Ann Inst Stat Math (2014) 66:345-367
DOI 10.1007/s10463-013-0417-x

Qualitative inequalities for squared partial correlations
of a Gaussian random vector

Sanjay Chaudhuri

Received: 4 January 2011 / Revised: 5 February 2013 / Published online: 14 August 2013
© The Institute of Statistical Mathematics, Tokyo 2013

Abstract We describe various sets of conditional independence relationships, suf-
ficient for qualitatively comparing non-vanishing squared partial correlations of a
Gaussian random vector. These sufficient conditions are satisfied by several graphical
Markov models. Rules for comparing degree of association among the vertices of
such Gaussian graphical models are also developed. We apply these rules to compare
conditional dependencies on Gaussian trees. In particular for trees, we show that such
dependence can be completely characterised by the length of the paths joining the
dependent vertices to each other and to the vertices conditioned on. We also apply our
results to postulate rules for model selection for polytree models. Our rules apply to
mutual information of Gaussian random vectors as well.

Keywords Inequalities - Graphical Markov models - Mutual information -
Squared partial correlation - Tree models

1 Introduction

In graphical Markov models literature, several attempts have been made to charac-
terise the degree of conditional association among the vertices by the structure of
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the underlying graph. Such knowledge is considered useful in model selection. For
example, Cheng et al. (2002) describe an algorithm of model selection for directed
acyclic graphs (DAG) which assumes that the mutual information has a monotone
relationship with certain structure based length of the path. Examples (Chickering
and Meek 2006) show that such a monotone DAG faithfulness property or a similar
compound monotone DAG faithfulness property do not hold even for simple binary
DAGs. In fact, except in some specific cases e.g. Greenland (2003) in epidemiol-
ogy, Spirtes et al. (2000, causal pipes) in causal analysis, no result is known in this
context.

A more general problem is to order the squared partial correlation coefficients
among the components of a Gaussian random vector. For these random vectors, squared
partial correlation coefficients completely measure the degree of association between
its components conditional on a subset of the components. This measure is a polyno-
mial in the entries of their covariance matrices. Thus in many situations it is beneficial
to be able to order squared partial correlation coefficients in a way, such that the
ordering does not depend on the specific values of the covariances.

Simple counter-examples show that such qualitative comparisons cannot hold
unless the covariance matrix belongs to certain subsets of positive definite matri-
ces. In this article, we specify such subsets by conditional independence relationships.
For a graphical Markov model validity of such relationships can be simply read off
from the underlying graph. Thus rules for comparing degree of association on various
Gaussian graphical models can be developed.

In this article we show that, certain conditional independence relationships holding,
suitable squared partial correlations can be qualitatively compared. We make two kinds
of comparisons. In the first, the set of components conditioned on (conditionate) are
kept fixed and we change the dependent vertices (correlates). More importantly, in the
second, we fix the two correlates and compare their degree of dependence by varying
the conditionates. The sufficient conditional independence relationships are satisfied
by several graphical Markov models. Using relevant separation criteria (e.g. separation
for undirected graphs (UG) (see Definition 1), d-separation for DAGs (Verma and
Pearl 1990) (see Definition4), m-separation for mixed ancestral graphs (MAGS) (see
supplement) (Richardson and Spirtes 2002) etc., we postulate sufficient structural
conditions for comparing conditional association on them. We emphasize that the
specific graphical Markov models are used as illustrations. Our results apply to a much
wider class of models. Furthermore, using the fact that for tree and polytree (DAGs
without any undirected cycles either or singly connected directed acyclic graphs)
models, any two connected components have exactly one path joining them, these
structural criteria can be simplified to path based rules for comparison. We discuss
such rules for trees in details, where it is also shown that our rules for comparing the
squared partial correlations are complete.

The inequalities discussed here have theoretical interest as new properties of
Gaussian random vectors and directly translate to corresponding conditional non-
Shannon type information inequalities (Zhang and Yeung 1997; Matds 2006, 2007).
Matus (2005) considers implications of one set of conditional independence relations
on other conditional independencies for Gaussian random vectors. Furthermore, he
describes a way to determine such implications using the ring of polynomials gener-
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Qualitative comparison of dependence 347

ated by the entries of the correlation matrices with some additional indeterminates.
Our results describe some polynomial inequalities these rings satisfy.

Our main motivation comes from the Gaussian graphical Markov models. These
results are canonical and sufficient to postulate structure based rules to order depen-
dencies on several of them. We improve upon Chaudhuri and Richardson (2003),
Chaudhuri (2005), who only consider polytree models. These results can be used in
determining the distortion effects (Wermuth and Cox 2008) and monotonic effects
(VanderWeele and Robins 2007, 2010) of confounded variables in epidemiology and
causal network analysis (see also Greenland and Pearl 2011). We postulate neces-
sary and sufficient conditions for determining structures on a class of polytree models.
These conditions can be directly applied in model selection, specially in mapping river
flow and drainage networks where such polytree models occur naturally (Rodriguez-
Iturbe and Rinaldo 2001). In real data analysis, these inequalities would be useful
for model selection, specially among various graphical Markov models (Cheng et al.
2002; Shimizu et al. 2006). For these models our results would translate to hypothe-
sis connected to the structure of the graph. These hypothesis can be tested from the
observed data. Structure based inequalities may also be used as constraints in esti-
mation with missing values. They are also relevant in choosing prior distributions
in Bayesian procedures. The qualitative bounds can be used in selecting stratifying
variables in designing surveys, gathering most relevant information in forensic sci-
ences and building strategies for constrained searches. Further, these results may have
applications in designing effective updating and blocking strategies in Gibbs sam-
pling and Markov chain monte carlo procedures (see e.g. Roberts and Sahu 1997
etc).

2 Squared partial correlation inequalities

Suppose V ~ N (u, X) with a positive definite X. Let a, b, ¢, ¢/, z, 7/, x etc. be the
components and B, Z etc. be the subsets of components of V. In this article V will
also denote the vertex set of the underlying graph (see supplement for more details).
Let ¥ denote the empty set.

The squared partial correlation coefficient (,05 l ~) between a and ¢ conditional on
Z is defined by:

2
—1
(oac — EaZEZZUcZ)

—1 —1
Oaa — EaZZZZUaZ) (Ucc - ECZEZZUCZ)

quz = ( 1 — e~ 2Inf(alle|Z) )

Here 0,5, and X, 7 respectively denote the (a, b)th element and a x Z submatrix of
Y. Inf(a 1L c|Z) is the mutual information (Whittaker 2008, information proper) of a
and c given Z. From (1) it follows that the mutual information is a monotone increas-
ing function of the corresponding squared partial correlation. Thus the qualitative
inequalities for pg ¢|z presented below applies to Inf(a 1L c|Z) as well.
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2.1 Comparing conditional dependence with a fixed conditionate

We first fix a subset Z to be conditioned and one correlate a. The squared partial
correlation is compared by changing the other correlate from c to ¢’.

Theorem 1 Suppose ¢’ 1L a|cZ, then pzc,lz < ,ogclz.

Theorem 1 is a conditional version of the well-known information inequality (Cover
and Thomas 2006) and holds in general for mutual information of any distribution.
For graphical Markov models the condition holds if ¢’ is separated from a given ¢ and
Z. Further, for trees the condition is satisfied if ¢ lies on the path joining a and ¢’.
Thus longer path implies weaker dependence in this case.

For polytree models the condition depends on the arrangement of the arrows on
the path joining a, ¢ and ¢’. The condition is satisfied if two arrowheads do not meet
at ¢ on the path joining a and ¢, (i.e. ¢ is not a collider on the path joining a and
', see Definition 3). As for example, in Fig. la with Z = {z1, z2, 23, 24}, using the
d-separation criterion (see Definition4) we get, ¢3 1L a|Zcy. Theorem | ensures that
,02 1z = ,02 o)z The same d-separation criterion however implies that c3 L.a|Zcy, so

there is no guaranty the pa2 oz would be larger than ,03 32 This partially justifies the
intuitive argument given in Greenland (2003) (see also Greenland and Pearl 2011).

2.2 Comparing conditional dependence with fixed correlates
Here two components a and ¢ of V are held fixed. We consider the variation in

,03 0|z for different subsets Z of V. Depending on the nature of pairwise unconditional
association between a, ¢ and the sets conditioned on, three situations may arise.

T o
NN N
e (b) ©

2
acy|Z>
an UG satisfying the conditions of Theorem 2, pgc > pﬁclz > pgc‘z/ and pgx > pixl, > pgxlz,. Further,
2 2
ac| ax|z’”

Fig. 1 a A polytree, Z = {z1, 22, 23, 24}, pgmz <p however /)3(-3\2 < pc%cllZ may not hold. b

from Theorem 1, pgﬁ =< pgx, 02, <

2
aclz — Pax|z and p
DAGinc

=P Exactly the same conclusions hold on the
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2.2.1 Situation 1

The components a, c, z and 7’ are unconditionally pairwise dependent.

Theorem 2 Suppose for some x,a 1L c|x and ac 1L z|x. Then pgc‘z < pgc. In

addition, if ac 1L 7’|z, then p§c|z < pgclz, < p2..

The conditions of Theorem 2 can be represented by several graphical Markov mod-
els, e.g. undirected graphs, directed acyclic graphs etc. The conditional independence
conditions imply that a, ¢ and z have to be pairwise separated given x and z’ has to be
separated from a and ¢ given z.

The first part shows that under these conditions the dependence of a on ¢ always
reduces on conditioning. For tree and polytree models the conclusion of the second
part can be intuitively explained. Notice that, by assumption pgc > pgcl . = 0and
the separation criteria imply that 7’ is farther away from x than z. Thus 7’ has less
information about x than z. So p§c|z’ should be closer to pgc than p§c| .- In other words,
conditioning on the vertices farther away from the path between a and ¢ increases the
degree of association.

2.2.2 Situation 2

The correlates a and ¢ are independent, but both are dependent on the sets conditioned
on.

Theorem 3 Suppose a 1L c and for some x, the condition ac 1L zB|x holds. Then
,020‘3 < pgcle. Moreover; if 7/ 1 acB|z holds, then pﬁclB < pgc‘BZ, < ,oi,le.

By assumption 0 = p2, < pﬁcl - Thus the first conclusion implies that conditioning
on a larger set implies stronger association. On an UG, the condition a 1L ¢ implies
that @ and ¢ cannot be connected. Thus UGs are not useful to represent the conditions
in Theorem 3. They are satisfied by several other graphical Markov models like DAGs,
MAG:s etc.

For polytree models (see Fig. 2a) the conclusions of Theorem 3 can be intuitively
explained as well. As before, one can conclude 7’ is farther away from x and therefore
has less information about x than z, pg el # Obut ,ogc = 0. Thus by the same argument
as for Theorem 2, conditioning on B and 7’ should produce weaker association than
B and z.

In the graph in Fig. 2b the marginal covariance matrix of a, ¢, x and y satisfy
the conditions of Theorem 3. Thus, pgcl y = pazc‘ - The graph in Fig. 2c is a mixed
ancestral graph (notice the <> edge between y; and y»; Richardson and Spirtes 2002).
Here the marginal covariance matrix of a, ¢, x3, z and z” would satisfy the conditions
of Theorem 3 (see supplement). So we conclude that 2., < p2c| P pfclxz.

aclz’ —

2.2.3 Situation 3

At least one of a and c is independent of both the sets conditioned on.
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Fig. 2 Graphical models satisfying the conditions of Theorem 3. In each graph a 1L ¢. The graphinaisa
polytree. Here B = {b}, by} and pgclB < 95c|3~/ < pgc‘Bz holds. In b it follows that pzc‘y < pi_lx (cf.

a

Wermuth and Cox 2008). The graph in ¢ is a mixed ancestral graph (Richardson and Spirtes 2002) where

.~
N > |
e

Fig. 3 Graphical models satistying the conditions of Theorem4. Each model satisfies the condition (i)
of the theorem. a is a polytree on which aczz’ 1L {b}, bp}|x holds. In b, ac 1L b|x, but ac A b|zx. In ¢,

ac 1L b|zx but ac L b|x. From Theorem4 it follows that p§c|B < pac\Bz/ < Pac|Bz

Theorem 4 Suppose a 1L z. Let for some x, X satisfies one of the following two
(), (ii)) conditions:

(1) ¢ 1L az and one of the following six conditions (a) az 1L B|x, (b) az 1L Bjcx,
(¢) cz 1L Blx, (d) cz AL Blax, (e) ac 1L B|x and (f) ac 1L B|xz holds,
(i) az 1L cB|x.

Then pazclB < pgc‘BZ. Further, if 77 1L acB|z holds, then in both cases, pa2c|B <
2 2
'Oac\Bz’ = 'OaclBZ'

The difference between the conditions (i) and (ii) in Theorem4 is illustrated in
Figs. 3a and 4a. Under condition (i), ¢ 1L z but the relation ¢ 1 z|x does not necessarily
hold. On the other hand, under condition (ii), ¢ 1L z|x but ¢ may not be independent
z unconditionally.
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Fig.4 Graphical models satisfying the conditions (ii) of Theorem4. In each graph the conditionaz L ¢B|x
holds. In b az 1L {by, bo}|cx also holds. The graphs in a (B = {by, by, b3}) and b (B = {bp, b3}) are
polytrees. On each ,ogc‘B < p121c|Bv’ < pgcle hold

a Cc

~

T
| ,
b

e

183

N —
Q
Le—L e— R« «—2¢g
o

(a)

Fig. 5 a A DAG not considered by Chaudhuri and Richardson (2003). From Theorem4, it follows that
pa2c| b = pﬁc‘ bl < pg clbz b A DAG to illustrate the contrast in the conclusion of Theorem?2 and Theo-

—_~
=3
~

rem4(ii). Here pgdv > p(zw‘u > ch > p§c|y > pgclw > pgclx = 0. From Theorem 2, on the DAG in c it

follows that ﬂfqh > pgdbz’ > pgc‘hz always hold

The six conditions in (i) are in general distinct. As for example, from m-connection
rules (Richardson and Spirtes 2002) the MAG in Fig. 3b we get (note the paths (a, ¢) <
X < 7 <> b)ac 1L b|x butac Lb|zx (see supplement). On the other hand on the DAG
in Fig. 3c clearly ac L b|zx but ac L b|x. Similar examples for other four conditions
can be drawn.

Theorem 4 goes beyond the DAGs considered by Chaudhuri and Richardson (2003).
One example is considered in Fig. 5a. Here a 1L ¢, ac 1L z and both ac L b|x and

ac 1L b|xz holds. Consequently, from Theorem 4, the relationship 'Oa20| p < pZC‘ by =
pﬁc‘ ». follows. Note that z is not an ancestor of x but an ancestor of b and consequently,
zz/ UL x also holds. Chaudhuri and Richardson (2003) explicitly exclude conditioning

vertices which are independent of x.
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Corollary 1 If B = @, Under all conditions of Theorem4(i), p2 ., = pﬁc‘z, = pgc =

aclz
0. Under condition (ii), pa2c|z > pgc‘z/ > pgc.

2.3 Comparison between Theorems 2 and 4 for polytree models

For polytree models, in view of Theorem 2, the conclusion of Theorem4(ii) is a bit
counterintuitive. Note that, under (ii), 'Oc%cl . = 0, which is same as in Theorem2.
However, unlike the latter, conditioning on vertices farther away produce a weaker
squared correlation in this case. The difference seems to be that in Theorem2 a Al z,
but we assume a 1L z|x. In contrast, Theorem4 assumes that ¢ L z, but in (ii),
the condition a 1L z|x does not hold. As an illustration of this contrast we consider
the graph in Fig. 5b. From Theorem 2 and Corollary 1 it follows that the relationship
'Ozc\v = pgclu = 'Oazc = pgcly = pgclw z pgclx = 0 holds.

Another such example can be constructed from the DAG in Fig. 5a. We have argued
above that from Theorem4 it follows that ,oazc| p = pZ by = pﬁc‘ p.- In the DAG in
Fig. 5c the relation a 1L ¢ has been replaced by a 1L c|x. From the rules of d-
separation a 1L clbx,ac 1L z|bx and acb 1L 7’|z (see Definition4). Thus after
conditioning on b, the Covariance matrix of a, x, ¢, z and 7’ satisfies the conditions of

Theorem 2. So the qualitative comparison holds, but in contrast to Fig. 5a, it follows
2 2 2
that 'Oac|b z pac\bz’ z 'Oac|bz'

2.4 Comparison between pgclx and p§c| Bz
If z = x, in Theorem4 in all case a 1L Bcz, so pzc‘z/ = pgc‘Bz = p5c|B = 0.

When x € V' \ z, comparison between ,03 el and ,05 ¢|Bz does not directly follow from
Theorem4. Under condition (ii), a 1L ¢|x,0 = p§c|x < p§c| p. for any z. However,

under the conditions (i), ,osclx and pazc‘ p. May not be qualitatively compared. We show
this fact in the following theorem.

Theorem 5 Suppose a L z,c 1l az, and acz 1L B|x, then pgcle > pazclx’ iff

2
o _ . Oxx — Oxx|B Ozz|B
(oxx + ﬂ) XB EB}gZJBX > ofx, or equivalently ! > ! .

22 Oxx Ozz

Theorems 2, 3, 4 and 5 have a curious implication on polytree models. Notice
that in Theorems?2 and 3 the vertex z is in the set of descendants of vertex x (see
Figs. lc, 2a), whereas in Theorem4, z may be a parent of x. The curious fact is
that, on a polytree the squared partial correlations given the descendants of x can-
not be compared with the squared partial correlations given the parents (or more
generally given the ancestors of the parents of x). Furthermore, the behaviour of
Pac|x is a continuation of the behaviour of squared partial correlations given its
descendants. In other words, on polytrees, conditioning on the vertices “above”
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Fig. 6 a A polytree and b the value of Paeli fori € {0, z4, 23, 22, 21, X, Y1, ¥2, ¥3, y4}. Each parameter

2

is fixed at 1. b lustrates the discontinuous drop in p; oli

as we move from z to x along the z4 to y4 path

the path has different nature than conditioning on the vertices “below” or “on” the
path.

We present an illustrative example in Fig. 6. We consider the polytree in Fig. 6a.
In Fig. 6b we plot the values of p(zwli fori € {¥, z4, 23, 22, 21, X, Y1, Y2, ¥3, ya}. All
parameter values are fixed at 1. As predicted from Theorem4 the squared partial
correlation increases from i = z4 to i = z; and from Corollary 1 each of them are
larger than pazc. However, From Theorem 3, pgcli increases as we move from x to

y4 and each of them are smaller that ,ogc. Thus the squared partial correlation drops
discontinuously as we move from z; to x along the z4 to y4 path.

2.5 Further generalisations on comparison with fixed correlates

Suppose Z; = {211,212, - - - » Z1n} and Zp = {221, 222, . . ., Z2x} are two conditionates
of cardinality n. Then for fixed correlates a and ¢, one can write:

2 n ,02
Pac|z, _H acl|z21,2225,22(i—1)+21i»Z1(i+1) s+ Z1n )

P2 P2
aclZy i=1 "aclz21,222,.,22(i—1),22i Z1(i41) »+->Z1n

Clearly p. ., < Pa.|z, holds if each factor in the RH.S. of (2) is bounded by 1.

Note that in each factor in (2) the conditionate in the numerator and the denominator
differ only in one element. Thus in order to qualitatively compare p§c| Z and 103c| Z it
is sufficient to find a x; for each factor such that z1; and zp; satisfy the conditions of
one of the Theorems2—4, possibly with B C {221, 222, ..., 22(i=1)> Z1(i+1)» - - - » Z1n}
whenever necessary.

Using the factorisation in (2) and Theorems 24, structural and path based rules
for comparison may be postulated for several graphical models. The choice of x; and
these path based rules depend on the structure of association of the whole vector V.
We consider the tree models below.
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3 Application to tree models

Let G = (V, E) be a tree with vertex set V and edge set E. For vertices x € V and
y € V, 7Ty denote the unique path joining x and y, which we define as:

xTTy = {x = vy, v2, ..., Vk—1, vx = y such that there is an edge between

v; and vj 41, foreachi =1,2,...,k— 1}.

Notice that, by the above definition ,JTy is a subset of V' which contains the end
points x and y. Since G is a tree, it has only one connected component and therefore
any two vertices x and y are connected by an unique JTy.

Definition 1 Two vertices a and ¢ on an undirected graph G is said to be separated
given a subset Z of V' \ {a, c} if each path 7 between a and c intersects Z. Two subsets
A and C of V are separated given Z C V' \ (A U C) if Z separates each a € A from
each ¢ € C. Two subset A and C of V are connected given a subset Z if they are not
separated given Z.

Clearly on a tree a and ¢ are separated given each x € ,7T. \ {a, c}. On the other
hand since any two vertices a and c are connected by an unique path, a and ¢ cannot
be separated given the (.

The separation criterion described above associates a set of conditional indepen-
dence relations with G. This set is described by a collection of triples.

J(G) = {{T1, T» | T3), where T}UT>,UT3 C V suchthat Ty 1L 7|73} 3)
The association of the separation criterion with J (G) can be described as follows:
(Ty, T» | T3) < T is separated from T»>given 73 in G.

IfV ~ N(0, X), then X satisfies all conditional independence relationships in J (G).
This implies that if A = >~ foreach (T1, T> | T3) € 3 (G), A1, =0.

We now define formal operation of conditioning for independence model J (G), on
subsets of V.

Definition 2 An independence model J (G) after conditioning on a subset Z is the
set of triples defined as follows:

Z
1O = n B [N 11T UZ) €3G MUnRUTYNZ =0).
@)

Thus if J (G) contains the independence relations satisfied by a N(0, X') on G,

z
then J (G) [ constitutes the subset of independencies holding among the variables

in Z¢ = V' \ Z, after conditioning on Z. Let G z¢ be the subgraph of G with vertex set
Z°¢ and edge set consisting of all edges in E between the vertices in Z¢. The following

z
Lemma makes the connection between J (G) [ and J(G z¢).
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Lemma 1 Suppose G = (V, E) is a tree. Let a, c be two distinct vertices, Z <
V\{a, c} and Z¢ = V\Z. Then

V4
36| =Gz, )

Lemma 1 holds for any UG. It implies that the conditioning on Z does not add or

z
delete any edge in G zc, so if G is tree J (G) [ can be represented by a forest. The

inverse of conditional covariance matrix of Z¢ given Z is simply A zczc.

Separation ensures conditional independence, but if even if the separation fails the
corresponding conditional covariance can still be zero (implying conditional inde-
pendence for Gaussian random variables) because of the parameter values. However,
Theorem 2 is still valid in these cases.

For a fixed conditionate the rules for comparing squared partial correlations on trees
follows easily from Theorem 1 and the separation criterion.

Theorem 6 Suppose that, on a Gaussian tree G, the vertices a, c, ¢’ are such that
c € ¢To. Then forany Z C 'V, ,ogc,‘z < pgc‘z.

For fixed correlates a and ¢ and two sets Z1 and Z; of cardinality more than one,
pzc‘ z, and ,036‘ 7, can be compared qualitatively. The following result describes a
sufficient condition.

Theorem 7 Let G = (V, E) be a Gaussian tree. Suppose a and c are two vertices on

G and Z1 and Z» are two subsets of V such that ac 1L Z»|Z. Then 'OchZ1 < 36‘22.

From the separation criterion described above, it follows that the vertices a and ¢
separated from Z, given Z; implies ac 1l Z|Z and therefore p2c| 7 = pgc‘ 7 The
following Corollary gives the corresponding sufficient condition in terms of paths:

Corollary 2 Suppose Z1 and Z» are two subsets of V, such that for each vertex
22 € Z», both the paths ,TT,, and .TT,, intersect Z1, then p§c|Z1 < pa2c|zz'

Notice that, Theorem7 is more general than Corollary 2, the Theorem covers the
cases when the conditional independence holds due to the choices of parameters as
well. The result in Theorem 7 is also complete in the following sense.

Theorem 8 Suppose G = (V, E) is a Gaussian tree. Let Z1,Zy < V such that
acZ>\Z1 and ac L. Z1|Z,. Further, suppose that (Z1 U Z3) N 7T = . Then there
exists X1 such that pﬁc‘zl > pgclzz and X5 such that pzclzz > pchZr

Finally, Theorem 6 and the Corollary 2 can be combined to a general rule for com-
paring squared partial correlation on trees.

Corollary 3 Suppose a, c, ¢’ are three vertices on a Gaussian tree G and Z, Z' are
two subsets of the vertex set V. Further, assume that ¢ € ,TT. and the vertices a and
¢’ are separated from Z given Z'. Then pfw,‘ 7 =< /05 oz
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Z\ PN
211 z12 221 222 a __j__) ¢ __1") b
| | v ¥ Y ¥
aq —>=-=>—> c —> D a > ¢c—>=-=>»—> ) 231 232 233 234
(a) (b) (c)

Fig. 7 Examples of polytrees satisfying the conditions of Theorem9 below. In each, a € an(c) and
¢ € an(b). In a 711 and z1, satisfy condition 1 and p§c|b < pgc‘qu < p§c|b~11 (from Theorem 4(ii)).

2 2
aclbzpy < paclbzzz

. k=1,..., 4, in ¢ satisfy condition 2, i.e. pgc\zy{ < pgc‘b. Note that, b cannot be in an(z), otherwise

In b zp1 and zp; satisfy condition 2. So p < 'O(%C|b (see Theorem?2 and Fig. 5c). Each

ac 1l z|b and pgdb = pgc‘bz

4 Application to polytree models and model selection

A polytree is a DAG such that if we substitute all its directed edges with undirected
ones, the resulting graph (i.e. its skeleton) would be a tree. Thus on a polytree two
vertices x and y can have at most one path , JT, connecting them. Here, on a connecting
path we disregard the direction of the individual edges.

A vertex y is an ancestor of a vertex x, if either y = x or x can be reached from y by
following the arrowheads of a directed path (i.e. the path y — v — vy --» v — x
exits). The collection of all ancestors of x is denoted by an(x). Furthermore, for a set
of vertices X we define an(X) = U,ecxan(x).

Theorem 9 Suppose that on a Gaussian polytree a # ¢ # b,a € an(c) and c €
an(b). Further let, for some vertex z, pﬁclbz *= p3c|b' Then

L. p§c|bz > pgc“,, iffa AL z and c /L z.
2. p§c|bz < Pﬁc‘b iff either ¢ 1L z ora /L z.

The condition ,05 clbz # ,05 clb is required in Theorem9. This implies ac A z | b. So
b ¢ an(z). It can further be shown (see the proof) that the polytree structure implies
ac 1L z iff ¢ 1L z. Thus the right hand side of condition 2 above equivalently means
that either both a and ¢ are independent of z or none of them are independent of z.
Examples of graphs satisfying the conditions 1 and 2 can be found in Fig. 7.

Theorem 9 has applications in model selection. An example occurs in the mapping
of river flow networks. Figure 8 (Jarvie et al. 2005) presents a schematic diagram of the
network of the Avon basin in Hampshire, England. Suppose that it is known that none
of the rivers involved have a distributary. Clearly the network, with the direction of
the water flow forms a polytree. Measurements can be taken at points a (Netheravon),
b (Christchurch), ¢ (Amesbury), d (Downstream of Salisbury STW), e (Longford)
and z (Chitterne). However, because of practical considerations we suppose that the
measurements are taken when water at Christchurch (b) touches certain levels. Lets
assume ,oazx‘ » F ,oazx‘ p, forx = ¢, d, e. We want to know where does the stream from
z, 1.e. Chitterne meets river Avon.

It is clear that since the observations are all conditional on the water level at
b, in the data neither zLa nor z /L c. However, from Theorem 2 and Theorem 4,
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Fig. 8 An illustration of the results in Theorem 9 on the river network of Avon river, Hampshire, England
(obtained from Jarvie et al. 2005)

see also Fig. 5c, it follows that pgclbz < p§c|b’ p§d|hz > pgdlb and pge‘hz > pge‘b.
From condition 2 of Theorem9 it follows that either both a and ¢ are independent of
z or none of them are. On the other hand, condition 1. implies that a 1L z but d and
e are not independent of z. If none of a and ¢ are independent of z, the point z must
be on a distributary stream or on a tributary which meets Avon north of a (Nether-
avon). However, by assumption there is no distributary stream. Furthermore, if the
tributary from z meets Avon somewhere north of a, by Theorem 2 both pg diby < ,oa2 dlb

and pge‘ by < 'Oa26|b must hold. This is a contradiction. Thus ac 1L z must hold. So
from Theorem 9 we see that the stream from Chitterne i.e. z meets Avon somewhere
between Amesbury i.e. ¢ and Downstream of Salisbury STW i.e. d.

5 Discussion

Qualitative comparison may be possible under other sets of conditional independence
relations. However, fairly simple examples (Chaudhuri 2013) show that violation of
many of these conditions in the sets described above lead to non-qualitative comparison
of mutual informations. The requirement of a single component x cannot be relaxed.

The results in Sect. 2 are sufficient for postulating path based rules for comparison
on polytree models as well. Since the edges on a polytree are directed, these rules are
more involved than those for trees (Chaudhuri and Richardson 2003).

Comparison of mutual information with a fixed conditionate holds for any distri-
bution. In fact, the results with fixed correlates are based on the positive-definiteness
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of the covariance matrix and extend to non-Gaussian distributions as well. However,
inequalities for squared partial correlation would not translate to mutual information
for such random variables. These results may be applicable to causal model selections
among non-Gaussian variables (e.g. Shimizu et al. 2006).

It can be shown that, although the comparisons with a fixed conditionate do not hold,
but absolute values of partial regression coefficients can be qualitatively compared for
fixed correlates under the same conditions (Chaudhuri and Tan 2010).

Rules for signed comparisons of partial correlation and regression coefficients can
be developed from these results. Such results might be useful in identifying hidden
variables in Factor models (Bekker and Leeuw 1987; Drton et al. 2007; Xu and Pearl
1989; Spirtes et al. 2000) and in recovering population covariance matrix for one-factor
models in presence of selection bias (Kuroki and Cai 2006).

Appendix: Proofs

Notation For two real numbers a and b, a «xt b implies that, 3 M > 0 such that
a=M-b.

Proposition 1 Suppose U, V, W are univariate components of a Gaussian random
vector with mean |1 and positive definite covariance X. Assume that U 1L V|W. Then
ouy = oywowv/oww and oyy = oy oww /iy + E[Var(U|W)].

Proof Trivial.

Suppose K and K’ are constants and for some a,c¢,d € Vand B C V \ {a, ¢, d}
(where B may be empty) we denote M| = 0¢q|B{0ud|BOcc|B — Oac|BOcd|B}> M2 =
0ad|B{Ocd|BOaa|B — Oac|BOad|B}, M3(at) = [( — K")Ouc|BOadB — K - 0ad|BOcd|B]
and

L) = {(a — K/)paclB - K)Oad\chd\B}z

= . 6
[{(e« = K') — szdug}{(a - K’ - Kpcz'dlB}] ©

Lemma 2 Suppose K > 0 and for some K' and o, (a — K') — KpgdlB > 0 and
(¢ — K" — Kpczd‘B > 0.
Then if My - M> > 0:
1. % = 0ifboth My - M3(«) and M3 - M3 () are 0.
2. % has the same sign as either M1 - M3 () or My - M3 (o), whichever is non-zero.

Proof Since the denominator of (6) is positive then the sign of d L («) /0 is the sign of
the numerator of d L (o) /0. From quotient rule of differentiation and some algebraic
manipulation we get:
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dL(x)
Jo

X {[(Ol - K')— Kpgd\B]Pcd\B[Padw — Pac|BPcd|B]

ot K[(ax — K/))OuclB - KpadprcdlB]

+ [« —K') — szdw]padlB[PcdlB - pac|BPad\B]} . @)

Note that peq|s[Pad|B — Pac|BPed Bl X M1, pad\BlPcd|B — Pac|BPadip] XT Mo and
[(@ — K')pacip — K pad|Bpcd|B] ot M3 (er). By substituting these expressions in (7)
and the positivity K, [(a — K') — K,oazd‘B] and [(« — K') — Kpczd|B] the result follows.

O

Proof of Theorem 1 From the assumption Inf(a 1L ¢’|cZ) = 0. The rest follows from
the identity Inf(a L ¢/|cZ) + Inf(a 1L ¢|Z) = Inf(a 1L c|c’Z) + Inf(a 1L ¢'|Z).!
O

Note that, from Lnénicka and Matis (2007), assumptions on conditional indepen-
dence and the conditional correlations do not change if we replace X' by J X'J, where
J is the diagonal matrix with 1/,/0,,, v € V. Thus, unless otherwise stated, w.l.g we
can assume that the diagonal elements of X' are all equal to 1 and all the off diagonals
are in (—1, 1). That is X' is the correlation matrix of V, but with an abuse of notation
in what follows below, we still denote the correlation of a and ¢ by o.

Proof of Theorem?2 Note that by assumption o, = 04x0O¢x, Og; = OaxOxz, Oc; =
OcxOxz, Ogy) = OgxOx;0,y and 0oy = O¢x Oy ;0.

Part 1. p2,. = 02.(1 — 02)2/[(1 — 02,02)(1 — 020 2)] < p2..

Part 2. Assume that x # 7z’ and consider three non trivial cases as x = a, x = ¢ and
x ¢ {a, c}. Initially assume that o,/ # 0. Since ac 1L 7’|z, using Proposition 1 and
the positive definiteness of the covariance matrix together with rzz =(1- Uz,zz’) >0
and by denoting ¢ = 1 + (tf/azzz,) > 1, with B = @, K’ = 0, K = 1 it follows
that pgc‘z/ = L(a) for o > 1 and pgc‘z = L(1). Thus in Lemma?2 using Cauchy
Schwartz inequality and « > 1 it follows that for x = a, M| < o, My = 0
and M3(a) xt oy, for x = ¢, M} = 0, M, x o, and M3(a) T o4y and for
x & {a,c}, My < 0400, My &t 0400, and M3(a) X 0.x04x. Thus for all
cases dL/da > 0 and the result follows. If 0.,y = 0,z 1L 7’ and 7’ 1L acz. Thus
,ogc‘z, = pgc. The rest follows from part 1. The second inequality follows from part 1

as well. O
Proof of Theorem3 By assumption zB 1l ac|x and a L c.

Part 1. It is enough to show that ojc‘ B: = Ua2c| 5+ Using the above relations in
Proposition 1 and by denoting Q1 = Xp 21;11323)6 and Q> = (Xyp, UXZ)ZJ&;Z)(BZ)
(XyB, O’XZ)T one gets 04¢|B; = —0ax0cx Q2 and 04¢|p = —04x0cx Q1. Now the proof

follows by noting that, o,, — UQZXQl = Oua|B = Oua|Bz = Ouaa — aazx 0, implies

0> > 0.

! The author would like to thank the referee for drawing his attention to this equality which improved the
original proof immensely.
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Part 2. We initially assume that o, # 0. By defining 73 = (1 —02) > 0,a =
(1+(rZ2,/c7Z2Z/)), K = ZBEEéEBZ >0, K = (1-K’) > 0and from the assumption

that 7/ 1L acB|z it follows that pﬁC‘Bz, = L(x) witha > 1 and pﬁC‘BZ = L(1). Further
2

using ac 1L zB|x one can show that M| o™ chGaxezz‘B, My oct OcxOaxOy g and
M3() ot =0 04y. Thus from Lemma?2 it follows that dL/da < 0. If o,,r = 0, as
before z 1L 7’ and 7 1L acB. Thus ,oazc‘ B = pgc‘ - The result follows from part 1.
The first inequality follows from the assumptions and Part 1. O

Proof of Theorem4 W.1.g. it is enough assume that x ¢ B. Furthermore, note that
Oaa|lB = Oaa|Bz and Oc¢|B = Oc¢| Bz, thus for part 1 it is enough to show that under the
assumptions ou¢|p; = M - 0q4c|p for some m > 1.

Part 1. Assume that, @ 1L z and let (ii) hold, i.e. ¢B L az|x. Using Proposition 1 it
follows that

(XaB 21;_}; 2p)(0c; — XeB 21;113 Z'52)

Oac|Bz = Oac|B

Ozz|B
2
OaxOy, Q1(0cx — 0cx Q1)
= UaC\B + 0o\
2z
2
05, 01(0cx0ax — 0cx0ax Q1)
Xz 2 —1
= Ogc|B + =04l |1 + 07,010 .
Ozz|B ‘ B
2 2 o —1
Thus PaciB = Pac|Bz- Under (i) if ¢ 1L az, 04c = 0zc = 0, 04c)p = —2Zap X5 XBe

and ooz |p = —Xep X p ¥pz. Now if (i)(a) i.e. az 1L B|x holds:

(ZapZppT8)(Zep 550
O0zz|B
(0ax0xz01)(XeB 2;}; 2 BxOxz)

o =o,ep (1 +02 *‘). 8
Oac|B P Uac\B( +asz10zz|B (8)

Oac|Bz = Oac|B —

Under (i)(b) i.e. az L B]cx notice that from Proposition 1:

Yap = Ea(xc)x(;i)(xc)z(xc)B = [oux, O]E(;i)(xc)z(xc)B
= oull, O]E&i)(xc) X(xe)B = Oax QexB-

Here Q. p = [1, O]Z‘&i)(xc) Y (xeyp- Similarly it can be shown that, ¥,p = 0,4 Qcxp
and 04c|p = —04x Qex B 25}9 X'pc. Now by substitution in (8) above we get:

0ax(QexB ZE}; QZXB)(ECB ZE}; QIxB)UZ.zx

Oac|Bz = Oac|B —

0zz|B
—1 AT —1 T
(UZXQCXBEBBQCXBUZX)(ECBEBBQCJCBU“X)
= Oac|B — Oeri
22
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(2,857  X5)0uciB _ _
= Oac|B + < IZB P JZaclB Oac|B {1 + (21323113231) UZZ|IB} .
zZ

The proofs for (i)(c) and (i)(d) are similar.
If (i)(e) i.e. ac 1L Blx holds, o4c|p = —04x0cx Q1 and using Proposition 1 we get,

(~2up X5y T8 (~ 25 Z5p X5

Ozz|B

Oac|Bz = Oac|B —

2
= Oqc|B — Uaxacx(ExBEBBEBz) ZZIB

= Ouc|B {1 + (ZxBEEBEBz) /(QIO'Z_Z‘B)} .

Under condition (i)(f) notice that, X, p = Xy (x7) E(xz)(xz)E(XZ)B = ouxl1, O]E(“)(xz)
Yxz2)B = Oax Qxzp. Similarly, ¥.p = 0¢x Qx;p. Now from (8) it follows that:

—1
Uaxacx(szBEBB 231)2

Ozz|B

Oac|Bz = Oac|B —

Clearly if at least one of oy, ¢y, Qx5 is zero, the results is trivial. Now sup-
pose none of them equal zero. Then QXZBZ‘E}; QIZ g > 0. Further o4ep =

—OgxOcx (szB E;}; Q;{ZB), which yields

o o 1+ (Q){zBEl;ll?EBz)2
ac|Bz = Oac|B — .
(szBEBllggzzB)Uzz\B

Part 2. Suppose 02, > 0. Letr, (1 —a D> 0K = Z‘Zgz‘BBZ‘BZ,K =
1-K) > Oanda = 1/0, = (1+r2/a ) > 1. Then from acB 1L 7’|z, a 1L zZ’
it follows that for both cases pacle, = L(a) w1th o > 1and ,oaCIBZ = L(1). Now we
consider the four cases in the statement. By denoting Q. = X.p ZJE}B Ypx, Qux =
Z‘aBZ‘BBZ‘Bx and Qg = [1, O]Z‘(m)(m)ﬂ(m)g it follows that:

M, o< My ot

'Uax Ocx if (), (a) I —0ax Ocx if (i), (a)
OuxQexp Zgp T if (i), (b) ~0ax Qexs Zpp Zpe if (i), (b)
Ocx an if (1)7 (C) —Oc¢x an if (1)1 (c)
0ex Quxp g p Tpa if (), (d) . M3(@) < { —00xQurp Zgp Tpa if (i), (d) .
OaxOcx if (1), (e) —OgxOcx if (1), (e)
OgxOcx if (1), (f) —OaxOcx if (1), (f)
—O0uxOcx if (ii) OuxOcx if (ii)

Thus from Lemma?2, in all cases dL/da < 0, which completes the proof.
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If o, = 0, then for all cases p§c| By = ,oazc| p and the result follows from Part 1 as
before. O

Proof of Corollary1 If B = (J, under (i) from the assumed independence of a, ¢ and
z, we get 04 = 047 = 0., = 0. The result follows from this. Under (ii), ., # 0 and
from Theorem 4 the result follows. m|

Proof of Theorem5 In this proof we take X to be the covariance matrix and not
the correlation matrix as above. Using condition B 1L acz|x, denoting 02, Q4 =
2B Z‘E}SZ’BX, T = o0, /(0;; — szz Q4) (T > 0) and from Proposition I and some
simplification we get

2
'Oacle _ (04a0xx Q4T — O'azx 04T)(0ccOxx Q4T — O_sz 04T)
Pacix (Oaq — 02, QaT)(0cc — 02, Q4T)

Thus 03 p. = Paey iff 0xx QaT = 1iff (0uy + 07, /02:) Q4 > 1. The equivalent
expression follows as:

2
o o 1
Xz —1 xx|B -1
2xBXpp By = N 2BXpp2B;
2
0707, Oxx Ozz

[of (of — O (oF
- xx|B N XX xx|B > ZZIB.

Oxx Oxx Ozz

]

Proof of Lemma1 We need to show that if 77, 7> and T3, are disjoint subsets of Z¢,
then 77 is connected to 73 given T3 in G zc iff Ty is connected to 7> given 73 U Z in
G.

(=) Suppose T is connected to 7> given 73 in G zc. Sothere are 1| € Ty andt, € T»
and the path ; 7T, such that 7T N 73 = ¢. Clearly ,, 7T;, isin G and ,7T;, N Z = @. So
n 70, N {13 U Z} = . This shows 77 is connected to 7> given 73 U Z in G.

(<) Suppose Tj is connected to 7> given 73 U Z in G. So there is t; € T and
tp € Ty and the path ,,7T;,, such that ,, 7T;,, N {T3 U Z} = @. So ;,7T;,, N Z = ¢ and
070, € Z€. Clearly in G z¢, , 7T, N T3 = {J. This shows 77 is connected to 7> given
T3 in G zc. O

Proof of Theorem6 From the structure of G and since ¢ € ,TT./, it easily follows that
¢’ is separated from a given ¢ and Z. The result follows from Theorem 1. O

Proof of Theoreml For notational convenience we express the squared partial corre-
lations as functions of the covariance matrix X~. We need to show that pgcl Z (X)) <

pﬁC‘ZZ(ZJ). W.l.g. we assume that for i = 1,2 there is no z; € Z; such that
ac 1 Z; \ {zi}|zi. We consider several cases below:

Case 1.If Z1 N 4T, # P, thena 1L c|Z;, ’Ogdzl = 0 and the result is trivial.

We initially assume that Z; separates Z, from a and c. This implies that for each
22 € Zp thereis a z{ € Z; and z§ € Zj such that z{ € ,7T;, and z§ € . TT,,.
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Case 2. 1f Z5 N (JT. # ¥, then z{ € (TT;, C 4TT.. This implies that a 1L ¢|Z; and
2
'oac\Zl =0.

Case 3. Now let (Z1 U Zy) N ,JT. = @. Suppose Z1 = {z11, 212, ..., 21n,} and
Zy = {221,222+ - - -+ Z2ny }. Suppose x; = 4Tz, N Tz, N ¢TT.. Since G is a tree x; is
unique for z;. Also suppose that N; = {z2; € Z» : z1; € ¢TT;,; N T, }. Again from
the structure of G it is clear that N, are disjoint and Z> = UL, N;. We don’t exclude
the possibility that N; may be # for some i. Using (2) we can write:

2 n p2
puc|Z| paclz11...z1(i_1)21,‘Ni+1...Nn1
- = | | 3 . )
p p

ac|Z» i=1 aclzl1‘..zl(,-_1)Nl.Ni+1‘..Nn|

It is sufficient to show that each factor in the product (9) is bounded by 1. Consider
the ith factor,

,02
aclzir...zii-nz1iN; ~-~an

i =

p2
aclzyy ...zl(,-,l)Nl.Nl.H...an

Notice that the factor f; depends only on the subgraph Gy, of G defined by the vertex
set:

i—1
Vi = U (aT[zlj Ucnzlj) U U U (an—z%) UCT[Z(Z{C))
Jj=1 j=i

It is clear that, Gy, is a tree. Let us denote B; = {z11, ..., 21—} U (U?‘:iHNj)
and Bf = V; \ B;.

Now from the structure of Gy, we note that (i) x; € 4T soa L c|x; B;, (ii) x; €
aTlzy; andx; € (JT;; implyinga 1L zy;[x;, B and (iii) z1; € U, 0.y @770 NeTT o)
. 2k i "2k 2k
it follows that ac 1L N;|z1; B;.

From Lemma 1 it follows that the triples (a, ¢ | x;), {ac, z1; | x;) and (ac, N; | z1;)

B;
are in J (G) [ = j(GB;')- It is obvious that,

2
p§C|Bizli(2) _ Pacizy; (EBfolBi)
2 = :
Pacisivi (%) gy, (23,-”Bf|3,-)

Now consider the following sub-cases:

(@ If N, =0or Ni(]) = z9;, from the Theorem 2 it follows that ,oiclzu (EBI_PBI_C‘BI,) <
Pacin; (ZBeBeIB,)-
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(b) If N; = {z21, ..., 2om;}, then using ac 1L N,|z1;, we can write:

2 .
’OaCIle‘Zzz---sz <EBfo|Bi)

ﬁ:

2 - .
paC|121122_.12mi (EB:B;\B,)

By following the same argument as above and conditioning on {z27, ..., Zom, } it
follows that f; < 1.

Now suppose that there is a Z), C Z; s.t. Z} is not separated from a and ¢ by Z,
but because of the choice of parameters both p°,, , = 2 =0.
2

1z = Pezyizy
It can be shown that p§c|(zguzl) = 'O(%CIZV So if Z) N 4TT. # ¥ then pgchz =

'Ojc\(zguz.) = ,Ogclzl = 0. On the other hand if Z’2 N 4T, = ¥ we can write:

2 2
Pacizy _ Pacizyuzy)

. S . (10)
Pacizy  Pacl(zyu(z:\7))

The fact that the ratio in (10) is less than 1 follows from the first part mutatis mutandis.
O

Proof of Corollary?2 The assumptions imply that Z; separates Z, from a and c. This
is exactly Case 3. in the previous proof. O

Proof of Theorem8 We parametrise the Cholesky decomposition A = BBT.

Suppose z1 € Zj and zp € Zj such that ac/z1|Z, and aclzp|Z;. Let
aTle ={a =v1,v2, ..., 00 = ¢}, T N gTT; N TT; = Vi, oTTe N T, N Ty, =
vj,i,j € {1,2,...,d}. Further let ,,7T,, = {v;,x1,...,xq; = z1} and ,, 7T, =
{vj,y1,..., Y, = z2}. If i = j itis possible that ,, 7T, and ,,JT;, intersect at more
than one vertex. However, it does not change the proof, so w.l.g. we assume thati # j.
Suppose

Vi =4 U v,-nm U va[Zz
Er ={(v2,v1),..., (Wd, va-1), (x1, vi), ..., (21, Xd;—1), V1, V), - .., (22, Ydr— 1)}

We list the variables in X as 47T, v, 7Tz, v, 7Tz, V' \ Vi, where the verticesin V' \ V;
can be arranged in an arbitrary fashion. The matrix B inherits the same arrangement.

The matrix B is given by, By, = 1, {if k = [}, By = —1,{if (k,]) € E;},
By = —by, {if (k,1) = (z1,xq-1)}, Bu = —b, {if (k,]) = (z2, xa,—1)}, Bu =
0, {otherwise}.

It can be shown that the resulting A is a n.n.d. matrix for all values of b and
by and will represent all the conditional independence relations on the tree under
consideration.

Now choose b1 = 0. This implies pgc‘zl = pgc > 'Oc%c’lzz = pzclzz. The opposite
happens if b, = 0. This completes the proof. O
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Proof of Corollary3 The result is trivial if ;7T N Z’ # @. Furthermore, by assump-
tion if Z intersects ,JT., so does Z’. The non-trivial case can be shown by applying
Theorem 6 and Corollary 2 respectively on the factors below:

2 2 2
pac’lZ’ _ 'Oac/lZ/ pach’

2 2 2
'Oach 'Oac\Z’ puch
]
To prove Theorem 9 we need the following definitions from the literature of DAGs.

Definition 3 A vertex v on a path ,JT in a polytree is a collider on the path if there
are vertices vy and v, on , 7T, such that the edges vy — v and v2 — v exist. A vertex
on a path , 7T\ in a polytree is a non-collider on the path if it is not a collider on , JT.

Definition 4 (d-connection) A path , 7T, between x and y in a DAG is said to be
d-connecting given a set Z (possibly empty) if 1. every non-collider on 7Ty is not in
Z and 2. every collider on Ty is in an(Z). Here an(Z) = U,ezan(z).

If there is no path d-connecting x and y given Z, then x and y are said to be
d-separated given Z.

Definition 5 For disjointsets X, Y, Z, where Z may be empty, X and Y are d-separated
given Z, if for every pair x, y, withx € X and y € Y, x and y are d-separated given
Z.

Definition 6 We say a density f factors according to a DAG, if for three disjoint sets
X,Y and Z, X 1l Y|Z according to f whenever X is d-separated from Y given Z.

Proof of Theorem9 First of all note that, since pgc‘ b ch\ p» acLz | b. Further,
since a # ¢ # b,a € an(c) and ¢ € an(b), there are no colliders on ,7T;,. We first
show that z 1L ac iff z Il c. Clearly, z L ac implies z 1L c. To show the converse
first note that, since the graph is a polytree, if z 1L ¢ there is at least one collider v on
the unique path 7T, between ¢ and z. Clearly, v cannot be on ,TT., otherwise it will
be a collider on ,7T.. However, by construction .JT; \ ;7T = (,7T; N TT;) \ ¢TT¢. So
if v is not on 7T, v would be a collider on ,JT, as well. Thus, using the assumption
that the graph is a polytree, a 1L z and our claim follows.

Similar argument shows if z 1l b iff z 1L ach. So, p3c|bz * p§c|b implies that
z L b. So only the following three cases, (i) a L z and c /L z, (ii) ac 1L z (i.e. z 1L ¢)
and (iii) a1 z and c L z are possible (see Fig. 9). We first consider the if parts:

Case (i) We show that there is a vertex v| suchthataz L ch|vi.a 1L zimplies there
is at least one collider vy on ,JT;, a # z 7# vi. Again by construction .JTy, \ 7T, =
(07T, N TTy ) \ aTTe. Thus, if vy & 4TT,, vy is a collider on .JT; as well, which would
imply ¢ 1L z. Thus vy € ,7T,. Clearly, vy cannot be a collider on ,7T.. Thus v is
the only collider on ,7T, and it is not a collider on 7T, and .JT,. Thus, from the
definition of d-separation it follows that az 1L cb|vy. From Theorem4(ii) it follows
that 'Ogclbz = pgqb'

Case (ii) We show that a L z|cb and apply Theorem3 with x = c. Since by
assumption ¢ 1l z and b /L z, as in Case (i) above there is a vertex vy € JTp such that
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Fig. 9 Example of a polytree discussed in Theorem9. Vertices z11 and z1p are relevant to Case (i), 221
and z7, are relevant to Case (ii) below. The vertices z3;, for k = 1, ..., 4 corresponds to Case (iii) in the
proof below

v is a collider on .JT; but not a collider on ,7T;. Note that, v % c or vy # z. Thus ¢
is a non-collider on both ,7T, and ,7T; and c d-separates a from {b, z}. This implies
a 1l bz|c, which in turn gives a 1L z|cb. Now from Theorem 3 we get p5c|bz < pgc‘b.

Case (iii) Since a [ z, it follows that ¢ /1 z and b /1 z. This implies there is no collider
on ,JT,, JT; and ,7T;. Let v3 = 47T, N TT, N pTT, N 4 TTp. Clearly, v3 is a non-collider
on all these paths. So, it follows that ach L z|v3 (Lauritzen 1996, page 29). This
implies ac 1L z|bv3. Further, if v3 € ,7T,,a 1L cb|vz and a L c|bv3. It is possible
that z = v3. Now if v3 € 47T, Theorem3 with x = v3 imply p§c|bz < p§c|b' Note
that in this case if v3 = z, ,ogdbz = 0.If v3 & ,7T., we consider two cases. Case (a)

z =v3 € JTp.Clearlyac 1L b|z. Now usingTheorem3wegetpa26|bz = pa2c|z < pgc‘b.
Case (b) When v3 ¢ .JT;, use Theorem 3 on conditional covariance given b withx = ¢

2 2
to get 'Oaclbz < 'Oaclb‘ .
The ’only if” parts follow from the ’if” part and the fact that the above three are
only possible cases under our assumptions. O
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