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Abstract This paper considers the problem of estimation and inference in semipara-
metric varying coefficients partially linear models when the response variable is subject
to random censoring. The paper proposes an estimator based on combining inverse
probability of censoring weighting and profile least squares estimation. The resulting
estimator is shown to be asymptotically normal. The paper also proposes a number
of test statistics that can be used to test linear restrictions on both the parametric and
nonparametric components. Finally, the paper considers the important issue of correct
specification and proposes a nonsmoothing test based on a Cramer von Mises type of
statistic, which does not suffer from the curse of dimensionality, nor requires multidi-
mensional integration. Monte Carlo simulations illustrate the finite sample properties
of the estimator and test statistics.

Keywords Empirical likelihood - Goodness of fit - Kaplan—Meier estimator -
Profile least squares - Wilks phenomenon - Wald statistic

1 Introduction

Varying coefficient models (Cleveland et al. 1991; Hastie and Tibshirani 1993) arise
in many situations of practical relevance in economics, finance and statistics. They
have been used in the context of generalised linear models and quasi-likelihood esti-
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mation (Cai et al. 2000a), time series (Cai et al. 2000b), longitudinal data (Fan and
Wu 2008), survival analysis (Cai et al. 2008) to name just a few applications-(see
Fan and Jiang 2008) for a recent review containing further applications and a num-
ber of examples. Varying coefficient partially linear models assume that some of the
varying coefficients are constant, and thus are extension of the popular partially linear
model considered by Engle et al. (1986) and Speckman (1988) among many others.
Compared to the latter, varying coefficient partially linear models offer additional
flexibility because they allow interactions between a vector of covariates and a vector
of unknown functions depending on another covariate. Ahmad et al. (2005) and Fan
and Huang (2005) suggest two general estimation techniques based, respectively, on
nonparametric series and profile least square estimation. Both approaches yield semi-
parametric efficient estimators for the parametric components under the assumption
of conditional homoskedasticity. Fan and Huang (2005) also consider inference and
show that the so-called Wilks phenomenon (Fan et al. 2001; Fan and Jiang 2007) holds
for the profile likelihood ratio statistic, implying that its distribution does not depend
on unknown parameters.

In this paper, we consider varying coefficient partially linear models when the
response variable is not directly observed; instead it is subjected to (right) random
censoring. Censoring is important in empirical applications, arising naturally in bio-
statistics and in medical statistics; it can also be used in economics to model for
example unemployment spells.

We propose a unifying theory for estimation, inference and specification for varying
coefficient partially linear models under random censoring. The theory relies on the
same inverse probability of censoring weighting (IPCW henceforth) approach as that
used, for example, by Wang and Li (2002) and Lu and Burke (2005), which is based
on the transformation of Koul et al. (1981). This transformation yields an estimator
that is not as efficient as that based on Buckley and James (1979)’s transformation or
the more recent approach of Heuchenne and van Keilegom (2007), but as opposed to
the former it does not require complex iterative computations that can lead to unstable
solutions, nor it is subjected to the curse of dimensionality as the latter.

In this paper, we make a number of contributions: first, we derive the asymptotic
distribution of the estimators for both the parametric and nonparametric components
using profile likelihood (least squares) estimation as in Fan and Huang (2005). We
show that in both cases random censoring has an effect on the variance of the estimators
whereas it has no effect on the bias of the nonparametric estimator. The latter result
is consistent with the findings of Fan and Gijbels (1994) and Cai (2003) who both
investigated the effect of random censoring in nonparametric regressions.

Second, we consider inference for the parametric and nonparametric components
and show that the Wilks phenomenon does hold for the profile least squares ratio (gen-
eralised likelihood ratio) statistic for the nonparametric components, but, as opposed
to Fan and Huang (2005), not for the parametric components. This different asymp-
totic behaviour can be explained by the different effect that the estimation of [IPCW
has on the asymptotic variance of the estimators of the parametric and nonparametric
components. First, note that since the IPCW is estimated at the parametric rate, it can
be regarded as known for nonparametric inferences. Therefore, as in Fan and Huang
(2005), the asymptotic distribution of the profile least squares ratio for the nonpara-
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metric components can be obtained directly from that of a standard varying coefficient
model for which the Wilks phenomenon holds (Fan et al., 2001). On the other hand,
since the estimator of the IPWC is not orthogonal to the profile least squares estimator
of the parametric component, it has an effect on the asymptotic variance of the latter,
which is the key fact to explain the failure of the Wilks phenomenon. It is important
to note that failures of the Wilks phenomenon can also be observed in the context of
parametric likelihood ratio inferences with misspecified models (because the informa-
tion matrix equality—second Bartlett identity—does not hold, (see e.g. White 1982)
and empirical likelihood inferences for certain semiparametric models (because the
asymptotic variance of the score is not equal to the expectation of its square, (see
e.g. Wang and Veraverbeke 2006; Xue and Zhu 2007; Bravo 2009; Chen and Van
Keilegom 2009). In both cases, the test statistics are asymptotically equivalent to a
quadratic form in normal random vectors with the “wrong” covariance matrix, which
is also what happens in the case of parametric inferences for the profile least squares
and empirical likelihood ratio statistics of this paper (see (33) in the Appendix), and
explains why the Wilks phenomenon does not hold (see Sect. 3.1 for a further discus-
sion). It is also important to note that even if the Wilks phenomenon does not hold
for the original statistics, it can still be obtained by applying the same scale correction
to both statistics. Furthermore, the distribution of the profile least square ratio can be
accurately approximated by the bootstrap as we show in Sects. 3.2 and 5.

Third we consider the important issue of correct specification of the varying coeffi-
cient partially linear model. We follow the so-called nonsmoothing (or unconditional)
approach and propose a test based on a Cramer von Mises type of statistic. The test
statistic is based on the same dimension reduction approach proposed by Escanciano
(2006) in the context of parametric regression models. This approach yields a test
statistic that does not suffer from the curse of dimensionality, nor requires multidi-
mensional integration. On the other hand, the test statistic is not asymptotic distribution
free but its distribution can be easily simulated by a resampling method that is com-
putationally simpler than the bootstrap. The method is motivated by the so-called
random symmetrisation technique described for example by Pollard (1984) and by
the multiplier central limit theorems of Van der Vaart and Wellner (1996). It has been
previously used by Su and Wei (1991), Delgado et al. (2003), Zhu and Ng (2003) and
others.

Finally, we use simulations to assess the finite sample properties of the proposed
estimator and test statistics for both the parametric and nonparametric components.

The remaining part of the paper is structured as follows: next section introduces
the model and the estimator. Section 3 discusses inference for both the parametric
and nonparametric components. Section 4 introduces the Cramer von Mises statistic
for the correct specification of the model and shows the consistency of the proposed
resampling technique. Section 5 presents the results of the Monte Carlo simulations.
Section 6 contains some concluding remarks. An Appendix contains sketches of the
proofs. Full proofs and some further Monte Carlo simulations can be found in the
online supplement to this paper.

The following notation is used throughout the paper: “a.a.” , “a.s.” and «lr

. o d
stand for “almost all 7, “almost surely” and “asymptotically distributed as”; =, —
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denote weak convergence in [*° (-)—the space of all real-valued uniformly bounded
functions (see Van der Vaart and Wellner (1996) for a definition), and convergence
in distribution, respectively. Finally, A denotes min, and ||-|| denotes the Euclidean
norm.

2 Estimation
Consider a varying coefficient partially linear model
Y =X'ao (U) + W'+, M

where o (-) is a p-dimensional vector of unknown functions, By is a k-dimensional
vector of unknown parameters and the unobservable error ¢ is such that E (¢|U, X, W)
=0a.s.and E (82|U, X, W) =o2a.s.

Let (Y;, Ui, X;, W;)!_, denote an i.i.d. sample from (¥, U, X, W); Fan and Huang
(2005) propose to estimate g (-) and By using profile least squares estimation: for a
given By, (1) can be written as

Y' = Xiao (U) + &, 2

where Y = Y; — W/Bo, and ag (1) can be estimated by a local regression. Plugging
the resulting estimator & (U;) back in (2), it follows that By can be estimated using
least squares on

Yi = WBo +e&i,

where a tilde denotes the (empirical) projection on the varying coefficient functional
space, that is

W, = W; — W;S; (U;) with 3)

n -1 n
S; U) = X (Z X1 X;Kp (U — U,-)) > XKy (U — Uy,

=1 =1

where Ky, (-) := K (-/h) /h is akernel function and & =: h (n) is the bandwidth. Fan
and Huang (2005) show that the resulting estimator 8 = (>0 W, VT/[’) - S WY
is asymptotically normal and achieves the semiparametric efficiency lower bound.

Suppose that the ¥;s are randomly censored, so that instead of observing (¥;)!"_,,
we observe (Z;, §;)"_, where

Zi=YinGCi, &=1{ <Cp),
and C; is an i.i.d. sample from the censoring variable C with unknown distribution

function G, assumed to be independent of (¥, U, W, X). To deal with the randomly
censored responses, we follow Koul etal. (1981)’s approach and consider the following
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IPWC transformed responses (synthetic responses) Zg, = Z8/ (1 — Go (Z)) and note
that

E(ZGo|U, X, W) = X'ag (U) + W'By a.s., )

which suggests that an estimator for Sy can be based on profile least square
estimation using the IPCW observations Z;g, = Z;6;/ (1 — Go(Z;)) instead of
Y; i =1,...,n), thatis

ZiGy = Xiao (Up) + Wi Bo + €iG,- (5)

To estimate the unknown G, we use the Kaplan—Meier product-limit estimator
(Kaplan and Meier, 1958)

. n N (Z;) 1(Z;<z,6;=0)
R [
Pl 1+ N (Z)

where N (z) = > 1(Z; > z). We note that the assumption of independence
between the censoring variable and the covariates is crucial for the Kaplan—-Meier
estimator. This assumption is reasonable in many applications, such as, for example,
those when censoring is caused by the termination of the study. On the other hand,
if this assumption is not reasonable one could replace the Kaplan—Meier estimator
with Beran (1981)’s local product-limit estimator. This extension is certainly inter-
esting (although in practice it would be limited by the curse of dimensionality of
nonparametric estimators), but is beyond the scope of the paper.

Given G, we can estimate Bo using profile least squares as in the uncensored case,
which results in

n -1 5
E: (Z W, Wi/) ZW[Z,’G.
i=1 i=1

Let

Znz 1(Z<2,86=0)

)
Z,8;,7) = H dH — ()
n(Z.8:2) ; [H ()] 0 (s) + T2 (6)

where H(z) = Pr(Z<z), H(z) = 1 — H(z) and Hy(z) = Pr(Z > z,8 =0)
denote the key term appearing in Lo and Singh (1986)’s asymptotic linear represen-
tation of the Kaplan—Meier estimator.

Assume that

A1l The random variable U has bounded support ¢/, and its density f (-) is Lipschitz
continuous and bounded away from O in I/,
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A2 The p x p matrix E (XX'|U) is nonsingular for each U, and E (WX'|U),
E (X X'\U ) have Lipschitz continuous second derivatives in U € U, and

E (X X'\U )_1 is Lipschitz continuous,
A3 E (IX]*) < oo, E (|W]*) < o0, E (ggo) < 00,
A4 The functions «; (U) have Lipschitz continuous second derivatives in U € U,

A5 Asn — oo n'/?h* — 0 and nh?/1n (n) — oo,
A6 The kernel function K (-) is a symmetric density with compact support .

The above assumptions are similar to the ones used by Fan and Huang (2005) and
are routinely imposed in local regression methods, see e.g. Fan and Gijbels (1996) and
Masry (1996).

Theorem 1 Under AI-A6
n'2 (B - po) % N(o, r—laﬂr—l), %)
where

r=E [WW’ —QW)zT ) Q(U)’],
Ep =G E[WW -2 =W W) ]
w2E [[wi - 2wn =z Wy x]ee,
x E[Ws = QW S W)™ Xan (21,81: 22) Z26,121.81|

+E {E [Wz — Q(U2) T (U2)™ Xan (Z1, 815 Z2) ZaG,| 21, 81

| S—

/
x E [Wz —Q(U2) B (Ua) ™ Xon (24, 81 Z2) ZZGO|ZI,51] ,

02, = E (2,1U. X, W), and @ (U) = E (WX'|U), E (XX'|U) = £ (U).

The following theorem ¢stablishes_ the distrib_ution of the estimators @ (-) of g ().
Letky = [ K (v) v2dv, o) (u) = 8/« (u) /du’. Assume that

A5 Asn — oo n'/?h3? = O (1) and nh?/In (n) — oo,
Theorem 2 Under AI-A6 with A5’ replacing AS for any fixed value u with f (u) > 0
(nh)/? (a ) — a (u) — h*B (u)) 4N (0, A (u) By () A (u)) ,
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where

Bu) =koA" W) E
XX [ah @0 £ LU /7 XU =0+ f W a® @ 2] 1U = u},

Aw) = fu)S W), Eq@) =f(u)0(2;0/K2 () dvE [XX'|U = u].

Note that the asymptotic bias B (u) is the same as that for the kernel-based estimator
of a standard varying coefficient model with uncensored data (see for example Li et al.
2002). On the other hand, the asymptotic variance is larger. This is, however, typical
of models with IPCW responses and more generally with synthetic type of responses
(see for example Fan and Gijbels 1994 and Cai 2003).

3 Inference

In this section, we consider inference for both the parametric and nonparametric com-
ponents of (5). For the former component, we consider a number of test statistics:
the profile least squares ratio of Fan and Huang (2005), a generalised Wald and an
empirical likelihood ratio. We note that all of these statistics do not rely on any para-
metric assumptions. For the nonparametric component, we only consider the profile
least squares ratio because of its computational simplicity.

3.1 Parametric component

It is often of interest to test linear hypotheses that can be expressed as
Ho : Rfo =, (®)

where R is an [ x k matrix of constants (/! < k). As in Fan and Huang (2005), we
propose the following profile least squares ratio test for (8)

n RSSp — RSS;

PL, =
2 RSS;

. C))

where RSSo = 3, (Z,5— X/do (Ui)—W/Bo)” and RSS| = 3", (Z,5—X/@ (Up)
- W B\)z denote, respectively, the residual sum of squares from the profile least
squares under (8) and the unrestricted one. As mentioned in Sect. 1, the Wilks phe-
nomenon does not hold for (9) because as we show in the proof of Proposition 3 PL,,
is asymptotically equivalent to a quadratic form in n!/2 (E— ﬁo) with a covariance

matrix that is not E;l [see (33) in the Appendix]. As a result, the asymptotic distrib-
ution of PL,, is not the standard x?; instead it is given in the following Proposition.
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Proposition 3 Assume that rank (R) = l. Then under AI-A6 and the null hypothe-
sis (8)

l
d
PL, 5 > wjx; (1),

Jj=1
—1
where w; are the eigenvalues of I:O'éo (RF_IR’)] (RI‘_1 EﬂF_lR/).

To obtain a test statistic with an asymptotic 2 calibration, we can use a (generalised)
Wald statistic, or alternatively an adjusted profile least squares ratio and empirical
likelihood ratio statistic defined in (12) below. Note that all of these statistics require
an explicit computation of Eg.

The Wald statistic for (8) is

Wo=n (RE —r) [R (T8, 8 )R] (RE 7).

where

%z[wlw E (wWix{1v) [E (x:X0)] ™ E (xew/iu) | (10)

)
=

II

Q
?

%

E (Wixj1uy) [E (xixju) | E (xiw)1up)])

+%ZZ{[W — E(Wix)1uy) [E (x| Xi]#g

~ ~ ~ _ ’
x E[w; - E (w;X;10;) [E (X[ U)X (22,853 2)) Zog| 21, 81 ]

[Ew; = B (wx)10)) [E (xix{on)] ™" X (71,8 2)) 2,611
= = = =1 !
x E[w; - E (w;X;10;) [E (X} vi)| ™" X (2.8 2)) 2,612 |
E (+]-) is the standard leave-one-out kernel estimator of a conditional expectation,
3%. = Y1 E5/nEg = Zig — X{@(U;) + W/B and G is the Kaplan-Meier
estimator.

Theorem 4 Assume that rank (R) = l. Then under AI1-A6 and the null hypothesis (8)

d
Wy 5> x> ().

An alternative method to test the null hypothesis (8) is to consider empirical likeli-
hood, which is introduced by Owen (1988, 1990, 2001) as a nonparametric likelihood
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alternative to traditional likelihood-based methods for inference. To introduce empir-
ical likelihood in the context of the model considered in this paper, let

n n
pi (B) = n}railenn,- s.t.m >0, Zm =1, Zm VT/,- (Z,‘G0 — W;,B)
i=1 i=1 i=1

denote a profile empirical likelihood ratio function. Then, a profile empirical likelihood
ratio statistic for (8) can be based on the following test statistic

max —2> " log(pi (B)) st RB=r. (1)

i=1

The computation of (11) can be numerically difficult because it involves the com-
putation of a saddlepoint. We suggest an alternative asymptotically equivalent but
computationally simpler test statistic based on the constrained profile least squares
estimator EO- To be specific, we construct a profile empirical likelihood ratio statistic
for the restricted profile residuals Z;5 — W,-’,Eo (i =1,...,n), which is in the same
spirit as that of a standard score statistic in ordinary likelihood inference, but instead
of using the information matrix as the metric we use the empirical likelihood function.
The resulting test statistic is

EL, = ZZlog (1+X'W; (Z:g — W/Bo)) , (12)

Theorem 5 Assume that rank (R) = l. Then, under A1-A6 and under the null hypoth-
esis (8)

EL, =PL, +o0,(1).

An immediate consequence of the theorem is that the profile empirical likelihood
ratio has the same nonstandard nonpivotal distribution as that of the profile least squares
ratio. To obtain a standard distribution, we propose to adjust both EL,, and PL,, by a
scale correction as in Rao and Scott (1981). Let §,, denote either EL,, or PL,,.

Proposition 6 Assume that rank (R) = l. Then, under AI1-A6 and the null hypothesis
(8)

where 0 = I /trace ([Eé (R/l"\flR/)]_1 (RF’IEﬁF’IR’)) .
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3.2 Nonparametric component

It is also of interest to test whether the unknown varying-coefficients g (U)’s can be
modelled as parametric functions, that is

Ho:ao; (U) =a; (U.g0) j=1.....p (13)

for some unknown parameter vector ¢p. Examples of (13) include the hypothesis
of no significance of the covariate X; (j =1,..., p), e.g. ap; (U, go) = 0, or the
hypothesis of homogeneity (constancy) of one or more of the varying coefficients, e.g.
a0 (U, c0) = a;.

Fan and Huang (2005) showed that the Wilks phenomenon holds for the profile least
squares ratio statistic P L, for (13). The key observation is that because the unknown
parametric components can be estimated at the n!/? rate, they can be assumed known
for nonparametric inferences. The same observation applies also to the Kaplan—-Meier
estimator for G, which, therefore, implies that inferences on «g (U) can be based on
the nonparametric varying coefficient model

Zig, = Xjao (UD) + si, (14)

where Z;‘G0 = ZiG, — W/Bo. The general results of Fan et al. (2001) imply that the

Wilks phenomenon holds for the resulting profile least squares ratio. As an illustration,
we consider the same test of homogeneity as considered by Fan and Huang (2005),
that is

Ho:a0j (U,g0) =0a; j=1,...,p. (15)

Asin Sect. 3.1 let RSSy and RSS; denote the restricted and unrestricted residual sum
of squares and let

n RSSy — RSS;

PL) =
2 RSS;

denote the profile least squares ratio statistic.

Theorem 7 Under AI-A6 with nh3/> — oo and under the null hypothesis (15)

rkPLY ~ x% (px),
where

K(©0) -1 [K*)dv
J (K@) =LKk« K @) dv

PK =erllu| (K(O)—%/Kz(v)dv).

rg =

@ Springer



Semiparametric regression with random censoring 393

The distribution of g PLY can be approximated either by

(rkPLY — pk)

i L N©, 1) (16)

PLYS =

or by the bootstrap. The bootstrap approximation can be based on the following steps:

1. generate Y* = X&' (U;) + W/ B+ ¥ where & are randomly sampled from the
centred unrestricted residuals 5,

2. generate the bootstrap censoring indicator §; as a Bernoulli random variate with
Pr(8* =1) =1 — G (¥}) and G is the Kaplan-Meier estimator of Gy,

3. generate the bootstrap censoring variable C as follows: if ¥* and 8} = 1, C} is
taken from G restricted to [Yi*, oo), otherwise Ci* is taken from G restricted to

0,Y*),

4. 1[e-es;i2nate the parameters of the model using the bootstrap sample (Zl* 8, Xi,
Wi, U, i)?:l with the same bandwidth as that used in step 1 and with the parameters
under the null hypothesis replaced by their original estimates,

5. compute RSS} and RSS{ and hence the bootstrap analogue PL{™* of PLY,

6. repeat steps 1-5 B times.

Let Pr* denote probability conditional on the original sample; the following theorem
establishes the consistency of the proposed bootstrap procedure.

Theorem 8 Under AI-A6 with nh3/?> — oo and under the null hypothesis (15)

P

sup |Pr (PLY* > ¢) — Pr (PLy = ¢)| = 0.

C’€R+

Note that it is also possible to construct an empirical likelihood ratio statistic for
(15) using for example the sieve empirical likelihood approach of Fan and Zhang
(2004). As with the profile least squares ratio, the key observation is that both Sy and
G can be considered as if they were known for nonparametric inferences. However,
the calculation of the resulting sieve empirical likelihood ratio statistic is demanding
and potentially unstable because it involves the computation of n saddlepoints. Thus,
for practical purposes, the profile least squares ratio test statistic PL{, seems a more
viable option.

4 Specification analysis

In this section, we consider the important issue of testing whether the varying coeffi-
cient partially linear specification of (1) is correct. Note that under (4)

Hy : E (e6)|U, X, W) = E (Zg, — X'ao (U) = W'Bo|U, X, W) =0 a.s., (17)

or equivalently

Ho : E (5c,|U, X, W) = E (700 —WBo|U, X, W) =0 as. (18)

@ Springer



394 F. Bravo

where Zg, = Zg, — X'E(U) " E (XZg,|U) and W = W — Q(U) £ (U)"' X.
It is well-known (Bierens 1982) that (17) and (18) are equivalent to

Hy: E [e6,¥ (U, X, Wi u, x, w)| =0, (19)

provided the linear span of the weight function W (U, X, W; u, x, w) is dense in the
space of bounded measurable functions on the support of U, X, W. Two popular
choices of W (+) are the indicator function

dx w
1([U X, W < [ux' w]) =1 W <w [ 1 (Xm < x(j)) I (Wm < wm)
j=1 j=1

~

(see e.g. Stute 1997) and the exponential function exp (L (U, X", W] [u,x', w’]/),

where t = (—1)!/? (see e.g. Bierens 1982). Other possible choices are discussed in
Stinchcombe and White (1998).

In this paper, we use the same projection-based approach proposed by Escanciano
(2006), which avoids the deficiencies associated with using the indicator function and
exponential functions, while preserving their merits. To be specific, we consider

Elegyt (U=u o [X. W] =5)|=0 aausoen, (20)

where TT = [—00, 00]? x SKtP~1 and S¥TP~1 is the unit sphere in R¥*7, that is
Sktr=l ={p e REFP - 0| = 1}.

The advantage of specifying W (U, X, W; u, x, w) as in (20) over the standard
indicator function is apparent in its dimension reduction character, which implies that
potentially high dimensional covariates X, W are not a problem as they would be with
the standard indicator function, i.e. too many zeroes negatively affecting both size and
power properties of any test statistic based on it. At the same time, it also avoids the
choice of the integrating measure as well as potentially high-dimensional numerical
integration required for example to compute Cramer von Mises type statistic based
on the exponential function (see e.g. Bierens 1982). A more detailed discussion of
the merits of (20), including also a comparison with the related approach of Stute and
Zhu (2002) in the context of generalised linear models, can be found in Escanciano
(2006).

A test statistic for the null hypothesis (18) can be constructed by considering a
functional of the so-called projected marked empirical process

1 n
n' 25 5. 0) = - > agl (Ui <u,0'[xI, W] < s) ,
i=1

where 8,5 = Z,;z — W/B, Zig = Zig — Si (Up) Zig» Wi = Wi — X;S; (Up)' and B
is the profile least squares estimator from the previous section.
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Let Fy (u,s) and F, ¢ (u, s) denote, respectively, the distribution and empirical
distribution of U and 6’ [X 4 ]/, and let d9 denote the uniform distribution on the
sphere SktP—1

Assume that

A7 The product measure F, g (u, s) dO is absolutely continuous with respect to the
Lebesgue measure in IT.

Theorem 9 Under AI-A7
2% (u, s,0) = voo (u,5,0) inl>® (1),
where v (U, §, 0) is a centred Gaussian process with covariance function
Elo (u1,s1,01)0 (u2, 52, 62)1, 2D
and

o (u,5,0) = 66,1 (U <u, 0 [x,w] < s)

| FaE O @181 20 XaZagy! (v2 =w o' [x5. W3] <)
1= Go (22)

|U1,21,51,X1}

n(Z1,81; Z) X2Z>G,62
1=Go(Z2)

—E [X’zz W 'E [ \Ul] 1(Uz = w0/ [X5. W3] <) (U1, 71,81, Xli|

n(Z1,81;Z2)
1= Go(27)

X E [Wl —ewps Wy x1 (U1 <u, 0/ [x], W] < s)]

!
~(wi-ewnzwnx) {slco + E[ Z2G,821U1. Z1. X1, W1“ r-!

~X{ 2 WD X1 (Zigy = WiBo) Fo (¢ [X' W] 1h) 1 (U1 < w

+E [Xja i 1 (Ur w6 [x, W] <5)]. (22)

Given the result of Theorem 9, we can use a Cramer von Mises type of functional
to construct a test statistic for the null hypothesis Hy that is

CM, = n/ D, s,0)2dF,g (u, s)do. (23)
IT

A straightforward application of the continuous mapping theorem gives the following:

Corollary 10 Under A1-A7 and under the null hypothesis (18)

oM, 5 / Voo (1, 5,0)> dFy (u, 5) d6. (24)
I
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It is easy to see that under the global alternative hypothesis

Hig :Pr(E (Zg, — X'a(U)— W'B|U, X, W) #0) >0 VB, a (U)

CM, , ,
—d>/nE[(ZGO—on(U)—W,B)

n
I (U <u0'[x, W] < s)]2dF9 (u,s)d6 > 0,

which implies the consistency of the test based on (23). Also local alternatives of the
form

oy U X W)

Hiq @ E (66,IU, X, W) = 7 (25)

for some known real-valued function can be detected by (23) as the following theorem
shows. Let

p=T"E[(W-2W) =" @)X)(y 0. X. W)~ E[y 0,X, W)|U])].
and assume that
A8 The function E [y (U, X, W) |U] is Lipschitz and E [y (U, X, W)] = 0.

Theorem 11 Under AI-A8 and under the alternative hypothesis (25)
cM, % / [voo (i, 5,0) + ¥* (u, s, 9)]2 dFy (u, s)do,
n

where
v s, 0)=E (v U X, W=E[y 0. X. W)U (U =0 [X. W] =5)|

—E [(W —ew) = W) X)/I (v=uolx, W/]/)]V.

Itis important to note that the asymptotic distribution (24) is non standard and, more
importantly, nonpivotal. This is a well-known problem for the nonsmooth approach
to specification testing and it is a direct consequence of the estimation of unknown
parameters, which affects the covariance kernel of the limiting Gaussian process—see
e.g. Durbin (1973)’s seminal contribution on the effect of estimated parameters on the
distribution of the classical parametric empirical process. However, this distribution
can be easily simulated using the same resampling technique used for example by Su
and Wei (1991), Delgado et al. (2003) and Zhu and Ng (2003).

Let {&;}7_, denote a random sample from the distribution of the random variable &
with zero mean and unit variance that is independent from U, X, W, and let

o (u,s,0) =0 (u,s,0)§ (26)
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where & (-) is as in (22) with £g,;. Bo, o and E (-) replaced by consistent estimators,

while fSk+ »—1 d6 canbe easily simulated by drawing say M samples from k4 p standard

normal variates scaled by their norm, see e.g. Marsaglia (1972). For example, the last

term in (22) is

n M
> [xi@w (v u o) [xi Wil <5)].

i=1 j=1

1
nM

Note that conditionally on n; >/, ol (u,s,0)/ n'/? has 0 mean and covariance

structure

n
> G (u1,51,600)5i (w2, 52, 60) /;
i=1

by randomly sampling from & we can obtain the simulated version of CM,,, that is
CM; = n/ ¥ (u, 5,0)? dF,.0 (u,s)do. (27)
n

The following theorem shows that the proposed resampling method consistently esti-
mates the distribution CM,,. Assume that

A9 |E§| <C <xa.s.

Theorem 12 Under AI-A7 and A9

*
sup |Pr (CM}; > ¢) — Pr(CM, > ¢)| 5 0.

C€R+

5 Monte Carlo evidence

In this section, we use simulations to assess the finite sample properties of the estima-
tors and test statistics introduced in the previous sections. The model we consider is
similar to the one considered in Fan and Huang (2005), namely

/
Y; = cos (xU) + X/ [sin 61U;), U,?] + W/ Bo + &1, (28)

where X; = [X1;, X2;] ~ N (0, £), X is a symmetric matrix with 1 on the main
diagonal and 1/3 on the off-diagonal, U; ~ U [0, 1] where U [0, 1] is the uniform dis-
tribution on [0, 1], W; = [Wy;, W»;]" and &; are independent N (0, 1), Z3; ~ B (0.4)
where B (0.4) is the binomial distribution with 0.4 probability, B8y = [2, 1/2, 0], the
censoring variable C; ~ 5U [—1, 1] 4+ ¢ where c is a constant chosen so as to satisfy
an (approximate) fixed censoring proportion.

One important practical aspect of the results of this paper concerns the choice and
dependence of the methods proposed in this paper on the bandwidth /. Bearing in
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Table 1 Finite sample bias, standard error and RMSE

hV /2 peva 3HCV
Bias Std.errr  RMSE  Bias Std.err.  RMSE  Bias Std.err.  RMSE
n =100
/’3‘{\/ —0.327  0.143 0.356 —0.336  0.137 0.362 —0.346  0.130 0.369
Bi —0.122  0.191 0.226 —0.141  0.186 0.241 —0.146  0.178 0.230
Eé\] —0.120  0.155 0.196 —0.125  0.150 0.195 —0.132  0.142 0.193
B —0.035 0.193 0.196 —0.041  0.190 0.194 —0.048  0.180 0.186
n =400
EN —0.320  0.070 0.327 —0.326  0.068 0.333 —0.337  0.062 0.342
B1 —0.070  0.102 0.123 —0.073  0.099 0.123 —0.079  0.089 0.119
Bév —0.104  0.089 0.136 —0.110  0.085 0.139 —-0.119  0.079 0.142
B —0.020 0.110 0.111 —0.022  0.108 0.110 —0.025  0.105 0.107

4 h? bandwidth chosen with least squares crossvalidation

IPWC

1.0
1.0
1

0.1(U), at4(V)
00 05
00 05

|

1.0
1.0
|

Fig. 1 Estimated (solid line) and true (dashed line) second varying coefficient using the estimated IPWC
method (/eft) and the naive one (right) for n = 400

mind that no optimal bandwidth selection theory is available in the context of testing,
we investigate this problem by first choosing / by standard crossvalidation and then
considering alternative bandwidths. In the simulations, we consider two sample sizes,
namely n = 100 and n = 400 and we fix the censoring level at approximately 30 per
cent.

Table 1 reports the finite sample bias (bias), standard error (std. err.) and root mean

squared error (RMSE) for two estimators for 8y = ,310 Bro]’: the naive estimator
,BN that ignores the censoring, and the proposed one ,B The results are based on 1000
replications.

Figures 1 and 2 show the estimated varying coefficients &) (U) and @ (U), together
with their true counterparts 1o (U) = sin (67 U) and aag (U) = U? with IPWC and
without it (i.e. the naive method) for n = 400 with a crossvalidated bandwidth. Figure
2 also shows the estimated varying coefficient with fixed bandwidth equal to 0.2 the
length of the support of U.
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IPWC Naive

08
08

04
04

6\Lz(U)7 o (V)
0
|

0.5(U), ot5(V)
0
|

-04
-0

Fig. 2 Estimated with crossvalidated (solid line) and fixed (dashed-dotted line) bandwidths, and true
(dashed) third varying coefficient using the estimated IPWC method (left) and the naive one (right) for
n =400

Table 2 Finite sample size and power for profile least squares ratio P L,,, profile empirical likelihood ratio
E L, and Wald statistic Wy,

F) hcv /2 hcv a 3hCU

PL, EL, W PL%Y PL, EL, W, PL% PL, EL, W, PL}

n =100
0.0 0.068 0.063 0.058 0.053 0.079 0.066 0.060 0.055 0.084 0.071 0.064 0.58
02 0.122 0.149 0.108 0.125 0.141 0.209 0.122 0.136 0.152 0.224 0.137 0.150
04 0214 0323 0233 0300 0.341 0434 0324 0355 0371 0440 0.368 0.380
0.8 0.621 0.715 0.616 0.644 0.676 0.762 0.644 0.650 0.700 0.781 0.700 0.702
12 0917 0940 0.876 0930 0985 1.00 0906 0976 1.00 1.00 0.995 1.00
n =400
0.0 0.061 0.056 0.057 0.052 0.071 0.060 0.056 0.053 0.078 0.069 0.060 0.055
0.2 0.165 0.200 0.140 0.154 0.186 0.231 0.147 0.165 0.203 0.242 0.187 0.193
04 0335 0412 0400 0412 0435 0499 0418 0424 0490 0.521 0480 0.399
0.8 0.876 0947 0.819 0.997 0.929 0.999 0932 0.905 0942 1.00 0951 0.964
12 0995 100 0934 100 100 100 100 1.00 100 100 1.00 1.00

4 h? bandwidth chosen with least squares crossvalidation

Table 2 reports finite sample size and (size corrected) power for the three test
statistics proposed in Sect. 3.1 as well as for a bootstrap version of the profile least
squares ratio statistic based on

(RB* — R ) (RT~'R))™" (RB* — RB)
RSS}

PL = i (29)

NS

where T is defined in (10) RSST = >0, (Z;ké - Xia* (U;) — W{E"‘)2 and Z;“a
is generated using the same unrestricted bootstrap procedure as that described in
Sect. 3.2. The following proposition shows that the proposed bootstrap procedure is
consistent.
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Table 3 Bootstrap p values for PLY for constancy of coefficients

(1) (2) 3) 4)
Hy Hy Hy Hy

4025

PLg 8.077 21.24 17.43 1.051

p-value 0.442 0.002 0.006 0.831
hCU

PLZ 16.024 24.87 29.87 1.602

p-value 0.432 0.002 0.001 0.663

HY tay (U) = agHY" tag (U) = Br.as (U) = Bo. HY con (U) =, HY 2 a3 (U) = o3

PLR for Hg" PLR for H"
oo}
=
o
o
‘B <
& S|
a ° |
o
S 3
o
0 10 20 30 0 20 40
FIXED h CVh

Fig. 3 Simulated distributions of the PLR (solid line) and its bootstrapped version (dotted line) for H(gl)
using fixed bandwidth (left) and crossvalidated bandwidth (right)

Proposition 13 Under the same assumptions as those given in Proposition 3

*
sup |Pr(PL} > ¢) — Pr(PL, > ¢)| 5 0.

CE]R+

The null hypothesis in Table 2 is Hy : [B2, B3]' = [0.5, 0]’ while the set of alterna-
tive hypotheses is Hy, : [B2, B3]’ = [0.5, 0]’ + & where § = [0.2, 0.4, 0.8, 1.0] ; note
that the size and power are calculated at the 0.05 nominal significant level using 1000
replications with 500 bootstrap replications for the size, and 500 replications for the
power calculations.

Table 3 reports the bootstrap p values for the profile least squares ratio for the null
four hypotheses Hél) toq(U) = aq =: B1,a5(U) = B2, and HO(J) o (U) =
a;j(j = 2,3,4),thatis the first hypothesis tests whether the last two coefficients in 28
are constant, while the second, third and fourth hypotheses test, respectively, whether
the second, third and fourth coefficients are constant. The results are based on 1000
replications with p values calculated from 500 bootstrap replications with sample size
n = 100.

Figures 3 and 4 show the distribution of the profile least squares ratio and its
bootstrapped version for, respectively, H(gl) and Héz) using two different bandwidths:
one chosen by crossvalidation and one chosen as 0.25 of the length of the support of U
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Density of PLR ¢ for H®) Density of PLR ®for HY
@
8
> o | s, ©
‘D - = —
5 ° g3
3
o - a s
g - | 3-
o T T 1T 1T T o T T T T
0 10 20 30 0 10 20 30
FIXED h CVh

Fig. 4 Simulated distributions of the PLR (solid line) and its bootstrapped version (dotted line) for Héz)
using fixed bandwidth (eft) and crossvalidated bandwidth (right)

Table 4 Finite sample size and power for Cramer von Mises statistics CM,, and CMg,

6 hCV/2 hCV a ShCV
cM, MY CM, MY CM, MY
n=100
0.00 0.055 0.040 0.059 0.040 0.066 0.044
0.40 0270 0.145 0271 0.148 0278 0.150
0.80 0.534 0.205 0.545 0.206 0.553 0.208
1.20 0.780 0.299 0.781 0.296 0.798 0.300
1.60 0.800 0.360 0.799 0359 0.802 0.368
=400
0.00 0.054 0.043 0.054 0.042 0.058 0.045
0.40 0335 0.221 0.340 0218 0344 0210
0.80 0.612 0.287 0.621 0.286 0.628 0.282
120 0.791 0.404 0.802 0.410 0.806 0432
1.60 0910 0.495 0912 0.490 0911 0.493

4 h® bandwidth chosen with least squares crossvalidation

Finally, Table 4 reports finite sample size and size corrected power for the Cramer
von Mises type of statistic based on the projection approach [i.e. (23)] and of the same
statistic without the projection on 6, that is

CM? :n/ Du, s, 0)>dF, (u, s, 1), (30)
I1

where IT = [—o0, col* TP+ and n!/2V (u, 5, 1) = X0 Sl (Ui <u, X; <5, W; <
1)/n'/? is the standard marked empirical process. As in Table 2, the finite sample size
and power are calculated at a 0.05 nominal significance level with the size calculated
from 1000 replications and the power from 500. The critical values are computed from
1000 replications of (27) using the same two points distribution attaching probability
masses (5'/2 4+ 1) /2 (5'/?) and (5!/% — 1) /2 (5'/2) to the points — (5!/2 — 1) /2 and
(51/ L 1) /2 as that used for example by Stute et al. (1998). The alternative hypothesis
is parameterised as y (U, X, W) = SW2 for§ = [0.4,0.8,1.2,1.6]
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The results of the simulations can be summarised as follows: first, Table 1 indicates
that for the parametric components, the proposed estimator outperforms the naive one
in terms of bias. It is less precise than the naive one, which is to be expected because
of the IPCW, but still dominates in terms of RMSE. As the sample size increases,
the bias of the proposed estimator decreases as opposed to that of the naive estimator
which is still very substantial; at the same time, both estimators become more precise.
More importantly, both bias and variance do not seem to significantly depend on the
choice of the bandwidth, which confirms the simulation findings of Fan and Huang
(2005) in the case of uncensored responses. On the other hand, the bandwidth choice is
important for the estimation of the nonparametric components, as clearly illustrated by
Fig. 2, where a smaller bandwidth than the one suggested by crossvalidation results in
a better fit. Note, however, that as with the parametric estimators, both nonparametric
estimators based on IPWC perform better than those based on the naive method, as
indicated by the partial R? and mean squared error criterion that are, respectively,
0.543 and 1.021 against 0.451 and 1.122.

Second, the three test statistics for the parametric component based on the asymp-
totic x2 calibration have reasonably good finite sample size and power properties.
Table 2 indicates that the Wald statistic has the smallest size distortion, whereas the
empirical likelihood statistic has the largest power. As expected as the sample size
increases, the three test statistics become more accurate and more powerful. Table 2
shows that the size distortion can be partially reduced by choosing a smaller band-
width than the one chosen by crossvalidation, but the resulting test statistics seem
to lose some power for alternatives closer to the null hypothesis. Table 2 also shows
that the bootstrap approximation (29) yields a profile least squares ratio statistic with
smaller size distortions. Further simulations results (available in the supplement) with
a smaller bandwidth confirm these findings, while they also indicate that larger values
of the bandwidth can have a negative effect on the size of the test statistics.

Third the profile least squares ratio for testing hypotheses on the nonparametric
component performs well and correctly detect the constancy of the linear part of
the model while strongly rejecting the constancy of the varying coefficients (Table 3).
The same conclusions hold for the standardised version PLg’S defined in (16) using
the normal approximation (see Table 3b in the supplement). Figures 3 and 4 show
that the bootstrap provides a very good approximation to the distribution of the profile
least squares ratio using both a fixed and a crossvalidated bandwidth. The normal
approximation also works well (see the Q—Q plots reported in the supplement), but it
appears to be more dependent on the choice of bandwidth, which could have a negative
effect particularly for larger values of the bandwidth.

Finally, the Cramer von Mises type of statistic based on a projected marked empiri-
cal process has very good size and power properties. Compared to the standard Cramer
von Mises statistic based on a marked empirical process, Table 4 indicates that the one
based on the projection is less size distorted and has considerably higher power.

Taken together, these results seem to indicate that the proposed estimator and test
statistics are characterised by good finite sample properties which compare favourably
to standard alternatives. They also indicate that the choice of bandwidth is less crucial
for inferences on the parametric components as long as it does not create excessive
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bias. In this respect, the bandwidth chosen by least squares cross validation provides
a good initial value from which it is possible to obtain test statistics with improved
accuracy by carefully choosing a smaller bandwidth. On the other hand, the choice
of bandwidth is more important for estimation and inferences on the nonparametric
components. However, thanks to the Wilks phenomenon and the bootstrap it is still
possible to obtain reliable and accurate inferences.

6 Conclusion

In this paper, we consider the problem of estimation and inference of varying coeffi-
cient partially linear models when the responses are subject to random censoring. We
propose to use profile least squares with IPCW to estimate the unknown parameters and
suggest a number of statistics for testing linear hypotheses about both the parametric
and nonparametric parameters. We show that the proposed estimation method yields
an asymptotically normal estimator. We also show that as opposed to the uncensored
case, the Wilks phenomenon does not hold for either the profile least squares ratio or
the empirical likelihood ratio for testing hypotheses about the parametric component;
however, it is still possible to obtain test statistics with an asymptotic Chi-squared
calibration by adjusting the test statistics with an appropriate scale factor that can be
consistently estimated. We consider the important issue of correct specification of the
assumed varying coefficient partially linear structure and propose a Cramer von Mises
type of statistic that does not suffer from the curse of dimensionality, nor requires
multidimensional integration. We investigate the finite sample properties of the pro-
posed estimator and test statistics with simulations. The results of the simulations are
encouraging and suggest that profile least squares estimation combined with IPCW
is a useful method to deal with semiparametric varying partially linear models with
random censoring.

7 Appendix

Let C denote a generic constant, ¢, = (logn/ (nh))l/ 24 p2 respectively. “CLT”,
“CMT”, “LLN” stand, respectively, for “central limit theorem”, “continuous mapping
theorem” and (possibly uniform) “law of large numbers”. Recall also that ¥ (U) =

E(XX'|U) and Q (U) = E (WX'|U).

7.1 Auxiliary Lemmas

Lemma 14 Let A (W, X, U) denote a generic possibly matrix-valued function of W
and X suchthat E [||A (W, X, U)||] < ccand E[A (W, X, u) |U = u] have Lipschitz
continuous second derivatives in u, and let € be a possibly vector-valued random
variable such that E [||A (W, X, U) €||] < oo. Then, under Al, A5 and A6
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sup %ZKh Ui —uw) AW, X;, Up) = f () ETA(W, X, u) |U = u]
ueld i=1

= Op (cn),

n
sup lZI(;,(U,'—14)A(W,~,X,-,Ui)o5,-—f(u)E[A(W,X,u)oEIU=u] = Op (cn) .

ueld n i=1

Lemma 15 Let A(W, X, U) be as_in Lemma 14, and assume that E[Z(W, X, U)Z
(W, X, U)1is nonsingylarwhere AW, X, U)=AW,X,U)—E[AW,X,U)X'|
UlX(U)X. Then, for A (W;, X;, U) as defined in 3

sup =op (D).

U;eld

—1
[i >TAW; X Up) AW, X, U,~)’j| —{E[A(W, X, U)A(W, X, U)’]}‘1
i=1

Lemma 16 Let A (W, X, U) be as in Lemma 14 and let & denote a possibly vector
valued random variable such that either (i) E (§|W, X, U) = 0a.s. or (ii) § = &5
and |§1| = O (n’l/z) uniformly in its support Sg,. Then,

sup = 0 (cn).

Uield | 1

1 — ~
1/2 ZA(w,,X,,U,m — i 2L AW X, Un g
i=1

Lemma 17 Let A (W, X, U) be as in Lemma 14 and let &1 and &, denote two possibly
vector-valued random variables such that (§2) |6 = O, (nfl/ 2). Then,

~o,(r)

1, ~ ~
=D EHAW X, U A(Wi, X, Up) &

sup
Uield n i=1
sup Z@A(vvl, Xi, U&= 0, (1),
U el

1S — )
sup ZEEA (Wi, Xi, Up) Xi&1i|| = Op (n 1/2cn) .
vie i=1

7.2 Proof of the main results

Proof of Theorem I By Lemma 15
G (Z) —Go(Zi) 5
n'/? =T 1— 7 55)
(B~ o) ni72 Z ( ot A Gowzy)

1 n
~—7 Z Xjao (Ui) + 0, (1) := Ti, + Tan,
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uniformly in &/ . We first consider 77, and note that by Lemma 16 and

G (z) — Gy (2)
1 -Go(2)

=0, (n—1/2) 31)

sup
0<z<max; Z;

Zhou (1991)

Z WZiG ZWe,GO+0,, (Cn)

~G(zz-)—Go(z,-)~_ _
WZ (= Go(zy)) 210

i ZiGydi + 0, (1),

z — G (Zi) — Go (Z))
(I =Go(Z))

uniformly in /. Next by Lemma 14 and LLN || 72, || = O, ( 1/2 2) uniformly in U,
and thus

1 ~
nl’2 (B — o) = (Z W, W, /n) éﬁq (siGO + %Z,@O&).
. (32)
By Lo and Singh (1986)’s representation of the Kaplan—Meier estimator, we have that
Tin =T + Ry
where

1
U
Ty, = mzh (Ui, Xi, Wi, Zi, 81, U;, X, W;, Zj, 8))

1n
i<j

with

h(Ui, Xi, Wi, Zi, 8, Uj, X, W;, Zj, 8))

(1 —Go (Z))*

. Zi 811 Z;
+ (Wi -U) =)' X)) (8,/00 + szaj),

- (Wi -QWUHE W)™ Xi) (81‘00 R A L ;-8 2) Zi5i)

(1 — Gy (Z))*
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and || R, |l = op (1) (see the supplement). Clearly E [h (-)] = 0, E [ (Z1, 81; Z2) | Z>]
=0, E[n(Z2,62; Z1) |Z1] = 0O; furthermore for j,k = 1,2 and j # k
“ dH (s)

V4
E [772 (Zj’ 8 Zk) |Zk] =—(1-Go (Zk))2/0 m,

hence, for any k x 1 vector &, A3 implies that E[§'h(Uy, X1, Wy, Z1, 81, U, X2, Wa,

Z5, 81
Let

hy Uy, X1, Wi, Z1,81) == E(Uy, X1, Wi, Z1, 81, Uz, X2, W2, Z3,82) |Uy, X1, Wy, Z1, 81
-1
=[wi = E(wix{ivy) [E(Wiwio)] ™ ] Xieig,
—1
+E[W2*E(WzX/lez)[E(szﬁle)] in(21,81;Zz)chOIZLBJ,

and note that

Var (£'h (Uy, X1, Wi, Z1, 81, Ua, X2, Wa, Z5,82)) = E (§'h1 (U1, X1, Wi, Z1, 81))

= &' BE.
The conclusion follows by a standard CLT for second-order U-statistics (Serfling 1980)
and the Cramer—Wold device. O
Proof of Theorem 2 See the supplement. O

Proof of Proposition 3 We first show that ’RSSl/n - 0(2;0) = 0p (1). By the same
arguments as those used in the proof of Theorem 5.1 of Fan and Huang (2005)

Rss1 L1 [G(Zi) — Go(Zi) =
--S (@ | R Y R o
Z Fica)” Z[ (1= Go((z))) ' ]

_ZG(Z)—GO(Z)
(1— Go(Z)
G ()~ GoZ) ¢
ta Z (1 Go(Z)

25 Gz - G2
n & (1= Go ((Z0)

5
= ZTZjn.

j=1

2

ZiGoSi€iG,
Xiao (Up)

ZiGoSiW! (B — Bo) +0p (1) :

By LLN ‘sz — 03;0‘ = 0, (1), while by Lemma 17 [Ty, | = O, (n~1), |To3,| =

Op (n712), |Taan| = Op (ca) and |Tosu| = O, (n~"/?cy). Note that 8,5 = £;5 +
w! (,30 — B) hence by LLN and simple algebra it follows that
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RSS Bo—B) <~~~
0_Uéo_MZWiW{(ﬁo—@‘=0p(1),

n

so that the profile least squares ratio

,30—/§)

PL, =n I (Bo — B) +0p (1)
Go
~ -1 ~
= (RB—r) (oéORF_IR/) (RB—r)+o0p,(1), (33)
and the conclusion follows by the result of Kent (1982). O

Proof of Theorem 4 By LLN, the consistency of & (U;) and E , 31 and iterated expec-
tations it can be shown that

H GZWW oG, E(WiW))| =0, (1).

Lemma 14, LLN and triangle inequality imply that

A2 n
% ZE Wi X)\U;) [E (X XU~ E (X W/|U;)
i=1

LE[QWET W)Wy =0, ()

uniformly in ¢/, whereas by repeated applications of Lemmas 14 and 15

1

HE[ —E(WX’|U)[ (x: XU Xjn(z,-,a,»;zj)zj@|z,-]

— E[W2 = QW) = U7 Xan (21,613 72) Z26,| 21,81 || = 0, (1),

and similarly for all the other terms appearing in z g ; hence by CMT H = s — Bg || =
0p (1) and the conclusion follows by CLT and CMT. O

Proof of Theorem 5 By the triangle inequality, Borel Cantelli lemma, CMT and results
of Masry (1996), it is possible to show that max; | W;z,5 | = 0, (n'/?). Note that the
constrained estimator By can be expressed as

Bo—PBo=T" ( ZWzb“olG) (RF IR) 1 R (B~ fo) + 0, (n—l/z)’

and by Lemma 16

% i Wieyo =R (RF_lR’)_l R(B—Bo)+0, (n_l/z) . (34)

i=1
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Then (31), LLN, Lemmas 14, 16, 17 and the consistency of ;/3\0 can be used to show
that

n
=2 7. 2
i=1

=o0p,(1).

Using Owen (1990)’s arguments, itis possible to show that A = '~ D Wi?Oi c/n+
op (n’l/ 2). The conclusion follows by a Taylor expansion, (34) and CMT. O

Proof of Proposition 6 See the supplement. O

Proof of Theorem 7 Following Fan and Huang (2005), it suffices to show that
‘Rssj - RSS‘}’ — 0, (1) (j =0, 1) where RSSY is as RSS; but with Go and f
assumed known. Note that

n = 2
2 ~ . G(Z)—-Go(Z)
Enz( (1— Go(Z)) )

i=1

RSSy  RSS)
n n

2 - PR
+= (Bo— Bo) 2 Wi W/ (Bo — o)

i=1

" [Zn: (%) ]1/2 [Zn: (%;ﬂ)z] 12

i=1 i=1
+0, (c,%) =0, (%) +0, (c,%),

and similarly for RSS;. Hence

n RSS) — RSS?

PLY =
"2 RSSY

+o0p, (1),

and the result follows by the same arguments used by Fan et al. (2001). O

Proof of Theorem 8 By the results of Lo and Singh (1986) (see also Akritas 1986),
the bootstrap Kaplan—Meier estimator G* is n'/? consistent. This together with the
bootstrap LLN and CLT of Bickel and Freedman (1981) can be used to show that
n'2 (B* — B) = O, (1) and (nh)'/? @* (u) — @ (u)) = Op+ (1) except if the orig-
inal sample is on a set with probability tending to 0 as n — oo. As in the proof
of Theorem 7, let RSS’{O = RSS] with G* and B* assumed to be known. Then, it

is possible to show that [RSS — RSST’| = 0p« (n), [RSS}® — 0 | = 0p+ (1) and

RSS{ — RSSéO‘ = o0p+ (1) except if the original sample is on a set with probability
tending to 0 as n — oo. The conclusion follows by the bootstrap CLT using the same
arguments as those used by Fan et al. (2001). O
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Proof of Theorem 9 Note that
1 n
12 /
/%% (u,s,0) = iR 28,'(;01 (U,' <u,d [Xl/, Wi/] < s)

]/22 glG() (Ul S u, 9/ [Xl/’ Wi/]/ S S) = Tﬁl’l + T7na

the class of functions
{rng.t) > r—d (@D (r<u0t<s), us,0¢cll} (35)

is Vapnik—Chervonenkis, and

T = 1/2 Z iG ~ ZiGo) 1 (Ui <u.6'[X. W] 55)
i=1

1/2Z(Zs Wi )> = Zigy) 1 (Uifu’(’/[xz{vwf]/fs)
i=l

1 , _
—i Z (Z S; (U (Zigy — WiBo) — X;= (U~ E (X (Zg, — W'Bo) |Ui)>
i=1 \j=1
x1 (U» <u,0' [x],w]] < s)

%Z(Wi ~QWn B WD Xi) 1 (U w0’ [X, W] <)
i=1

1/2 Z (sz U W)~ X = > Wy, (Ui)’) I (Ui <u,0'[x, W] < s) .

i=1 j=1

Using 6, Lemma 16, (31) and some kernel calculations, it is possible to show that

I |1 |~ n(2Z.8;:2) , —1 n(2;.8;:2)
T7p = WZ ‘n {Z mzicoai -X/2WH'E Gi(z)z(;oaw,
i=1 j=1

X[(Ul' SM,Xi SX,W,' <w)

1

s (ZX§2 W™ Xi (Zigy — Wi Bo) Fo G1U) f (U T (U; < u)
i=1

—E[Xa@) 1 (U=uo'[x. W] =5)])

1< Y n(Z.8;: Zi)

—5 W; — QU;) £ (U; X ] ————=76;

+””2,-§( o )(SG”(I—Go(zi»Z
I E[W -2 s @) X1 (U= w6/ [X[. W] =5)]+op (. (36)

The fidi convergence of (36) follows by CLT, whereas the asymptotic equicontinuity
follows by a direct application of Theorem 2.5.2 of Van der Vaart and Wellner (1996),
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which implies the weak convergence of (36) to a Gaussian process with the same
covariance as that given in (21). O

Proof of Theorem 11 See the supplement. O

Proof of Theorem 12 Leto} (u, s, 0) = o/* (,E @, G u, s, 0) to emphasise the depen-
dence on S, @ and G. It is possible to show that

1 PSP |-
sup |5 > 0" (B.@, G u,5,60) — — 5 > 07" (Bo, @0, Gos .5, 0)| = 0p (1),

i=1 i=l1

and by LLN

1 n
207" (Bo, @0, Goj u1,51,61) 0" (Bo, @0, Go; 2,52, 02) = E [0 (w1, 51,01) 0 (2, 52, 01| =0p (1).

i=1

The same arguments used in the proof of Theorem 1 combined with the multiplier
CLT Van der Vaart and Wellner (1996, Lemma 2.9.5) imply the fidi convergence of
nl/2G5* (Bo, a0, Go; u, s, 0) for any fixed u, s and 6, whereas the asymptotic equicon-
tinuity of the process nl/2G5* (Bo, @, Go; u, s, 0) follows as in the proof of Theorem
9. Thus n'/?6* (Bo, @0, Go; u, s, ) converges weakly to a Gaussian process with the
same covariance structure as that given in (21), and the result follows by CMT. O

Proof of Proposition 13 See the supplement. O
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