamples.

The reverse process of the restart EPSF process is the simple random sampling
without replacement from the conditional distribution on Pn,k . In the consistent Gibbs
partition, individuals are sequentially numbered, and deletion from the partition of total
size n is just to delete n, but we have to see where is n. Here, the backward equations
of the Gibbs (Markov) process and of the restart process are shown. More basically,
simple random sampling without replacement from a partition sample is investigated,
and the moments of the number of species in subsamples are obtained.

Contents of the paper In Sect. 1, EPSF, as a balls-to-urns process, is introduced, and
for later use the generalized Stirling numbers are introduced. In Sect. 2.1, the restart
of the balls-to-urns process is defined, and the p.d.f. and moments of the number of
non-empty urns in the restart process are shown. In Sect. 2.2, the random partitions
in the restart process are investigated, and in Sect. 2.3, waiting times are treated.
Section 3 states briefly two basic approaches to random partitions. Section 4 studies
basic facts of the simple random subsamples of partition data (Sect. 4.1) and sampling
from random partitions (Sect. 4.2). Based on Sects. 2 and 4, a dataset in Heales et al.
(2003a) is analyzed in Sect. 5. In Sect. 6, the implication of the results of this paper
are discussed.

1.2 Ewens–Pitman sampling formula

Partitions of a number Partitions {c1, c2, . . . } ∈ Pn are expressed in several ways.
The simplest one is descending order statistics (DOS), c1 ≥ · · · ≥ ck . Another simple
one is ascending order statistics, and to avoid duplicate numbers, a standard expression
is
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Restart Pitman partition model 835

s = (s1, . . . , sn), s j :=
k∑

i=1

I[ci = j], 1 ≤ j ≤ n,

where
∑n

j=1 s j = k,
∑n

j=1 js j = n, and I[·] is the predicate: I[True] = 1, and
I[False] = 0. This expression is called frequency of frequencies by Good (1953) and
size index by Sibuya (1993). Ecologists call it species abundance distribution (see,
e.g., McGill et al. 2007). For other expressions, see Andrews and Eriksson (2004).

Balls-to-urns process EPSF is best illustrated by Pólya-type balls-to-urns process
(Yamato and Sibuya 2003b). Suppose that Balls (B1, B2, . . . ) are put into Urns (U1,

U2, . . . ) one by one at random as follows:
(i) First, B1 is put into U1 with the probability 1. (ii) At stage n, n = 1, 2, . . . ,

assume (B1, . . . , Bn) are in (U1, . . . ,Uk) such that there is no empty urn, and c j balls
in U j ; 1 ≤ j ≤ k ≤ n, c1 + · · · + ck = n. Now, Bn+1 is put into U j ; 1 ≤ j ≤ k + 1
with the probabilities

c j − α

θ + n
, if 1 ≤ j ≤ k; θ + kα

θ + n
, if j = k + 1.

The result, at stage n, is a random partition A of the index set [n] := {1, . . . , n},
with the restriction

1 ∈ A1; min(�; � ∈ [n]\ ∪ j
i=1 Ai ) ∈ A j+1, j = 1, . . . , k − 1.

The probability of a partition A of [n], n ∈ N is, by induction of the model,

p((c1, . . . , ck)) : = P(A) = 1

(θ | − 1)n

k∏

j=1

(θ + ( j − 1)α)(1 − α| − 1)c j −1,

c j : = |A j |, 1 ≤ j ≤ k, c j > 0, c1 + · · · + ck = n, (1)

where r.v. k is the number of subsets of A, (a|b)n := a(a − b) . . . (a − (n − 1)b). The
set of (θ, α), for which P(A) ≥ 0, ∀A, partition of [n], n = 1, 2, . . . , is

0 ≤ α ≤ 1,−α ≤ θ, or α < 0, θ = −Mα, M = 1, 2, . . .

Ewens–Pitman sampling formula If both the balls and the urns are indistinguishable,
a sequence of random partitions on Pn, n = 1, 2, . . . , is, in terms of the size index,
as follows:

w(n; s) := P{Sn = s} = (θ | − α)k

(θ | − 1)n
πn(s)

n∏

j=1

((1 − α| − 1) j−1)
s j ,

πn(s) = n!
∏n

j=1 s j !( j !)s j
, if s = (s1, . . . , sn) ∈ Pn,k . (2)
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836 M. Sibuya

Random partitions (2) are called Ewens–Pitman sampling formula and denoted by
EPSF(n; θ, α). Their most important property is the partition structure:

w(n; (s1 + 1, s2, . . . , sn))
s1 + 1

n

+
n∑

j=2

w(n; (s1, . . . , s j−1 − 1, s j + 1, . . . , sn))
(s j + 1) j

n
I[s j−1 > 0]

= w(n − 1; (s1, . . . , sn−1)). (3)

Equation (3) means that if one ball is randomly deleted from a random partition
EPSF (n; θ, α), a random partition EPSF(n − 1; θ, α) is obtained. On the parameter
estimation of EPSF, see Carlton (1999), Sibuya and Yamato (2001), and Hoshino
(2001).

Number of non-empty urns. Suppose Sn is EPSF(n; θ, α) partition, and put Kn :=∑n
j=1 S j , the number of non-empty urns, or the number of species. Its probability

mass function (p.m.f.) fn(k) := P{Kn = k} satisfies,

fn+1(k) = n − kα

θ + n
fn(k)+ θ + (k − 1)α

θ + n
fn(k − 1). (4)

The p.m.f. fn(k) is expressed in a closed form,

fn(k) = (θ | − α)k

(θ | − 1)n
Sn,k(−1,−α, 0), (5)

where Sn,k(a, b, c) is the generalized Stirling number introduced below. The distrib-
ution (5) is denoted by EPSF-K(θ, α).

If Kn = k, or if S ∈ Pn,h , the conditional distribution of random partitions is

P{S = s|S ∈ Pn,k} = 1

Sn,k(−1,−α, 0)
πn(s)

n∏

j=1

((1 − α| − 1) j−1)
s j , (6)

which is independent of θ .

Generalized Stirling numbers For use in Sect. 2, recall 3-parameter generalized Stirling
numbers (G3SN), defined by the polynomial identity in t :

(t + c|a)n ≡
n∑

k=0

Sn,k(a, b, c)(t |b)k . (7)

The properties of G3SN are summarized in the Appendix. In the next section, we need
its convolution-type recurrence,
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Restart Pitman partition model 837

Proposition 1

Sm+n,�(a, b, c) =
min(m,�)∑

j=0

Sm, j (a, b, c)Sn,�− j (a, b, c + jb − ma),

∀�,m, n ∈ N, 0 ≤ � ≤ n. (8)

Proof In the polynomial identity in t, (t + c|a)m+n = (t + c|a)m(t + c − ma|a)n ,

RHS =
m∑

k=0

n∑

�=0

Sm,k(a, b, c)(t |b)k Sn,�(a, b, c + kb − ma)(t − kb|b)�.

Compare the coefficient of (t |b)k in both sides to obtain (8). �	

2 Restart process

2.1 Number of non-empty urns in restart process

The number of parts or non-empty urns, Kn , is regarded as random walks on a square
grid, {(n, k), 1 ≤ k ≤ n}, starting from (1,1) and moving from (n, k) to (n + 1, k)
or (n + 1, k + 1). In this subsection, we consider the process starting from any grid
point, moving with the same transition probability as the original process.

Restarting from (m, k) refresh the count, that is, change the states from (m, k), . . . ,
(m + n, k + �) to (0, 0), . . . , (n, �), 0 ≤ � ≤ n, or we consider the random variable

Kn(m, k) := (Km+n − Km)|(Km = k). (9)

Its p.m.f. fn(�) := P{Kn(m, k) = �} satisfies, from (4),

fn+1(�) = m + n − (k + �)α

θ + m + n
fn(�)+ θ + (k + �− 1)α

θ + m + n
fn(�− 1),

0 ≤ � ≤ n + 1, f1(0) = 1. (10)

In contrast to Kn, Kn(m, k) can be 0 with positive probability, and it is seen that,
from (10) without computing the p.m.f.,

fn(0) = (m − kα| − 1)n
(θ + m| − 1)n

.

It decreases fast when n increases, unless α and θ are small enough.
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838 M. Sibuya

We generalize EPSF-K (5), using Proposition 1, comparing the forward Eqs. (4)
and (10).

P{Km+n = �} = Sm+n,�(−1,−α, 0)(θ | − α)�

(θ | − 1)m+n
=

min(m,�)∑

k=0

Sm,k(−1,−α, 0)(θ | − α)k

(θ | − 1)m

× Sn,�−k(−1,−α,m − kα)(θ + kα| − α)�−k

(θ + m| − 1)n
. (11)

Hence, the p.m.f. of Kn(m, k) of (9) is, replacing � by k + � in (11),

fn(�) = P{Kn(m, k) = �} = (θ + kα| − α)�

(θ + m| − 1)n
Sn,�(−1,−α,m − kα), 0 ≤ � ≤ n,

(12)

which will be denoted by RsEPSF-K(θ, α).
This p.m.f. is given by Lijoi et al. (2007), Equation 8. They treat the restart process

in a more general framework, which will be sketched in Sect. 3.2. The expression
fn(0) obtained below (10) is confirmed by Sn.0(a, b, c) = (c|a)n .

Moments of restart process To obtain numerical values of moments in usual appli-
cations, it is practical to calculate fn(�) recursively by (10) and

∑
� �

r fn(�) naively.
For theoretical purposes some expressions are necessary.

Proposition 2 Moments of Kn = Kn(m, k) (Eq. 9) are as follows:

E((Kn)r ) = (θ + kα| − α)r

αr (θ + m| − 1)n

r∑

j=0

(
r

j

)

(−1)r− j (θ + m + jα| − 1)n, (13)

E((Kn| − 1)r ) = θ + kα

αr (θ + m| − 1)n

×
r∑

j=0

(
r

j

)

(−1)r− j (θ + (k + j − 1)α|α)r−1(θ + m + jα| − 1)n .

(14)

A general expression (15) is shown in the proof.

Proof First, calculate E(θ + (k + Kn)α| − α)r ). Since

(θ + kα| − α)�(θ + (k + �)α| − α)r = (θ + kα| − α)r (θ + (k + r)α| − α)�,

n∑

�=0

fn(�)(θ+(k+�)α|−α)r = (θ |−α)r
(θ+m|−1)n

.

n∑

�=0

Sn,�(−1,−α,m−α)(θ+(k + r)α| − α)�

= (θ + kα| − α)r

(θ + m| − 1)n
(θ + m + rα| − 1)n .
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Restart Pitman partition model 839

Next, to calculate E((Kn|ε)r ), use (7),

(�|ε)r =
r∑

j=0

Sr, j (ε,−1,−c)(c + �| − 1) j ,

c = θ/α + k, (c + �| − 1) j = α− j (θ + (k + �)α| − α) j ,

E((Kn|ε)r ) =
r∑

j=0

Sr, j (ε,−1,−c)
(θ + kα| − α) j (θ + m + jα| − 1)n

α j (θ + m| − 1)n
. (15)

For special cases, note that

Sn,k(1,−1, c) =
(

n

k

)

(c − k)n−k, Sn,k(−1,−1,−c) =
(

n

k

)

(c)n−k(−1)n−k .

�	

Remarks (a) Typical examples are

E(Kn) = θ + kα

α

(
(θ + m + α| − 1)n
(θ + m| − 1)n

− 1

)

,

E((Kn)2) = (θ + kα| − α)2

α2(θ + m| − 1)n
×((θ + m + 2α| − 1)n − 2(θ + m + α| − 1)n + (θ + m| − 1)n).

Put m = k = 0 to obtain the moments of EPSF-K(θ, α), which is shown in Yamato
and Sibuya (2003a) by induction.

(b) For Ewens sampling formula EPSF-K(θ, 0), factorial cumulants are

κ(r) = (−1)r−1(r − 1)!θr
n−1∑

j=0

1

(θ + j)r
= θr (ψ(r−1)(θ + n)− ψ(r−1)(θ)),

r = 1, 2, . . . ,

where ψ(r)(θ) is the polygamma function, ψ(0)(θ) = ψ(θ) is the digamma function,
and

E(Kn) = θ(ψ(θ + n)− ψ(θ)) ≈ θ

(

log(θ + n)− ψ(θ)− 1

2(n + θ)

)

, n → ∞.

(c) Sn,k(0, b, c) or Sn,k(a, 0, c), which appear in the case ε = 0, are known as
Carlitz’s weighted Stirling numbers (Hsu and Shiue 1998).
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840 M. Sibuya

2.2 Partition in restart process

In the previous subsection, the p.m.f. in RsEPSF-K and its moments are shown for
the application of Sect. 5. In this subsection, random partition in the restart process
RsEPSF is obtained based on the results of the previous subsection.

In our restart process, at the restart time n = 0, the old partition is neglected, but
data (m, k), or Sm ∈ Pm,k , are recorded. The new balls put into old urns are mixed
and counted as Sn,0, the number of virtual urns of size 0. Hence, in the restart process,
a number n is partitioned at random to the sum of nonnegative integers, and the new
size index is such that

s = (s0, s1, . . . , sn), s j ≥ 0, j = 0, 1, . . . , n = s0 +
n∑

j=1

js j , � :=
n∑

j=1

s j . (16)

The p.m.f. of RsEPSF-K (12) is rewritten as follows, because of (31) in Appendix.

P{Kn = �} = (θ + kα| − α)�

(θ + m| − 1)n
Sn,�(−1,−α,m − kα)

= (θ + kα| − α)�

(θ + m| − 1)n

n∑

n∗=0

(
n

n∗
)

(m − kα| − 1)n−n∗ Sn∗,�(−1,−α, 0)

=
n∑

n∗=0

(
n

s0

)
(m − kα|−1)s0 (θ + kα| − 1)n∗

(θ+m|−1)n

(θ+kα|−α)�
(θ+kα|−1)n∗

Sn∗,�(−1,−α, 0)

(17)

where n∗ = n − s0. In the last expression, the summand is the joint p.m.f. of (Kn, s0):

fn(�, s0) = hn(s0) fn(�|s0) = hn(s0) fn∗(�),

fn(�, s0) =
(

n

s0

)
(θ + kα| − α)�(m − kα| − 1)s0

(θ + m| − 1)n
Sn∗,�(−1,−α, 0), n∗ + s0 = n,

hn( j) =
(

n

j

)
(m − kα| − 1) j (θ + kα| − 1)n− j

(θ + m| − 1)n
, 0 ≤ j ≤ n. (18)

The factor fn∗(�) is the conditional p.m.f. of
∑n

j=1 s j , which is EPSF-K(θ+kα, α),
see (5). The p.m.f. hn( j) is the negative hypergeometric distributions NgHg(n; m −
kα, θ + kα) with (θ, α) in the EPSF parameter space.

Another derivation of the joint p.m.f. fn(�, s0) is to consider the Markov process
with the states (n, �, s0) and the forward equation,

fn+1(�, s0) = n∗ − �α

θ + m + n
fn(�, s0)+ θ + kα + (�− 1)α

θ + m + n
fn(�− 1, s0)

+m − kα + s0 − 1

θ + m + n
fn(�, s0 − 1), (19)

which generalizes (10). Starting from f1(0, 0) = 1, fn(�, s0) is shown by induction.
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Restart Pitman partition model 841

Given (Kn, s0) the conditional random partition is (6), where n replaced by n∗, and

P{Sn = s} =
n∑

j=0

P{S+
n = s+|Sn,0 = j}P{Sn,0 = j}, S+

n := Sn\Sn,0,

which determine the p.m.f. of RsEPSF in the following proposition.

Proposition 3 (Lijoi et al. 2008) In the restart process RsEPSF(m, k; θ, α), random
partition Sn has the following p.m.f., with the symbol s of (16),

P{Sn = s}

= (θ + kα| − α)�(m − kα| − 1)s0

(θ + m| − 1)n

(
n

s0

)

πn∗(s+)
n∗
∏

j=1

((1 − α| − 1) j−1)
s j ,

n∗ = n − s0, s+ := (s1, . . . , sn). (20)

Since the joint moments of the size index of EPSF are known, those for RsEPSF
are simply their NgHg mixtures. For example,

E((Sn, j )r ) = (n) jr (θ + kα| − α)(θ + m + rα| − 1)n− jr

(θ + m| − 1)n

n∏

j=2

(
(1 − α| − 1) j−1

j !
)r j

,

1 ≤ j ≤ n, r = 1, 2, . . .

E(Sn,1) = n(θ + kα)(θ + m + α| − 1)n−1

(θ + m| − 1)n
.

The distribution of Sn,0 following (18), NgHg(m − kα, θ + kα) has the asymptotic

property; Sn,0/n
d−→ Be(m − kα, θ + kα), the beta distribution, and the ratio of the

number of balls in the old and new urns, is rather stable.
Proposition 3 is shown in Lijoi et al. (2008), Equation (22) as an example of the

general theorem on the nonparametric Bayesian estimation of the consistent Gibbs
partitions. The above statement that the conditional p.m.f. of

∑n
j=1 s j is EPSF-K(θ +

kα, α) is shown, in Lijoi et al. (2008), to hold for any consistent Gibbs partitions.
A restriction on old species observation In RsEPSF, only the condition Km = k is

assumed. Suppose that the counts c = {c1, . . . , ck} of individuals of species are also
recorded, and, in the restart process, the counts of the new species and those of some
specific ones of c are interested. That is, c ∈ Pn,k is divided into two groups, say,
{c1, . . . , ck1} ∈ Pm1,k1 and {ck1+1, . . . , ck} ∈ Pm2,k2 , m1 + m2 = m, k1 + k2 = k.
Accordingly, s0 is divided into s01 + s02 = s0. A problem in RsEPSF is to find the
probability of (s02, Kn(m, k)) = (0, �) at a stage n.

Given s0 = s01 + s02, Kn(m, k) is independent of (s01, s02)|s0. Since s0 follows the
negative hypergeometric distribution (18), (s01, s02) follows the multivariate (actually
bivariate) negative hypergeometric distribution MvGHg(n; m1 − k1α,m2 − k2α, θ +
kα). Hence, by (17),
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842 M. Sibuya

P{(s02, Kn(m, k)) = (0, �)|m1 + m2 = m & k1 + k2 = k}
= (θ + kα| − α)�

(θ + m| − 1)n

n∑

s0=0

(
n

s0

)

(m1 − k1α| − 1)s0 Sn∗,�(−1,−α, 0),

= (θ + kα| − α)�

(θ + m| − 1)n
Sn,�(−1,−α,m1 − k1α), n∗ = n − s0, 0 ≤ s0 ≤ n,

P{s02 = 0|m1 + m2 = m & k1 + k2 = k}
=

n∑

�=0

(θ + kα| − α)�

(θ + m| − 1)n
Sn,�(−1,−α,m1 − k1α) = (θ + k2α + m1| − 1)n

(θ + m| − 1)n
.

These are shown in Lijoi et al. (2008) Sect. 3.3, Looking backward.

2.3 Waiting time

Write Kn = Kn(m, k) for short, and regard (n, Kn) as random walks on the square
lattice. Two types of waiting time are important in applications. One is Wν , the first time
as Kn = ν, that is, the number of individuals to be observed to find ν new species. The
other is Vμ, the first time as n − Kn = μ, that is, the number of individuals of already
found species reaches μ, which may be the time to give up the observation efforts.

First, we examine Wν , and note that

Wν = n ⇔ Kn−1 ≥ ν − 1 & Kn ≥ ν ⇔ Kn−1 = ν − 1 & Kn − Kn−1 = 1,

where Kn has the p.m.f. (12). The probability P{Kn − Kn−1 = 1|Kn−1 = ν − 1} is
seen in the second factor of (10).

Proposition 4 In the restart process RsEPSF-K(θ, α), the waiting time Wn for the
first arrival of Kn(m, k) to ν has the p.m.f.

P{Wν = n} = (θ + kα| − α)ν

(θ + m| − 1)n
Sn−1,ν−1(−1,−α,m − kα), n ≥ ν ≥ 1. (21)

Remarks

(a) Since Sn,0(a, b, c) = (c|a)n ,

P{W1 = n} = (m + kα| − 1)n−1(θ + kα)/(θ + m| − 1)n,

which is consistent with fn(0) below (10).
(b) The sum of (21) over ν ≤ n < ∞ is one, and in general, as a rational generating

function,

1

(t |b)k =
∞∑

n=k

Sn−1,k−1(a, b, c)
1

(t + c|a)n ,

which was shown by Corcino (2001).
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Restart Pitman partition model 843

(c) For RsEPSF-K(θ, 0), the Ewens case,

P{Wν = n} = θν

(θ + m| − 1)n
Sn−1,ν−1(−1, 0,m), n ≥ ν ≥ 1.

Sibuya and Nishimura (1997) applied this model to the prediction of waiting time
for record-breaking, assuming m to be a known or unknown real parameter.

Moments of Wν Since

(θ + m + n − 1)r
(θ + m − r | − 1)r (θ + m| − 1)n

= 1

(θ + m − r | − 1)n
, where (a)r = (a|1)r ,

∞∑

n=ν
Sn−1,ν−1(−1,−α,m − kα)

1

(θ + m − r | − 1)n
= 1

(θ + kα − r | − α)ν
,

E((Wν + θ + m − 1)r ) = (θ + m − 1)r
(θ + kα| − α)ν

(θ + kα − r | − α)ν
, r = 1, 2, . . . ,

which can be solved recursively. For example,

E(Wν) = (θ + m − 1)

(
(θ + kα| − α)ν

(θ + kα − 1| − α)ν
− 1

)

,

E((Wν)2) = (θ + m − 1)2

(
(θ + kα| − α)ν

(θ + kα − 2| − α)ν
− 1

)

−2(θ + m − 1)2
(

(θ + kα| − α)ν

(θ + kα − 1| − α)ν
− 1

)

.

If θ = r − kα, E((Wν)2) = ∞, r = 1, 2, . . .
Next, we examine Vμ. Similar to the case of Wν ,

Vμ = n ⇔ Kn−1 = n − μ & Kn = n − μ ⇔ Kn−1 = n − μ & Kn = Kn−1.

Hence,

P{Vμ = n}
= (θ + kα| − α)n−μ(m + n − 1 − (k + n − μ)α)

(θ + m| − 1)n
Sn−1,n−μ(−1,−α,m − kα)

=
(
(θ + kα| − α)n−μ
(θ + m| − 1)n−1

− (θ + kα| − α)n−μ+1

(θ + m| − 1)n

)

Sn−1,n−μ(−1,−α,m − kα),

n ≥ μ ≥ 1. (22)

For RsEPSF-K(θ, 0), the Ewens case,

P{Vμ = n} = θn−μ(m + n − 1)

(θ + m| − 1)n
Sn−1,n−μ(−1, 0,m).

The moments of Vμ are rather complicated even in the Ewens case.
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3 Extensions of EPSF model

3.1 Random sum models

Let Z1, Z2, . . . , be an i.i.d. sequence of positive integer-valued random variables,
and Y be a nonnegative integer-valued random variable, which is independent of Zi s.
Then, the conditional distribution of the random vector

{Z1, . . . , ZY }|(X := Z1 + · · · + ZY = n),

is a random partition on Pn, n = 1, 2, . . . Let f (w), g(w), h(w) be the probability
generating functions of X,Y and Z , respectively, in the exponential form:

P{Z = z}=hz . h0 =0, h(w)=
∞∑

n=0

n!hnw
n

n! =:
∞∑

n=0

h̆nw
n

n! , or hn =
[
wn

n!
]

h(w)

n! .

Note that

f (w) = g(h(w)),

[
wn

n!
]

g(h(w) =
n∑

m=0

Bn,m(h̆)gm,

Bn,m(φ) :=
[
wn

n!
]
φ(w)m

m! =
∑

s∈Pn,m

n!
n∏

j=1

1

s j !
(
φ j

j !
)s j

, 1 ≤ m ≤ n,

Bn,0(φ) = I[n = 0], φ(w) =
∞∑

n=0

φnw
n

n! ,

where Bn,m(φ) are homogeneous polynomials in φ1, . . . , φn−m+1 of the degree m,
called the partial exponential Bell polynomials.

The random partition {Z1, . . . , ZY }|(X = n), in terms of the size index, has the
p.m.f.

P{S = s} = gmn!
Bn(ğ; h̆)

n∏

j=1

1

s j !

(
h̆ j

j !

)s j

, if S ∈ Pn,m,

where Bn(ğ; h̆) is the normalizing constant. The number of parts Kn := S1 +· · ·+ Sn

has the p.m.f.

P{Kn = k} = gm

Bn(ğ; h̆)
Bn,k(h̆), 1 ≤ k ≤ n.
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Under the condition S ∈ Pn,m ,

P{S = s|S ∈ Pn,m} = n!
Bn,m(h̆)

n∏

j=1

1

s j !

(
h̆ j

j !

)s j

, (23)

which is independent of (gm).

Proposition 5 Under the condition S ∈ Pn,m of the random sum partitions (23),

E

⎛

⎝
n∏

j=1

(S j )q j |S∈Pn,m

⎞

⎠=(n)Q
Bn−Q,m−q(h̆)

Bn,m(h̆)

n∏

j=1

(
h̆ j

j !

)q j

, q =
n∑

j=1

q j , Q =
n∑

j=1

jq j ,

Hence,

E(Kn|S ∈ Pn,m) = 1

Bn,m(h̆)

n∑

k=1

(
n

j

)

h̆ j Bn− j,m−1(h̆).

There are many known compound distributions f (w) = g(h(w)), see, e.g., John-
son et al. (2005) and Charalambides (2005). However, the p.m.f. (23) is not always
expressed in closed forms, and the discussions in previous sections cannot be devel-
oped in a general way. The Bell polynomials satisfy some recurrence formula, and
they are at least numerically computable. See, e.g., Comtet (1974) and Charalambides
(2002) on the Bell polynomials, and the Appendix for the relationship with G3SN.

It is shown that (Kerov 2006) if Zi is the extended (or Engen) truncated negative
binomial, the random partition is EPSF(θ, α), if Y is the negative binomial (0 < α <

1), the Poisson (α = 0), or the negative hypergeometric (α < 0, θ = −Mα,M =
2, 3, . . . ) r.v.

3.2 Gibbs partition models

Another extension is possible. In expression (1), EPSF is regarded as an ordered
partition A = (A1, . . . , Ak) of the set [n], where the probability p(c1, . . . , ck) is a
symmetric function of c j = |A j |, 1 ≤ j ≤ k ≤ n. Such a p.m.f. on Pn is called
exchangeable partition probability function (EPPF). This is a size-biased-random-
permutation expression of EPSF without the contraction to the size index. The EPPF
in the form

p((n1, . . . , nk)) = Vn,k

k∏

j=1

Wn j ,
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846 M. Sibuya

where Vnk(1 ≤ k ≤ n) and Wn(n = 1, 2, . . . ) are nonnegative sequences, called the
Gibbs form. A Gibbs form is consistent if

p((n1, . . . , nk)) =
k∑

j=1

p((n1, . . . , n j + 1, . . . , nk))+ p((n1, . . . , nk, 1)),

which is equivalent to the partition structure (3) of the random number partitions. It
turns out that the Gibbs form is consistent iff

p((n1, . . . , nk))=Vn,k

k∏

j=1

(1−α| − 1)n j−1, (n1, . . . , nk) ∈ Pn,k, −∞ < α < 1,

(24)

where Vn,k(1 ≤ k ≤ n) satisfies the backward recursion

Vn,k = (n − kα)Vn+1,k + Vn+1,k+1. (25)

For EPSF(θ, α), Vn,k = (θ |−α)k/(θ |−1)n . The random sum models in Sect. 3.1 also
have the Gibbs form with the weight Vn,k = Vk/cn . However, they are not consistent
except for the EPSF.

A property of the consistent Gibbs partition is that its conditional random partition
on a specific Pn,k is given by (6), which is shown there for EPSF. See Gnedin and
Pitman (2006), Equation (6). Conversely, the consistent Gibbs partitions are charac-
terized by the mixing distribution, P{Kn = k}. This property is essential as shown in
Sect. 4.2.

Lijoi et al. (2008) show that our restart process can be defined for the random
partitions of the Gibbs form and can calculate the distributions of some statistics.
Among others, using the symbols of Sect. 2.1

gn(�) := P{Kn(m, k) = �} = Vm+n,k+�
Vm,k

Sn,�(−1,−α,m − kα),

which leads immediately to (12). Following the line of the paper, its recurrence for-
mula, corresponding to (10), is

gn+1(k) = (m + n − (k + �)α)
Vm+n+1,k+�
Vm+n,k+�

gn(k)+ Vm+n+1,k+�
Vm+n,k+�−1

gn(k − 1).

Similarly, extending the waiting time (21),

P{Wν = n} = Vm+n,k+ν
Vm,k

Sn−1,ν−1(−1,−α,m − kα), n ≥ ν ≥ 1.

For the basic work on the Gibbs form, see Gnedin and Pitman (2006), and for the
related works, see references in Lijoi et al. (2008).
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Restart Pitman partition model 847

Within the broader frameworks, the best feature of EPSF is that it is typical in many
ways and its related quantities are expressed in relatively compact forms. Another
useful example is the Gibbs partition derived from the normalized inverse Gaussian
process (Lijoi et al. 2005, 2007, 2008).

4 Subsampling from number partitions

Since the size index fluctuates with its total size n, to compare two or more random
partitions with a different total size, some authors propose to reduce larger ones to the
minimum by simple random sampling of individuals without replacement. Conceptu-
ally, a couple of ways of sampling is conceivable, and two of them are discussed in
this section. The main concern is the mean number of parts in each situation.

In the first subsection, the basic sampling from a given number partition is discussed.
In the second subsection, the sampling from a conditional random partitions on Pν,κ

is discussed.

4.1 Sampling from a number partition

Regard a partition z = (z1, . . . , zκ) ∈ Pν,κ as a set of κ urns with zi balls,
∑κ

i=1 zi =
ν. Take out one ball at random with equal probability and continue the sampling without
replacement until n balls are obtained. Let Wi denote the number of balls taken from the
i th urn, and W = (W1, . . . ,Wκ) follows the multivariate hypergeometric distribution
MvHg(n; z). Consider the size index of z, and partial sums of Wi along the size (value)
of zi :

Y = (Y1, . . . ,Yν), Yk :=
∑

{i;zi =k}
Wi ,

τ = (τ1, τ2, . . . ), τk :=
κ∑

i=1

I[zi = k],
ν∑

k=1

τk = κ,

ν∑

k=1

kτk = ν,

and Y follows MvHg(n; τ):

P{Y = y} =
ν∏

k=1

(
kτk

yk

)/(
ν

n

)

, y = (y1, , . . . , yν).

The conditional distributions of those Wi s which are grouped to Yk are

P{(Wi ; zi = k) = (wi )|Yk = yk} =
∏

{i;zi =k}

(
k

wi

)/(
kτk

yk

)

.

It is symmetric in (wi ) := (wi ; zi = k) and its order is irrelevant. Hence, the size
index of (Wi ; zi = k)|(Yk = yk) is introduced:
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848 M. Sibuya

U� :=
κ∑

i=1

I[zi = k & Wi = �], 0 ≤ � ≤ yk, for τk > 0.

To avoid double index, we introduce the generic parameter (m, c, r) for (yk, τk, k),
and the symmetric multivariate hypergeometric distributions are defined by

P{U = u} = c!
r∏

�=0

1

u�!
(

r

�

)u�/(
rc

m

)

,

u = (u0, u1, . . . , ur ),

r∑

�=0

u� = c,
r∑

�=0

�u� = m,

and denoted by SymMvHg(m; c, r). Note that U is a random partition of the number
rc into nonnegative integers. Its alternative expression is the 2 × c contingency table
with such marginals that all c row-sums are equal to r and column-sums are m and
rc − m.

The joint moments of U are

E

(
r∏

�=0

(U�)q�

)

= (c)q
(m)Q(rc − m)rq−Q

(rc)rq

r∏

�=0

(
r

�

)q�

q� ∈ N0, q :=
r∑

�=0

q�, Q :=
r∑

�=0

�q�. (26)

To show it, note that

(c − q)!
r∏

�=0

1
(u�−q�)!

(r
�

)u�−q� = (r(c−q)
m−Q

)
,

(r(c−q)
m−Q

)
/
(rc

m

)
. = (m)Q(rc−m)rq−Q

(rc)rq
.

This moment expression is a special case of Proposition 5, the binomial compound of
the truncated binomial distributions.

The above discussions are summarized as below.

Proposition 6 Given a partition τ ∈ Pν,κ , let the simple random sample of size n
from τ be denoted by Sk� = ∑κ

i=1 I[Wi = � & zi = k], 0 ≤ � ≤ k, namely the
number of urns with � balls taken from an urn with k balls, then

P{(Sk�) = (sk�)} =
ν∏

k=1

τk

k∏

�=0

1

sk�!
(

k

�

)sk�
(
ν

n

)

,

k∑

�=0

sk� = τk,

ν∑

k=1

k∑

�=0

�sk� = n. (27)
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Proof Apply

P{(Sk�) = (sk�)} =
∑

y

P{(Sk�) = (sk�)|Y = y}P{Y = y}

to the discussions above the proposition. In
∑

y , y runs over a subset of Pn . �	

From Proposition 6, the p.m.f. or the moments of the statistics of Sk� are calculated.
For example, the marginal distribution of subsamples, in terms of the size index S.� :=∑ν

k=� Sk�, 0 ≤ � ≤ n, is

P{(S.�) = (s�)} =
∗∑
τk !

k∏

�=0

1

sk�!
(

k

�

)sk�
/(

ν

n

)

,

where the summation
∗
� runs over sk� satisfying

∑ν
k=1 sk� = s� and the restrictions

in (27). The enumeration is complex.
The joint moments of (Sk�) are calculated by

E((Sk�)qk� ) =
∑

y

E((Sk�)qk� |Y = y)P{Y = y},

where the conditional expectation is that of SymMvHg. Among them the following is
the simplest and interesting.

Proposition 7 The statistics Kn(τ ) := ∑ν
k=1

∑k
�=1 Sk� of the subsample of τ , defined

in Proposition 6, is the number of parts, or species, in the subsample.

E(Kn(τ )) =
κ∑

k=1

τk

(

1 − (ν − n)k
(ν)k

)

= κ − μ(τ), μ(τ) :=
κ∑

k=1

τk
(ν − n)k
(ν)k

,

V ar(Kn(τ )) =
κ∑

k=1

(τk)2
(ν − n)2k

(ν)2k
+ 2

∑

1≤ j<k≤ν
τ jτk

(ν − n) j+k

(ν) j+k
− μ(τ)2 + μ(τ).

The expectation shows how the number of parts κ = ∑ν
�=1 τ� decreases with the

sampling ratio ρ = n/ν. Note that

(ν − n)k
(ν)k

= (1 − ρ)k exp

(

−k(k − 1)

2ν

ρ

1 − ρ
+ O(ν−2)

)

, (ν → ∞).

Proof The conditional expectation of U0 given Yk = m is obtained from (26) by
putting q� = I[� = 0], q = 1, Q = 0, and Yk has the marginal Hg(n; rc, ν−rc), r =
k, c = τk, of SymMvHg (n; τ). Hence
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E(Sk0) =
[

n∑

m=0

c

(rc)r
(rc − m)r

(
n

m

)(
ν − n

rc − m

)] /(
ν

rc

)

= c(ν − n)r
(rc)r

(
ν − r

rc − r

)/(
ν

rc

)

= c
(ν − n)r
(ν)r

.

What we need is κ − ∑κ
k=1 E(Sk0) = ∑κ

k=1(τk − E(Sk0)). The variance is similarly
calculated. �	

In the same way, it is shown that

E(Sk�) = τk

(
k

�

)
(n)�(ν − n)k−�

(ν)k
, 0 ≤ � ≤ k.

Check that
∑k
�=0 E(Sk�) = τk .

The coefficients of τk in Proposition 7 are close to the limit 1 − (1 − ρ)k even for
smaller values of ν and n as shown in Fig. 1. In each of four frames, the differences
between three curves, for n = 16, 32, 64, are invisible except for the jumps to the
conventional value 1 outside the range 1 ≤ k ≤ n. In the last frame, the true and
approximate values at k = n are as follows:

Fig. 1 The coefficient (1 − (ν − n))/(ν)k in E(Kn(τ )), versus k = 1, 2, . . . in log − log scale, for n =
16, 32, 64 in each frame with the sampling ratio ρ = n/ν = 1/4, 1/8.1/16, 1/32
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k n = 16 n = 32 n = 64 (1 − 1/32)k

16 0.493 0.401 0.399 0.398

32 1.0 0.644 0.641 0.638

64 1.0 1.0 0.873 0.869

Fig. 2 Left Illustration of c of the example. Right Bounds of (n, Kn) paths. Dotted line Parallelograms
show possible paths and a chain line curve shows (n, E(Kn)), calculated by Proposition 7

Numerical examples of Proposition 7 are shown in the following paragraph and in
Sect. 5.

Bounds of Kn in subsampling To see how fast Kn will change in the subsampling
of a given partition, we examine deterministic (or probability 1) bounds of Kn, n =
ν−1, ν−2, . . . , 1. In this paragraph, we discuss the unsampled balls, not the removed
balls. Let c = (c1, . . . , cκ ), c1 ≥ c2 ≥ · · · ≥ cκ > 0,

∑κ
i=1 ci = ν, be the DOS of a

partition of ν, which is expressed by the vertical bar chart with columns of height c j ,
or stacked c j squares, at j, 1 ≤ j ≤ κ . Out of these ν squares, remove squares one
by one, keeping the form of DOS: non-increasing height of columns.

Example (Fig. 2) Let ν = 16, κ = 7, c = (5, 3, 2, 2, 2, 1, 1) and consider, say n as
Kn = 3. See the left part of Fig. 2. The largest n, or the earliest time in one-by-one
sampling, is the case where the white squares are removed and both the black and the
gray squares remain. The smallest n, or the latest time, is the case where the white and
gray squares are removed and the black squares remain. Hence, 3 ≤ n ≤ 10. If there
are no white squares, Kn = κ , the upper bound remains κ while n > κ . The lower
bound decreases by 1, from i to i − 1, if a column of original height ci disappears.

Changing n the right part of Fig. 2 is obtained. The upper and the lower bounds
n of Kn = k, k specified, are the lower and the upper bounds of Kn, n specified,
respectively. These facts are summarized as the following proposition.

Proposition 8 In the subsample of size n of the partition data c = (c1, . . . , cκ ),∑κ
i=1 ci = ν, n|(Kn = k) satisfies,

min(k, κ) ≤ n|(Kn = k) ≤
k∑

i=1

ci , 1 ≤ k ≤ κ.
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with the probability 1. Equivalently

Lc(n) ≤ Kn ≤ min(n, κ), 1 ≤ n ≤ ν, Lc(n) := k, if
k−1∑

i=1

ci < n ≤
k∑

i=1

ci ,

with the probability 1.
The limits are rather restrictive if ν is not large.

4.2 Sampling from random partitions

Sampling from the conditional random partitions S|(S ∈ Pν,κ ) In Sect. 3.1, the
conditional distribution and its moments of the random sum models were obtained. In
the present situation, Proposition 5 is applied as follows:

Proposition 9 Assume the conditional random partition S|(S ∈ Pν,κ ) with the com-
pounded exponential generating function h̆(w), and consider the simple random sub-
sample of the size n from the partition. Then

E(Kn|S ∈ Pν,κ ) =
κ∑

k=1

E(Tk |S ∈ Pν,κ )

(

1 − (ν − n)k
(ν)k

)

,

E(Tk |S ∈ Pν,κ ) = (ν)k
Bν−k,κ−1(h̆)

Bν,κ (h̆)

h̆k

k! .

For EPSF(θ, α), the summands are the zero-truncated (Engen’s) extended negative
binomial (0 < α < 1), the log-series (α = 0), or the negative hypergeometric (α < 0)
r.v.’s, and

h̆k = (1 − α| − 1)k−1, Bν,κ (h̆) = Sν,κ (−1,−α, 0).

This is true, not only for EPSF(θ, α), but also for all the consistent random partitions
of the Gibbs form, as remarked in Sect. 3.2.

EPSF and the consistent Gibbs case In Sect. 3.2, the consistency of Gibbs partitions
was introduced.

Suppose random partitions on Pn have the consistent Gibbs form (24). Then, its
unconditional simple random samples of size m has the same Gibbs form on Pm .

This notion answers the question raised in the beginning of this section; the sub-
sampling for decreasing the sample size is allowed at least in the consistent Gibbs
forms. Repeated subsamples can be used for better and easier inference. Note that the
simple random sampling of one ball from random partitions is the choice from the
sequenced balls under the consistency assumption.

For EPSF(θ, α), it is known (6) that

w(s; n, k) := P{S =s|(S ∈ Pν,κ }= 1

Sn,k(−1,−α, 0)

n∏

j=1

1

s j !
(
(1 − α| − 1) j−1

j !
)s j

.
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As a reverse of RsEPSF, we study the sampling from w(s; ν, κ). Again, note that
w(s; ν, κ) is the conditional distribution for all the consistent Gibbs partitions.

Proposition 10 (The simple random sampling fromw(s; ν, κ)) Let s = (s1, . . . , sν) ∈
Pν,κ , and take out one ball from s with the equal probability 1/ν. For s ofw(s; ν, κ):
(a) If s1 > 0, and one ball is chosen from s1 balls in s1 urns containing just one ball

(singletons), the result is the random partitionw(s; ν− 1, κ − 1) and this occurs
with the probability

Sν−1,κ−1(−1,−α, 0)

Sν,κ (−1,−α, 0)
.

(b) Otherwise, the result is the random partition w(s; ν − 1, κ) and this occurs with
the probability

(ν − 1 − κα)Sν−1,κ (−1,−α, 0)

Sν,κ (−1,−α, 0)
.

Remark: This is a probabilistic interpretation of the recurrence

Sν,κ (−1,−α, 0) = Sν−1,κ−1(−1,−α, 0)

+(ν − 1 − κα)Sν−1,κ (−1,−α, 0), 1 ≤ κ ≤ ν.

The result is a mixture of two disjoint random partitions w(s; ν − 1, κ − 1) and
w(s; ν − 1, κ), 1 < k < κ . The probabilities are equal to 1, if k = κ in case (a), and
if k = 1 in case (b).

Proof First, note that

{(s1, s2, . . . , sν); (s1 + 1, . . . , sν) ∈ Pν,κ} = Pν−1,κ−1,

and that

{(s1, . . . , sν); (s1, . . . , s j−1 − 1, s j + 1, . . . , sν) ∈ Pν,κ , j = 2, . . . , ν} = Pν−1,κ .

Part a: Under the condition S = s, one of s1 + 1 balls is chosen with the probability
(s1 + 1)/ν, s1 = 0, 1, . . . . Hence, this happens in w((s1 + 1, s2, . . . , sν) with the
probability

∑

(s1+1,s2,...,sν )∈Pν,κ

s1 + 1

ν
w((s1 + 1, s2, . . . , sν); ν, κ)

=
∑

s∈Pν−1,κ−1

(ν − 1)!
Sν,κ (−1,−α, 0)

ν−1∏

j=1

1

s j !
(
(1 − α| − 1) j−1

j !
)s j

= Sν−1,κ−1(−1,−α, 0)

Sν,κ (−1,−α, 0)
.
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Part b: In other cases, one of j (s j + 1) balls is chosen and s j + 1 turns to s j + 1
while s j−1 − 1 turns to s j−1, s j−1 = 1, 2, . . . , s j = 0, 1, . . . . This happens in
w(s∗

j ; ν, κ), s∗
j = (s1, . . . , s j−1 − 1, s j + 1, . . . , sν), with the probability

ν∑

j=2

⎛

⎜
⎝

∑

s∗
j ∈Pν,κ

j (s j + 1)

ν
w(s∗

j ; ν, κ)
⎞

⎟
⎠

=
ν∑

j=2

s j−1
(1−α| − 1) j−1

(1 − α| − 1) j−2

∑

s∈Pν−1,κ

(ν−1)!
Sν,κ (−1,−α, 0)

ν∏

j=1

1

s j !
(
(1−α|−1) j−1

j !
)s j

= (ν − 1 − κα)
Sν−1,κ (−1,−α, 0)

Sν,κ (−1,−α, 0)
.

�	
Reverse EPSF-K process Based on the random sampling of Proposition 10, a backward
equation, corresponding to the forward Eq. (4) of the EPSF-K process, is calculated:

fn(k) = (n − kα)
Sn,k

Sn+1,k
fn+1(k)+ Sn,k

Sn+1,k+1
fn+1(k + 1), 1 ≤ k ≤ n, (28)

where Sn,k = Sn,k(−1,−α, 0) for simplicity. For the proof, just recall fn(k) = (θ | −
α)k Sn,k/(θ | − 1)n .

Starting from the state Kν = κ , the conditional downward random walks are deter-
mined by modifying the boundary restrictions in the above (28). Note that the possible
states are the parallelogram with the corners (ν, κ), (ν − κ + 1, 1), (κ, κ), (1, 1), or

P D(ν, κ) :=
n⋃

k=1

P D
n (ν, κ),

P D
n (ν, κ) := {(n, k); max(1, n − (ν − κ)) ≤ k ≤ min(n, κ)}, 1 ≤ n ≤ ν.

Proposition 11 (Reverse EPSF-K starting from Kν = κ) Assume that EPSF-K
process is at the state Kν = κ , that is S ∈ Pν,κ in EPSF havingw(s; ν, κ). If one ball
is deleted at random, one by one with the equal probability 1/ν, 1/(ν − 1), . . . , the
number of occupied urns Kn, = ν, ν − 1, . . . decreases downward within the region
P D(ν, κ), along the following distributions, normalized for each n.

gn(κ − ν + n) = Sn,κ−ν+n

Sn+1,κ−ν+n+1
gn+1(κ − ν + n + 1)), ν − κ < n ≤ ν,

gn(1) = n − nα

n − α
gn+1(1)+ Sn,1

Sn+1,2
gn+1(2), 1 ≤ n ≤ ν − κ,

gn(k) = (n − kα)
Sn,k

Sn+1,k
gn+1(k)+ Sn,k

Sn+1,k+1
gn+1(k + 1),
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1 < k < min(κ, n),

gn(κ) = (n − κα)
Sn,κ

Sn+1,κ
gn+1(κ), κ ≤ n ≤ ν,

gn(n) = 2

n + 1
gn+1(n)+ gn+1(n + 1), n < κ.

gν(κ) = g1(1) = 1, Sn,k = Sn,k(−1,−α, 0).

Remarks

(a) Actually, the equation gn(k) in the middle of the lines, or (28), covers all the
others, because Sn,n(a, b, 0) = 1, n = 1, 2, . . . , Sn+1,1(a, b, 0) = (b −
na)Sn,1(a, b, 0), and Sn,n−1(a, b, 0) = 2(b − a)/(n(n − 1)).

(b) Note that the process depends only on α, in contrast to EPSF-K.
(c) The means of gn(k), k ∈ P D

n (ν, κ), correspond to those in Proposition 9.

Simple cases ν, κ = ν − 1

gν(ν − 1) = g1(1) = 1,

gν−1(ν − 2) = Sν−1,ν−2

Sν,ν−1
= ν − 2

ν
, gν−1(ν − 1) = 1 − gν−1(ν − 2) = 2

ν
,

gn(n − 1) = Sn,n−1

Sn,n;;1
gn+1(n) = n − 1

n + 1
gn+1(n)

= (n − 1)(n − 2)(n − 3)

(n + 1)n(n − 1)
· · · ν − 2

ν
· 1 = n(n − 1)

ν(ν − 1)
, 2 ≤ n ≤ ν,

gn(n) = 1 − gn(n − 1) = 1 − n(n − 1)

ν(ν − 1)
.

The last expression is directly derived from Proposition 11:

gn(n) = n(1 − α)
Sn,n

Sn,n+1
gn+1(n)+ Sn,n

Sn+1,n+1
gn+1(n + 1)

= 2

n + 1
gn+1(n)+ gn+1(n + 1) = 2n

(ν − 1)ν
+ 1 − n(n − 1)

ν(ν − 1)

= 1 − (n + 1)n

ν(ν − 1)
.

In this special case, the probabilities are independent of α. If ν = 5, κ = 4,

g4(3) = 0.6, g4(4) = 0.4 : g3(2) = 0.3, g3(3) = 0.7;
g2(1) = 0.1, g2(2) = 0.9.

The cases ν = 5, κ = 3 & 2 are tabulated as follows:
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n gn(k)× 5(7 − 5α) n gn(k)× 5(5 − 3α)

gn(1) gn(2) gn(3) gn(1) gn(2)

4 11 − 7α 2(12 − 9α) 4 3 − α 2(11 − 7α)

3 2 − α 3(7 − 5α) 3(4 − 3α) 3 7 − 3α 6(3 − 2α)

2 3(3 − 2α) 26 − 19α 2 13 − 7α 4(3 − 2α)

It is conjectured that the subsamples of Proposition 11 of size n, under the condition
(ν, κ)where κ is close to E(Kν) of EPSF-K, have the mean close to E(Kn). An appli-
cation of Proposition 11 is shown in the following Sect. 5. In numerical computation
of Sn,k for large n, a way to avoid overflow is to use EPSF-K(0, α), (4) (5):

Sn,k(−1,−α, 0) = α−k(n − 1)! fn(k)/(k − 1)!

Once {gn(k); (n, k) ∈ P D(ν, κ)} are obtained, the transition probabilities of the
upward random walks (n, Kn), n = 1 . . . , of EPSF-K(θ, α), under the condition Kν =
κ , are easily determined. Let p(k|k) and p(k + 1|k) denote the move of probabilities
from (n, k) to (n+1, k) and (n+1, k +1), that is p(k|k)+ p(k +1|k) = gn(k) and the
transition probabilities are p(k|k)/gn(k) and p(k + 1|k)/gn(k) = 1 − p(k|k)/gn(k).
From the boundary p(1|1) = gn+1(1) and p(2|1) = gn(1) − p(1|1)), the others are
calculated by p(k|k) = gn+1(k)− p(k|k − 1) and p(k + 1|k) = gn(k)− p(k|k), k =
2, . . . Hence, the upward transition probabilities are independent of θ . The upward
random walks have the same paths (chains) and the same moving probabilities as the
downward random walks.

Further, consider the downward random walks starting from (ν, κ) and ending at
any point (μ, λ) ∈ P D(ν, κ), or 1 < μ < ν,max(1, μ− (ν − κ)) ≤ λ ≤ min(μ.κ),
the conditional downward random walks, with both ends fixed, have the same features
as those on P D(ν, κ). This fact is discussed in Gnedin and Pitman (2006), Section 4.

Subsampling from RsEPSF For the forward Eq. (4) of EPSF-K, the backward equa-
tion is given by (28). Similarly, for the forward Eq. (10) of Kn(m, k) or RsEPSF-K,
the backward equation is as follows:

fn(�) = (m + n − (k + �)α)
Sn,�

Sn+1,�
fn+1(�)+ Sn,�

Sn+1,�+1
fn+1(�+ 1), 0 ≤ � ≤ n,

(29)

where Sn,k = Sn,k(−1,−α,m − kα) for simplicity. Proposition 11 is similarly
extended.

Next, consider the Markov process in the finer states (n; �, s0). From the forward
Eq. (19) in Sect. 2.2, the backward equation, or simple random deletion of one ball,
is as follows. Here, Sn,k = Sn,k(−1,−α, 0) and n∗ + s0 = n:
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Table 1 Size index s = (s1, s2, . . . ) of trawl byproducts (Heales et al. 2003a)

j 1 2 3 4 5 6 7 8 9 10 11 13
s j 22 10 6 6 3 2 2 7 3 2 2 4

j 14 15 16 17 18 19 20 29 31 36 38 40

s j 1 3 1 2 2 2 1 1 1 1 1 1

j 47 49 55 61 73 78 90 112 129 138 187 189

s j 2 1 1 1 1 1 1 1 1 1 1 1

j 201 236 251 252 293 328 353 363 531 539 558 722

s j 1 1 1 1 1 1 1 1 1 1 1 1

j 731 890 1380 1926 2123

s j 1 1 1 1 1

(
∑

j s j = 116,
∑

j j s j = 13611)

fn(�, s0) = n∗ + 1

n + 1

(

(n∗ − �α)
Sn∗,�

Sn∗+1,�
fn+1(�, s0)+ Sn∗,�

Sn∗+1,�+1
fn+1(�+ 1, s0)

)

+ s0 + 1 + 1

n + 1

Sn∗,�
Sn∗+1,�

fn+1(�, s0 + 1) 0 ≤ � ≤ n. (30)

5 Application to trawl data

Trawl data In tropical northern Australia coast, the Northern Pawn Fishery is support-
ing ecologically sustainable development, and controlling trawl bycatch. Studying the
effect of the control, important issues were techniques of homogeneous subsampling
and random fluctuation of subsamples. To answer the questions, large-scale works
were carried out and reported by Heales et al. (2000, 2003a,b). In this paper, only
the fluctuation of species abundance is reexamined, and one of the datasets in Heales
et al. (2003a) is analyzed. The datasets are large and very unique in that all bycatches
are sequentially subsampled and species of all individuals in each subsample are enu-
merated. Each subsample has almost the same weight. One of the three datasets in
Heales et al. (2003a), Catch no. 2 with the largest number of individuals, is used to
support the proposed model. The size index, s = (s1, s2, . . . ), of the whole sample is
listed in Table 1. The dataset was analyzed by Shimadzu and Darnell (2013), which
motivated the author to carry out this study.

The sample consists of 26 boxes of about 10 kg of fish and invertebrates. The number
of individuals n and the accumulated number of species Kn accumulated up to the box
number ‘bxn’, bxn = 1, . . . , 26, are listed in Table 2. The last column, bxn = 26, is the
whole sample used in Table 1. Size index, as in Table 1, was prepared also for bxn = 8
and 16. Summary of these subsamples and maximum likelihood estimates (θ̂ , α̂) is
provided in Table 3.

Fitting EPSF In Fig. 3, the expectation E(Kn) of EPSF-K (θ̂ , α̂), 1 ≤ n ≤ 20000, is
plotted by a solid line, with the curves E(Kn) ± 2SD(Kn) by broken lines. E(Kn)

and SD(Kn) are computed by MLE (θ̂ , α̂) of the whole sample in Table 3. In Fig. 3,
observed (n, Kn) of Table 2 are shown by symbol ‘X’. They are so close to (n, E(Kn)).
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Table 2 Subsampling process (Heales et al. 2003a)

bxn 1 2 3 4 5 6 7 8 9
Kn 49 64 68 74 81 84 87 89 90

n 607 1341 1948 2499 3039 3700 4183 4723 5229

bxn 10 11 12 13 14 15 16 17 18

Kn 92 94 95 98 102 107 107 109 112

n 5785 6207 6558 6994 7476 7883 8366 8918 9601

bxn 19 20 21 22 23 24 25 26

Kn 113 114 115 115 115 115 116 116

n 10175 10804 11405 11885 12377 12910 13258 13611

Table 3 Estimated parameter
values No. boxes Kn n θ̂ α̂

8 89 4723 7.48537 0.172137

16 107 8366 8.31265 0.163111

26 116 13611 10.05340 0.120449

Fig. 3 (n, Kn) plots and (n, E(Kn)), (n, E(Kn) ± 2SD(Kn)) curves. The parameter of E(Kn) is an
estimate of the last column of Table 3

In the middle of the train of ‘X’, there is a small jump. Heales et al. (2003a) examined
details of data, and found that some rare species are sampled successively at that stage.
However, compared with the possible fluctuation of EPSF-K, the jump is relatively
small, and the subsampling process appears random and homogeneous. Figure 4 and
Table 4 show the probability of the intervals separated by mean and standard deviation,
to evaluate the performance of the two-sigma interval of Fig. 3.

Prediction In Fig. 5, E(K�(m, k)), K�(m, k) = Km+�|(Km = k) and E(K�(m, k))±
2SD are plotted, in solid and broken lines, respectively. Conditional expectation is very
close to the unconditional expectation. If the conditioning value shifts, the conditional
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Fig. 4 P.d.f. of EPSF-K(θ, α), using estimates (θ̂ , α̂) of the last column of Table 3. Vertical broken lines
show E(Kn), E(Kn)± SD(Kn), E(Kn)± 2SD(Kn)

Table 4 Cumulative distribution functions of EPSF-K of the estimated parameter value

n x = �μ− 2σ� �μ− σ� �μ� �μ+ σ� �μ+ 2σ�
5000 x 70 82 94 106 118

F(x) 0.02367 0.17957 0.53282 0.84767 0.97282

10000 x 82 96 110 123 137

F(x) 0.02259 0.18218 0.54688 0.84539 0.97364

15000 x 89 104 119 133 148

F(x) 0.02005 0.16960 0.52775 0.83476 0.97081

Fig. 5 Prediction of the number of species from the whole and subsamples, using estimates (θ̂ , α̂) of
Table 3
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Fig. 6 Expected species numbers (open circle) of random samples from the data partition of Table 1,
expected species numbers (plus symbol) of subsamples from the conditional random partitions of EPSF(·, α)
on P13611,116, with the observed species numbers (cross symbol) of Table 2 (cross symbol) and the fitted
(n, E(Kn) curve

expectation curve shifts almost in parallel. Further, smaller proportion of subsamples
predicts the exact behavior of the larger proportion.

Subsamples Since the primary purpose of the trawl survey was to check the effects of
subsampling on the number of species, it is instructive to apply Propositions 7 and 11
to this dataset. Figure 6 illustrates

(◦) The expected species number of random samples from the data partition of
Table 1. See Proposition 7.
(+) The expected species number of subsamples from the conditional random
partitions of EPSF(·, α) on P13611,116. See Proposition 11. The estimate α̂ in
Table 3 for n = 13611 is used.
(×) The observed species numbers of Table 2.
Curve (n, E(Kn)) The curve of the fitted EPSF distribution and the observed
number of species in subsamples.

The curve and (×) are the same as Fig. 3. The subsample expectations, of both data
partition and conditional random partitions, are surprisingly close to the fitted EPSF
expectation curve.

Figure 7 illustrates the p.m.f.s of the subsamples from the conditional random parti-
tions of EPSF(·, α) on P13611,116. In the interval (1,116), the p.d.f curves concentrate
rapidly to the neighborhood of 1 and are not exactly shown in this figure.

6 Final discussions

– This paper shows that EPSF is a useful candidate for modeling the species abun-
dance data, and that G3SN is a useful tool for dealing with EPSF. In particular, the
EPSF model is attractive for marine ecological surveys, where the subsampling is
inevitable.
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Fig. 7 The p.m.f.s of Kn , subsamples from the conditional random partitions of EPSF(·, α) on P13611,116

– In modeling ecological surveys, one will assume that the parameter (θ, α) depends
on covariates reflecting habitats and catching techniques, and that the estimated
dependence will reveal insight into the real world. Species abundance and biolog-
ical diversity continue to be a challenging problem. See, e.g., Hubbell (2001) and
Guisan and Zimmermann (2000).

– On the other hand, for looking at species abundance distributions as random parti-
tions, conceptual unification with other models will be required. See, e.g., McGill
et al. (2007) for an extensive survey of models of partition data.

– The subsamples of a data partition are another expression of the partition. Hence,
it is expected that subsamples will be used to select candidate random partition
models.

Appendix: Generalized Stirling numbers

For the use in Sect. 2, recall the 3-parameter generalized Stirling numbers (G3SN)
introduced by Hsu and Shiue (1998). It is a triangular sequence Sn,k, 0 ≤ k ≤ n,
of polynomials of order n − k in a, b and c with integer coefficients, defined by the
following equivalent conditions.

A (by a triangular generating function, specified by a pair of exponential generating
functions)

Sn,k(a, b, c) :=
[

tnuk

n!
]
ψ(t) exp(uφ(t)),

(ψ, φ) := (
(1 + at)c/a, 1

b ((1 + at)b/a − 1)
)
,

B (by a polynomial identity in t)

(t + c|a)n ≡
n∑

k=0

Sn,k(a, b, c)(t |b)k,
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C (by a recurrence formula)

Sn+1,k(a, b, c)=(kb − na + c)Sn,k(a, b, c)+Sn,k−1(a, b, c), S0,0(a, b, c)=1.

D (by an expansion, Corcino 2001)

Sn,k(a, b, c) = 1

bkk!
k∑

j=0

(
k

j

)

(−1) j−k( jb + c|a)n .

This is a generalization of Sn,k(1, 0, 0) =
[

n
k

]

(−1)n−k , Stirling number of the first

kind; Sn,k(0, 1, 0) =
{

n
k

}

, Stirling number of the second kind; and Sn,k(0, 0, 1) =
(n

k

)
, binomial coefficients. Its basic properties are

Sn,k(a, b, 0) = I[n = k], if a = b.

Sn,k(sa, sb, sc) = sn−k Sn,k(a, b, c), ∀s,
n∑

�=k

Sn,�(a, s, c1)S�,k(s, b, c2) = Sn,k(a, b, c1 + c2), ∀s.

Sn,k(a, b, c) =
∑

n≥�≥k

(
n

�

)

S�,k(a, b, 0)(c|a)n−�. (31)

In (8) in Proposition 1 , put n = 1, � = k to obtain Definition C. That is, (8) is
another definition of G3SN. See, Hsu and Shiue (1998), Corcino (2001) and Wang
and Wang (2008) for the details of G3SN.

Relationship with the Bell polynomials The special case c = 0 of G3SN is related to
the partial exponential Bell polynomials (Sect. 3.1) as follows:

Sn,m(a, b, 0) = Bn,m((b − a|a)k−1) = b−mBn,m((b|a)k)
= an

bm
Bn,m

((
b

a

)

k

)

= an−mBn,m

((
b

a
− 1

)

k

)

.

Noncentral generalized factorial coefficients Noncentral generalized factorial coeffi-
cients C(·) are defined by the polynomial identity in t ;

(st + r)n =
n∑

k=0

C(n, k; s, r)(t)k .

See Charalambides and Singh (1988) or Charalambides (2005). The case r = 0 is
called generalized factorial coefficients. In terms of G3SN,

C(n,m; s, r) = sm Sn,m(1, s, r) = sn Sn,m(1/s, 1, r/s), 0 ≤ m ≤ n.
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For generalized factorial coefficients, in terms of the exponential partial Bell polyno-
mials,

C(n,m; s, 0) = Bn,m(((s)k)) = sm Bn,m(((s − 1)k−1)).

Lijoi et al. (2007, 2008) used the notation

(st + r | − 1)n =
n∑

k=0

C (n, k; s, r)(t | − 1)k .

Hence,

C (n,m; s, r) = sm Sn,m(−1,−s,−r) = sn Sn,m(−1/s,−1,−r/s).

In some context, G3SN variables are redundant, but G3SN is a typical Riordan array,
e.g., Wang and Wang (2008), and known to relate to various popular polynomials.
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