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Abstract Regularity conditions for an improper prior function to be regarded as a
virtually proper prior density are proposed, and their implications are discussed. The
two regularity conditions require that a prior function is defined as a limit of a sequence
of proper prior densities and also that the induced posterior density is derived as a
smooth limit of the sequence of corresponding posterior densities. This approach is
compared with the assumption of a degenerated prior density at an unknown point,
which is familiar in the empirical Bayes method. The comparison study extends also
to the assumption of an improper prior function discussed separately from any proper
prior density. Properties and examples are presented to claim potential usefulness of
the proposed notion.

Keywords Degenerated prior · Logarithmic divergence · Marginal density ·
Non-informative prior · Weakly informative prior

1 Introduction

Bayesian theory is in principle based on the assumption of a proper prior, and it is
always desired to assume a proper prior, if it is possible. On the other hand, recent
widespread applications of Bayesian methods to various fields require various exten-
sions of an assumed prior. Such extensions make a Bayesian method to meet practical
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conditions in actual applications. It is our understanding that an improper prior func-
tion is expected to be related directly to a family of proper prior densities in Bayesian
theory. In this view, an improper prior function is an alternative to a weakly informative
proper prior density and is hoped to be regarded as a virtually proper prior density. Our
aim here is to enhance the wide use of an improper function satisfying regularity con-
ditions. Recently, McCullagh and Han (2011) discussed this subject from a different
point of view and gave references.

An improper prior function appears in Bayesian analysis, when a suitable infor-
mative prior density is unavailable and a non-informative prior function becomes
improper. A non-informative prior function is widely employed in practice, since it is
not rare that our prior knowledge about a parameter is not enough to choose an infor-
mative prior density. Familiar non-informative prior functions include the reference
prior Berger et al. (2009) and the Jeffreys prior Jeffreys (1961), which are elicited
only from a family of sampling densities. When a non-informative prior density is
employed, it is often emphasized to avoid an unnecessary subjective prior density.
Our aim is completely different from this line. We pursue the relation with a family of
proper prior densities, since an improper prior function is hoped to be closely related
with a weakly informative prior density. We will find that the posterior density induced
from an improper prior function and that induced form a suitably chosen proper prior
density are close to each other. In such a case an improper prior function can be treated
as an alternative to a proper prior density. It may be possible to assume an improper
prior function within the framework of the traditional Bayesian method.

A competitor of an improper prior function in practice is to assume a degenerated
prior density at an unknown point, which is widely employed in the conventional
empirical Bayes method. A degenerated prior density is a probability density, but it
contains a hyperparameter to be estimated. Examples of the use of such a prior density
are seen in the smoothing method, see for example Wahba (1985) and Yanagimoto
and Yanagimoto (1987) and lasso Tibshirani (1996). The unknown point represents a
parameter in the sampling density and is treated as a hyperparameter in the empirical
Bayes model. The parameter is estimated by maximizing the marginal likelihood. The
use of the marginal likelihood was employed in the Lindley paradox (Lindley 1957),
and it was formulated as familiar Bayesian factor for comparing multiple candidate
Bayesian models, see Kass and Raftery (1995) for example. The marginal density
makes sense under a degenerated prior density at an unknown point. This fact is
probably a key reason why such a degenerated density is employed in the empirical
Bayes method.

Our primary aim is to claim the preference of a combination of an improper prior
function and the posterior density to that of a degenerated prior density at an unknown
point and the marginal density. In this concern, we will raise critiques of the use of the
marginal density to claim the important role of an improper prior function. Recall that
a Bayesian method is based primarily on the posterior density induced from a proper
prior density rather than the marginal density (see Aitkin 2009, Chapter 2) for this
discussion. It seems to us that further developments of Bayesian methods will not be
based on the marginal density but on the posterior density. Existing methods based on
the posterior density include DIC in Spiegelhalter et al. (2002) and its modifications
discussed in Plummer (2008) and Yanagimoto and Ohnishi (2009a).
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To impose regularity conditions on an improper prior function, we consider first
a family of proper prior densities. Then the improper prior function is defined as the
limit of the sequence of proper prior densities multiplied by suitable constants. A
suitable multiplier is necessary, since the formal limit of the original sequence does
not converge weakly to an improper prior function. Next, we require a smoothness
property of the family of posterior densities induced from the proper prior densities.
A notion of permissibility was introduced in terms of the logarithmic divergence in
Berger et al. (2009) to define a regularity condition on the reference prior function.
We modify the notion and employ a stronger condition by taking into account of the
dual structure of the logarithmic divergence.

To explain our idea specifically, let {p(x | θ)| θ ∈ �} be a family of sampling
densities, and let P = {π(θ; g, c)| g, c ∈ (0,∞)} be a family of proper prior densities
for θ . Denote by πN (θ) the prior function taking the value 0 for every θ ∈ �, and
suppose that π(θ; g, c) converges weakly to πN (θ), that is, the sequence {π(θ; gn, c)}
converges weakly to πN (θ) as gn tends to 0. On the other hand, we write a degenerated
density at a point c in terms of the Dirac function as δD(θ − c), and assume that
π(θ; g, c) converges in probability to δD(θ −c) as g tends to ∞. We discuss regularity
conditions on an improper prior function b(θ) so that it is interpreted as a boundary
of the family at g = 0, and can be used as a substitute for π(θ; g, c) for a very
small value of g. In other words, b(θ) can be regarded as a virtually proper prior
density. In contrast, the competitor δD(θ − θh) causes various inconveniences, though
it is superficially another boundary prior density. A reason is that θh is an unknown
hyperparameter to be estimated, and the other is that the posterior density is the same
as the prior density. Consequently, no strong relation is observed between δD(θ − θh)

and P . Our problem is to compare b(θ) with δD(θ − θh) in the context of Bayesian
inference.

To reconfirm the important role of an improper function, we present the following
example of a familiar improper function for parameters in the normal sampling density.
It is usually regarded as a non-informative prior and yields a reasonable estimate. In
contrast, we find that a degenerated prior density at an unknown point is less appealing.

Example 1 (Normal sampling density) Consider the normal sampling density p(x;μ,

1/τ) with mean μ and reciprocal variance τ , which consist of θ . Let a sample of size n
be x = (x1, · · · , xn), and set s2 = ∑

(xi − x̄)2/(n −1). The following prior function
and density are of our primary concern here: one is

b(μ, τ) ∝ 1

τ
. (1)

and the other is δD(θ−θh) = δD(μ−μh)δD(τ −τh). The former function is known as
the reference prior. Both are used, when a suitable proper prior is unavailable because
of the lack of our prior knowledge about θ .

The posterior density is formally induced from b(μ, τ) in (1). The posterior means
of μ and τ are written as μ̂ = x̄ and τ̂ = 1/s2, respectively. The estimate τ̂ is equiv-
alent to the conditional maximum likelihood estimate of τ given x̄ in the frequentist
context, which is regarded as a reasonable estimate. The posterior density induced
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from δD(θ − θh) is the same as the prior density. The marginal density is written in
the same form as the sampling density with mean μh and reciprocal variance τh . The
maximum marginal likelihood estimate is the same as the crude maximum likelihood
estimate in the frequentist context. It is known for n ≥ 4 that the conditional max-
imum likelihood estimator (μ̂, τ̂ ) is superior to the maximum likelihood estimator
(μ̂M , τ̂M ) = (μ̂, nτ̂ /(n − 1)) under the loss based on the logarithmic divergence
in the frequentist context Yanagimoto (1991). This means that b(μ, τ) in (1) yields
a more favorable estimate than δD(μ − μh)δD(τ − τh) in the normal model. This
example will be discussed further in Sect. 6.

The present paper is constructed as follows: a permissible boundary prior function is
defined, and its preliminary properties and examples are presented in Sect. 2, which is
followed by basic properties and two examples of general families in Sect. 3. Sections 4
and 5 are devoted to showing restrictive role of the marginal density to indicate the
important role of procedures derived from the posterior density. Further examples
of various families of prior densities are presented in Sect. 6. In the final section,
supplemental explanations of examples are given and a recommendation is discussed.

2 Definition and preliminaries

Consider a family of sampling densities on X , M = {p(x | θ)| θ ∈ �}. Let G(⊂ R+)

be an open connected space and assume that its closure contains the origin 0. Consider
also a family of proper prior densities indexed by G, P = {π(θ; g)| g ∈ G}. To
focus our attentions on the main problems, we employ the following strong regularity
conditions on the sampling and the prior densities: throughout this paper, we will
assume that all the sampling densities in M have the common support X and also
that they satisfy usual smoothness conditions with respect to x and θ . Further, p(x | θ)

is assumed to be bounded as a function of θ for every x . Thus when a prior density
is proper, the posterior density exists. Further, we will assume that a proper prior
density in P takes a positive value for the interior of �, and the function π(θ; g)

varies smoothly with θ and g. For notational simplicity, we will treat scalar cases of
an observation and a parameter, unless stated otherwise. Straightforward extensions
are possible to vector cases. The sequence of functions {πn(θ)} is called to converge
weakly to a function π(θ) if for an arbitrary bounded continuous function f (θ) the
integral

∫
f (θ)πn(θ)dθ converges to

∫
f (θ)π(θ)dθ .

Let b(θ) be a σ -additive positive function on �. Though we allow that it is improper,
that is, the integral of b(θ) over � is infinity, we assume that the integral of p(x | θ)b(θ)

over �, m(x) = ∫
p(x | θ)b(θ)dθ , exists for every x . This regularity condition yields

a formal definition of a probability density

πb(θ | x) = p(x | θ)b(θ)

m(x)
. (2)

which can be treated as a posterior density induced from a prior function b(θ). Our
aim is to discuss conditions that b(θ) is defined in a direct relation to a family of proper
prior densities P and also that it is treated as π(θ; 0). We begin with giving a weaker
condition, which is a formal statement of a regularity condition on an improper prior
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function widely accepted in the literature, see Jaynes (2003) and McCullagh and Han
(2011) for example.

Definition 1 A σ -additive function b(θ) is called the boundary prior function to P ,
when for any sequence {gn ∈ G; n = 1, 2 · · · } tending to 0 there exists a sequence
of positive numbers {an; n = 1, 2 · · · } such that {anπ(θ; gn)} converges weakly to
b(θ).

When b(θ) is a probability density, we may choose an = 1. Otherwise, we need
to rescale the sequence {π(θ; gn)} so that it converges weakly to b(θ). When b(θ) is
improper, the sequence {an} diverges to ∞ as n tends to ∞.

Set Ḡ = G∪{0} and P̃ = P∪{b(θ)}. For a fixed x denote by D = {π(θ |x; g)| g ∈
G} and D̄ = {π(θ |x; g)| g ∈ Ḡ} the families of posterior densities induced from the
family of the sampling densities M = {p(x | θ)| θ ∈ �} and the families of the prior
densities P and P̃ , respectively. Under suitable conditions it is expected that the family
D̄ is a unified combination of the two subfamilies, D and {π(θ | x; 0)}, but the family
P̃ is simply a union of the two separated subfamilies, P and {b(θ)}. The point to be
discussed here is to specify such regularity conditions. The unified nature of D̄ allows
us to treat a boundary prior function b(θ) as a virtually proper prior density, so far
as our inferential procedure is based on the posterior density. This approach will be
compared with the use of a degenerated prior density at an unknown point.

To present a definition of such a suitable condition, we apply the logarith-
mic divergence between two probability densities, D

(
π1(θ), π2(θ)

)
, is given by

E{log
(
π1(θ)/π2(θ)

); π1(θ)}, where E{ f (θ); π(θ)} denotes the expectation of f (θ)

under a probability density π(θ). It is referred to also as the Kullback–Leibler sepa-
rator and the relative entropy. A different notation κ(π1(θ)| π2(θ)) was employed in
Berger et al. (2009), which is equivalent to D(π2(θ), π1(θ)). Inspired by Definition 9
in Berger et al. (2009), we explicitly define a smoothness property of the logarithmic
divergence between posterior densities in D̄ with respect to g. The regularity condition
we intend to impose on the family D̄ is the continuity of D(π1(θ | x; g), π2(θ | x; g0))

and D(π1(θ | x; g0), π2(θ | x; g)) for a fixed g0.

Definition 2 Suppose that a function b(θ) is a boundary prior function to P . It
is called a permissible boundary prior function to P and for M, if the following
two conditions hold: (1) π(θ | x; 0) is the same as πb(θ |x), and (2). For an arbitrar-
ily fixed g0 ∈ Ḡ both the logarithmic divergences, D(π(θ | x; g), π(θ | x; g0)) and
D(π(θ | x; g0), π(θ | x; g)), are continuous in g ∈ Ḡ.

The above definition requires that the posterior density π(θ | x; g) varies smoothly
with g in Ḡ. Special attentions are paid to the case of g0 = 0, when we check the
regularity condition.

There are two differences between our definition of permissibility and that in
Berger et al. (2009). One is that the divergence D(π(θ | x; g), π(θ | x; g0)) and its
dual divergence are both taken into account in Definition 2, and the other is that we
do not take the expectation of the logarithmic divergence under the assumed model
p(x |θ)π(θ; g). Their definition pertains only to the reference prior πR(θ), and they
considered a family of strictly increasing compact subsets �n converging to �, and
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defined πn(θ) = πR(θ) · I (θ | �n), where I (θ | �n) denotes the indicator function of
�n . Thus their interest focused only on D(πn(θ), πR(θ)). Another technical reason
of their definition concerns the fact that the dual divergence D(πR(θ), πn(θ)) does
not exist for every n. Next, we discuss reasons why the expectation is not taken. Apart
from analytical simplicity, a primary reason is because a Bayesian procedure is in
principle constructed for a given observation x , without taking the expectation over
x . In this concern, they commented in their paper that “it might seem odd (to take the
expectation)”. Another reason pertains to the difference of the aims to introduce the
notion of permissibility. Our aim is to pursue a relation of an improper prior function
to a family of proper prior densities, and their aim is to justify the use of the reference
prior when a family of sampling densities M is assumed.

To aid our understanding of the definition, we discuss a permissible boundary prior
function to a general family of proper prior densities.

Example 2 (A general family) Consider a family of proper prior densities

P = {π(θ; g, c) = exp{−gd(θ, c)}b(θ) · K (g, c)| g ∈ R+} (3)

where d(θ, c) and b(θ) are a suitable distance (or divergence) between θ and c in
� and an improper prior function, respectively. When g takes a moderate value, the
primary term of (3) is in the exponent. Since the limit of K (g, c) at g = 0 for a fixed
c vanishes, π(θ; g, c) and π(θ; g, c)/K (g, c) converge weakly to πN (θ) and b(θ),
respectively. Thus b(θ) becomes a primary term of π(θ; g, c), when g is very small.
Our definition of permissibility is designed for a condition that the function b(θ) can
be treated in Bayesian inference as a substitute for a proper prior density π(θ; gs) with
gs being a very small value in G.

This example indicates that our definition is advantageous because of the direct
relation of b(θ) to a family of proper prior densities P . Recall that an improper prior
function has been discussed only in relation to M. It is often interpreted as a supporting
function or as a Jacobian. The present approach allows us to choose b(θ) in the reverse
way; we first explore a family of proper prior densities π(θ; g, c), and we assume an
improper prior function as a secondary option when our prior knowledge about θ is
not enough to specify g and c. This view suggests the possibility that we can choose a
suitable choice of an improper prior function b(θ) by examining families P in (3) for
various b(θ)’s. A suggestion is that we choose b(θ) so that K (g, c) is independent of
c. This requirement yields that the parameters c and g in P are orthogonal. Note that c
and g denote the center of our prior information on θ and the strength of our plausibility
of the center, respectively. Thus the orthogonality condition on the components c and
g is expected to be helpful for choosing a suitable proper prior density. To discuss this
point in an explicit way, we return back to Example 1.

Example 1 (Continued) The family of normal-gamma prior densities for the normal
sampling density is easy to be understood, and is conveniently tractable. Writing a
normal-gamma prior density as
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π(μ, τ ; g1, g2, c1, c2) =
√

g1√
2π

exp
{
−g1

2
(μ − c1)

2
}

· 1

	(g2)
cg2

2 τ g2−1

× exp(−g2c2τ) (4)

we set P = {π(μ, τ ; g1, g2, c1, c2)| c1 ∈ R, c2, g1 and g2 ∈ R+}. Then the prior
function b(μ, τ) proportional to 1/τ in (1) is a permissible boundary prior function
to P .

Our interest is placed also on a degenerated prior density at an unknown point θh ,
δD(θ − θh), which is treated as a reference. Similarly to an improper prior function,
this prior density is employed when our prior information about θ is not enough to
assume a proper prior density. Though the roles of these two priors are close to each
other in practical applications, their theoretical properties are largely different. First,
we note that the assumption of a degenerated prior density is theoretically equivalent
to that of a family of degenerated prior densities

PD = {π(θ; θh) = δD(θ − θh)| θh ∈ �}. (5)

To pursue similarities and dissimilarities between b(θ) and δD(θ − θh), we introduce
an enlarged family of P

P E = {π(θ; g, θh) = exp{−gd(θ, θh)}b(θ) · K (g, θh)| g ∈ R+, θh ∈ �}. (6)

Then we can assert that b(θ) is a boundary prior function to P E in the sense that
for a fixed θh K (g, θh)π(θ; g, θh) converges weakly to b(θ), which is independent of
θh . On the other hand, a degenerated density δD(θ − θh) can be regarded as another
boundary prior density to P E at the reverse side. In fact, π(θ; g, θh) converges in
probability to δD(θ−θh) as g tends to infinity. However, the limit contains an unknown
hyperparameter θh . As a result, we cannot specify the sequence of proper prior densities
{π(θ; gn, θn)} in the family P E in (6) such that the sequence converges to δD(θ − θh),
unless θh is known. This indicates that the assumption of a degenerated prior density
lacks a close relation to that of a proper prior density.

Another serious defect of the assumption of a degenerated prior density is in the
discontinuity in the posterior densities. The logarithmic divergence between a proper
prior density and either πN (θ) or δD(θ − θh) does not take a finite value. Recall that
the logarithmic divergence between posterior densities in D̄ takes a finite value, when
b(θ) is a permissible boundary prior function. On the other hand, the posterior density
induced from a degenerated prior density is the same as the prior density, which yields
that the logarithmic divergence between a posterior density in D and δD(θ − θh)

does not take a finite value. Thus the permissibility condition is not satisfied. This
fact indicates that the assumption of a degenerated prior density is inconvenient for
constructing procedures based on the posterior density.

The following example shows that a familiar prior function induces a degenerated
posterior density:

Example 3 (Poisson sampling density) Suppose that x is an observation from a Poisson
sampling distribution with mean λ. A familiar prior function is of the form b(λ; a) =
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λa−1 for a ≥ 0. The prior function is improper for every a. Two widely employed
values of a in the literature (Bolstad 2007 for example) are 0.5 and 1, which are referred
to as the Jeffreys or the reference prior and the uniform prior, respectively. The other
familiar choice of a is 0. It yields the posterior mean equivalent to the maximum
likelihood estimate and is interpreted as the uniform prior density for the canonical
parameter log λ.

The posterior density π(λ| x; a) can be defined for a > 0 and x ≥ 0. Write
the gamma density on λ of the form π(λ; g, a) = (ag)aλa−1 exp(−agλ)/	(a) as
Ga(1/g, a) with g > 0. For a positive a we assume a gamma prior density with
Ga(1/g, a) for λ. This conjugate prior density derives the posterior density with
Ga

(
(x + a)/(1 + ag), x + a)

)
. It is easily shown that b(λ; a) is the boundary prior

function to P = {π(λ; g, a)| g > 0} for every a and also that π(λ| x; g, a) converges
weakly to π(λ| x; a) as g tends to 0.

The situation is largely different in the case of a = 0. The posterior density
π(λ| x; 0) for x 	= 0 can be formally defined as the limit of π(λ| x; g) as g tends
to 0. However, careful treatments are required in the case of x = 0. The posterior
density π(λ| 0; 0) can be regarded as the limiting density of π(λ| 0; a) at a = 0,
which becomes δD(λ − 0). The logarithmic divergence D

(
π(λ| 0; 0), π(λ| 0; a)

)
,

however, does not exist for every a > 0. Let the usual predictor p(y| 0; a) be the
posterior mean of the density p(y| λ), where y denotes a future (or unobserved) vari-
able. Then p(y| 0; a) follows the negative binomial density for every a > 0, and the
density p(y| 0; 0) is degenerated at 0. These facts yield that the logarithmic divergence
between p(y| 0; 0) and p(y| 0; a) does not exist for every a > 0.

Another point to be discussed pertains to the possibility that a formal posterior
density is improper. An improper posterior function is more discouraging than an
improper prior function. Speckman and Sun (2003) pointed out that improper posterior
functions appear rather often in the empirical Bayes model. We give an example where
the assumption of a degenerated prior density is associated with an improper posterior
function. An additional example pertaining to the smoothing method will be given
also in Example 11.

Example 4 (Improper posterior function) Let y ∈ R p be an observation from the
normal model N(η, (1/τ)I). Assume that a prior density for η, π3(η; ηh), is given
as δD(η − ηh) where ηh is a hyperparameter. Let z ∈ R1 be another observation
from the normal model N(μ, 1/τ). Assume that a prior density for μ, π1(μ), follows
N(m, 1/d), and also that a prior density for τ , π2(τ ; k), is expressed as

π2(τ ; k) = k

(1 + τ)k+1 (7)

with p/2 > k > 0. This distribution is referred to as the Pareto distribution of
type II or the Lomax distribution. Write the sampling density of x = (z, y′)
as p(z, y|μ, τ, η), and the prior density for (μ, η, τ ) as π(μ, η, τ ; d, k, ηh) =
π1(μ; d)π2(τ ; k)π3(η; ηh). Then the posterior density of μ given (x, τ, η) follows
N(μ̂, 1/(τ +d)) with μ̂ = (τ z +dm)/(τ +d). The posterior density of τ given (x, η)

is proportional to
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τ
p+2

2
1√

τ + d
exp

{

−τ

2
‖ y − η‖2 − τd

2(τ + d)
(z − m)2

}

· k

(1 + τ)k+1 · δD(η − ηh).

(8)

It is shown that the integral of (8) with respect to τ given y and η does not exist when
η = y. Note that this exceptional case is important in the empirical Bayes model,
since ηh is estimated by y in the conventional empirical Bayes method. The marginal
likelihood m(x; d, k, ηh) exists in this case, and can be used for obtaining an estimate
of (d, k, ηh) by maximizing it.

Recall that a hyperparameter in the empirical Bayes model is often estimated in
terms of the marginal density instead of the posterior density. This is probably the key
reason why a degenerated prior density is widely assumed rather than an improper
prior function. The comparison between the posterior density and the marginal density
in the empirical Bayes model is a difficult problem to be solved. However, we will
attempt brief comparison studies to assert advantages of a permissible boundary prior
function in Sections 4 and 5.

3 Basic properties

We first present three basic properties. Suppose that b(θ) is a permissible boundary
prior function to P = {π(θ; g)| g ∈ G} and for M = {p(x |θ)| θ ∈ �}.
Proposition 1 (Invariance property) Suppose that θ is written as f (η) for a strictly
monotone function with a first derivative. Then b( f (η))| f ′(η)| is a permissible bound-
ary prior function to P f = {π f (η; g) = p( f (η); g)| f ′(η)| ∣

∣ g ∈ G}.
Proposition 2 1) Let h(θ) be a function satisfying the condition that there exists

a positive constant M such that 1/M < h(θ) < M for every θ . Consider a
family of prior densities, Ph = {πh(θ; g) = π(θ; g)h(θ)K (g)

∣
∣ g ∈ G} with

the normalizing constant K (g). Then b(θ)h(θ) is a permissible boundary prior
function to the family of prior densities Ph.

2) Suppose that a positive function f (x) derives another family of sampling densities
M f = {p(x | θ) f (x)K (θ)} with the normalizing constant K (θ). We assume that
there exists a positive constant M such that 1/M < K (θ) < M for every θ . Then
b(θ) is a permissible boundary prior function to P and for M f .

When we attempt to assume an improper prior function b(θ) for a parameter in a
family of sampling densities M in practical applications, it is necessary to construct
explicitly a family of proper prior densities P to which the prior function b(θ) is
permissible boundary. By applying the power family in Ibrahim and Chen (2000),
we discuss a general method under weak regularity conditions. Recall that p(x | θ) is
assumed to be bounded as a function of θ for every x in Sect. 2.

Proposition 3 Suppose that there exist a sample value x0 ∈ X and a positive number
c(x0) such that the integral

∫
pg(x |θ)b(θ)dθ exists for 0 < g < c(x0). Set

P = {π(θ; g) = pg(x0|θ)b(θ)K (g, x0)| 0 < g < c(x0)} (9)
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with K (g, x0) being the normalizing constant. Then b(θ) is a permissible boundary
prior function to P and for M.

Proof Writing the upper bound of p(x |θ) as B(x), we can show that
∫

ph(x0|θ)b(θ)dθ

is less than Bh−g(x0)/K (g, x0). Thus we may choose ∞ as c(x0). Further it follows
that the expectation E{p(x |θ); π(θ; g)} exists for every x , since p(x |θ) is less or equal
to B(x). This expectation yields the posterior density p(θ | x) under a prior density
π(θ; g). It is expressed as p(x |θ)pg(x0|θ)b(θ)K (g, x0, 1, x), where K (g, x0, h, x)

is the normalizing constant.
Setting an = 1/K (1/n, x0), we obtain that anπ(θ; 1/n) converges weakly to b(θ).

In order to evaluate the logarithmic divergence between two posterior densities, we
give an explicit form of the divergence for non-negative values g and h that

D(π(θ |x; g), π(θ |x; h)) = (g − h)E {log p(x |θ) ; p(θ | x)}
+ log{K (g, x0, 1, x)/K (h, x0, 1, x)}. (10)

The posterior mean of exp t{log p(x |θ)} is written as K (g, x0, 1, x)/K (g, x0, 1+t, x),
which is a moment generating function. Thus the posterior mean in the right-hand side
in (10) is obtained by the partial derivative of the posterior mean with respect to t at
t = 0. This takes a finite value, since K (g, x0, h, x) exists for every h > 0. Thus
the former term vanishes, as g − h tends to 0. The second term also vanishes, since
K (g, x0, 1, x) is continuous in g. �

The assumption of a conjugate prior density yields a closed form of the posterior
density. As usual, it provides us with useful and tractable examples:

Example 5 (Conjugate prior) Suppose that the sampling density is in the regular expo-
nential family M = {p(x| θ) = exp[n(x̄θ − M(θ))]a(x)| θ ∈ �}. Consider an
exponential dispersion family of prior densities of the form

P = {π(θ; g, m) = exp
[
g{mθ − M(θ) − N (m)}]b(θ) · K (g, m)| g > 0, m ∈ C}

(11)

where C is the image of M ′(θ). This family is widely known as the conjugate prior
density and includes familiar prior densities. The conjugacy property yields that the
posterior density is written as

π(θ |x; g, m) = π(θ; n + g, μ̃) (12)

where μ̃ = (nx̄ + gm)/(n + g) with μ = M ′(θ). Setting ag = 1/K (g, m) for a
fixed m, we can show that b(θ) is a boundary prior function to P . Note that the expec-
tations of θ and M(θ) under π(θ; g, m) exist for every g and m when the sampling
density is in the regular exponential family, and also that the logarithmic divergence
D(π(θ; g, m), π(θ; g′, m′)) is continuous in (g, m) and (g′, m′). Thus b(θ) is a per-
missible boundary prior function to P and for M. The form (12) indicates that the value
g represents amounts of information on our prior knowledge contained in π(θ; g),
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Permissible boundary prior as virtually proper prior 799

which corresponds to the sample size in the sampling density. Consider two very
small values of g, gs and g′

s . Assumptions of these two prior densities π(θ; gs, m) and
π(θ; g′

s, m) reflect very small amounts of information on our prior knowledge about
θ . Thus these two prior densities play almost equivalent roles in practical applications,
and the derived posterior densities are almost the same.

A non-informative prior for the location family of the sampling densities has been
studied extensively in the objective Bayesian approach. Special attentions are paid
to the uniform prior function, but we discuss the prior function in relation to the
location-scale family of the prior densities.

Example 6 (Location-scale family) Another general class of families of prior densities
is given for the sampling density in the location family M = {p(x|θ) = ∏

p(xi −
θ)}. Let b(θ) be a positive function on � = R1, and consider a family of proper prior
densities of the form

P = {p(g(m − θ))b(θ) · K (g, m)| g > 0}. (13)

A naive and appealing prior function b(θ) is a uniform prior function on �. Berger
et al. (2009) gave a regularity condition for the reference prior function b(θ) to be
permissible in their definition.

Since our interest is in the requirement that the constant K (g, m) is independent
of m, we examine again whether the family P for a fixed g is complete or not. A
proposition will be given at the end of this section.

A more general family of sampling densities is given as M = {p(x|θ, τ ) =∏
τp

(
τ(xi − θ)

)} by introducing a scale parameter τ . It is reasonable to assume a
prior density given a fixed τ in the family {p(g1(m − θ))K (g1)| g1 > 0}. There is no
widely accepted prior density for τ . A naive choice of the density may be the gamma
one with mean 1/t and variance 1/(g2t2). Another choice of a prior density for (θ, τ )

is the normal-gamma density. In each case, b(θ, τ ) = 1/τ is a permissible boundary
prior function.

In Examples 5 and 6, we claimed that orthogonality condition in a family
{π(θ; g, m)} with respect to g and m may be useful for specifying b(θ). We state
formally the uniqueness of the specification through the orthogonality condition.

Proposition 4 Suppose that for an arbitrarily fixed g the family P is complete and
also that K (g, m) is independent of m. Then the permissible boundary prior function
b(θ) is unique up to a constant multiplier.

A regular exponential family satisfies the completeness property, and the reference
prior function (1) in Example 1 is the unique permissible boundary prior function up to
a constant multiplier. When b(θ) is a uniform prior function, K (g, m) is independent
of m.

Proposition 5 Consider the location family of the sampling densities of the form P
in (13). A sufficient condition for K (g, m) to be independent of m is that b(θ) is a
uniform prior function. Then K (g, m) is expressed as ag for a positive constant a.
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Combining the above two propositions, we find that a uniform function is the unique
permissible boundary prior function to the families in Example 6 up to a constant
multiplier.

4 Marginal density

The Bayesian prediction theory provides us with a flexible and perspective view of
Bayesian inferential method. The standard Bayesian predictive density due to Aitchi-
son (1975) is pm(y|x) = E{p(y|θ); π(θ | x)} with y ∈ X . Corcuera and Giummole
(1999) extends the predictive density in terms α-mixture for −1 ≤ α ≤ 1, where the
original definition corresponds to α = −1. In the differential geometric context this
mixture is called also m-mixture. The dual version of the predictor pe(y | x) will be
used in the next section.

The posterior Bayes factor pm(x |x) was proposed in Aitkin (1991), but was criti-
cized because of the double use of an observation x in p(x |θ) and also in π(θ | x). An
easy way to dissolve this possible over-fitness is to apply the cross-validation treatment
(Stone 1977). To express the cross-validation method, we assume that the sampling
density is in the i.i.d. case. Write an observation in Rn as x and the sub-vector of x
being dropped off the i-th component as x−i . Then it holds that

p(xi | x−i )
(= E{p(xi | θ) θ); π(θ |x−i )}

) = m(x)

m(x−i )
.

Note that the left-hand side dissolves the problem of the double use of an observation.
Note also that it is written as the posterior mean of p(xi |θ). This equality yields an
expression of a cross-validated version of the posterior Bayes factor.

Proposition 6 Set CVC = −2
∑n

i=1 log pm(xi | x−i ). Then it holds that

CVC = −2
∑

log
m(x)

m(x−i )
. (14)

We discuss the equation (14) in the cases of π(θ; g) for g ∈ G, where CVC(g)

depends on g. Suppose that b(θ) is a permissible boundary prior function to P =
{π(θ; g)| g ∈ G}. Since each term of CVC(g) is the logarithmic transformation of a
posterior mean, we can define CVC(0) as the limit of CVC(g) at g = 0. When b(θ) is
a permissible boundary prior function to P , CVC(0) is derived also from the posterior
density induced from b(θ) and a family of the sampling densities M.

We will call −2 log m(x) the marginal likelihood criterion MLC, since it is used as a
model selection criterion. Kass and Raftery (1995) gave the following decomposition
of MLC in a rather narrative way. Write the sample vector consisting of the first i
components as xi = (x1, . . . , xi )

′. Their decomposition in the section 3.2 is formally
expressed in terms of our notation as

MLC(g) = −2
n∑

i=2

log pm(xi | xi−1) − 2 log m(x1) (15)

123



Permissible boundary prior as virtually proper prior 801

which will be written as MLC1(g) + MLC2(g). We find that all the terms in MLC1(g)

are written as the posterior means but that the marginal density appears in MLC2(g).
The former term MLC1(g) consists of (n − 1) terms but the latter term MLC2(g) has
only one term. When b(θ) is a permissible boundary prior function to P , the main
term MLC1(g) in (15) can be defined for g = 0. However, the latter term MLC2(g)

tends to ∞ as g tends to 0.
Another view of the marginal density is given through the following known expres-

sion:

1

m(x)
= E

{
1

p(x |θ)
; π(θ |x)

}

.

We observe that p(x |θ) and π(θ |x) in the right-hand side appear in the numerator and
the denominator, respectively. This form looks confusing, since we favor larger values
of these terms in Bayesian modeling. In fact, the predictor due to Aitchison (1975)
is expressed as pm(y|x) = E{p(y|θ); π(θ |x)}, where neither p(x |θ) nor π(θ |x)

appears in the denominator.

5 Marginal density and DIC

We discuss here the empirical Bayes model, where a prior density π(θ; δ) contains
a hyperparameter δ to be estimated. Spiegelhalter et al. (2002) introduced a criterion
based on the posterior density. We compare it with MLC(δ) to examine the role of a
permissible boundary prior function.

The e-mixture ((α =)1-mixture) predictive density is given as

pe(y| x; δ) = 1

c(x; δ)
exp

[
E{log p(y| θ); π(θ | x; δ)}]. (16)

When the sampling density is in the exponential family and θ is the canonical
parameter, pe(y| x; δ) is expressed as p(y| θ̂; δ). The two predictors, pe(y| x; δ)

and pm(y| x; δ), are optimum under the logarithmic divergence loss functions,
D(p(y| x; δ), p(y| θ)) and D(p(y| θ), p(y | x; δ)), respectively.

When θ is the canonical parameter in the exponential family, DIC is expressed as

DIC(δ) = −2 log pe(x | x; δ) + pD + pD (17)

where pD = 2E
{
D

(
pe(y| x; δ), p(y; θ)

) | π(θ | x; δ)
}
. The second and the third

terms are written separately for the easier comparison with other criteria. This criterion
is modified so as to satisfy an unbiasedness condition

E{uDIC + 2 log[pe(y| x; δ)]; p(x | θ)p(y| θ)π(θ; δ)} = 0

for every δ. This modification yields

uDIC(δ) = −2 log pe(x | x; δ) + pD + qD (18)
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where qD = 2E
{
D

(
p(y| θ), pe(y| x; δ)

); π(θ | x; δ)
}

Yanagimoto and Ohnishi
(2009a). This unbiasedness condition is satisfied even when that M is not in the
exponential family. The following proposition presents an expression of MLC corre-
sponding to an expression of DIC in (17) and that of uDIC in (18).

Proposition 7 It holds that

MLC(δ) = −2 log pe(x | x; δ) + pD + 2D(π(θ | x; δ), π(θ; δ)). (19)

Proof The divergence between the posterior and a prior densities is written as

D(π(θ | x; δ), π(θ; δ)) = E

{

log
p(x | θ)

m(x; δ)
; π(θ | x; δ)

}

.

As discussed in the equality (5.1) in Yanagimoto and Ohnishi (2009a), the following
identity holds:

E

{

log
pe(x | x; δ)

p(x | θ)
; π(θ | x; δ)

}

= E
{
D

(
pe(y| x; δ), p(y| θ)

); π(θ | x; δ)
}
.

Noting that the right-hand side in the above equality is pD/2, we obtain the necessary
equality (19). �

It is widely believed that performance of MLC(δ) is largely different from that
of DIC(δ). However, we find surprisingly close relationships among their analytical
expressions (17), (18) and (19). The first two terms of the three criteria are common,
and the third terms differ from each other. Among the three the third term of MLC(δ)

is largely different from the other two. The third term of MLC(δ) appears in Berger
et al. (2009), which is interpreted as amount of information added by the observation
x . When a prior density π(θ; δ) is weakly informative, this quantity is likely to take
a large value. Thus this criterion is highly sensitive with a weakly informative prior
density.

The third terms, pD of DIC(δ) and qD of uDIC(δ), are expressed as the posterior
means of the logarithmic divergence between the optimum predictor and the sampling
density. Spiegelhalter et al. (2002) interpreted the term pD as the complexity of the
model. They are not sensitive with a small value of δ.

As a corollary of Proposition 7, we obtain an expression of the difference between
two MLC(δ)’s for different values of δ. Consider two prior densities π(θ; δ) and
π(θ; δ0). The latter prior function will be treated as a reference one.

Proposition 8 It follows from the definitions of the marginal densities that

MLC(δ) − MLC(δ0) = 2 log

[

E

{
π(θ; δ0)

π(θ; δ)
; π(θ | x; δ)

}]

. (20)

The expression of the difference in (20) indicates that it is sensitive with the ratio of
π(θ; δ0)/π(θ; δ). Note that the ratio takes a large value, when π(θ; δ) takes a small
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value. This expression indicates that the criterion is not sensitive with a large value of
π(θ; δ) but is sensitive with a small value of π(θ; δ). The latter fact is simply due to
the fact that π(θ; δ) converges weakly to πN (θ). Again, we observe that MLC(δ) is
very sensitive with a weakly informative prior density.

6 Further examples

Further examples are presented here to supplement the important role of an improper
function relating a family of proper prior densities. The first example follows up the
case of a normal-gamma prior density in Example 1 to the case of Stein type estimator
of a mean vector. The subsequent two examples discuss general families in addition
to Examples 5 and 6. We present also three additional examples concerning the linear
model, the model used in the Lindley paradox, and the empirical Bayes method for
the smoothing model.

Example 1 (Continued) Consider a following family of prior densities of the form:

π(μ, τ ; δ, λ, m, t) =
√

δ√
2π

exp

{

− δ

2
(μ − m)2

}

· λλτλ−1

	(λ)tλ
exp

{

−λτ

t

}

. (21)

Here (δ, λ) corresponds to (g1, g2) in (4). Setting k(δn, λn, t) = √
2π	(λn)tλn /

{√δnλn
λn }, we can show that the sequence of prior densities {k(δn, λn, t)π(μ, τ ; δn,

λn, m, t)} converges weakly to b(μ, τ) as both δn and λn tend to 0. In addition, it
follows that the induced posterior density π(μ, τ |x; δ, λ) varies smoothly with δ(≥ 0)

and λ(≥ 0).
On the other hand, the sequence {π(μ, τ ; δn, λn, μh, τh)} converges weakly to

δD(θ − θh), as both δn and λn tend to ∞. However, the prior density contains the
unknown hyperparameters μh and τh . In addition, the logarithmic divergence between
an induced posterior densityπ(μ, τ |x; δn, λn, μh, τh) and the corresponding posterior
density δD(θ − θh) does not exist.

The posterior density π(μ, τ | x; δ, λ) is proportional to

√
δ + nτ√

2π
exp − δ + nτ

2
(μ − μ̂)2 · τλ+ n

2 −1
√

δ + nτ
exp −τ

{
λ

t
+ n − 1

2
s2 + nδ

2(δ + nτ)
(x̄−m)2

}

(22)

with μ̂ = (δm+nτ x̄)/(δ+nτ). The former factor of (22) denotes the normal posterior
density given x and τ π(μ| x, τ ). The integral of the second factor of the variable τ

exists, and we write it as K (δ, λ). We write the marginal posterior density of τ as
π(τ | x). After some calculations, we obtain that the logarithmic divergence between
π(μ, τ | x; δ, λ) and π(μ, τ | x; δ′, λ′) is expressed as the expectation of

δ′ − δ

2(δ + nτ)

{

1 + n2τ 2

δ′ + nτ

}

+ (λ′ − λ)
{τ

t
− log τ

}
+ log

K (δ′, λ′)
K (δ, λ)

(23)
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under π(τ | x). To obtain that this divergence vanishes as (δ′, λ′) approaches to (δ, λ), it
is enough to show the continuity of the normalizing constant K (δ, λ) and the existence
of expectations of the functions in (23). These follow from the fact that the posterior
density π(τ | x) decays sharply as τ tends to either 0 or ∞.

Another potential prior density is the Jeffreys prior function, which is proportional
to 1/

√
τ instead of 1/τ in (1). Modifying the previous family in (21), we introduce

the family of prior densities of the form

π(μ, τ ; δ, λ, m, t) =
√

δτ√
2π

exp

{

−δτ

2
(μ − m)2

}

· λλτλ−1

	(λ)tλ
exp

{

−λτ

t

}

. (24)

Write the right-hand side (24) as π(μ| τ ; δ, m) · π(τ ; λ, t). This family is the
conjugate family to the normal sampling density. In fact, the posterior density
π(μ, τ | x; δ, λ, m, t) is expressed as

π(μ| τ ; nτ + δ, μ̂) · π

(

τ ; n

2
+ λ,

n
2 + λ

λ/t + s2/2 + nδ(x̄ − m)2/(n + δ)

)

(25)

with μ̂ = (nx̄ + δm)/(n + δ). Since an explicit expression of the posterior densities
is available, it is easy to show that the Jeffreys prior density is a permissible boundary
prior function to P and for M.

Example 7 (Location-dispersion family) Consider a location family of the sampling
densities on R1, M = {p(x|θ) = ∏

exp −d(xi − θ)} and assume a location-
dispersion family of prior densities

P = {π(θ; g, m) = exp
[−gd(m − θ)

]
K (g)

∣
∣ g > 0}. (26)

Note that this family is close to but is different from the location-scale family in
Example 6. An extension of the family of prior densities in (26) is possible by replacing
K (g) by b(θ)K (g, m), but we will focus our attention here on the above restricted
case. Superficially, it looks that a prior density in the location-scale family is familiar
and simple, but the location-dispersion family provides us with a wide variety of
distributions, including the logarithmic gamma, Gumbel and Fréchet distributions.
The dispersion parameter is usually easier to be handled than the scale parameter.
Further, the exponential dispersion family is often in the exponential family or in
the curved exponential family. The basic properties of this family can be obtained in
Jorgensen (1997).

Suppose that the marginal density m(x; g, m) exists for g ≥ 0, which is satisfied if
the function d(θ) decays in a moderate rate as θ tends to ∞. Differentiating an prior
density π(θ; g, m) with respect to g, we obtain that the expectation of d(m − θ) under
π(θ; g, m) exists and is equal to −∂ log K (g)/∂g. The posterior density is written as

π(θ | x; g, m) = exp{∑−d(xi − θ) − gd(m − θ)}
m(x; g, m)

K (g).

123



Permissible boundary prior as virtually proper prior 805

This implies the logarithmic divergence D(π(θ | x; g, m), π(θ | x; g′, m)) is given by
the expectation of

−(g − g′)d(θ − m) + log

{
K (g) m(x; g′, m)

K (g′) m(x; g, m)

}

under π(θ | x; g, m). Thus the logarithmic divergence exists for positive g and g′. It
follows from the definition of the marginal density that m(x; g, m)/K (g) is indepen-
dent of g. Further, the logarithmic divergence is continuous in g and g′. Consequently,
we obtain that a uniform prior function is permissible boundary to P in (26) and
for M.

Proposition 3 gave a general method for constructing a family of proper prior density
yielding a permissible boundary prior function. Fortunately, the method is applicable
to the power family.

Example 8 (Power family) A familiar class of families of prior densities derived from
the sampling density is given by

P =
{

π(θ; g) = pg(x0|θ)

pg
(
x0|θ̂M (x0)

)b(θ)K (g, θ̂M (x0))

∣
∣
∣
∣
∣

g ∈ G
}

(27)

where θ̂M (x0) is the maximum likelihood estimate. This family was discussed below
Proposition 3, where x0 is treated as a known value in the notation. Note that x0 can
be arbitrarily chosen in most practical examples. This family is covered by the general
family in (3) in Example 2 by setting c = θ̂M (x0). We discuss here reasons why this
family was employed in Proposition 3 when a prior function b(θ) and a family of sam-
pling densities were given. A reason is its simple multiplicative forms of the member
of P , and another is its simple form of the logarithmic divergence in the proof. When
the sampling density is in the exponential family, the normalizing constant in (27) is
written in terms of the logarithmic divergence as exp{−gD

(
p(y|θ̂M (x0)), p(y|θ)

)}.
By setting m = M ′(θ̂M (x0)

)
in (11), we obtain this family.

Ibrahim and Chen (2000) extensively explored this family. They suggested the use
of a proper prior density π(θ; g) in (27). We agree with their suggestion, when such
a proper prior is available. Otherwise, we suggest the use of π(θ; g) in (27) for a
suitably chosen small value of g. A permissible boundary prior function b(θ) may be
chosen when g is considered as a very small value, but we find practical difficulties in
specifying it.

Example 9 (Linear model) Consider a linear regression model, where an observation
x follows the normal distribution N(Zθ, (1/τ)I) with Z being the n × p (1 ≤ p < n)

design matrix of the rank p. Then a family of the normal-gamma prior densities
discussed in Example 1 provides us with another view of a permissible boundary prior
function. This choice of a permissible boundary prior function performs better than
that of a degenerated prior density, as was observed in Example 1.
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Our special interest here is in the case where p is not small, say 5 or 6, and n − p
is moderately large. In light of the widely known Stein effect, an empirical Bayes
approach is promising in this case. We assume a naive normal-gamma prior density is

π(θ, τ ; g, c, t) =
∏ √

gi
p

√
2π

p exp

{

−1

2

∑
gi (θi − ci )

2
}

· gg0
0 τ g0−1

	(g0)t g0
exp

{
−g0τ

t

}
.
1

τ

(28)

where g = (g0, g1, . . . , gp) and c = (c1, . . . , cp). The prior function 1/τ is a
permissible boundary prior function to this family.

Suppose that a statistician wonders as to which of an improper prior function and a
weakly informative prior density is suitable for the analysis. Specifically, the problem
lies in choosing an improper prior function proportional to 1/τ or the prior function
of the form (28) for small values of gi ’s. Since our definition of permissibility was
designed for the prior function 1/τ to be treated as a substitute for a very weakly
informative prior density, π(θ, τ ; gs, c, t), posterior densities induced from these
prior function and density are close to each other. Thus the problem is not serious so
far as the analysis is based the posterior density.

In contrast, the problem becomes severely tough, when one wonders as to which of a
degenerated prior density at an unknown point and a weakly informative prior density
is suitable for the analysis. It is not easy to find a density among prior densities in (28)
close to a degenerated prior density δD(η − ηh) ·δD(τ − τh), as was noted previously.
If we choose a large value of gi ’s, a difficult problem to specify suitable values of c
and t arises. Next, consider the case where we choose a small value of gi ’s. In this
case the problem of specifying c and t becomes less important. On the other hand,
the choice of a small value of gi ’s contradicts Proposition 3.2, since π(θ, τ ; g, c, t)
converges weakly to δD(η − c) · δD(τ − t) as all the components of g tend to ∞.

The above discussions indicate that an inferential procedure based on a permissible
boundary prior function to P is associated with that based on a very weakly informative
prior density in P . On the contrary, an inferential procedure based on a degenerated
prior density at an unknown point is separated from that based on a proper prior density.

Example 10 (Model used in the Lindley paradox) Suppose x is sample of size 1
from the normal population N(μ, 1/τ0), and let gs be a very small positive value.
We compare a very weakly informative prior density π1(μ; gs) ∼ N(μ0, 1/(gsτ0))

and a degenerated prior density at an unknown point π2(μ) = δD(μ − μ1). Set
S = {x | √τ0|x − μ0| < 10} and P = {π1(μ; gs)| gs > 0}. Then it follows that
Pr(S; N(μ0, 1/τ0)) is very close to 1. When μ1 = μ0 + (a + 10)/

√
τ0, it holds for

x ∈ S that

m1(x) =
√

gsτ0√
2π(1 + gs)

exp − gsτ0

2(1 + gs)
(x − μ0)

2 <

√
gsτ0√
2π

and also that

m2(x) =
√

τ 0√
2π

exp −τ0

2
(x − μ0 − μ1)

2 >

√
τ 0√
2π

exp −1

2
a2.
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Thus m1(x) < m2(x) holds, when exp(−a2) ≥ gs . When we set gs = 10−20 as a
very small value, the value a0 = √

20 log 10 satisfies this inequality. The marginal
likelihood criterion MLC indicates that the prior density δD(μ − μ1) with μ1 =
μ0 + (10 + a0)/

√
τ0 is superior to the prior density μ ∼ N

(
μ0, 1020/τ0

)
, when x is

in S.

The posterior density π1(μ|x; gs) follows N
(
μ̂, 1/τ0(1 + gs)

)
with μ̂ = (x +

gsμ0)/(1 + gs), which is well approximated by N(x, 1/τ0). The approximated poste-
rior distribution is induced from a permissible boundary prior function to P , which is a
uniform prior function in this model. The probability of the interval (0, μ1) under the
posterior density is extremely close to 1. This result indicates that the criterion MLC is
sensitive with an assumption of a weakly informative prior density, as was discussed
below Proposition 7. The above result is discouraging for the present authors, since
the assumption of two weakly informative prior densities is believed to affect little
to the induced posterior densities. It is our understanding that Lindley’s paradox is
associated with this property of MLC. Critiques of MLC are seen in Chacon et al.
(2007) and Yanagimoto and Ohnishi (2009b).

Example 11 (Smoothing model) Let x = (x(1), · · · , x(n))′ be a sample vector from
the n-dimensional normal population N(μ, (1/τ)I) with μ = (μ(1), · · · , μ(n))′. Let
Dk be the difference matrix of order k. Denote by Mk the closure of {μ| Dkμ 	= 0n−k}
where 0n−k is the (n − k) dimensional 0 vector, and write its orthogonal complement
as M⊥

k . Then a parameter μ in M is decomposed into the direct sum μ1 ⊕ μ2 with
μ1 ∈ Mk and μ2 ∈ M⊥

k . Write also the Moore–Penrose g-inverse of Dk as D−
k . Then

a prior distribution for μ1 in Mk is written as

πa(μ1; γ ) ∼ N(0n, (1/τγ )D−
k ). (29)

This prior density is to be compared with

πb(μ1; δ) ∼ N(0n, (1/δ)D−
k ). (30)

Assume that a prior density for μ2 and τ , π(μ2, τ ) is proportional to 1/τ . Then it
is shown that πa(μ1; γ )π(μ2, τ ) yields a posterior density for a fixed γ , but that
πb(μ1; δ)π(μ2, τ ) does not yield a proper posterior density for a fixed δ. This means
that we should be careful about the behavior of the posterior density, as was empha-
sized in Speckman and Sun (2003). On the other hand, the marginal density does not
distinguish the two models (29) and (30). The parameters (τ, δ) and (τ, γ ) are treated
simply as two equivalent ones in the conventional empirical Bayes method.

7 Conclusion

We attempted to defend the assumption of an improper prior function and raised strong
reservations about the assumption of a degenerated prior density at an unknown point.
Though the assumption of a degenerated prior density is associated with the use of the
marginal likelihood, Bayesian inference is in principle based on the posterior density
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induced from an assumed proper prior density. This indicates that an improper prior
function is hoped to be assumed in relation to a proper prior density and also to the
posterior density.

A serious defect of the marginal likelihood is that it takes a very small value when
a prior density is close to an improper prior function. Consequently, the marginal
likelihood curiously favors a degenerated prior density to a weakly informative prior
density. Analytical aspects of this fact are given in Propositions 7 and 8. This view
elucidates the erroneous assertion in Lindley’s paradox, as in Example 10.

It is not rare that a posterior density does not exist, as Speckman and Sun (2003)
remarked. Example 4 shows that the marginal likelihood can exist even in such a case.
Example 11 gave an educational example in a smoothing model, which is familiar in
the empirical Bayes method. The example presents the two superficially similar models
containing different improper prior functions; one of the two induces a proper posterior
density but the other does not. These prior densities are not clearly distinguished in
practical applications, so far as our own experiences in Yanagimoto and Yanagimoto
(1987) and Yanagimoto and Kashiwagi (1990) concern.

Other examples show that improper prior functions in the existing literature mostly
satisfy regularity conditions for a permissible boundary prior function to a family of
proper prior densities.

A researcher, who plans to assume an improper prior function, is advised to consider
a family of proper prior densities P to which it is a permissible boundary prior function.
We expect that such an effort enhances to assume a proper prior density instead of an
improper prior function. When the researcher considers the assumption of a proper
prior density, a suitable one can be found in the family P .
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