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Abstract For a vast array of general spherically symmetric location-scale models with
a residual vector, we consider estimating the (univariate) location parameter when it
is lower bounded. We provide conditions for estimators to dominate the benchmark
minimax MRE estimator, and thus be minimax under scale invariant loss. These mini-
max estimators include the generalized Bayes estimator with respect to the truncation
of the common non-informative prior onto the restricted parameter space for normal
models under general convex symmetric loss, as well as non-normal models under
scale invariant L p loss with p > 0. We cover many other situations when the loss is
asymmetric, and where other generalized Bayes estimators, obtained with different
powers of the scale parameter in the prior measure, are proven to be minimax. We
rely on various novel representations, sharp sign change analyses, as well as capitalize
on Kubokawa’s integral expression for risk difference technique. Several properties
such as robustness of the generalized Bayes estimators under various loss functions
are obtained.
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812 M. Jafari Jozani et al.

1 Introduction

1.1 Preamble

We begin with the normal model in canonical form

X ∼ N (μ, σ 2), S2 ∼ σ 2χ2
n , independent (n ≥ 1), (1)

which plays a central role in both statistical theory and practice. Consider situations
where additional information on (μ, σ ) is available in terms of parametric restrictions.
Bayesian inference in such restricted parameter space problems does not, conceptu-
ally, present any difficulties as both the prior and the resulting posterior will be adapted
and will adapt to the constraints. Assessing the frequentist performance of Bayesian
estimators in such situations is, however, considerably more challenging. Such assess-
ments may include, for instance, testing for minimaxity, an evaluation in comparison
to a benchmark procedure such as minimum risk equivariant (MRE) estimator or a
maximum likelihood estimator (mle), or a study of the frequentist performance of
associated Bayesian confidence intervals.

As an illustration, consider model (1) with known σ and the non-negative mean
restriction μ ≥ 0. Despite early discoveries by Katz (1961) and Sacks (1963) that
the generalized Bayes estimator with respect to the flat prior on [0,∞) is minimax
and dominates the MRE estimator δ0(X, S) = X under squared error loss, despite
various generalizations to other models and location invariant losses (Farrell 1964;
Kubokawa 2004; Marchand and Strawderman 2005), no other Bayes minimax esti-
mators were known until the Maruyama and Iwasaki (2005) findings which provide
other Bayes minimax estimators under squared error loss. Even then, little has been
obtained for estimating μ in (1) for μ ≥ 0 and unknown σ . In this case, Kubokawa
(2004) obtained, for scale invariant squared error loss, a class of minimax improve-
ments on δ0, which includes the generalized Bayes estimator δπ0(X, S)with respect to
the truncation of the usual non-informative prior onto the restricted parameter space
(see expression 6).

Our main motivation for his work has been to generalize and better understand
Kubokawa’s findings. The paper consists of various extensions with respect to the
loss, the model, and the prior; which bypass in a unified way the specific normal case-
squared error loss calculations by Kubokawa. Several new technical aspects have been
developed to meet such challenges.

1.2 The problem

As an extension of model (1), we consider spherically symmetric models for an observ-
able (X,U ) = (X,U1, . . . ,Un) with density proportional to

1

σ n+1 f

(
(x − μ)2 + ‖u‖2

σ 2

)
, (2)
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Estimation of a non-negative location parameter 813

and with n ≥ 1, μ ≥ 0, σ > 0. The function f : R
+ → R

+ is known, and it assumed
throughout that:

f ′ < 0, and
t f ′(t)
f (t)

decreases in t for t > 0. (3)

Hereafter, for conciseness, reference to model (2) shall be understood to encompass
these assumptions on f. Multivariate (for X ) versions of (2) have been previously
considered, namely in recent work where robust minimax generalized Bayes estimators
ofμwithout constraints are provided (see Fourdrinier and Strawderman 2010). Various
other features of such models are described in Sect. 2.1.

We consider estimating μ where it is assumed that (μ, σ ) ∈ � = {(μ, σ ) : μ ≥
0, σ > 0} under location and scale invariant loss

ρ

(
d − μ

σ

)
, (4)

with (i) ρ absolutely continuous a.e., (ii) ρ strictly bowled shaped with ρ(t) ≥ ρ(0) =
0 for all t ∈ R, ρ′ < 0 on (−∞, 0) and ρ′ > 0 on (0,∞). We also assume that the
pair ( f, ρ) leads to risk finiteness, namely that there exists a unique minimum risk
equivariant estimator for the unconstrained problem. In such cases, it is given by
δ0(X, S) = X + c0S with constant risk R((μ, σ ), δ0) = E0,1[ρ(X + c0S)], and with
(also see Remark 3)

c0 = argminc{E0,1[ρ(X + cS)]}, (5)

which is uniquely determined by E0,1[Sρ′(X +c0S)] = 0. It is also worth pointing out
that c0 = 0 for symmetric losses ρ, and consequently that the MRE estimator coin-
cides with the unbiased estimator X, and is robust with respect to the choice of the
underlying model density f . It follows from Kiefer (1957) that δ0 is minimax for the
unconstrained problem. With the constraint on μ, δ0(X, S) produces indeed implau-
sible estimates, but it remains minimax [see Marchand and Strawderman (2012), and
references therein] for general ρ, and its constant risk thus matches the minimax risk.
The challenge here is to search for good improvements on δ0(X, S) that capitalize on
the parametric information, and we focus on potential Bayesian improvements such
as the generalized Bayes estimators δπl with respect to the prior measures

πl(μ, σ ) = 1

σ l+1 I[0,∞)(μ)1(0,∞)(σ ); l ≥ −(n − 1); (6)

the lower bound on l required for the posterior density to be well defined. The class
includes the choice π0 which is of intrinsic interest as it represents a plausible adap-
tation, or truncation onto � of the right Haar invariant measure πrh with the MRE
estimator (also) being the generalized Bayes estimator δπrh with respect to πrh. More-
over, the study of frequentist properties on the restricted parameter space of Bayesian
procedures associated with π0 or, moregenerally, truncations of the right Haar invari-
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814 M. Jafari Jozani et al.

ant prior measure has recently surfaced in interval estimation problems (Zhang and
Woodroofe 2003; Marchand and Strawderman 2006, 2008, 2013).

In Sect. 2, we further describe features of the underlying model and present various
expressions, properties, and illustrations relative to the Bayes estimators δπl . Namely,
we establish a robustness property, applicable to scale invariant L p loss with ρ(t) =
|t |p, p > 0, and asymmetrized versions as given in (13), stating that the Bayes
estimator δπl does not depend on the underlying f in (2).

The developments of Sect. 3 make use of Kubokawa (1994) Integral Expression
of Risk Difference (IERD) technique to derive classes of dominating (minimax) esti-
mators of δ0(X, S) = X + c0S. With further analyses, which bring into play novel
technical arguments of interest on their own, we provide several instances of ( f, ρ)
where these classes of minimax estimators include Bayesian estimators of the type
δπl . Namely, we establish in Sects. 4 and 5 that:

(A) The Bayes estimators δπl with l ≥ 0 dominate δ0 for normal models in (1) and
general convex ρ’s such that ρ is even. The estimator δπ0 also dominates δ0 for
asymmetric ρ′s such that |ρ′(u)| ≥ |ρ′(−u)| for all u > 0;

(B) The Bayes estimators δπl with l ≥ 0 dominate δ0 for all (fixed) f in (2) satisfying
assumption (3), and whenever the loss is scale invariant L p, p ≥ 1. The estimator
δπ0 also dominates δ0 for asymmetrized versions as given in (13) (where |ρ′(u)| ≥
|ρ(−u)| for all u > 0 as in (A);

(C) The Bayes estimator δπ0 dominates δ0 for all (fixed) f in (2) satisfying assumption
(3), and whenever the loss is scale invariant L p with p ∈ (0, 1).

The ensemble of results provide extensions of Kubokawa’s normal case, scale
invariant squared error loss result applicable to δπ0 in three directions: choice of
f, choice of ρ, and applicability to other Bayesian estimators δπl ’s. Moreover, the
developments relative to (A), (B), and (C) are unified and contain two alternative
proofs replicating Kubokawa’s result. It is also notable that (C) involves the case of
a concave in | d−μ

σ
| (and hence non-convex) loss. Finally, various other observations,

including non-minimaxity results, are also given throughout the exposition and in
Sect. 6.

2 Preliminary results and properties of the estimator δπl

2.1 The underlying model

In (2) and (3), the density of (X,U ) is unimodal with central location parameter
(μ, 0, . . . , 0) and scale parameterσ . Our parameter of interest is the non-negativeμ, or
median, of X , while U is a residual vector. Condition (3) is equivalent to an increasing
monotone likelihood ratio (mlr) in (X − μ)2 + ‖U‖2 of the family of densities in (2)
when viewed as a scale family (parameter σ ) with known μ. Assumption (3) is, for
unimodal and symmetric densities, weaker than both (a) the logconcavity of f (y) and
(b) the logconcavity of f (y2) for y > 0,with (a) implying (b), and with (b) equivalent
to an increasing mlr property in X of the family of densities in (2) when viewed as a
location family (parameter μ) with known σ .
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Estimation of a non-negative location parameter 815

The most important and best known case covered by (2) and (3) is the normal
case where (X,U ) ∼ Nn+1((μ, 0, . . . , 0), σ 2 In+1) and f (t) ∝ e−t/2. However, our
inference results will also apply to many other models such as (i) exponential power
densities with f (t) ∝ e−αt p

, p > 0, α > 0, including Laplace densities arising
for p = 1/2; (ii) the Kotz distribution with f (t) ∝ tme−αt ,m ∈ (−1/2, 0), α >

0; as well as for (iii) Student densities with f (t) ∝ (1 + t/ν)−(ν+n+1)/2, ν ≥ 1
degrees of freedom. The Student example illustrates a non-logconcave f (in fact,
it is logconvex) which satisfies the weaker assumptions required here. The Student
distributions, which are scale mixtures of normals, often serve as useful, alternative
models to the normal model. Here is an interesting general situation for which scale
mixtures inherit assumption (3).

Lemma 1 A scale mixture of the form f (t) = ∫∞
0 v f0(tv)h(v)dv satisfies assumption

(3) as soon as both f0 and h satisfy assumption (3).

Proof See Appendix. 
�

Remark 1 In the Student case above, both f0 (a normal density) and h (a gamma
density), are log-concave and satisfy (3).

Remark 2 We note that model (2) arises for observables Y1, . . . ,Yn+1 having joint
density

1

σ n+1 f

(∑
i (yi − θ)2

σ 2

)
,

through an orthogonal transformation

(Y1, . . . ,Yn+1) → (X = √
nȲ ,U1, . . . ,Un),

with μ = √
nθ .

For model (2), (X, S = ‖U‖) is a sufficient statistic with joint density fX,S on
R × R

+ which we take as equal to:

sn−1

σ n+1 f

(
(x − μ)2 + s2

σ 2

)
. (7)

For the normal model canonical form in (1), we will write the joint density of (X, S)
in (7) as 1

σ 2 φ(
x−μ
σ
)h( s

σ
), with

φ(u) = (2π)−1/2e−u2/2, and h(v) = vn−1 e−v2/2

�(n/2) 2n/2−1 . (8)
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816 M. Jafari Jozani et al.

2.2 Properties of the Bayes estimators δπl

We proceed with various preliminary results, observations, and illustrations concerning
the generalized Bayes estimators δπl (X, S) with respect to the improper priors in (6).
As previously mentioned, one can verify that the lower bound on the power l in (6)
guarantees that the posterior density of (μ, σ ) is well defined given that (7) is a density.
Even with a well-defined posterior density, we further assume, and not necessarily
emphasize (mainly in Sects. 3, 4, and 5), that the pair ( f, ρ) leads to the existence of
the Bayes estimator δπl .

We define for m > 0, w ∈ R, z ∈ R,

Bm(w, z) =
∫ ∞

0

∫ vw

−∞
ρ′(u + c0v + zv)vm f (u2 + v2)dudv, (9)

provided it exists. The function Bm(w, z), as well as some of its properties (see for
instance Lemma 4) will play a key role below, namely in the following representation
of the Bayes estimator δπl (X, S).

Lemma 2 Under model (7), provided existence of the Bayes estimator δπl , we have
δπl (X, S) = X + c0S + gπl (

X
S )S, where gπl (y) satisfies, for all y ∈ R, l ≥ −(n − 1),

Bn+l(y, gπl (y)) = 0. (10)

Proof Writing an estimator as X + c0S + g(X, S), we have that the Bayes estimate
δπl (x, s) minimizes in g(x, s) the expected posterior loss:

E

[
ρ

(
x + c0s + g(x, s)− μ

σ

) ∣∣∣∣(X, S) = (x, s)

]
,

or, equivalently,

∫ ∞

0

∫ ∞

0
ρ

(
x + c0s + g(x, s)− μ

σ

)
sn−1

σ n+1 f

(
(x − μ)2 + s2

σ 2

)
1

σ l+1 dμdσ.

With the change of variables (μ, σ ) → (u = (x−μ)
σ

, v = s
σ
), the Bayes estimate

δπl (x, s) is seen to minimize in g(x, s):

∫ ∞

0

∫ vx/s

−∞
ρ
(

u + c0v + v

s
g(x, s)

)
f (u2 + v2) vn+l−1dudv.

Now, observe that 1
s g(x, s) depends on (x, s) only through the function y = x/s,

which implies that the estimator δπl (X, S) is of the form X + c0S + gπl (
X
S ) S with

gπl (y) minimizing in g(y) the quantity

∫ ∞

0

∫ vy

−∞
ρ(u + c0v + g(y)v) f (u2 + v2) vn+l−1dudv. (11)
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Estimation of a non-negative location parameter 817

Finally, the result is obtained by differentiation. 
�
We point out that gπl (y) is uniquely determined (Lemma 4), and is a continuous

function of y such that

gπl (y) ≥ −y − c0 for all y ∈ R. (12)

This must indeed be the case as the Bayes estimates δπl (x, s) are necessarily non-
negative, and 1

s δπl (x, s) ≥ 0 ⇐⇒ x
s + c0 + gπl (

x
s ) ≥ 0. We pursue with an intriguing

robustness property, and alternative representation, of the Bayes estimators δπl for
scale invariant L p loss, and their asymmetrized versions given by

ρc1,c2(t) = c1 |t |p
I(−∞,0)(t) + c2 |t |p

I[0,∞)(t), (13)

with p > 0, c1 > 0, and c2 > 0.

Lemma 3 For losses ρc1,c2 as in (13), the Bayes estimators δπl , given in Lemma 2,
do not depend on the underlying model density f provided they exist.

Proof From (11), we have

c0 + gπl (y) = argmin
h

∫ ∞
0

∫ vy

−∞
ρc1,c2 (u + hv) f (u2 + v2) vn+l−1dudv

= argmin
h

∫ ∞
0

∫ vy

−∞
ρc1,c2

(u

v
+ h
)

f (u2 + v2) vn+l+p−1dudv

= argmin
h

(∫ ∞
0

x(n+l+p−1)/2 f (x) dx

) (∫ y

−∞
ρc1,c2 (t + h)

(1 + t2)(n+l+p+1)/2
dt

)

= argmin
h

∫ y

−∞
ρc1,c2 (t + h)

(1 + t2)(n+l+p+1)/2
dt, (14)

by making use of the homogeneity of ρc1,c2 and the change of variables (u, v) → (t =
u/v, x = u2+v2). Finally, expression (14) tells us that δπl (x, s) = x+s(c0+gπl (x/s))
is independent of f . 
�

This type of property seems to have first been noticed by Maruyama (see Maruyama
2003; Maruyama and Iwasaki 2005) in a multivariate setting under L2 loss.

Remark 3 (Minimum risk equivariant estimator)

(a) Proceeding as in the proof of Lemma 2, we obtain the useful representation
X + c0(n)S for the MRE estimator, with the defining equation

∫ ∞

0

∫ ∞

−∞
ρ′(u + c0(m)v) v

m f (u2 + v2)dudv = 0, (15)

for c0(m), m ≥ 1.
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818 M. Jafari Jozani et al.

(b) A robustness property similar to Lemma 3 (also illustrated in Example 1, part C) is
shared by the MRE estimators with respect to losses ρc1,c2 and can be established
by expanding (5) showing that

c0 = argmin
c

∫ ∞

−∞
ρc1,c2(t + c)

(1 + t2)(n+p+1)/2
dt. (16)

Example 1 (scale invariant L2 loss, scale invariant L1 loss and their asymmetrized
versions)

(A) For scale invariant squared error loss with ρ(t) = t2 in (4), the MRE estimator is
δ0(X) = X, provided the second moment of X under (2) exists. Lemma 2 as well
as (14) provide representations X + gπl (

X
S )S for the Bayes estimator δπl (X, S);

l > −(n −1). Differentiating (14) with respect to h,we obtain directly for y ∈ R

gπl (y) = −E[T |T ≤ y], (17)

where T has density on R proportional to (1+t2)−(n+l+3)/2.Here, the distribution
of T is a multiple of a Student distribution with n + l + 1 degrees of freedom.
Equivalently from (10), we have

Bn+l(y, gπl (y)) = 0

⇐⇒
∫ ∞

0

∫ vy

−∞
(u + gπl (y)v) v

n+l f (u2 + v2)dudv = 0

⇐⇒ gπl (y) = −
∫∞

0

∫ vy
−∞

u
v
vn+l+1 f (u2 + v2)dudv∫∞

0

∫ vy
−∞ vn+l+1 f (u2 + v2)dudv

, (18)

illustrating the fact that the distribution of T arises as the (independent of f )
distribution of the ratio U

V , with (U, V ) having joint density on R × R
+ pro-

portional to vn+l+1 f (u2 + v2). From representation (17), observe that gπl (·)
decreases on R with limy→∞ gπl (y) = 0 (since

∫∞
−∞ u f (u2 + v2)du = 0 for all

v > 0), and hence that gπl (·) is positive, i.e., δπl expands on the MRE δ0. Such
properties are of interest as they indicate that the amplitude of the expansion
δπl (x, s) − δ0(x, s) decreases in x for fixed s, and increases in s for fixed x (in
fact (δπl (x, s) − δ0(x, s))/s increases in s). Such a property resonates back to
Katz (1961) where in the normal case with known σ, the Bayes estimator with
respect to a flat prior for μ on (0,∞) expands X by the amount σ φ(x/σ)


(x/σ) which
decreases in x and increases in σ . Below, we establish such properties for general
convex ρ in Lemma 5, as well as scale invariant L p concave loss with p ∈ (0, 1)
in Lemma 5. Finally, we point out that alternative expressions for δπ1 in the above
normal case were given by Kubokawa (2004), as well as Marchand et al. (2012).

(B) As above, for scale invariant absolute value error loss with ρ(t) = |t | in (4), the
MRE estimator is δ0(X) = X . For l ≥ −(n − 1), δπl (X, S) = X + gπl (

X
S )S is

obtainable from (14) yielding
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Estimation of a non-negative location parameter 819

gπl (y) = −median[T |T ≤ y] = −F−1
n+l

(
Fn+l(y)

2

)
, (19)

where Fm and F−1
m are the cdf and inverse cdf of T having density on R propor-

tional to (1 + t2)−(m+2)/2. As above, it is easily seen directly that such a gπl (·)
decreases on R, that limy→∞ gπl (y) = 0, that δπl (x, s) expands once again on
δ0(x, s) for all (x, s) ∈ R × R

+, and the difference between these estimates
decreases in x/s.

(C) Consider now asymmetrized L1 lossesρc1,c2 in (13) with p = 1. By making use of
Remark 3, the MRE estimator is given by δ0(X) = X +c0S, with c0 independent
of f , and c0(n) = −F−1

n ( c2
c1+c2

) and F−1
n the inverse cdf given in part (B). For

l ≥ −(n − 1), we obtain from (14) δπl (X, S) = X + c0(n)S + gπl (
X
S )S with

gπl (y) = −c0(n) − F−1
n+l(

c2
c1+c2

Fn+l(y)), thus extending (19) which occurs for
c1 = c2. Observe here that limy→∞ gπl (y) = −c0(n) + c0(n + l), which does
not equal 0 in general, the exception being precisely l = 0, and/or c1 = c2. This
property is more general as seen below in Lemma 5.

We pursue with further properties relative to Bm(·, ·) and gπl (applicable when
these quantities exist).

Lemma 4 For all a > 0, y ∈ R, l ≥ −(n − 1), and strictly bowled-shaped ρ,

(a) Bn+l(y + a, gπl (y)) > 0;
(b) Bn+l(y, z) is non-decreasing in z whenever ρ is also convex;
(c) limy→∞ Bn+l(y, 0) = 0 whenever l = 0; or whenever l �= 0 and ρ is an even

function.

Proof Part (b) is obvious given the convexity ofρ,while part (c) follows from the given
representations (15) and (10). For establishing (a), suppose, to arrive at a contradiction,
that Bn+l(y + a, gπl (y)) ≤ 0. This would imply C1 ≤ 0, where

C1 =
∫ ∞

0

∫ v(y+a)

vy
ρ′(u + c0v + gπl (y)v) v

n+l f (u2 + v2)dudv.

Now, observe that for (u, v) ∈ I (u, v) = {(u, v) : vy < u < v(y + a)}, we have by
(12): u+c0v+gπl (y)v > vy+c0v+gπl (y)v ≥ 0, implyingρ′(u+c0v+gπl (y)v) > 0,
(for such (u, v)′s ∈ I (u, v)). This renders C1 ≤ 0 impossible, and yields the result.


�
The strictly decreasing property of gπl that follows in Lemma 5 is a critical property

that we will exploit later for the risk comparisons. We do not know how far the property
can be extended for non-convex ρ, but we do establish here, and use later, such a
property for L p losses and their asymmetrized versions for the non-convex choices
p ∈ (0, 1).

Lemma 5 For l ≥ −(n − 1),

(a) gπl (y) is strictly decreasing in y whenever ρ is convex;
(b) gπl (y) is strictly decreasing in y whenever the loss is ρc1,c2 as in (13) with p ∈

(0, 1).
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820 M. Jafari Jozani et al.

(c) For strictly bowled-shaped ρ, limy→∞ gπl (y) = −c0(n) + c0(n + l), where
c0(m) is defined in (15). Consequently, limy→∞ gπl (y) = 0 whenever l = 0, or
l �= 0 and ρ is even.

Proof (a) It suffices to show that we cannot have gπl (y + ε) ≥ gπl (y) for some
y ∈ R, ε > 0. Indeed, if this were the case, it would follow, using defining equation
(10) and part (a) of Lemma 4, that

0 = Bn+l(y + ε, gπl (y + ε)) ≥ Bn+l(y + ε, gπl (y)) > 0,

which is not possible.
(b) Set s(y) = −c0 − gπl (y) and rewrite representation (14) as

s(y) = argmin
s

E[ρc1,c2(T − s)|T ≤ y], (20)

with T having density proportional to (1 + t2)−(n+l+p+1)/2 on R. Observe that the
family of densities for T |T ≤ y has strictly increasing monotone likelihood ratio
in T with parameter y. Now, consider, for a1 < a2, the function ρc1,c2(t − a1) −
ρc1,c2(t − a2), which changes signs once from − to + as a function of t as t increases
on R, and infer that

H(a1, a2, y) = E[ρc1,c2(T − a1)− ρc1,c2(T − a2)]

has a single root, and changes signs once from − to +, as a function of y, as y
increases on R, given the mlr property (e.g., Lehmann 1986). Suppose now, to arrive
at a contradiction that gπl is not strictly decreasing, i.e., s is not strictly increasing and
there exists y2 < y1 such that a2 = s(y2) ≥ s(y1) = a1. Then, we would have with
the definition of s(y) in (20) and the properties of H : H(s(y1), s(y2), y2) > 0 and
H(s(y1), s(y2), y1) < 0 which leads to a contradiction and establishes the result.

(c) This follows by matching expression (10) when y → ∞ with (15). 
�
Remark 4 The above proof in (b) goes through for all losses ρc1,c2 , including the
convex cases with p ≥ 1.

The following results permit the ordering of Bayes estimators δπl in terms of the
power l in the prior measure πl in (6).

Lemma 6 For the normal model in (1), y ∈ R, and convex and even ρ, the quantities
gπl (y) decrease in l, l ≥ −(n − 1), provided they exist.

Proof See Appendix. 
�
Corollary 1 For models (2) with f satisfying assumption (3), y ∈ R, and scale
invariant L p loss with p > 0, gπl (y) decreases in l, l ≥ −(n−1), provided existence.

Proof Lemma 3 tells us that gπl (y) is independent of f and, thus, matches the normal
model gπl (y) and Lemma 6 tells us that such gπl (y)’s decrease in l whenever ρ is even
as for the L p loss here. 
�
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Estimation of a non-negative location parameter 821

3 Minimax conditions for general ρ and f

For estimatingμ ≥ 0 in (2) or in (7) with unknownσ > 0 under strictly bowled-shaped
loss ρ( d−μ

σ
), we establish here useful sufficient conditions for an estimator δ(X, S)

to be minimax. We first make use of Kubokawa’s IERD technique in Theorem 1.
Proposition 1 (below) then extracts a sign varying condition for minimaxity which
will serve as the basis for further analysis for the specific cases of normal models
and general convex ρ in Sect. 4, and for L p losses and their asymmetric versions
ρc1,c2 with general f satisfying assumptions (3) in Sect. 5. Various other technical
results and remarks, including a condition for non-minimaxity with applications, are
also introduced in this section. We consider the following subclass of scale invariant
estimators.

Definition 1 C = {δg(X, S) : δg(X, S) = δ0(X, S) + g( X
S ) S, with g absolutely

continuous a.e., non-increasing, non-constant, and limt→∞ g(t) = 0}.
These estimators in C expand upon δ0, in view of the restrictionμ ≥ 0, include δπ0

and the generalized Bayes estimators δπl ; l �= 0, l ≥ −(n − 1); for even ρ as seen by
the properties given in Lemma 5. Under invariant losses as in (4), such estimators will
have frequentist risk R(θ, δg) depending on θ = (μ, σ ) only through the maximal
invariant λ = μ/σ, and we seek conditions for which such a risk falls below the
constant risk of the MRE estimator δ0 for all λ ≥ 0. As mentioned above, such
improvements will necessarily be minimax estimators since δ0 is minimax. Hereafter,
we will just refer, for the most part, to such improvements as being minimax estimators.
The focus is largely on the generalized Bayes estimator δπ0 , which will be seen to be
minimax for various settings of ( f, ρ) and which provides a benchmark in the sense
that estimators δg ∈ C will be minimax for convex ρ under the simple condition that δg

does not expand on δ0 as much as δπ0 [Theorem 1, (ii)]. In turn, for various choices of
( f, ρ)with ρ even, and by appealing to Lemma 6, these classes of minimax estimators
will contain the generalized Bayes estimators δπl ’s, l > 0. We now pursue with an
intermediate dominance condition.

Theorem 1 For estimating μ in (2) or (7) with μ ≥ 0, σ > 0, an estimator δg ∈ C
is minimax, under strictly bowled-shaped loss ρ( d−μ

σ
) whenever either one of the

following conditions holds for all λ ≥ 0 and y ∈ {y : g′(y) < 0}:
(i)

∫ ∞

0

∫ vy−λ

−∞
ρ′(u + c0v + g(y) v)vn f (u2 + v2)dudv ≤ 0,

or
(ii) ρ is convex, g ≤ gπ0 and ψρ(λ, y) ≤ 0, where

ψρ(λ, y) =
∫ ∞

0

∫ vy−λ

−∞
ρ′(u + c0v + gπ0(y) v)v

n f (u2 + v2)dudv.
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Proof With ρ′(·) increasing by the assumption of convexity, condition (ii) implies (i)
so that we only need to establish the sufficiency of (i). Following Kubokawa (1994),
write for δg(X, S) ∈ C,

ρ

(
x + c0s − μ

σ

)
− ρ

(
x + c0s + g( x

s )s − μ

σ

)

= ρ

(
x + c0s + g(y)s − μ

σ

) ∣∣∣∣
y=∞

y=x/s

=
∫ ∞

x/s

s

σ
ρ′
(

x + c0s + g(y)s − μ

σ

)
g′(y)dy.

Now, use the above expression for the difference in losses to write the difference in
risks at θ = (μ, σ ) as:

�g(θ) = R(θ, δ0)− R(θ, δg)

= 1

σ

∫ ∞

0
s
∫ ∞

−∞

{∫ ∞

x/s
g′(y)ρ′

(
x + c0s + g(y)s − μ

σ

)
dy

}
fX,S(x, s)dxds

=
∫

{g′(y)<0}
g′(y)

{∫ ∞

0

∫ sy

−∞
ρ′
(

x + c0s + g(y)s − μ

σ

)

× sn

σ n+2 f

(
(x − μ)2 + s2

σ 2

)
dxds

}
dy, (21)

since g′ ≤ 0 a.e. Now, the difference in risks�g(θ)will be non-negative for all θ ∈ �
as long as for all y ∈ R such that g′(y) < 0, μ ≥ 0, σ > 0, the bracketed term in
(21) is less than or equal to 0, which is equivalent to (i) with the change of variables
(x, s) → (u = x−μ

σ
, v = s

σ
). 
�

Remark 5 Notice that ψρ(0, y) = Bn(y, gπ0(y)) = 0 for all y ∈ R by virtue of the
definition of gπ0 in (10). Therefore, the risks of δπ0 and δ0 match at the boundary of�
where μ = 0, σ > 0.Moreover, if δg expands more than δπ0 (whether or not δg ∈ C),
then the risk at the boundary of δg will exceed that of δ0, hence giving a condition for
non-minimaxity. This is so given that

R((0, σ ), δg) = E(0,1)(ρ(δg(X, S)))

> E(0,1)(ρ(δπ0(X, S)))

= R((0, σ ), δπ0)

= R((0, σ ), δ0),

since δπ0(X, S) ≥ 0 with probability one, and ρ is increasing on (0,∞). As a con-
sequence of the above, and of Lemma 6 and Corollary 1, we have the following
non-minimaxity result.

Corollary 2 For estimating μ in (2) or (7) with μ ≥ 0, σ > 0, the generalized Bayes
estimators δπl with −(n − 1) ≤ l < 0 are not minimax whenever (a) f is normal
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Estimation of a non-negative location parameter 823

and ρ is even and convex, or whenever (b) f satisfies assumption (3) and the loss is
invariant L p with p > 0.

Analogously, we point out that δπ0 does not dominate any other minimax estima-
tor δg ∈ C taking non-negative values and satisfying (ii) of Theorem 1, since such
δg’s shrink δπ0 and R((0, σ ), δg) = E(0,1)(ρ(δg(X, S))) < E(0,1)(ρ(δπ0(X, S))) =
R((0, σ ), δπ0).

Remark 6 A plausible alternative to the MRE estimator δ0 is, of course, its truncation
δT

0 (X, S) = max(0, δ0(X, S)). Clearly δT
0 improves upon δ0 for bowl-shaped ρ, since

for allμ ≥ 0, σ > 0, ρ(
δT

0 (x,s)−μ
σ

) ≤ ρ(
δ0(x,s)−μ

σ
) for all (x, s) ∈ R×R

+,with strict
inequality occurring with positive probability. Moreover, the estimator δT

0 belongs to
the class C with gT

0 (y) = max(0,−y−c0), and satisfies the condition (i) of Theorem 1
with {y : (gT

0 )
′(y) < 0} = (−∞,−c0) since

∫ ∞

0

∫ vy−λ

−∞
ρ′ (u + c0v + gT

0 (y)v
)
vn f (u2 + v2)dudv

=
∫ ∞

0

∫ vy−λ

−∞
ρ′(u − vy)vn f (u2 + v2)dudv

≤
∫ ∞

0

∫ vy−λ

−∞
ρ′(−λ)vn f (u2 + v2)dudv

≤ 0,

for all λ ≥ 0. Finally, the observations of Remark 5 apply to δT
0 , with δT

0 a shrinker
of δπ0 , and δπ0 not dominating δT

0 .

With Theorem 1, our attention focuses on the quantity ψρ(λ, y) and testing the
condition ψρ(·, ·) ≤ 0 on R

+ × R for various choices of ρ. Now, since

ψρ(0, y) = 0, and lim
λ→∞ψρ(λ, y) = 0 for all y ∈ R, (22)

ψρ(·, y) cannot be monotone on [0,∞) for any ρ and y ∈ R. We are thus led to
analyze the behavior of ∂

∂λ
ψρ(λ, y).

Proposition 1 Let k(y) = y + c0 + gπ0(y), fλ,y(t) be a Lebesgue density on (0,∞)

proportional to

tn f

(
λ2(1 + y2)

{(
t − y

1 + y2

)2

+ 1

(1 + y2)2

})
,

and

Dρ(λ, y)=
∫ 1/k(y)

0
|ρ′(λ(tk(y)−1))| fλ,y(t)dt−

∫ ∞

1/k(y)
|ρ′(λ(tk(y)−1))| fλ,y(t)dt.

(23)
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824 M. Jafari Jozani et al.

Suppose further that Dρ(·, y) changes signs once from − to + on [0,∞) for all y ∈ R.

Then, for estimating μ in (2) or (7) under assumption (3) with μ ≥ 0, σ > 0,

(i) the generalized Bayes estimator δπ0 is minimax, for strictly bowled-shaped loss
ρ(

d−μ
σ
) as long as δπ0 ∈ C;

(ii) for δg ∈ C, the condition g ≤ gπ0 is sufficient for δg to be minimax under convex
loss ρ( d−μ

σ
).

Proof We have

∂

∂λ
ψρ(λ, y) = −

∫ ∞

0
ρ′(vk(y)− λ)vn f ((vy − λ)2 + v2)dv

∝ −λn+1
∫ ∞

0
ρ′(λtk(y)− λ) fλ,y(t)dt (24)

∝ Dρ(λ, y). (25)

Therefore, under the given assumptions on the sign changes of Dρ(·, y),we infer that,
for all y ∈ R, ψρ(λ, y) decreases, then increases as λ varies on [0,∞). Finally, the
result follows from Theorem 1 and property (22). 
�
Remark 7 (i) From (24), note that

∂

∂λ
ψρ(λ, y)|λ=0+ = −

∫ ∞

0
ρ′(vk(y))vn f (v2(y2 + 1))dv ≤ 0,

since k(·) ≥ 0 from (12), and ρ′(·) ≥ 0 on [0,∞). Hence, Proposition 1’s sign
change assumption on Dρ(·, y) is consistent, for any strictly bowled-shaped ρ,
with the behavior of ψρ(λ, y) for λ near 0.

(ii) Turning to the families of densities { fλ,y(·), λ ∈ [0,∞), y ∈ R}, they can be
shown for y ≤ 0 to possess a decreasing monotone likelihood ratio (mlr) in T,
or equivalently in W = (T − y

y2+1
)2, with λ viewed as the parameter. Indeed,

for λ1 > λ0 ≥ 0, setting αi = λ2
i (y

2 + 1) and ε = (y2 + 1)−2, we have

fλ1,y(t)

fλ0,y(t)
∝ f (α1(w + ε))

f (α0(w + ε))

which decreases in w, w > y2

(y2+1)2
, given assumption (3).

(iii) In the normal case, the densities fλ,y(·) may be described as weighted (by the
factor tn) positively truncated N (y/(1+y2), 1/(λ2(1+y2))) densities. They have
been recently studied in related work of Marchand et al. (2012) where quantiles
are estimated under the restriction μ ≥ 0.

We conclude this section with a very useful technical result.

Lemma 7 Let k(y) = y + c0 + gπ0(y) as in Proposition 1 and let ρ be either an even
function, or more generally satisfy |ρ′(−u)| ≤ |ρ′(u)| for all u > 0. Then we have

1
k(y) > max{0, y

1+y2 }.
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Estimation of a non-negative location parameter 825

Proof The positivity of k(y), y ∈ R follows from (12). To establish that 1
k(y) >

y
1+y2 ,

we assume the contrary and show that this would imply Dρ(λ, y) ≤ 0 for all λ ≥ 0
which is not possible given (24) and (25). Indeed, we would have, for all λ ≥ 0, y ∈ R,

under the given assumption on ρ

Dρ(λ, y) ≤
∫ 1/k(y)

0

∣∣∣∣ρ′
(
λk(y)

(
t − 1

k(y)

)) ∣∣∣∣ fλ,y(t)dt

−
∫ 2/k(y)

1/k(y)

∣∣∣∣ρ′
(
λk(y)

(
t − 1

k(y)

)) ∣∣∣∣ fλ,y(t)dt

≤
∫ 1/k(y)

0

∣∣∣∣ρ′
(
λk(y)

(
t − 1

k(y)

)) ∣∣∣∣
(

fλ,y(t)− fλ,y

(
2

k(y)
− t

))
dt

≤ 0,

given that fλ,y(t) ≤ fλ,y(
2

k(y) − t) for all t ∈ (0, 1/k(y)) whenever 1
k(y) ≤ y

1+y2 . 
�
The inequality 1

k(y) > max{0, y
1+y2 } will be exploited as a technical result, but

it also provides an interesting upper bound for the generalized Bayes estimator δπ0 ,

namely

δπ0(x, s) = sk
( x

s

)
< x + s2

x
, for x > 0,

applicable to all pairs ( f, ρ) for which δπ0 exists, with f satisfying (3), ρ satisfying
the conditions of Lemma 7.

4 Minimax results for the normal case

Here is a minimax result applicable in the normal case, to Bayes estimators δπl , and for
general convex losses that are either even functions or, more generally, that penalize
the rate of overestimation more sharply than the rate of underestimation in the sense

|ρ′(−u)| ≤ ρ′(u), for all u ≥ 0. (26)

Theorem 2 For estimating μ in the normal case in (1) with μ ≥ 0, σ > 0 under
convex ρ in (4),

(a) the condition g ≤ gπ0 suffices for an estimator δg ∈ C to be minimax in cases
where ρ satisfies condition (26);

(b) such minimax estimators include the generalized Bayes estimator δπ0 under losses
ρ satisfying (26), and all δπl with l > 0 when ρ is even.

Proof Given that δπl ∈ C for l = 0, and for l > 0 when ρ is even by virtue of
Lemma 5, the first part of (b) is simply a restatement of (a) for the Bayes estimator
δπ0 , while the part relating to δπl with l > 0 follows also from (a) and Lemma 6. The
rest of the proof concerns part (a) and we apply Proposition 1. From (23), we have
with the change of variables u = λ(tk(y)− 1):
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Dρ(λ, y) = 1

λk(y)
E[−ρ′(U )],

where U has density proportional to

fλ,y

((u

λ
+ 1
) 1

k(y)

)
1(−λ,∞)(u). (27)

Since −ρ′ changes signs once from + to − on R, a decreasing in u monotone likelihood
ratio property of the densities in (27) with respect to the parameter λ will suffice to
establish that Dρ(λ, y) changes signs from − to + on [0,∞) as a function of λ ≥ 0
and permit us to apply Proposition 1.1 Now, the densities in (27) may be written as

hλ(u) ∝
(

u + λ

λ

)n

f
(

c(u + λb)2 + dλ2
)

1(−λ,∞)(u),

with c = (1 + y2)/k2(y), b = 1 − (yk(y)/(1 + y2)
)
, and d = (1 + y2)−1. Notice

that we have c > 0 by virtue of (12), and b > 0 by assumption (26) and Lemma 7.

Finally, in the normal case with f (t) = (2π)(n+1)/2e−t/2, the ratio
hλ1 (u)
hλ0 (u)

is, for

λ1 > λ0 ≥ 0, undetermined for u ≤ −λ1, equal to +∞ for u ∈ (−λ1,−λ0], and
otherwise proportional to

(
u + λ1

u + λ0

)n

e−bcu(λ1−λ0),

which is indeed decreasing in u for u > −λ0, and which establishes the result. 
�
The normal case minimax results of Theorem 2 in part (a), and applicable to the

generalized Bayes estimator δπ0 ,were previously obtained for the specific case of scale
invariant L2 loss by Kubokawa (2004). He works directly with the Bayes estimator in
Example 1 to derive the key required analytical properties, namely the monotonicity
of gπ0 in Lemma 5 and inequality (i) of Theorem 1. With Kubokawa’s analysis specific
to scale invariant L2 loss, the normal model and the estimator δπ0 , our unified devel-
opment above contrasts and provides extensions with respect to the loss and the prior.
In the next section, we give extensions with respect to the model for scale invariant
L p losses and asymmetric versions.

5 Minimax results for scale invariant L p losses and their asymmetric versions

The minimax results of this section are applicable for the wider class of models,
or choices of f, in (2) with assumptions (3). As well, these findings concern scale
invariant L p losses | d−μ

σ
|p, p > 0, and the more general ρc1,c2 in (13) with c2 ≥ c1.

1 It is interesting to point out that the arguments here apply as well to strictly bowled-shaped losses. As well,
only a stochastic increasing property for the densities f is required. The monotonicity of gπ0 , however, is
guaranteed by the convexity of ρ (Lemma 5), which is assumed here.
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For these losses, (23) reduces to Dρ(λ, y) = pλp−1 Eλ[gy(T )], with T ∼ fλ,y and
gy(t) = c1 (1 − tk(y))p−1

I(0,1/k(y)(t) − c2 (tk(y) − 1)p−1
I(1/k(y),∞)(t). With this

representation, observe that gy(·) changes sign once on (0,∞) from + to −, so that
Eλ[gy(T )] changes signs from − to + as λ varies on [0,∞), in view of sign change
properties and the mlr property of Remark 7 (ii). Therefore, Dρ(λ, y) varies indeed,
as a function of λ ∈ [0,∞) from − to + as prescribed in Proposition 1 for y ≤ 0 and
losses ρc1,c2 . For y > 0, however, the situation is more delicate. We continue with the
non-convex case with p ∈ (0, 1), and this will be followed by the convex case with
p ≥ 1.

Theorem 3 For estimating μ in (2) or (7) with μ ≥ 0, σ > 0 under scale invariant
L p loss | d−μ

σ
|p with p ∈ (0, 1), the generalized Bayes estimator δπ0 is minimax.

Proof With δπ0 ∈ C by virtue of Lemma 5, we seek to apply part (i) of Proposition 1
to show that δπ0 is minimax. For ρ(t) = |t |p with p > 0, we reexpress (23) as

Dρ(λ, y) ∝ E[A(T ) B(T )] = E[G(S)],

with

G(s)= E[A(T )B(T )|S = s], A(t)= tn
∣∣∣∣t − 1

k(y)

∣∣∣∣
p−1

, B(t)=−1+2I(0, 1
k(y) ](t),

T ∼ f

(
λ2(1 + y2)

{(
t − y

1 + y2

)2

+ 1

(1 + y2)2

})
,

and

S
d=
(

T − y

1 + y2

)2

+ 1

(1 + y2)2
.

Given assumption (3), the family of densities of S are seen to have a decreasing
monotone likelihood ratio in S with parameter λ2(1 + y2). Therefore, in accordance
with Karlin’s sign change analysis, to prove the result, it will suffice to show that

G(s) changes signs once from + to − as s varies on

(
1

(1 + y2)2
,∞
)

(28)

to establish that Dρ(λ, y) changes signs as prescribed by Proposition 1. We proceed
by treating separately the cases: (i) 1

k(y) − y
1+y2 ≥ y

1+y2 and (ii) 0 ≤ 1
k(y) − y

1+y2 ≤
y

1+y2 . Here, we have made use of Lemma 7 to discount the remaining possibility
1

k(y) − y
1+y2 < 0.

Case (i): Set s0 = ( 1
k(y) − y

1+y2 )
2 + 1

(1+y2)2
.Observe that, whenever s ≥ s0, P(T ≥

1
k(y) |S = s) = 1 implying P(B(T ) = −1|S = s) = 1 and G(s) ≤ 0.
Similarly, if s < s0, then P(B(T ) = 1|S = s) = 1 and G(s) ≥ 0. Hence,
the above establishes (28) for case (i).
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Case (ii): Here, we set s1 = y2

(1+y2)2
+ 1

1+y2 , so that s0 ≤ s1. As in (i), we verify that
G(s) ≥ 0 for s ≤ s0, and G(s) ≤ 0 for s ≥ s1. Finally, for s ∈ (s0, s1),

the conditional distribution of T |S = s is a two-point uniform discrete
distribution on {t1, t2}, with t1 = y

1+y2 + �, t2 = y
1+y2 − � and � =√

s − 1
(1+y2)2

.

We hence obtain

G(s) = 1

2
(A(t2)− A(t1))

= 1

2

[
tn
2

∣∣∣∣t2 − 1

k(y)

∣∣∣∣
p−1

− tn
1

∣∣∣∣t1 − 1

k(y)

∣∣∣∣
p−1
]
< 0,

since t2 < t1, n > 1; |t1− 1
k(y) | = y

1+y2 − 1
k(y)+� < − y

1+y2 + 1
k(y)+� = |t2− 1

k(y) |,
and p−1 < 0.Hence, the above establishes (28) for case (ii) and completes the proof.


�
Theorem 4 For estimating μ in (2) or (7) under assumptions (3), with μ ≥ 0, σ > 0
and with loss ρc1,c2 , p ≥ 1 and c2 ≥ c1,

(a) the condition g ≤ gπ0 suffices for an estimator δg ∈ C to be minimax;
(b) such minimax estimators include the generalized Bayes estimator δπ0 , as well as

all generalized Bayes estimators δπl , l > 0 for the symmetric case c1 = c2.

Proof For losses ρ as in (13), we may write

Dρ(λ, y) = pλp−1

{
c1

∫ 1
k(y)

0
hλ,y(w)dw − c2

∫ ∞
1

k(y)

hλ,y(w)dw

}
,

with hλ,y(·) a probability density function on (0,∞) proportional to |wk(y) −
1|p−1 fλ,y(w). From this, we see that Dρ(λ, y) is positive iff Pλ(W > 1/k(y)) <
c1/(c1 +c2),where W is a random variable with pdf hλ,y .We show below in Sect. 7.4
of the Appendix that, whenever 1

k(y) >
y

1+y2 , the quantity Pλ(W > 1/k(y)) decreases
in λ on [0,∞), which means that Dρ(·, y) changes signs from − to + on [0,∞). The
result then follows from Proposition 1 and Lemma 7. 
�

6 Concluding remarks

We have considered the problem of estimating a lower bounded location parameter for
a wide array of spherically symmetric location-scale models with a residual vector as
represented in model (2), with unknown scale, and under scale invariant loss as given
by (4). With a relative paucity of findings for such problems when the scale parameter is
unknown, we have established the minimaxity of the generalized Bayes estimator δπ0

for normal models and convex loss, as well for more general models and scale invariant
L p loss and asymmetric versionsρc1,c2 given in (13). Moreover, we have shown the role
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of δπ0 to be pivotal, in the sense that it provides an upper threshold condition necessary
for the minimaxity of many estimators. Other minimax estimators are also obtained,
including generalized Bayes estimators δπl when l > 0 and the loss is convex and
even in the above situations. The results represent extensions of Kubokawa’s results
(2004) applicable to scale invariant L2 loss. Much of the treatment is unified and
exploits general features of the model and the loss with incisive analysis and novel
representations. Various other observations are given, including the robustness of the
Bayes estimator δπl with respect to the choice of f in model (2).

As illustrated by Marchand et al. (2012), the normal case improvements pro-
vided for scale invariant L2 loss yield applications for two-sample problems where
Yi ∼ N (μi , σ

2); i = 1, 2 with unknown μ1, μ2, σ
2, where the objective is

to estimate μ1 (or μ2) with the additional information of the ordering μ1 ≤
μ2. Despite the advances presented here, minimax extensions to other strictly
bowled-shaped losses, although plausible, are still lacking. Furthermore, numer-
ous questions remain unanswered such as the admissibility of the above minimax
estimators, the investigation of wider classes of Bayes estimators for minimaxity,
and related tests of minimaxity for multivariate location-scale problems with order
restrictions.

7 Appendix

7.1 Proof of Lemma 1

We have

t f ′(t)
f (t)

=
∫∞

0 tv2 f ′
0(tv) h(v)dv∫∞

0 v f0(tv) h(v)dv

=
∫∞

0 z2 f ′
0(z) h(z/t)dz∫∞

0 z f0(z) h(z/t)dz

= Et

[
Z f ′

0(Z)

f0(Z)

]
, (29)

where Z has density proportional to z f ′
0(z) h(z/ t) on R

+. Now, observe that this
scale family of densities for Z have increasing monotone likelihood ratio in Z , with
parameter t, as a consequence of assumption (3) for h. Finally, the result follows from

representation (29) with this monotone likelihood ratio and since
z f ′

0(z)
f0(z)

decreases in z
by assumption (3) for f0. 
�

7.2 Proof of Lemma 6

We fix y ∈ R throughout and set c0 = 0 given that ρ is assumed even. First, observe
that by differentiating (10) for the normal case with f (u2 + v2) = φ(u)h(v) in (8),
we have ∂

∂l Bn+l(y, gπl (y) = 0 which implies
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830 M. Jafari Jozani et al.

∫ ∞

0

[
∂

∂l

{∫ vy

−∞
ρ′(u + gπl (y)v)φ(u)du

}

+
{∫ vy

−∞
ρ′(u + gπl (y)v)φ(u)du

}
log(v)

]
vn+l h(v)dv = 0.

Hence, given that ρ′ is increasing, to show that gπl (y) decreases in l, it will suffice to
show that I ≥ 0, where

I =
∫ ∞

0
(log v)Ay(v)v

n+l h(v)dv, and Ay(v) =
∫ vy

−∞
ρ′(u + gπl (y)v)φ(u)du.

(30)

Now, we will show below that

Ay(v) changes signs once as a function of v from − to + . (31)

Applying Lemma 8, which is stated in the Appendix, with ξ ∼ ξn+l h(ξ) 1(0,∞)(ξ),

r(ξ) = log(ξ), and s(ξ) = Ay(ξ), we infer that I ≥ 0, since E[Ay(ξ)] = 0 given the
definition of gπl (y) in (10). There remains to establish (31), which we proceed to do
separating the cases: (i) y ≤ 0 and (ii) y > 0.

(i) Case y < 0. Let v0 be such that Ay(v0) = 0. Such a value exists since the average
value of Ay(ξ) under the above density for ξ is equal to 0. For ε ≥ 0, we have

Ay(v0 + ε)


((v0 + ε)y)
=
∫ (v0+ε)y

0
ρ′(u − εy + ε(y + gπl (y))+ gπl (y)v0)

φ(u)


((v0 + ε)y)
du

≥
∫ v0 y

0
ρ′(u′ + gπl (y)v0)

φ(u′ + εy)


((v0 + ε)y)
du′

= Cy(v0, ε) (say),

with equality if and only if ε = 0, given (12) and since ρ′ is increasing. Now,
observe that the ratio of densities (φ(u′+εy)/
((v0+ε)y))

φ(u′)/
(v0+y) is increasing in u′, for
u′ ∈ (−∞, v0 y) and εy < 0. Hence, this monotone likelihood ratio property
implies that Ay(v0+ε)


((v0+ε)y) ≥ Cy(v0, ε) ≥ Cy(v0, 0) = 0, for ε > 0 and y < 0,
yielding (31) for y < 0.

(ii) Case y ≥ 0. As in (i), let v0 be such that Ay(v0) = 0. Using this, as well as
property (12), the non-negativity of gπl (·) (Lemma 5) (since c0 = 0), and the
convexity of ρ, we have for ε > 0:

Ay(v0 + ε) =
∫ (v0+ε)y

−∞
ρ′{u + (gπl (y))(v0 + ε)}φ(u)du

≥ Ay(v0)+
∫ (v0+ε)y

v0 y
ρ′{u + (gπl (y))v0}φ(u)du

≥ 0.


�
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7.3 Lemma used within the proof of Lemma 6

The following result is well known and its proof is left to the reader.

Lemma 8 Let ξ be a continuous random variable, let r(·) be a continuous and increas-
ing function on the support of ξ, and let s(·) be a continuous function which changes
signs once from − to + at s0 on the support of ξ. Then, we have E[ r(ξ) s(ξ) ] ≥
r(s0) E[s(ξ)], and, in particular if E[s(ξ)] = 0, then E[ r(ξ) s(ξ) ] ≥ 0.

7.4 Theorem 4: proof of a monotonicity property for Pλ(W > 1/k(y))

We wish to show that

Pλ

(
W >

1

k(y)

)
decreases in α whenever

1

k(y)
> a, (32)

with W having pdf hλ,y(w) on (0,∞) proportional to |wk(y)− 1|p−1wn f (α{(w −
a)2 + ε}, a = y

1+y2 , α = λ2(1 + y2), and ε = (y2 + 1)−2. We have

∂

∂λ
Pλ

(
W >

1

k(y)

)
= 2λ(1 + y2)

∂

∂α

∫∞
1

k(y)
|wk(y)− 1|p−1 wn f

(
α
{
(w − a)2 + ε

})
dw∫∞

0 |wk(y)− 1|p−1wn f
(
α
{
(w − a)2 + ε

})
dw

≤ 0

⇐⇒ E

[
γ
(
α
{
(W − a)2 + ε

}) ∣∣∣∣W >
1

k(y)

]
≥ E

[
γ
(
α
{
(W − a)2 + ε

})]
, (33)

under pdf hλ,y, with γ (t) = t | f ′(t)|
f (t) . Taken together, the following hence form a

sufficient condition for (33) to hold:

(i) E

[
γ
(
α
{
(W − a)2 + ε

}) ∣∣∣∣W >
1

k(y)

]
≥ E

[
γ
(
α
{
(W − a)2 + ε

}) ∣∣∣∣W < a

]
, and

(ii) E

[
γ
(
α
{
(W − a)2 + ε

}) ∣∣∣∣W >
1

k(y)

]
≥ E

[
γ
(
α
{
(W − a)2 + ε

}) ∣∣∣∣a ≤ W <
1

k(y)

]
.

Condition (ii) is immediate, since γ (α{(W − a)2 + ε}) increases in (W − a)2 on
(a,∞) by assumption (3). For (i), set Z = |W − a| so that Z |W > 1/k(y) has pdf
proportional to |(a + z)k(y) − 1|p−1 (a + z)n f (α(z2 + ε)) I(1/k(y)−a,∞)(z), while
Z |W < a has pdf proportional to |1− (a − z)k(y)|p−1 (a − z)n f (α(z2 +ε)) I(0,a)(z).
We thus have the ratio

fZ |W<a(z)

fZ |W> 1
k(y)
(z)

∝

⎧⎪⎪⎨
⎪⎪⎩

∞ if z < a, z < 1
k(y) − a;

0 if z ≥ a, z > 1
k(y) − a;(

a−z
a+z

)n ( zk(y)+(1−ak(y))
zk(y)−(1−ak(y))

)p−1
if 0 < z < a, z > 1

k(y) − a.

Since both a−z
a+z and zk(y)+b

zk(y)−b decrease in z for z < a and z > 1/k(y) − a, with
b = 1 − ak(y) > 0 (Lemma 7), we have a decreasing monotone likelihood ratio.
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832 M. Jafari Jozani et al.

Finally, with γ (α(z2 + ε)) increasing in z > 0 by (3), condition (i) follows and our
proof of (32) is complete. 
�
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