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Abstract In this study, we define a chi-square random field on a multi-dimensional
lattice points index set with a direct product covariance structure and consider the
distribution of the maximum of this random field. We provide two approximate for-
mulas for the upper tail probability of the distribution based on nonlinear renewal
theory and an integral-geometric approach called the volume-of-tube method. This
study is motivated by the detection problem of the interactive loci pairs which play an
important role in forming biological species. The joint distribution of scan statistics
for detecting the pairs is regarded as the chi-square random field above, and hence
the multiplicity-adjusted p-value can be calculated using the proposed approximate
formulas. By using these formulas, we examine the data of Mizuta, Harushima and
Kurata (Proc Nat Acad Sci USA 107(47):20417–20422, 2010) who reported a new
interactive loci pair of rice inter-subspecies.
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726 S. Kuriki et al.

1 Introduction

1.1 Tests of multiplicity in detecting loci interactions

In genomic data analyses, genome scans for detecting loci that have some particular and
interesting functions are often undertaken. These procedures are regarded as repeated
statistical testings, and hence they are formalized as multiple testing procedures. In
such multiple testings, one crucial point is how to adjust the multiplicity of tests. This
is because the method of adjustment seriously affects the interpretation of the data
analysis.

The detection of the interactive loci pairs assumed to exist in the Bateson–
Dobzhansky–Muller (BDM) model, which motivates our study, is such a genome
scan problem. In biological concept, “species” are defined as “groups of interbreeding
natural populations which are reproductively isolated from other such groups” (Mayr
1942). The genetic mechanism for separating species is called reproductive isolation,
which is observed as hybrid sterility or hybrid inviability between particular groups.
The BDM model is a model for explaining the evolution of genetic incompatibility
genes. More precisely, the BDM model assumes that there exist pairs of loci such that
when the loci have particular genotypes, sterility or inviability occurs and hence a
descendant is not produced (Dobzhansky 1951; Coyne and Orr 2004). In this paper,
we refer to the interactive loci pair as the BDM pair.

The importance of studying such interactive pair loci is widely acknowledged.
However, few studies have succeeded in identifying such pairs and in revealing the
mechanism behind them. For the detection of BDM pairs, choosing two groups for
crossing is crucial but difficult. If parents are genetically distant, then descendants
cannot be produced. Conversely, if parents are too close, then sterility or inviability
cannot be observed. The detection of a BDM pair of Arabidopsis intra-species by
Bikard et al. (2009) and the detection of a BDM pair of rice inter-subspecies by
Mizuta et al. (2010) are exceptionally successful studies.

The original purpose of this paper was to give an answer to a statistical problem
that Mizuta et al. (2010) have faced during the course of their studies. Figure 1 is
the contour plot depicting scan statistics for detecting BDM pairs in a second filial
generation (F2) population from two rice subspecies used by Mizuta et al. (2010). The
horizontal and vertical axes represent loci positions in 12 chromosomes of rice. Each
scan statistic is a chi-square statistic with 4 degrees of freedom, and the number of
statistics is around 500,000. Because of the large number of tests, some adjustment
for the multiplicity of tests is necessary. The Bonferroni adjustments are frequently
used in multiple testing. However, in our case where the statistics are highly correlated
with each other, the Bonferroni adjustment that is calculated without information of
correlation would lead to very conservative results.

The multiplicity-adjusted p-value for correlated scan statistics is defined from the
distribution of their maximum. For calculating this distribution, we require knowledge
of the correlation structure or joint distribution. This structure can be determined from
experimental design in the case of crossing experiments such as the detection problem
of BDM pairs. In particular, when the number of statistics is large and when the
correlation structure is systematic, we can consider a large number of scan statistics
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Maximum of a chi-square field on lattice points 727

Fig. 1 Contour plot of chi-square statistics

as a random field and can obtain the distribution of the maximum. The distribution of
the maximum of a random field (process) has been extensively studied. In this paper,
the approaches we use are nonlinear renewal theory and the volume-of-tube method
(tube method). The nonlinear renewal theory we use was developed by Woodroofe
(1982) and Siegmund (1985, 1988). In this method, a random field is locally treated as a
random walk, and the distribution of its maximum is obtained using sequential analysis.
The volume-of-tube method is an integral-geometric approach for approximating the
distribution of the maximum of a Gaussian random field through evaluating the volume
of the index set (Sun 1993; Kuriki and Takemura 2001, 2009). Mathematically, this is
equivalent to applying the Euler characteristic heuristic to a Gaussian field (Takemura
and Kuriki 2002; Adler and Taylor 2007).

This paper is organized as follows. In Sect. 1.2, we explain the scan statistics for
detecting BDM pairs. Under the null hypothesis that a BDM pair does not exist, we
see that the joint distribution of the scan statistics is regarded asymptotically as a chi-
square random field with a direct product covariance structure restricted on a lattice
point index set. We also discuss other statistical problems that have the same stochas-
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728 S. Kuriki et al.

tic structure as the detection of BDM pairs in Sect. 1.3. In Sect. 2, we formalize this
chi-square random field in a general setting, and provide approximate formulas for its
maximum distribution using nonlinear renewal theory and the volume-of-tube method.
Renewal theory assumes that the lattice points are equally spaced. This assumption
may be unreasonable, because it implies that marker spacings are uniform. Hence, we
use numerical comparisons to examine the difference between the randomly spaced
case and the equally spaced case. The volume-of-tube method yields asymptotically
conservative bounds by embedding the random field defined on a discrete set (i.e.,
unequally spaced lattice points) into a random field that has a continuous and piece-
wise smooth sample path. In Sect. 3, we analyze the data of Mizuta et al. (2010). They
first screened the candidates of loci by analyzing datasets from two F2 populations
and reciprocal backcross (BC) populations, and finally succeeded in isolating causal
genes of a BDM pair by positional cloning. We examine their data and confirm that
their genetic finding about the BDM pair is significant from the viewpoint of multi-
ple testing procedures. The proofs of Proposition 1, which describes the asymptotic
correlation structure of the chi-square statistics for detecting interactive pairs, and the
tail probability formulas in Theorems 1 and 2 are given in Sect. 4.

1.2 Scan statistics for the detection of interactive loci pairs

In this subsection, we explain the scan statistic for detecting BDM pairs and its asymp-
totic joint distribution for the case of the F2 population dealt with by Mizuta et al.
(2010).

We focus on the number of F2 individuals that avoided such a fatal event and
grew up. Each locus of an individual in the F2 population produced by two strains
A and B has the genotypes AA, BB, and AB. Abbreviating them to A, B, and H,
respectively, the genotypes of loci 1 and 2 are cross-classified in Table 1. If this
table shows some discrepancy against the independence of rows and columns, then
the lack of individuals (sterility) is assumed to have happened when the loci pair has
particular genotypes. Noting this, Mizuta et al. (2010) used the chi-square statistics for
independence (Pearson’s chi-square statistics) as scan statistics for detection. Similar
scan statistics are used by Kao et al. (2010) in an F1 spore population from an inter-
species cross of yeast.

Let Tc1c2( j1, j2) (c1 < c2) be the chi-square statistic calculated from the pair of the
marker j1 on chromosome c1 and the marker j2 on chromosome c2. The multiplicity-
adjusted p-value can be obtained from the upper probability of the maximum of all
chi-square statistics maxc1<c2 max j1, j2 Tc1c2( j1, j2) under the null hypothesis H0 that
a BDM pair does not exist. The distribution of each statistic Tc1c2( j1, j2) is approx-

Table 1 Cross table of
genotypes in two loci (F2)

Locus 1\Locus 2 A B H

A nAA nAB nAH

B nBA nBB nBH

H nHA nHB nHH
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Maximum of a chi-square field on lattice points 729

imated as the chi-square distribution with 4 degrees of freedom when the number n
of individuals is large. However, these statistics are not independent and are highly
correlated because of the linkage. Under the assumption of Haldane’s model (see e.g.,
Siegmund and Yakir 2007, Sect. 5.6), which is the most standard model for linkage,
the joint distribution under the null hypothesis H0 is described in Proposition 1 below.
The proof is given in Sect. 4.1.

Proposition 1 (a) Let d1 j1 (M: Morgan) be locations of markers j1 (= 1, . . . , m1) on
a chromosome (chromosome 1, say). Let d2 j2 be locations of markers j2 (= 1, . . . , m2)

on another chromosome (chromosome 2, say). Under the null hypothesis that a BDM
pair does not exist, as the total sample size n goes to infinity, convergence in distribution

T12( j1, j2)⇒ Z1( j1, j2)
2+Z2( j1, j2)

2+Z3( j1, j2)
2+Z4( j1, j2)

2 (n → ∞)

(1)

holds jointly for all ( j1, j2), where Z1, . . . , Z4 are independent, and for each k, the
Zk(i1, i2)s are distributed according to the multivariate normal distribution with a
marginal mean 0, a variance 1, and the following covariance structure:

Cov(Zk(i1, i2), Zk( j1, j2)) = e−ρk1|d1i1−d1 j1 | × e−ρk2|d2i2 −d2 j2 | (2)

with

(ρk1, ρk2) =
{

(2, 2) (k = 1), (2, 4) (k = 2),

(4, 2) (k = 3), (4, 4) (k = 4).
(3)

(b) Under the null hypothesis that a BDM pair does not exist, Tc1c2 and Tc′
1c′

2
are

asymptotically independently distributed unless (c1, c2) = (c′
1, c′

2).

This proposition does not tell us about marker pairs belonging to the same chromo-
some. When two markers are located on the same chromosome, the linkage affects the
independence of the rows and columns in Table 1, and the chi-square statistic simply
measures the effect of the linkage directly. Since this is irrelevant to the reproductive
isolation, we ignore such pairs.

Based on the asymptotic distribution given by Proposition 1, we can evaluate the
multiplicity-adjusted p-value (see 17). Actually, in our genetic application, the sample
size n is large enough (more than 100, at least) and this asymptotic approximation
works well (see Sect. 2.5). In this context, calculation of the upper probability of
the maximum of a chi-square random field on lattice points is crucial. The primary
theoretical purpose of this paper is to provide approximate formulas for upper tail
probability in a more general setting.

1.3 Other examples

The covariance structure in Proposition 1 also appears in other scan statistics. We
illustrate two examples briefly.
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730 S. Kuriki et al.

The first example is the detection of epistasis in quantitative trait loci (QTL) analy-
sis. In QTL analysis for F2 population, phenotype y and genotype z j are observed for
each individual, where j is the index of markers, and z j takes the values A, B, and H.
The following is a simple model of QTL analysis incorporating the effects of epistasis
between a loci pair ( j1, j2):

y = μ +
∑

j

(α jv j + β jw j ) + γ1v j1v j2 + γ2v j1w j2 + γ3w j1v j2 + γ4w j1w j2 + ε,

where v j = 1 (z j = A), = 0 (z j = H), = −1 (z j = B), w j = 1 (z j = A, B), =
−1 (z j = H), and ε is a Gaussian measurement error. The parameters γ1, . . . , γ4
represent the epistasis. For identifying the loci pair ( j1, j2), the scan statistic U ( j1, j2)
defined as the likelihood ratio test (LRT) statistic for testing the null hypothesis of no
epistasis γ1, . . . , γ4 = 0 is used. It is shown that the asymptotic joint distribution
of {U ( j1, j2)} is the same as that of {T ( j1, j2)} in Proposition 1 when j1 and j2
are on different chromosomes, and the multiplicity-adjusted p-value can be obtained
similarly.

The second example is the detection of a change-point in two-way ordered cate-
gorical data. For the cell probability {pi j }a×b, Hirotsu (1997) assumed a log-linear
model with a change-point at (i0, j0):

log pi j = αi + β j + γ1(i ≤ i0, j ≤ j0),

where 1(·) is the indicator function, and define a scan statistic V (i0, j0) as the LRT
statistic for testing γ = 0. Under the null hypothesis, {V (i0, j0)}i0=1,...,a, j0=1,...,b is

asymptotically equivalent to {Z1( j1, j2)2} in Proposition 1 with d1 j = log
Pj

1−Pj
, d2 j =

log
Q j

1−Q j
, Pi = ∑i

k=1
∑b

l=1 pkl , Q j = ∑a
k=1
∑ j

l=1 pkl , and multiplicity-adjusted
p-value can be obtained in our framework.

2 Approximate tail probabilities

2.1 Chi-square random fields restricted on lattice points

In this section, as a generalization of the random field referred to in Proposition 1, we
define a chi-square random field on a multi-dimensional index set with a product-type
covariance structure such as (2), and consider the distribution of its maximum over a
multi-dimensional lattice points.

For k = 1, . . . , m, let us consider a real-valued continuous Gaussian random field
on R

p that has the following moment structure:

E[Zk(t)] = 0, V [Zk(t)] = 1, Cov(Zk(t), Zk(t
′)) = Rk(t − t ′),
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Maximum of a chi-square field on lattice points 731

where for h = (h1, . . . , h p),

Rk(h) =
p∏

i=1

Rki (hi ), Rki (hi ) = 1 − ρki |hi | + o(|hi |) as hi → 0, (4)

and ρki is a positive constant. In particular, when Rki (hi ) = e−ρki |hi |, this expres-
sion represents the direct product covariance structure of the stationary Ornstein–
Uhlenbeck process. Z1, . . . , Zm are assumed to be independent. Moreover, define

Z(t) = (Z1(t), . . . , Zm(t)), Y (t) = ‖Z(t)‖ =
√√√√ m∑

k=1

Zk(t)2. (5)

Y (t)2, t = (t1, . . . , tp) ∈ R
p is a chi-square random field whose marginal distribution

is the chi-square distribution with m degrees of freedom.
For i = 1, . . . , p, let 0 = di0 < di1 < · · · < dini be distinct points, and let

Ti = {di0 (= 0), di1, . . . , dini }. Define a p-dimensional unequally spaced lattice point
set

T = T1 × · · · × Tp ⊂ R
p.

In this section, we provide an approximate formula for the tail probability of the
maximum of the chi-square random field Y restricted on the discrete set T :

P
(

max
t∈T

Y (t) ≥ b
)

as b → ∞. (6)

2.2 Approximations based on nonlinear renewal theory

In this subsection, we study large-deviation approximations for the distribution of the
maximum (6) in the framework of the nonlinear renewal theory devised by Woodroofe
(1982) and Siegmund (1988). The outline of this method is that we first prove that
maxt∈T Y (t) can be approximated by the maximum of a suitably defined random walk
when Y is large and the spacing of lattice is small. We then evaluate the distribution
of its maximum with the help of sequential analysis.

A drawback of the method is that the index set T must be an equally spaced lattice
point set. That is, for all i , the points di0 < · · · < dini belonging to Ti are assumed to
be equally spaced as

di1 − di0 = · · · = dini − dini −1 (= Di , say).

If the spaces are not equal, the random walk in the limit does not approach the
sum of identical distributions, and hence one cannot utilize the reproductivity in the
sequential analysis. However, as we show in Sect. 2.4, in typical settings for genome
analysis, the upper probability for the maximum on unequally spaced lattice points is
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bounded above by that for the maximum on the equally spaced lattice (i.e., the latter
gives a conservative bound for the former), and the difference between them is not
substantial.

Define a bounded rectangle in R
p by

T̃ = T̃1 × · · · × T̃p ⊂ R
p, T̃i = [0, dini ].

For

j = ( j1, . . . , jp) ∈ Z
p, D = (D1, . . . , Dp) ∈ R

p, (7)

we write j D = ( j1 D1, . . . , jp Dp). Our problem is to approximate the distribution of
the maximum on p-dimensional lattice points whose spacing in the i th coordinate is
Di as follows:

P
(

max
j∈J

Y ( j D) ≥ b
)
, J =

{
j ∈ Z

m | j D ∈ T̃
}
, as b → ∞.

By using the approach of nonlinear renewal theory, we can obtain the following
formula. The proof is given in Sect. 4.2.

Theorem 1 As b → ∞, Di → 0 such that b
√

Di → ci ∈ (0,∞), i = 1, . . . , p,

P
(

max
j∈J

Y ( j D) ≥ b
)

∼ |T̃ |
(2π)m/2 bm+2p−2e−b2/2

∫
Sm−1

p∏
i=1

ρ̄iν(b
√

2ρ̄i Di ) du, (8)

where du is the volume element of the unit sphere S
m−1 in R

m at u = (u1, . . . , um) ∈
S

m−1,

ρ̄i = ρ̄i (u) =
m∑

k=1

u2
kρki , (9)

|T̃ | is the Lebesgue measure of T̃ , and

ν(x) =
{

2x−2 exp
{
−2
∑∞

n=1 n−1Φ
(
− 1

2 x
√

n
)}

(x > 0),

1 (x = 0)

with Φ(·), the cumulative distribution function of the standard normal distribution.

It is reported that the asymptotic setting where Di = O(b−2) as b → ∞ assumed
in Theorem 1 leads to good approximation formulas in QTL analysis when makers
are dense (Dupuis and Siegmund 1999; Siegmund 2004; Siegmund and Yakir 2007).

Remark 1 The function ν(x) can be conveniently approximated by the following:

ν(x) ≈ (2/x)(Φ(x/2) − 1/2)

(x/2)Φ(x/2) − φ(x/2)
, (10)
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where φ(·) is the density function of the standard normal distribution (Siegmund and
Yakir 2007). We use this in numerical calculations presented in Sect. 2.4.

Remark 2 The upper tail probability of the maximum of a continuous chi random field
Y over a continuous set T̃ can be obtained by following Piterbarg (1996), Corollary
7.1 as follows:

P
(

max
t∈T̃

Y (t) ≥ b
)

∼ |T̃ |
(2π)m/2 bm+2p−2e−b2/2

∫
Sm−1

p∏
i=1

ρ̄i (u) du (b → ∞).

(11)

This is coincident with the right-hand side of (8) with ci = 0. Since maxt∈T Y (t) ≤
maxt∈T̃ Y (t), (11) is an asymptotic upper bound for (6). This can be confirmed directly
from the fact ν(x) ≤ 1.

Remark 3 The Bonferroni bound of the left-hand side of (8) is

P
(

max
j∈J

Y ( j D) ≥ b
)

≤ |J | P
(
χ2

m ≥ b2),

where χ2
m is a chi-square random variable with m degrees of freedom. As b → ∞,

this Bonferroni bound is asymptotically evaluated as

|T̃ |
(2π)m/2 bm+2p−2e−b2/2 1∏p

i=1(b
2 Di )

∫
Sm−1

du. (12)

Here, we used |J | = |T̃ |/∏p
i=1 Di , P(χ2

m ≥ b2) ∼ bm−2e−b2/2/2m/2−1Γ (m
2 ) and∫

Sm−1 du = 2πm/2/Γ (m
2 ). The right-hand side of (8) is actually bounded above by

(12) because of ν(x) ≤ 2x−2.

2.3 Approximations based on the volume-of-tube method

In this subsection, we provide a conservative bound for the distribution of the maximum
of a chi-square random field (6) by adopting an integral-geometric approach referred
to as the volume-of-tube method or the Euler characteristic heuristic.

The volume-of-tube method approximates the distribution of the maximum of a
Gaussian random field that has a continuous and piecewise smooth sample path. It
is particularly useful when the marginal distribution (with a fixed index) is standard
normal N (0, 1). (See Sun 1993; Kuriki and Takemura 2001, 2009; Takemura and
Kuriki 2002; Adler and Taylor 2007.) In order to apply the volume-of-tube method
to our problem, we need to describe our problem in terms of a Gaussian random field
with a continuous and piecewise smooth sample path.

First, we modify the Gaussian random field Zk on a discrete set T to define
a Gaussian random field Z̃k on a continuous set T̃ that has the following
properties:
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734 S. Kuriki et al.

(a) Zk(t) = Z̃k(t) (if t ∈ T ).
(b) As a function of t ∈ T̃ , Z̃k(t) is continuous and piecewise smooth.

Note that continuous processes with the covariance structures given by (4) do not
satisfy (b). This is because the covariance function is not differentiable at h = 0, and
hence the sample path is not differentiable everywhere.

Define a chi random field on the index set T̃ by

Ỹ (t) =
√√√√ m∑

k=1

Z̃k(t)2.

In addition, define a Gaussian random field on the index set T̃ × S
m−1 by

X̃(t, u) =
m∑

k=1

uk Z̃k(t), u = (u1, . . . , um) ∈ S
m−1.

Since Y (t) = Ỹ (t) = maxu∈Sm−1 X̃(t, u) for t ∈ T , we can use the upper proba-
bility of maxt∈T̃ Y (t) = max(t,u)∈T̃ ×Sm−1 X̃(t, u) as a conservative bound for that of
maxt∈T Y (t). Note that X̃(t, u) with (t, u) fixed has a standard normal distribution.

Under the volume-of-tube method, the index set T̃ × S
m−1 is regarded as a Rie-

mannian manifold endowed with a metric of

g(t, u) = Cov
(∇(t,u) X̃(t, u),∇(t,u) X̃(t, u)

)
(13)

at (t, u). When a positive definite metric can be defined by (13), approximate tail
probability formulas can be obtained as asymptotic expansions involving geometric
invariants measured by this metric. However, even when the index set contains sin-
gularities where the metric is not properly defined, if the volume Vol(T̃ × S

m−1) of
the index set can only be evaluated by integrals over regular sets, the leading-term
formula given below applies (Takemura and Kuriki 2003). Note that the dimension of
the index set is dim(T̃ × S

m−1) = p + m − 1.

P

(
max
t∈T̃

Ỹ (t)≥b

)
= P

(
max

(t,u)∈T̃ ×Sm−1
X̃(t, u)≥b

)

∼ Vol
(
T̃ × S

m−1) · 2

(2π)(p+m)/2
bp+m−2e−b2/2 (b→∞). (14)

There is no unique way of constructing a Z̃k satisfying (a) and (b) from Zk . We
construct Z̃k by undertaking the following steps.

(i) Dissect the p-dimensional rectangle whose vertices are flanking lattice points
of T ,

[d1 j1−1, d1 j1 ] × · · · × [dpjp−1, dpjp ],
into p! simplices.
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Maximum of a chi-square field on lattice points 735

(ii) For each simplex, define Z̃k over the simplex by linearly interpolating the values
of Zk at vertices and multiplying by a scalar so that the variance of Z̃k at each
point of the simplex is 1.

Details of the proof of the next theorem and details of how to construct Z̃k are given
in Sect. 4.3.

Theorem 2 Let Di j = di j − di j−1. As b → ∞ and max Di j → 0,

P
(

max
t∈T

Y (t) ≥ b
)

≤ P

(
max
t∈T̃

Ỹ (t) ≥ b

)
∼ 2V

(2π)(m+p)/2
bm+p−2e−b2/2, (15)

where

V = 2p/2
p∏

i=1

ni∑
j=1

√
Di j

∫
Sm−1

p∏
i=1

√
ρ̄i (u) du,

and ρ̄i (u) is defined in (9). In addition, du is the volume element of S
m−1 at u.

Remark 4 The polynomial factor bm+p−2 in (15) is smaller than bm+2p−2 in (8) and
(11). However, this does not imply that (15) is a better bound than (8). As max Di j →
0,
∑ni

j=1 Di j = O(1),
∑ni

j=1

√
Di j ≥∑ni

j=1 Di j/
√

max Di j → ∞, and hence V →
∞. V is not of constant order.

Ninomiya (2004) provided a conservative bound for the upper probability of the
maximum of a Gaussian random field on a 2-dimensional lattice with a product-type
covariance structure (4) in detecting a change-point in two-way ordered categorical
data. Rebaï et al. (1994) also applied the volume-of-tube method to linkage analysis. He
computed thresholds for the maximum log odds (LOD) score in the interval mapping
method using Rice’s formula, which is essentially equivalent to the volume-of-tube
method.

2.4 Numerical comparisons of proposed formulas

This and succeeding subsections are devoted to numerical studies. In this subsection,
we make numerical comparisons of three approximations: the formula based on nonlin-
ear renewal theory (Theorem 1); the conservative bound based on continuous processes
(Remark 2); and the conservative bound based on the volume-of-tube method (Theo-
rem 2). The Bonferroni method (Remark 3) is also included as a reference. Mindful
of the problem of detecting the interactive loci pairs (BDM pairs), as explained in
Sect. 1, we set the parameters as follows: The dimension of the index set is p = 2, the
chi-square degrees of freedom is m = 4 and 1, (ρk1, ρk2) (k = 1, 2, 3, 4) are in (3),
n1 = n2 = 50, 100, 200, D1 j = D2 j ≡ 0.2/100, 1/100, 5/100 (equally spaced),
(D1 j ) j≥1 = (D2 j ) j≥1 = (0.5, 1, 0.5, 1, 3, 0.5, 1, 0.5, 1, 1, . . .)/100 (repeat the cycle
with period 10) (pattern I), (D1 j ) j≥1 = (D2 j ) j≥1 = (0.5, 0.5, 3, 0.5, 0.5, . . .)/100
(repeat the cycle with period 5) (pattern II), T̃ = [0, 1]2. Note that the length 1/100
corresponds to 1 cM on a chromosome.
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Let U = (U1, . . . , Um) be a random vector with a uniform distribution on the unit
sphere S

m−1 in R
m . An integral over S

m−1 with respect to the volume element du can
be replaced by the expectation

∫
Sm−1 f (u)du = Vol(Sm−1) E[ f (U )], Vol(Sm−1) =

2πm/2/Γ (m/2). In particular, we use the following for m = 4 and (ρk1, ρk2) given
in (3):

E

[
2∏

i=1

ρ̄i (U )

]
=
∏2

i=1(
∑m

k=1 ρki ) + 2
∑m

k=1 ρk1ρk2

m(m + 2)
= 9,

E

[
2∏

i=1

√
ρ̄i (U )

]
.= 2.971.

Moreover, we use the approximation (10) in calculating the special function ν(x).
Figures 2, 3, 4 illustrate the comparisons among three approximate formulas as well

as empirical distributions of Monte Carlo simulations with 10,000 iterations for the
probability P

(
maxt∈T Y (t)2 ≥ b2

)
. Random numbers are generated from the follow-

ing spatial autoregressive model: For k = 1, . . . , m, i = 0, 1, . . . , n1 (= 100), j =
0, 1, . . . , n2 (= 100), let εk(i, j) be independent standard normal distributed random
variables. Generate Zk(i, j) sequentially according to
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Fig. 2 Comparisons of upper probability formulas (equally spaced case). Degrees of freedom m = 4, T̃ =
[0, 1]2, Di j ≡ 0.05 (red), 0.01 (black), 0.002 (green). Continuous approximation is in gray. Monte Carlo
simulations were based on 10,000 iterations
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Fig. 3 Comparisons of upper probability formulas (equally spaced case). Degrees of freedom m = 1, T̃ =
[0, 1]2, Di j ≡ 0.05 (red), 0.01 (black), 0.002 (green). Continuous approximation is in gray. Monte Carlo
simulations were based on 10,000 iterations
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Fig. 4 Comparisons of upper probability formulas (unequally spaced case). Degrees of freedom m =
4, T̃ = [0, 1]2, Di j ≡ 0.01 (black), pattern I: (Di j ) j≥1 = (0.5, 1, 0.5, 1, 3, 0.5, 1, 0.5, 1, 1, . . .)/100
(red), pattern II: (Di j ) j≥1 = (0.5, 0.5, 3, 0.5, 0.5, . . .)/100 (green). Continuous approximation and the
Bonferroni bound are is in gray. Monte Carlo simulations were based on 10,000 iterations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zk(0, 0) = εk(0, 0),

Zk(i, 0) = αk(i)Zk(i − 1, 0) +
√

1 − αk(i)2 εk(i, 0) (i ≥ 1),

Zk(0, j) = βk( j)Zk(0, j − 1) +
√

1 − βk( j)2 εk(0, j) ( j ≥ 1),

Zk(i, j) = αk(i)Zk(i − 1, j) + βk( j)Zk(i, j − 1)

−αk(i)βk( j)Zk(i − 1, j − 1)

+
√

1 − αk(i)2
√

1 − βk( j)2 εk(i, j) (i, j ≥ 1),

(16)

where

αk(i) = e−ρk1 D1i , βk( j) = e−ρk2 D2 j .

Then,

max
i, j≥0

Y (i, j)2 = max
i, j≥0

4∑
k=1

Zk(i, j)2

is obtained. In these figures, the transformed upper probabilities of the three approx-
imate formulas using the transformation x �→ 1 − e−x are depicted. This map is
adopted by Dupuis and Siegmund (1999), (9), to restrict the maximum p-value to less
than 1 without altering the asymptotic behaviors of the tail probabilities.

Figures 2 and 3 show that the formula based on nonlinear renewal theory approx-
imates the tail probabilities well in wide ranges of the marker spacing, length of
chromosomes. In particular, the case where the degree m of freedom is 1 shows
greater accuracy than when m = 4. We conclude that the asymptotic setting where
Di = O(b−2) (b → ∞) assumed in Theorem 1 fits to our genetic applications where
the marker spacings are fairly small. On the other hand, the formulas based on the
volume-of-tube method and the continuous process yield upper bounds for the upper
probabilities. Neither of these two methods is superior to the other. The Bonferroni
method is always most conservative.

Figure 4 shows that the statistics for unequally spaced sampling are slightly below
those for equally spaced sampling. This suggests that the formulas for equally spaced
lattice lead to conservative p-value estimators when the sampling spaces are unequal.

2.5 Adequacy of asymptotic approximation

Throughout the paper, our arguments rely on the asymptotic approximation of Pear-
son’s statistics to chi-square statistics. For a single contingency table, it is said that this
approximation works well practically if expected cell frequencies are greater than 5
(Agresti 2002, Section 3.2.1). The sample size in our application is large enough, and
this criterion holds for each loci pair table in Table 1. However, we need to be careful
since we are coping with a joint distribution of many tables. Figure 5 depicts the upper
probabilities of the statistics in both cases where the sample size n is finite and infinite
by Monte Carlo simulations. The setting of experiments is the same as in Fig. 2 with
Di j ≡ 0.01. The curve for n = ∞ is the same as in Fig. 2. The curves for n < ∞ are
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Fig. 5 Tail probabilities when n is finite and infinite. Degrees of freedom m = 4, T̃ = [0, 1]2, Di j ≡ 0.01.
Numbers of iterations were 1,000 (n < ∞), 10, 000 (n = ∞)

estimated by Monte Carlo simulations with 1,000 replications. For the case n < ∞,
we first generate the sequences of genotypes ε

(t)
i , δ

(t)
i , ε̃

(t)
j , δ̃

(t)
j by means of Markov

property (19), calculate Ti j by (20), and then take the maximum maxi, j Ti j . Figure 5
suggests that asymptotic approximation based on chi-square distribution is practically
enough even when n = 50.

3 Detection of interactive loci pairs

3.1 Data analysis for the F2 population

As we explained in Sect. 1, Mizuta et al. (2010) conducted a genome scan of all pairs
of marker loci of F2 individuals of rice using chi-square statistics for independence.
In this section, we reexamine the data from the viewpoint of multiple testings.

Rice has 12 chromosomes and their total length is around 1,600 cM. Two strains
of rice used to produce the F2 population are Nipponbare and Kasalath. Nipponbare
is a short-grained rice in japonica variety, and Kasalath is a long-grained rice in
indica variety. These two types have contrasting characteristics, and hence are used
often in QTL analysis. By using Kasalath pollen, the F1 population was produced.
The F2 is an offspring resulting from the self-pollination of F1 individuals. The data
comprise genotypes of 994 codominant markers at different locations covering the
whole genome for n = 186 individuals of the F2 population (Harushima et al. 1998).
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Figure 1 is a contour plot of chi-square statistics calculated from all
(

994
2

)
.=

500, 000 marker pairs. Because of linkage, the statistics are highly positively corre-
lated, and large values tend to appear in neighborhoods of the “high peak”. (As stated
in Sect. 1, marker pairs on the same chromosome take large values. Because these
values simply measure the linkage, we ignore them.)

Table 2 shows the highest 20 peaks that do not seem to be caused by the linkage
effect. The maximum chi-square statistic,

max
1≤c1<c2≤12

max
j1, j2

Tc1c2( j1, j2) = 33.6,

is observed between markers on chromosomes 9 and 12. This corresponds to a p-
value of 0.9 × 10−6 for a chi-square distribution with 4 degrees of freedom, which
is highly significant if we do not take the multiplicity of tests into account. However,
because of the high number of observed statistics (around 500,000), some adjustment
for multiplicity is required. The Bonferroni-adjusted p-value for the maximum value
is 0.9×10−6×500, 000 = 0.45. However, this is conservative because the Bonferroni
adjustment does not take into account the highly positive correlations.

Table 2 The largest 20 chi-square values

No. Marker Chr (cM) Marker Chr (cM) Chi-square T a

1 R1683 9 94.1 S10637A 12 13.4 33.6 (2.9)

2 P130 6 54.0 S12886 11 116.1 33.2 (7.1)

3 V163 5 71.1 S11447 12 95.9 26.2 (1.2)

4 S2074 9 57.4 S10906 10 2.0 23.8 (7.2)

5 P60 3 92.1 S2572 12 26.5 23.3 (3.1)

6 Y5714L 1 69.1 R3203 1 160.0 21.7 (3.9)

7 S1046 1 161.9 C946 4 10.4 20.9 (2.9)

8 V10A 3 2.5 V133 8 107.0 20.7 (6.1)

9 C191A 1 141.9 C1219 3 157.1 20.6 (1.7)

10 P61 1 181.7 R2965 10 2.3 20.5 (5.9)

11 S11214 1 45.6 S1520 6 15.2 20.0 (21.1)

12 G55 3 34.4 P126 6 39.6 19.8 (7.6)

13 S1046 1 161.9 G267 4 111.2 19.8 (4.3)

14 R3192 1 26.9 C922A 1 121.0 19.7 (3.0)

15 R19 3 98.2 G7004 4 72.3 19.5 (9.3)

16 P60 3 92.1 C1424 6 112.1 19.3 (3.8)

17 R2625 1 155.3 S851 3 150.1 19.2 (2.3)

18 C506 9 93.0 Y1053R 10 34.6 19.1 (3.8)

19 S10879 9 94.4 C496 11 30.3 19.0 (2.8)

20 C2523S 7 8.8 S2545 12 72.5 19.0 (1.7)
a Values in parentheses are chi-square T s in the second experiment
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When we consider a particular chromosome pair, say (c1, c2), the statistics
Tc1c2( j1, j2) ( j1 = 1, . . . , nc1 , j2 = 1, . . . , nc2) have the correlation structure
described in Proposition 1 (a). Hence, the asymptotic null distribution of the maxi-
mum for pairs on the chromosome pair (c1, c2) can be evaluated. Furthermore, noting
Proposition 1 (b), which states that statistics on the different pairs of chromosomes
are asymptotically independent, we can evaluate the multiplicity-adjusted p-values
for the maximum statistics over whole chromosomes as follows:

p-value = F
(

max
1≤c1<c2≤12

max
j1, j2

Tc1c2( j1, j2)
)
,

F(x) = 1 −
∏

1≤c1<c2≤12

{
1 − P

(
max

t1∈Tc1 ,t2∈Tc2

Y (t1, t2)
2 ≥ x

)}
,

(17)

where Y is a chi random field defined in (5) with p = 2, m = 4, and ρki in (3). The
locations (M) of markers on chromosome i are denoted by Ti = {di0, . . . , dini }.

The multiplicity-adjusted p-value (17) for the maximum chi-square of 33.6 was
estimated as 0.068 (Monte Carlo), 0.104 (renewal theory), and 0.240 (tube method). In
applying Theorem 1, we substituted the average of the marker spacing on chromosome
i for Di . All of the peaks listed in Table 2 were not significant at 5%.

In the Monte Carlo method, random variables were generated from the recurrence
relations in (16). Computational time was 14 days and 8 h for 10,000 iterations using
a supercomputer SGI Altix3700 and the R language.

Remark 5 In QTL analysis, permutation tests are commonly used for estimating the
null distribution of the maximum LOD scores (Churchill and Doerge 1994). For our
problem, we can propose the procedure described below. The data set of the genotypes
of all individuals is denoted by D. Let Π be the set of all permutations of individual
numbers. Repeat steps (i)–(ii).

(i) Choose a permutation π from Π at random. Let Dπ be the data set D with their
individual numbers relabeled by the permutation π .

(ii) Make cross-classified tables between all markers of D and all markers of Dπ by
their genotypes (i.e., in Table 1, locus 1 is taken from D, and locus 2 is taken from
Dπ ), calculate the chi-square statistics from the tables, and find their maximum.

The null distribution of the maximum chi-square statistics can be estimated as the
empirical distribution of the maxima obtained in (ii).

However, the method referred to in Remark 5 requires at least as much computa-
tional time as that required for Monte Carlo.

Moreover, Mizuta et al. (2010) performed additional genome scan searches for
another F2 population of a similar sample size. The chi-square statistics corresponding
to the peaks detected in the initial experiment are listed in the last column of Table 2.
Except for peak No. 11, all other peaks in Table 2 showed low values of the chi-square
statistics in the second scan.
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3.2 Data analysis for the BC population

Furthermore, Mizuta et al. (2010) carried out an additional experiment using the recip-
rocal BC population to Nipponbare. This experiment can distinguish where the interac-
tion occurs, i.e., male gametophyte, female gametophyte, or zygote. They selected 159
markers including those exhibiting large chi-square values in the F2 data analysis and
examined the genotypes of all pairs of these selected markers in the BC populations.

Compared with the F2, the types of BDM pairs that can be detected from the BC
population are limited. On the other hand, the detection power (the power function of
test) for detectable pairs is expected to be higher.

The BC population is the experimental crossing population produced by crossing
strain A with the F1 made from strains A and B. Note that there is some arbitrariness
about whether the F1 is used as the maternal parent or pollen parent. The set of two
BC populations corresponding to these two cases is called the reciprocal BC. Only
genotype AB is observed in the F1 population. Two types of genotypes, AA and AB,
are observed in the BC population. We abbreviate these two genotypes to A and H,
respectively. The genotypes of two loci 1 and 2 are cross-classified as shown in Table 3.
The chi-square statistic for independence obtained from this table has an asymptotic
chi-square distribution with 1 degree of freedom under the null hypothesis that there
exists no BDM pair.

The 2 × 2 table showing the maximum value of the chi-square statistics is given in
Table 3 (in parentheses). The maximum value is 39.6, which was observed between
chromosomes 1 and 6 in the BC population with the F1 pollen parent. The sample size
was n = 235. This is the loci pair listed as No. 11 in Table 2. In another BC population
with the F1 maternal parent, no significant peak was observed.

In order to obtain the multiplicity-adjusted p-value for this maximum value, we
need the joint distribution of the chi-square statistics. In the BC case, we can prove a
proposition similar to Proposition 1: Part (a) of Proposition 1 holds if convergence in
law (1) is replaced with the convergence

T12( j1, i2) ⇒ Z1( j1, j2)
2 (n → ∞).

Part (b) of Proposition 1 holds as it is.
The multiplicity-adjusted p-value is 2.86 × 10−6 (renewal theory) and 1.57 ×

10−5 (tube method). In either case, it is highly significant. This suggests that this
pair is a candidate of the BDM pair that we are seeking for and that the selection
occurred in male gametophyte, pollen. Actually, Mizuta et al. (2010) confirmed that
the male gametophyte selection of the unbearable genotype combination of the true

Table 3 Cross table of genotypes in two loci (BC)

Locus 1 (Chr 6 S1520) \ Locus 2 (Chr 1 S11214) A H

A (Nipponbare) nAA(75) nAH (13)

H nHA (64) nHH (83)

The table attaining at the maximum chi-square is shown in parentheses
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BDM pair occurred through failure of pollen germination, and the reciprocal disruption
of duplicated genes in the two strains caused the BDM incompatibility. Note that no
other significant peaks were detected.

Finally, we discuss why the interaction was not detected in the F2 but was in the
BC. As explained in Sect. 4.1 (see Lemma 1 and succeeding descriptions), the chi-
square statistic with 4 degrees of freedom obtained from Table 1 can be asymptotically
decomposed into four chi-square components each with 1 degree of freedom. One of
the four components corresponds to the chi-square statistic obtained from Table 3.
However, in producing the BC population, there is some arbitrariness about whether
F1 is used as mother or father, and both cases are assumed to be included in the F2
population each with a probability 1/2. Since the sample sizes for the F2 and BC
data were similar (around 200), no other significant component except for the one
component with 1 degree of freedom was detected in Table 3 (in parentheses). It is
convincing that the chi-square statistic of 20.0 (Table 2, No. 11) in the F2 is almost half
of that of 39.6 in the BC population (pollen parent is F1). In conclusion, although the
chi-square statistic with 4 degrees of freedom obtained from F2 has statistical power
in many directions, larger sample size was needed to detect the BDM pair.

4 Proofs

4.1 Proof of Proposition 1

First, we provide asymptotic presentations of chi-square statistics for independence
when the independent model is true. Let X = (xi j )a×b (x·· = n) be a contingency table
distributed as a multinomial distribution with the cell probability (pi j )a×b (p·· = 1).
Here, we apply the convention that the summation with respect to an index is denoted
by “·”. The chi-square statistic for the hypothesis of independence H0 : pi j = pi · p· j

is denoted by

T = T (X) =
∑
i, j

(xi j − xi ·x· j/n)2

xi ·x· j/n
.

The proofs of the following lemmas are easy and omitted.

Lemma 1 For a 3 × 3 table X = (xi j )1≤i, j≤3, define four 2 × 2 tables:

X1 =
(

x11 x12
x21 x22

)
, X2 =

(
x11 + x12 x13
x21 + x22 x23

)
, X3 =

(
x11 + x21 x12 + x22
x31 x32

)
,

X4 =
(

x11 + x12 + x21 + x22 x13 + x23
x31 + x32 x33

)
.

Under H0, four statistics T (X1), T (X2), T (X3), T (X4) are asymptotically distributed
according to the independent chi-square distributions with 1 degree of freedom, and
it holds that
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T (X) = T (X1) + T (X2) + T (X3) + T (X4) + Op(n
−1/2).

Lemma 2 For a 2 × 2 table, X = (xi j )1≤i, j≤2 with the cell probability (pi j )1≤i, j≤2,

T (X) = 1

n

⎛
⎝ 2∑

i, j=1

(−1)i+ j
√

p3−i,· p·,3− j

pi · p· j
xi j

⎞
⎠

2

+ Op(n
−1/2) (18)

holds under H0.

For the F2 individuals t = 1, . . . , n made from two strains A and B, by cross-
classifying the genotypes of marker i (i = 1, . . . , m) on chromosome 1 and marker
j ( j = 1, . . . , m̃) on chromosome 2, we have the 3 × 3 tables represented by Table 1.
Let Ti j be the chi-square statistic obtained from the table for marker pair (i, j).

For individual t , let ε(t)
i be the genotype of locus i on chromosome 1 inherited from

its mother, and let δ
(t)
i be that from its father. Let ε̃

(t)
j be the genotype of locus j on

chromosome 2 inherited from its mother, and let δ̃
(t)
j be that from its father. We let

ε
(t)
i , δ

(t)
i , ε̃

(t)
j , δ̃

(t)
j =

{
1 (from strain A),

−1 (from strain B).

Then, the 4n random vectors
(
ε
(t)
1 , . . . , ε

(t)
m
)
,
(
δ
(t)
1 , . . . , δ

(t)
m
)
,
(̃
ε
(t)
1 , . . . , ε̃

(t)
m̃

)
,(̃

δ
(t)
1 , . . . , δ̃

(t)
m̃

)
, t = 1, . . . , n are independent of each other, and all elements take

the value ±1 with probabilities 1/2 and 1/2 satisfying a Markov property

P
(
ε
(t)
i+1 = ±ε

(t)
i

∣∣ ε(t)
i

) = P
(
δ
(t)
i+1 = ±δ

(t)
i

∣∣ δ(t)
i

) = 1

2

(
1 ± e−2di,i+1

)
. (19)

ε̃
(t)
j and δ̃

(t)
j have the same Markov structure with di,i+1 replaced by d̃ j, j+1. Here, the

genetic distance between markers i and i ′ on chromosome 1 is denoted by dii ′ (M),
and the genetic distance between markers j and j ′ on chromosome 2 is denoted by
d̃ j j ′ (M). This assumption of linkage is called Haldane’s model. From this model, it
is easy to derive the correlation structures

E
[
ε
(t)
i ε

(t)
i ′
] = E

[
δ
(t)
i δ

(t)
i ′
] = e−2dii ′ , E

[̃
ε
(t)
j ε̃

(t)
j ′
] = E

[̃
δ
(t)
j δ̃

(t)
j ′
] = e−2d̃ j j ′ .

Using this notation, the 3 × 3 table represented by Table 1 can be rewritten as

⎛
⎝nAA nAB nAH

nBA nBB nBH
nHA nHB nHH

⎞
⎠ =

n∑
t=1

⎛
⎜⎝

1
4 (1 + ε

(t)
i )(1 + δ

(t)
i )

1
4 (1 − ε

(t)
i )(1 − δ

(t)
i )

1
2 (1 − ε

(t)
i δ

(t)
i )

⎞
⎟⎠

×
(

1
4 (1 + ε̃

(t)
j )(1 + δ̃

(t)
j ) 1

4 (1 − ε̃
(t)
j )(1 − δ̃

(t)
j ) 1

2 (1 − ε̃
(t)
i δ̃

(t)
i )

)
.

(20)
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In order to derive the joint distribution of the chi-square statistics Ti j , we decompose
the 3 × 3 table into four 2 × 2 tables (i)–(iv) according to Lemma 1.

(i) Table

(
nAA nAB
nBA nBB

)
. The sum of the expected frequencies is n/4. From (18), the

corresponding chi-square statistic has the asymptotic representation

T1,i j = 1

n/4
(nAA − nAB − nBA + nBB)2 + Op(n

−1/2)

=
(

1√
n

n∑
t=1

z(t)
1,i j

)2

+ Op(n
−1/2), z(t)

1,i j = (ε
(t)
i + δ

(t)
i )(̃ε

(t)
j + δ̃

(t)
j )/2.

(ii) Table

(
nAA + nAB nAH
nBA + nBB nBH

)
. The sum of the expected frequencies is n/2. The

corresponding chi-square statistic has the asymptotic representation

T2,i j = 1

n/2
((nAA + nAB) − nAH − (nBA + nBB) + nBH)2 + Op(n

−1/2)

=
(

1√
n

n∑
t=1

z(t)
2,i j

)2

+ Op(n
−1/2), z(t)

2,i j = (ε
(t)
i + δ

(t)
i )(̃ε

(t)
j δ̃

(t)
j )/

√
2.

(iii) Table

(
nAA + nBA nAB + nBB

nHA nHB

)
. The sum of the expected frequencies is n/2.

The corresponding chi-square statistic has the asymptotic representation

T3,i j = 1

n/2
((nAA + nBA) − (nAB + nBB) − nHA + nHB)2 + Op(n

−1/2)

=
(

1√
n

n∑
t=1

z(t)
3,i j

)2

+ Op(n
−1/2), z(t)

3,i j = (ε
(t)
i δ

(t)
i )(̃ε

(t)
j + δ̃

(t)
j )/

√
2.

(iv) Table

(
nAA + nAB + nBA + nBB nAH + nBH

nHA + nHB nHH

)
. The sum of the expected

frequencies is n. The corresponding chi-square statistic has the asymptotic
representation

T4,i j = 1

n
((nAA + nAB + nBA + nBB) − (nAH + nBH) − (nHA + nHB) + nHH)2

+Op(n
−1/2)

=
(

1√
n

n∑
t=1

z(t)
4,i j

)2

+ Op(n
−1/2), z(t)

4,i j = ε
(t)
i δ

(t)
i ε̃

(t)
j δ̃

(t)
j .
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z(t)
k,i j (k = 1, 2, 3, 4) has a mean 0 and a covariance structure

E
[
z(t)

1,i j z
(t)
1,i ′ j ′

] = E
[
(ε

(t)
i + δ

(t)
i )(ε

(t)
i ′ + δ

(t)
i ′ )
]
E
[
(̃ε

(t)
j + δ̃

(t)
j )(̃ε

(t)
j ′ + δ̃

(t)
j ′ )
]
/4

= e−2dii ′ e−2d̃ j j ′ ,

E
[
z(t)

2,i j z
(t)
2,i ′ j ′

] = E
[
(ε

(t)
i + δ

(t)
i )(ε

(t)
i ′ + δ

(t)
i ′ )
]
E
[
(̃ε

(t)
j δ̃

(t)
j )(̃ε

(t)
j ′ δ̃

(t)
j ′ )
]
/2

= e−2dii ′ e−4d̃ j j ′ ,

E
[
z(t)

3,i j z
(t)
3,i ′ j ′

] = E
[
(ε

(t)
i δ

(t)
i )(ε

(t)
i ′ δ

(t)
i ′ )
]
E
[
(̃ε

(t)
j + δ̃

(t)
j )(̃ε

(t)
j ′ + δ̃

(t)
j ′ )
]
/2

= e−4dii ′ e−2d̃ j j ′ ,

E
[
z(t)

4,i j z
(t)
4,i ′ j ′

] = E
[
(ε

(t)
i δ

(t)
i )(ε

(t)
i ′ δ

(t)
i ′ )
]
E
[
(̃ε

(t)
j δ̃

(t)
j )(̃ε

(t)
j ′ δ̃

(t)
j ′ )
] = e−4dii ′ e−4d̃ j j ′ ,

E
[
z(t)

k,i j z
(t)
k′,i ′ j ′

] = 0 (k �= k′).

Part (a) of Proposition 1 follows from the central limit theorem and the continuous
mapping theorem.

When markers i and i ′ are on different chromosomes, or markers j and j ′ are
on different chromosomes, we can let dii ′ = ∞ or d̃ j j ′ = ∞. In each case,

E
[
z(t)

k,i j z
(t)
k′,i ′ j ′

] = 0 for all k and k′. This implies that the statistics Ti j and Ti ′ j ′ are
made from random variables whose limiting distributions are independent Gaussian,
and hence, part (b) of Proposition 1 follows. ��

4.2 Proof of Theorem 1

The proof is divided into three parts. Section 4.2.1 provides an outline of the proof
without proving a key relation (23). In Sect. 4.2.2, it is shown that the chi field Y (t)
restricted on lattice points is approximated by a suitably defined random walk, and
that the maximum of Y (t) can be approximated by the maximum of the corresponding
random walk (26 and 28). Then, (23) is proved using an identity of Laplace transform
provided in Sect. 4.2.3. Differently from change-point problems dealt with in previous
work, the random field Y (t) has a general dimensional index set and general degrees
of freedom. We thereby need to introduce a random walk on a general dimensional
index set, and an integral on a general dimensional unit sphere.

4.2.1 Proof of (8)

By arranging the index set J in the lexicographic order, we can let j0 = ( j0
1 , . . . , j0

d ) ∈
J be the first point such that the random field Y ( j D) takes a value of at least b. Let

J 0( j0) = { j ∈ J | j1 > j0
1 ,

or j1 = j0
1 , j2 > j0

2 ,

or . . . ,

or j1 = j0
1 , . . . , jd−1 = j0

d−1, jd > j0
d

}
.
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Maximum of a chi-square field on lattice points 747

Let S
m−1 be the unit sphere in R

m . Let du be its volume element at u ∈ S
m−1. Let

dy = (y, y + dy).
The event

{
max j∈J Y ( j D) ≥ b

}
is exclusively divided by the value of j0 ∈ J (see

e.g., Dupuis and Siegmund 2000, (15)) as

P
(

max
j∈J

Y ( j D) ≥ b
)

=
∑
j0∈J

P

(
max

j∈J 0( j0)
Y ( j D) < b, Y ( j0 D) ≥ b

)

=
∫

Sm−1

∑
j0∈J

P

(
max

j∈J 0( j0)
Y ( j D) < b, Y ( j0 D) ≥ b,

Z( j0 D)

Y ( j0 D)
∈ du

)

=
∫

y>b

∫
Sm−1

∑
j0∈J

P

(
max

j∈J 0( j0)
Y ( j D) < b, Y ( j0 D) ∈ dy,

Z( j0 D)

Y ( j0 D)
∈ du

)

=
∫

y>b

∫
Sm−1

∑
j0∈J

P

(
max

j∈J 0( j0)
Y ( j D) < b | Z( j0 D) = yu

)

×P

(
Y ( j0 D) ∈ dy,

Z( j0 D)

Y ( j0 D)
∈ du

)

=
∫

x>0

∫
Sm−1

∑
j0∈J

P

(
max

j∈J 0( j0)
Y ( j D) < b | Z( j0 D) = yu

)

×P

(
Y ( j0 D) ∈

(
b + (x, x + dx)

b

)
,

Z( j0 D)

Y ( j0 D)
∈ du

)
. (21)

In the last expression, we made change of variable y = b + x/b.
For fixed j0, Zk( j0 D) ∼ Nm(0, Im), and hence Y ( j0 D) ∼ χm and

Z( j0 D)/Y ( j0 D) ∼ Unif(Sm−1) are independent. Therefore,

P

(
Y ( j0 D) ∈

(
b + (x, x + dx)

b

)
,

Z( j0 D)

Y ( j0 D)
∈ du

)

= P

(
Y ( j0 D)2 ∈

(
(b + x/b)2, (b + x/b)2 · 2dx

))
× du

Vol(Sm−1)

= 2

2m/2Γ (m/2)
bm−2e−b2/2e−x dx × du

Vol(Sm−1)
. (22)

Moreover, as shown later,

∫
x>0

P

(
max

j∈J 0( j0)
Y ( j D) < b | Z( j0 D) = yu

)
dx ∼

∏
i

ρ̄i c
2
i ν(ci

√
2ρ̄i ) (23)

(y = b + x/b, ρ̄i = ρ̄i (u) is in (9)).
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748 S. Kuriki et al.

By substituting (22) and (23) into (21) and noting that
∏

i Di
∑

j0∈J ∼ ∫T̃

∏
i dti =

|T̃ |, Vol(Sm−1) = 2πm/2/Γ (m/2), we obtain

P
(

max
j∈J

Y ( j D) ≥ b
)

∼ |T̃ |∏
i Di

× 1

(2π)m/2 bm−2e−b2/2
∫

Sm−1
du
∏

i

ρ̄i c
2
i ν(ci

√
2ρ̄i ).

This means (8).

4.2.2 Proof of (23)

We use the large-deviation approach developed by Siegmund (1988). See also Kim
and Siegmund (1989).

Suppose that t is fixed. Under a conditional probability measure given Z(t) =
(Zk(t))1≤k≤m = ξ = (ξk)1≤k≤m , the R

m valued random field Z(t + h) = (Zk(t +
h))1≤k≤m with the index h = (hi )1≤i≤p is a Gaussian random field with a mean of

E[Zk(t + h) | ξ ] = Rk(h)ξk,

and a covariance function of

Cov(Zk(t + h), Zk′(t + h′) | ξ) =
{

Rk(h − h′) − Rk(h)Rk(h′) (k = k′),
0 (k �= k′).

When hi is small, these moments can be rewritten as

E[Zk(t + h) | ξ ] = ξk − ξk

p∑
i=1

ρki |hi | + ξko(|h|),

Cov(Zk(t + h), Zk(t + h′) | ξ) =
p∑

i=1

ρki (|hi | + |h′
i | − |hi − h′

i |) + o(|h|).

We consider asymptotics where

hi → 0, ‖ξ‖ → ∞ such that ξk/‖ξ‖ = uk, ‖ξ‖√hi = O(1).

Since Zk(t + h) = ξk + O(
√|h|) = ξk(1 + O(|h|)), we have

Y (t + h) =
√√√√ m∑

k=1

Zk(t + h)2

= ‖ξ‖
√

1 +
∑

k(Zk(t + h)2 − ξ2
k )

‖ξ‖2
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Maximum of a chi-square field on lattice points 749

= ‖ξ‖
{

1 +
∑

k

ξk(Zk(t + h) − ξk)

‖ξ‖2 (1 + O(|h|)) + O(|h|2)
}

= ‖ξ‖ + 1

‖ξ‖
∑

k

ξk(Zk(t + h) − ξk)(1 + O(|h|)).

In this expression, we used

Zk(t + h)2 − ξ2
k = 2ξk(Zk(t + h) − ξk)(1 + O(|h|)) = O(1)

and ξk(Zk(t + h) − ξk)/‖ξ‖2 = O(|h|). Next, consider a conditional random field

with the index h defined by ‖ξ‖{Y (t + h) − ‖ξ‖}∣∣∣
Z(t)=ξ

. The leading terms of the

mean and covariance function of this field are shown to be

−
∑

k

‖ξ‖2u2
k

∑
i

ρki |hi |,
∑

k

‖ξ‖2u2
k

∑
i

ρki (|hi | + |h′
i | − |hi − h′

i |), (24)

respectively.
From now on, let t = j0 D and h = ( j − j0)D in the multi-index notation of (7),

and consider the following (finite dimensional) joint distribution under the condition
that Z( j0 D) = ξ :

b
{
Y ( j D) − ‖ξ‖}∣∣∣

Z( j0 D)=ξ
, j = ( j1, . . . , jp) ∈ J ⊂ Z

p. (25)

When

‖ξ‖, b → ∞, Di → 0 such that ‖ξ‖ ∼ b, b
√

Di → ci ∈ (0,∞),

from (24), the limit of the conditional mean is

−
∑

k

u2
k

∑
i

ρki c
2
i | ji | = −

∑
i

ρ̄i c
2
i | ji |

with ρ̄i = ρ̄i (u)defined in (9), and the limit of the covariance between b
{
Y ( j D)−‖ξ‖}

and b
{
Y ( j ′ D) − ‖ξ‖} ( j ′ = ( j ′1, . . . , j ′p)) is

∑
k

u2
k

∑
i

ρki c
2
i (| ji | + | j ′i |−| ji − j ′i |)

=
∑

i

ρ̄ki c
2
i (| ji |+| j ′i |−| ji − j ′i |)

=
{

2
∑

i ρ̄ki c2
i min(| ji |, | j ′i |) ( ji and j ′i have the same sign),

0 (otherwise).
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Since the limit becomes Gaussian again, the limiting distribution of (25) is equiv-
alent to the distribution of

p∑
i=1

(S+
i ji

+ S−
i ji

), j = ( j1, . . . , jp) ∈ J,

where

S+
i t =

{
Xi1 + · · · + Xit (t > 0),

0 (otherwise),

S−
i t =

{
Xi,−1 + · · · + Xi,t (t < 0),

0 (otherwise),

with Xit ∼ N (−ρ̄i c2
i , 2ρ̄i c2

i ) (i = 1, . . . , p, t ∈ Z) being independent Gaussian
random variables.

Summarizing the discussion above, we have proved that for y = ‖ξ‖ = b
+ x/b ∼ b,

P

(
max

j∈J 0( j0)
Y ( j D) < b | Z( j0 D) = yu

)

= P

(
max

j∈J 0( j0)
b
{
Y ( j D) − ξ

}
< −x | Z( j0 D) = ξ

)

∼ P

(
max

j∈J 0( j0)

p∑
i=1

Si, ji < −x

)
. (26)

In what follows, let j := j − j0 for simplicity. j ∈ J 0( j0) is rewritten as j ∈ J 0(0).
Let

M+
i = max

j>0
Si j , M−

i = max
j≤0

Si j .

Since

max
j∈J 0(0)

= max

[
max

j1>0, j2,..., jp∈Z

, max
j1=0, j2>0, j3,..., jp∈Z

, . . . , max
j1= j2=···= jp−1=0, jp>0

]
,

the event

max
j∈J 0(0)

p∑
i=1

Si, ji < −x (27)

is equivalent to the event that all of the following inequalities hold:

M+
1 + max{M+

2 , M−
2 } + max{M+

3 , M−
3 } + · · · + max{M+

p , M−
p } < −x,

M+
2 + max{M+

3 , M−
3 } + · · · + max{M+

p , M−
p } < −x,

. . .

M+
p < −x .
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Maximum of a chi-square field on lattice points 751

Since M−
p ≥ 0, if both

M+
i + max{M+

i+1, M−
i+1} + · · · + max{M+

p−1, M−
p−1} + M−

p < −x

and M+
p < −x hold, then

M+
i + max{M+

i+1, M−
i+1} + · · · + max{M+

p−1, M−
p−1} + M+

p

< −x − M−
p + M+

p

< −2x < −x

holds. This implies that

M+
i + max{M+

i+1, M−
i+1} + · · · + max{M+

p−1, M−
p−1} + max{M+

p , M−
p } < −x .

Therefore, (27) is equivalent to the event that all of the following hold:

M+
1 + max{M+

2 , M−
2 } + · · · + max{M+

p−1, M−
p−1} + M−

p < −x,

M+
2 + · · · + max{M+

p−1, M−
p−1} + M−

p < −x,

. . .

M+
p < −x .

Repeating this argument reveals that (27) is equivalent to the event that all of the
following inequalities hold:

M+
1 + M−

2 + M−
3 + · · · + M−

p < −x,

M+
2 + M−

3 + · · · + M−
p < −x,

. . .

M+
p < −x .

That is,

(26) ∼ P
(

M+
i + M−

i+1 + · · · + M−
p < −x, 1 ≤ i ≤ p

)

= P
(

max
1≤i≤p

(
M+

i + M−
i+1 + · · · + M−

p

)
< −x

)
. (28)

Because the mean μi and variance σ 2
i of Xik satisfy

−μi

σ 2
i

= −ρ̄i c2
i

2ρ̄i c2
i

≡ −1

2
,
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it follows for any p ≥ 1 that

∫ ∞

0
e−x P

(
max

1≤i≤p

(
M+

i + M−
i+1 + · · · + M−

p

)
< −x

)
dx

=
m∏

i=1

μiν(μi/σi ) =
m∏

i=1

ρi c
2
i ν(ci

√
2ρi ). (29)

A proof is given below. Combining (26), (28) and (29) yields (23).

4.2.3 Proof of (29)

Note that M+
1 , M−

1 , . . . , M+
p , M−

p are all independent. A proof of p = 1 is given
by Siegmund (1992), Lemma 19. For p ≥ 2, from the integration by parts essentially
proved by Siegmund (1992), Proposition 24, we have

RHS of (29)

=
∫ ∞

0
e−x P

(
max

1≤i≤p

(
M+

i + M−
i+1 + · · · + M−

p

)
< −x

)
dx

=
∫ ∞

0
e−x P

(
max

1≤i≤p−1

(
M+

i + M−
i+1 + · · · + M−

p

)
< −x

)
P
(

M+
p < −x

)
dx

= μpν(2μp/σp)

∫ ∞

0
e−x P

(
max

1≤i≤p−1

(
M+

i + M−
i+1 + · · · + M−

p−1

)
< −x

)
dx .

The proof follows from mathematical induction. ��

4.3 Proof of Theorem 2

4.3.1 Random fields defined by triangulation

First, we discuss in detail the construction of Z̃k by triangulation of index set. It is well
known that a p-dimensional cube [0, 1]p can be dissected into congruent p! simplices.
For example, let Πp be the set of all permutations of {1, . . . , p}, and for each π ∈ Πp

let

Sπ = {(x1, . . . , x p) ∈ [0, 1]p | xπ(1) ≥ · · · ≥ xπ(p)}.

Then, [0, 1]p =⋃π∈Πp
Sπ , and Sπ and Sπ ′ (π �= π ′) do not share any interior point.

We dissect the p-dimensional rectangle whose vertices are flanking lattice points

[d1 j1−1, d1 j1 ] × · · · × [dpjp−1, dpjp ]
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Maximum of a chi-square field on lattice points 753

into p! simplices according to the same rule. Let ei ∈ R
p be a vector whose elements

are all 0 except for the i th element of the value 1. Write

t0 = (t1 j1−1, . . . , tpjp−1), Di = Di ji = ti ji − ti ji −1 (i = 1, . . . , p)

for simplicity. Then, one of the resulting simplices produced by the dissection is

conv
{

t0 +
i∑

l=1

Dlel | i = 0, 1, . . . , p
}
. (30)

Let

ξ = (ξ0, . . . , ξp), ξi = Zk

(
t +

i∑
l=1

Dlel

)

be the values of the random field Zk at the p + 1 vertices of the simplex (30). This is
a Gaussian random vector with a mean 0 and a covariance matrix

Σ =

⎛
⎜⎜⎜⎜⎜⎝

1 τ1 τ1τ2 · · · τ1τ2τ3 · · · τp

1 τ2 · · · τ2τ3 · · · τp

1 · · · τ3 · · · τp
. . .

...

1

⎞
⎟⎟⎟⎟⎟⎠

(p+1)×(p+1)

, (31)

where τi = Cov(Zk(t), Zk(t + Di ei )) = Rki (Di ). (Although ξ and τi depend on k,
we omit the index k for simplicity.) We can define the random field Z̃k by interpolating
the random vector ξ into the simplex (30). To be precise, by the affine bijection map
from the canonical p-dimensional simplex

Δp = conv{0, e1, . . . , ep} =
{

s ∈ R
p | 0 ≤ si ,

∑
i

si ≤ 1
}

to the simplex (30), we can introduce a parameter (local coordinates) s = (si ) into
(30), and define a Gaussian random field by

Z̃k(s) = (1 −∑i s)ξ0 +∑i siξi

σ(s)
,

where

σ(s) =
√

ϕ(s)�Σϕ(s), ϕ(s) =
(

1 −
∑

i

si , s1, . . . , sp

)�

is the normalizing constant so that the variance of Z̃k(s) is 1.
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4.3.2 Volume of the index set of the chi-square random fields

The volume of the index set T̃ × S
m−1 can be obtained by summing up the volumes

of the index sets Δp × S
m−1 for the Gaussian random fields

X̃(s, u) =
m∑

k=1

uk Z̃k(s), (s, u) ∈ Δp × S
m−1.

Let u = u(θa) be a local coordinate of S
m−1. Partial derivatives with respect to si

and θa are denoted by ∂i and ∂a , respectively. The covariance matrix of

∂i X̃(s, u) =
m∑

k=1

uk∂i Z̃k(s), ∂a X̃(s, u) =
m∑

k=1

∂auk Z̃k(s)

is
(∑m

k=1 u2
k gk,i j (s) 0
0 ḡab(u)

)
,

where

gk,i j (s) = E[∂i Z̃k(s)∂ j Z̃k(s)], ḡab(u) =
m∑

k=1

∂auk∂buk .

Hence, the volume of the index manifold Δp × S
m−1 is

Vol(Δp × S
m−1) =

∫
Δp×Sm−1

C(s, u),

where

C(s, u) = det

(
m∑

k=1

u2
k gk,i j (s)

)1/2∏
i

dsi du, du = det
(
ḡab(u)

)1/2∏
a

dθa

is the volume element.
We consider the case where Di ∼ 0, or equivalently τi ∼ 1, in Σ (31). Let J be

the (p + 1) × (p + 1) matrix whose elements are all 1. Then,

Σ = J − Σ1 + O(max |1 − τi |2),

where Σ1 is a symmetric matrix such that

(Σ1)i i = 0, (Σ1)i j =
j−1∑
l=i

(1 − τl) (i < j).
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By using the covariance function

r̃k(s, s′) = Cov
(
Z̃k(s), Z̃k(s

′)
) = ϕ(s)�Σϕ(s′)√

ϕ(s)�Σϕ(s) · ϕ(s′)�Σϕ(s′)
,

the metric of the index set Δp is represented as

gk(s) = (gk,i j (s))1≤i, j≤d , gk,i j (s) = ∂ 2̃rk(s, s′)
∂si∂s′

j

∣∣∣
s′=s

.

Simple calculations yield

gk,i j = ϕ�
i Σϕ j

ϕ�Σϕ
− (ϕ�

i Σϕ)(ϕ�
j Σϕ)

(ϕ�Σϕ)2 ,

ϕi = ∂ϕ(s)

∂si
= (−1, 0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−i

)�.

Abbreviating O(max |1 − τi |) as O yields

ϕ�Σϕ = ϕ� Jϕ + O = 1 + O, ϕ�Σϕ j = ϕ� Jϕ j + O = O,

ϕ�
i Σϕ j = ϕ�

i Jϕ j − ϕ�
i Σ1ϕ j + O2 = −ϕ�

i Σ1ϕ j + O2

= −(Σ1)11 + (Σ1)i+1,1 + (Σ1)1, j+1 − (Σ1)i+1, j+1 + O2

=
{∑i

l=1(1 − τl) +∑ j
l=1(1 − τl) −∑ j

l=i+1(1 − τl) + O2 (i < j),
2
∑i

l=1(1 − τl) + O2 (i = j)

= 2
i∑

l=1

(1 − τl) + O2 (i ≤ j),

and

gk,i j =
⎧⎨
⎩2

min(i, j)∑
l=1

(1 − τl)

⎫⎬
⎭ (1 + O(max |1 − τi |)).

By substituting τi = 1 − ρki Di + o(Di ), we obtain

gk,i j =
⎛
⎝2

min(i, j)∑
l=1

ρkl Dl

⎞
⎠ (1 + o(1)) (max Di → 0).
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Some simple calculations yield

det

(
m∑

k=1

u2
k gk,i j (s)

)1/2

= det

⎛
⎝2

min(i, j)∑
l=1

(
m∑

k=1

u2
kρkl

)
Dl

⎞
⎠

1/2

(1 + o(1))

= 2p/2
p∏

i=1

D1/2
i

p∏
i=1

ρ̄i (u)1/2(1 + o(1)),

where ρ̄i (u) is defined in (9). Combined with

∫
Δp

∏
i

dsi =
∫

0≤si ,
∑

si ≤1

∏
i

dsi = 1

p! ,

we obtain the volume of the index set Δp × S
m−1 as

2p/2C

p!
p∏

i=1

D1/2
i (1 + o(1)), C =

∫

Sm−1

p∏
i=1

ρ̄i (u)1/2 du. (32)

By letting Di := Di ji , and summing up (32) with respect to ji = 1, . . . , ni (i =
1, . . . , p), we can show that the volume of T̃ × S

m−1 is

Vol(T̃ × S
m−1) = 2p/2C

p∏
i=1

⎛
⎝ ni∑

j=1

D1/2
i j

⎞
⎠ (1 + o(1)).

By substituting this into (14), we obtain the tube formula (15) for the probability
P
(
maxt∈T̃ Ỹ (t) ≥ b

)
. ��
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