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Abstract In a high-dimensional linear regression model, we propose a new procedure
for testing statistical significance of a subset of regression coefficients. Specifically, we
employ the partial covariances between the response variable and the tested covariates
to obtain a test statistic. The resulting test is applicable even if the predictor dimen-
sion is much larger than the sample size. Under the null hypothesis, together with
boundedness and moment conditions on the predictors, we show that the proposed
test statistic is asymptotically standard normal, which is further supported by Monte
Carlo experiments. A similar test can be extended to generalized linear models. The
practical usefulness of the test is illustrated via an empirical example on paid search
advertising.
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1 Introduction

Linear regression is arguably one of the mostly important and widely used statistical
techniques (Draper and Smith 1998; Seber and Lee 2003; Weisberg 2005). A good
summary of various applications can be found in Yandel (1997), Milliken and Johnson
(2009), and Vittinghoff et al. (2010), among others. One of the major goals of regression
analysis is to model a linear relationship between a response and a set of predictors.
To this end, under the assumption that the predictor’s dimension (p) is smaller than
the sample size (n), we estimate unknown regression coefficients and then test their
significances (Lehmann 1998; Shao 2003). In addition, we are able to employ the F-test
to assess the utility of a model, which allows one to determine whether a significant
relationship exists between the dependent variable and the set of all the independent
ones (i.e., the full model).

Although the F-test is useful, it cannot be directly applied to testing a subset of
variables. Hence, when two competing models are nested, one generally employs the
partial F-test (Ravishanker and Dey 2001; Chatterjee and Hadi 2006) to check the
significance of the additional variables present only under the larger model. This test
has been widely used across various fields (e.g., biology, economics, engineering,
medicine, psychology, and sociology), and is straightforward to calculate in many
software packages (e.g., SAS, SPSS, Minitab, and R). In high-dimensional situations
(n < p), however, the partial F-test is not applicable. This is because the usual ordinary
least squares (OLS) estimator no longer exists, and the OLS estimator is needed for
the computation of the classical partial F-test statistics. To solve the problem, Zhong
and Chen (2011) proposed a novel test based on a diverging factor model (Bai and
Saranadasa 1996). Their method is useful for linear regression models augmented
with a factorial design. Because extending their method to the situation with a general
random design matrix is not straightforward, this motivates us to develop a new test
to fulfill this theoretical gap.

In this paper, we follow the spirit of the partial F-test (i.e., the partial covariance) to
develop a new test statistic. The resulting test enjoys a simple and elegant asymptotic
null distribution, namely the standard normal distribution. Accordingly, the proposed
test can be easily implemented in practice with a standard normal table. Adopting
similar techniques used for linear regression, we also extend the test to generalized
linear models with canonical link functions. The rest of this article is organized as
follows: Section 2 introduces the model, notation, and technical conditions. Section 3
develops the test statistic and then obtains its asymptotic property. Section 4 presents
Monte Carlo studies and an empirical example. Section 5 concludes the article by
extending the proposed test to generalized linear models, and all technical details are
provided in the Appendix.

2 Model structure and conditions

2.1 Models and notations

Let (Yi , Xi ) be the observation collected from the i th subject, where Yi ∈ R
1 is the

response variable and Xi ∈ R
p is the associated predictor for 1 ≤ i ≤ n. We assume
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that Xi can be decomposed as Xi = (X�
ia, X�

ib)
� with Xia = (Xi1, . . . , Xiq)� ∈ R

q

and Xib = (Xi(q+1), . . . , Xip)
� ∈ R

p−q , where q is smaller than the sample size n,
and p is much larger than n. For the sake of simplicity, we also assume that E(Xi ) = 0.
To establish the relationship between Yi and Xi , we consider the following standard
linear regression model:

Yi = X�
i β + εi = X�

iaβa + X�
ibβb + εi , (1)

where β = (β�
a , β�

b )� ∈ R
p, βa ∈ R

q , and βb ∈ R
p−q are unknown regression

coefficient vectors. In addition, we assume that εi in (1) is random noise with E(εi ) =
0, var(εi ) = σ 2, and E(ε4

i ) = (3 + �)σ 4 for some finite constant � > −3.
For the sake of convenience, let Y = (Y1, . . . , Yn)� ∈ R

n be the response vector,
and let Xa = (X1a, . . . , Xna)� ∈ R

n×q and Xb = (X1b, . . . , Xnb)
� ∈ R

n×(p−q) be
the matrices associated with the Xia’s and Xib’s, respectively. Let X = (Xa, Xb) =
(X1, . . . , Xn)� ∈ R

n×p be the matrix including all predictive variables and E =
(ε1, . . . , εn)� ∈ R

n be the noise vector. Then model (1) can be re-expressed as follows:

Y = Xβ + E = Xaβa + Xbβb + E . (2)

In practice, Xa often contains a small set of relevant predictors via prior knowledge
or preliminary analysis. In contrast, Xb collects a large number of predictors, whose
statistical significance is still not clear and thus needs to be investigated. Accordingly,
we consider the following statistical hypotheses:

H0 : βb = 0 vs. H1 : βb �= 0. (3)

When Xa is a null vector, equation (3) is equivalent to test H0 : β = 0 vs. H1 : β �= 0.
It is noteworthy that, under H0, model (2) reduces to

Y = Xaβa + E, (4)

where we slightly abuse notation by using E to represent the random error vector in
both the full and reduced models. In the rest of this paper, we will use it to stand for
the random error in the reduced model only.

When n > p, one commonly uses the conventional partial F-test given below to
test the null hypothesis in (3).

F = Y
�
˜Xb(˜X

�
b
˜Xb)

−1
˜X

�
b Y/(p − q)

Y� {

In − X(X�X)−1X�}

Y/(n − p)
,

where In ∈ R
n×n stands for a n × n identity matrix, ˜Xb = (In − Ha)Xb, Ha =

Xa(X�
a Xa)−1

X
�
a . Under n < p, however, neither X

�
X nor ˜X

�
b
˜Xb is invertible and

hence this test is not applicable to high-dimensional data. It is noteworthy that, under
H0, the contribution of Xb in explaining the variation of Y should be 0 after control-
ling for the effect of Xa . As a result, we should have that E{(Y − Xaβa)�Xb} =
E{E�

Xb} = 0. This motivates the new testing procedure presented in this paper.
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2.2 Boundedness and moment conditions

Before presenting the detailed procedure, we need to investigate a number of important
and reasonable technical conditions. To this end, define �b|a = E{cov(Xib|Xia)} =
(σ ∗

j1 j2
) ∈ R

(p−q)×(p−q). Without loss of generality, we also assume that σ ∗
j j = 1 for

any j ∈ S = {q+1, . . . , p}. Then, we introduce the following boundedness condition:

(C1) Boundedness condition Assume that there exist two positive constants τmin and
τmax such that τmin < λmin(�b|a) ≤ λmax(�b|a) < τmax, where λmin(A) and
λmax(A) represent the smallest and largest eigenvalues of an arbitrary semi-
positive definite matrix A, respectively.

Condition (C1) assures the model identifiability. Specifically, (C1) indicates that, con-
ditional on Xia , none of the predictors in Xib (or S) can be linearly represented by
other predictors in S. A similar condition has been widely used in the literature; see,
for example, Fan et al. (2008), Zhang and Huang (2008), Wang (2009), and many
others. However, Condition (C1) is typically insufficient for establishing the asymp-
totic normality of test statistics. Hence, we next introduce moment conditions on the
conditional predictor,

X∗
ib = Xib − B Xia, (5)

where X∗
ib ∈ R

p−q is the residual vector obtained by regressing Xib on Xia and
B = cov(Xib, Xia)cov−1(Xia) ∈ R

(p−q)×q . By our previous assumptions, we imme-
diately have that E(X∗

ib) = 0 and cov(X∗
ib) = �b|a . Define a collective set of X∗

ib as
X

∗
b = (X∗

1b, . . . , X∗
nb)

� ∈ R
n×(p−q). We then request the following moment condi-

tions, which are driven by the diverging number of predictors (i.e., p → ∞):

(C2) Moment conditions Assume that q/p → 0, and, for any 1 ≤ i ≤ n and 1 ≤
i1 �= i2 ≤ n, the following moment conditions are satisfied:

(C2.a) E
(

p−1 ∑

j∈S X∗2
i j − 1

)4 = O(p−2),

(C2.b) E
(

p−1 ∑

j∈S X∗
i1 j X∗

i2 j

)4 = O(p−2).

By condition (C2.a) and Cauchy’s inequality, we obtain that

var

⎛

⎝p−1
∑

j∈S
X∗2

i j

⎞

⎠ = p−2
∑

j1, j2∈S

{

E
(

X∗2
i j1 X∗2

i j2

)

− 1
}

= O(1/p). (6)

Furthermore, by condition (C2.b), we have that

p2 E

⎛

⎝p−1
∑

j

X∗
i1 j X∗

i2 j

⎞

⎠

4

= p−2 E

⎧

⎨

⎩

∑

j1, j2, j3, j4

(

X∗
i1 j1 X∗

i1 j2 X∗
i1 j3 X∗

i1 j4

) (

X∗
i2 j1 X∗

i2 j2 X∗
i2 j3 X∗

i2 j4

)

g

⎫

⎬

⎭
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= p−2

⎧

⎨

⎩

∑

j1, j2, j3, j4

E
(

X∗
i1 j1 X∗

i1 j2 X∗
i1 j3 X∗

i1 j4

)

E
(

X∗
i2 j1 X∗

i2 j2 X∗
i2 j3 X∗

i2 j4

)

⎫

⎬

⎭

= p−2
∑

j1, j2, j3, j4

{

E
(

X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4

)}2 = O(1). (7)

Both (6) and (7) will be used in technical appendices.
If the X∗

i j s are mutually independent for a fixed i , then both p−1 ∑

j X∗2
i j − 1 and

p−1 ∑

j X∗
i1 j X∗

i2 j are of the order Op(p−1/2). Accordingly, the fourth moment condi-
tion (C2) holds. In practice, however, we cannot expect the X∗

i j s to be independent of
each other. Hence, two known assumptions, namely a multivariate normal distribution
and a diverging factor model (Bai and Saranadasa 1996), have often been considered
in the literature. Under the boundedness condition (C1), we are able to demonstrate
that both the multivariate normal distribution and the diverging factor model lead to
(C2); see the following two propositions:

Proposition 1 Assume that X∗
ib follows a multivariate normal distribution with mean

0 and covariance matrix �b|a. In addition, assume that �b|a satisfies condition (C1).
Then, condition (C2) must hold.

The proof is given in Appendix B. We next consider the diverging factor model,
which assumes that X∗

ib can be written as X∗
ib = 	Zi , where 	 = (γ jk) ∈ R

(p−q)×m

for some m ≥ p − q, Zi = (Zi1, . . . , Zim)� ∈ R
m, E(Zi j ) = 0, var(Zi j ) = 1,

E(Z4
i j ) = 3 +�z for some finite constant �z , and E(Z8

i j ) < ∞. In addition, it is also

required that E(Zs1
i j1

Zs2
i j2

. . . Zsr
i jr

) = E(Zs1
i j1

) . . . E(Zsr
i jr

) for any integers sv ≥ 0 with
∑r

v=1 sv ≤ 8 and for different indices j1, j2, . . . , jr ∈ {1, 2, . . . , m}.

Proposition 2 Assume that X∗
ib follows a diverging factor model structure and its

covariance matrix satisfies condition (C1). Then, (C2) holds.

The proof is given in Appendix B. Propositions 1 and 2 indicate that the conditions
(C2.a) and (C2.b) are rather mild.

3 Methodology development

3.1 An initial test statistic

After introducing the two regularity conditions (C1) and (C2), we propose a test
statistic for testing the hypotheses (3). To this end, we first estimate βa under
H0. Since we assume that the dimension of Xia is low, the unknown regres-
sion coefficient can be estimated via the OLS approach. The resulting estimator
is β̂a = (n−1

X
�
a Xa)−1(n−1

X
�
a Y). Subsequently, the residual calculated through

(4) is Ê = Y − Xa β̂a . If the sample size is large, one naturally expects that
n−1Ê�

Xb ≈ n−1 E{E�
Xb} = 0. This leads to the following test statistic:
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T1 = n−1‖X
�
b Ê‖2 = n−1Ê�

XbX
�
b Ê = n−1

∑

j∈S
Ê�

X j X
�
j Ê = n−1

∑

j∈S
˜Y

�
˜X j˜X

�
j
˜Y,

where X j = (X1 j , X2 j , . . . , Xnj )
� ∈ R

n, ˜X j = (In − Ha)X j = (˜X1 j , . . . , ˜Xnj )
� ∈

R
n , and ˜Y = (In − Ha)Y. It is of note that ˜Y�

˜X j˜X
�
j
˜Y/n is the partial covariance of Y

and X j , for j ∈ S, after controlling for Xa . Hence, T1 is the sum of partial covariances
across the explanatory variables being tested. In general, one naturally rejects the null
hypothesis when T1 is sufficiently large.

Theorem 1 Assume the null hypothesis of (3), and conditions (C1) and (C2). If
min{n, p} → ∞, qn−1/4 → 0, and n/p → 0, then we have

p−1σ−2 E∗(T1) →p 1 and np−2σ−4var∗(T1) ≤ 2 + |�| (8)

with probability tending to 1, where E∗(·) = E(·|X) and var∗(·) = var(·|X).

The proof is given in Appendix C. By Theorem 1, we have that E∗(T1)/var∗1/2

(T1) →p ∞. This implies that, under the null hypothesis of (3) and conditional on
X, the normalized test statistic T1/var∗1/2(T1) cannot be asymptotically distributed
as any non-degenerate distribution. As a result, we modify T1 using its conditionally
bias-corrected estimator.

3.2 The bias-corrected test statistic

Under the null hypothesis in (3) and the fact that (In − Ha)Xb = (In − Ha)X∗
b,

we know that the conditional bias of T1 from (8) is E∗(T1) = σ 2(n−1tr{X∗
bX

∗
b
�} −

n−1tr{X∗
b
�HaX

∗
b}) = σ 2n−1(p − q)tr(MQ), where M = (p − q)−1 ∑

j∈S ˜X j˜X
�
j

and Q = In − Ha . Conditional on X, both quantities M and Q are known. This
motivates us to correct the bias of T1 by replacing σ 2 in E∗(T1) with its unbiased
estimator, σ̂ 2 = (n−q)−1Ê�Ê , which yields the following bias-corrected test statistic:

T2 = T1 − σ̂ 2n−1(p − q)tr(MQ). (9)

It can easily be seen that E∗(T2) = 0, which immediately implies that E(T2) = 0.
To obtain a standardized test statistic, we next compute the variance of T2 without
conditioning on X.

Theorem 2 Under the same conditions and assumptions as those in Theorem 1, we
have var(T2) = 2σ 4tr(�2

b|a){1 + o(1)}.
The proof is given in Appendix D. By Theorem 2, the asymptotic variance of T2 is

given by 2σ 4tr(�2
b|a). Accordingly, we can construct a test statistic,

Z = T2/
{

2σ 4tr
(

�2
b|a

)}1/2
, (10)
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whose asymptotic null distribution is given below.

Theorem 3 Under the same conditions and assumptions as those in Theorem 1, we
have that Z →d N (0, 1).

The proof is given in Appendix E. This theorem allows us to test a subset of
regression coefficients in high-dimensional data. It is noteworthy that the numerator
of Z is a bias-corrected term from T1, and a larger Z tends to reject the null hypothesis.
Accordingly, Theorem 3 indicates that, for a given significance level α, we reject the
null hypothesis if Z > z1−α , where zα stands for the αth quantile of a standard normal
distribution. Based on the above theorem, one can calibrate the size of the proposed
test by a usual standard normal distribution table.

Remark 1 To employ the proposed test statistic, we need to estimate the unknown
quantity 2σ 4tr(�2

b|a). It seems natural to use 2σ̂ 4tr(�̂2
b|a), where �̂b|a = n−1

˜X
�
b
˜Xb.

However, as demonstrated by Srivastava (2005), tr(�̂2
b|a) is not a consistent estimator

of tr(�2
b|a) when q = 0; see their Remark 2.1 on page 253 as well as some relevant

discussions in Chen and Qin (2010) and Chen et al. (2010). To this end, we adopt the
approach of Srivastava (2005) and consider the following bias-corrected estimator:

̂
tr

(

�2
b|a

)

= n2(n + 1 − q)−1(n − q)−1
{

tr
(

�̂2
b|a

)

− tr2
(

�̂b|a
)

/(n − q)
}

.

Under the normality assumption with q = 0, Srivastava (2005) show that it is ratio

consistent, i.e., ̂tr(�2
b|a)/tr(�2

b|a) →p 1. For the case of non-normal data with q > 0,
our simulation experiences indicate that this estimator also performs fairly well; see
Examples 3.1 and 3.2 in the next section.

Remark 2 For the sake of simplicity, we assumed that E(Xi j ) = α j = 0 for every j .
In practice, this assumption may not be valid, i.e., α j �= 0 for some j . To resolve this
problem, we can simply include an intercept term in Xia to redefine Xia := (1, X�

ia)�.
Accordingly, (In − Ha)1 = 0, where 1 = (1, 1, . . . , 1)� ∈ R

n . This leads to ˜X j =
(In − Ha)X j = (In − Ha)X+

j , where X
+
j = (X1 j − α j , . . . , Xnj − α j )

� ∈ R
n

is the centralized predictor. Because our test statistic is based on ˜X j , it makes no
difference to use X j (non-centralized predictor) or X

+
j (centralized predictor), as long

as the intercept is included in Xia . Consequently, the asymptotic theory given in
Theorem 3 (established for centralized design matrix) is still applicable, even though
E(Xi j ) = α j �= 0. This conclusion is further confirmed by simulation studies; see
Example 3.1 in the next section.

4 Numerical studies

4.1 Simulation results

In this subsection, we present two simulation examples that evaluate the finite sample
performance of the proposed test. The first example considers weakly correlated pre-
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Table 1 Size of the
bias-corrected test and the
ZC-test for Example 3.1

n p Normal Mixture

q q

0 8 15 0 8 15

Bias-corrected test

100 200 0.066 0.041 0.045 0.062 0.059 0.057

500 0.059 0.041 0.036 0.067 0.052 0.039

1,000 0.065 0.047 0.041 0.064 0.056 0.044

200 200 0.061 0.050 0.048 0.062 0.062 0.059

500 0.057 0.050 0.042 0.068 0.062 0.060

1,000 0.053 0.052 0.055 0.065 0.056 0.051

ZC-test

100 200 0.045 0.035 0.024 0.052 0.049 0.034

500 0.072 0.046 0.035 0.048 0.031 0.027

1,000 0.060 0.046 0.031 0.051 0.030 0.022

200 200 0.049 0.049 0.049 0.049 0.042 0.038

500 0.060 0.054 0.044 0.046 0.046 0.040

1,000 0.060 0.060 0.057 0.064 0.059 0.043

dictors (Tibshirani 1996), while the second example studies the case in which a strong
relationship exists between Xa and Xb (Fan et al. 2008).

Example 1 We generate the data from (2), where the regression coefficients β j for j ∈
{1, 2, . . . , q} are simulated from a standard normal distribution, and then we set β j = 0
for j > q. In addition, the predictor vector is given by Xi = �1/2 Z∗

i for i = 1 . . . , n,
and each component of Z∗

i is independently generated from a standard exponential
distribution, exp(1). Moreover, the random error εi is independently generated from a
standard normal distribution or a mixture distribution 0.1N (0, 32) + 0.9N (0, 1). We
then consider cov(Xi ) = � = (σ j1 j2) ∈ R

p×p with σ j1 j2 = 0.5| j1− j2| (Tibshirani
1996; Fan and Li 2001). Hence, Xi j1 and Xi j2 are approximately uncorrelated when the
difference | j1− j2| is sufficiently large. It is noteworthy that E(Xi ) �= 0, which violates
our model assumption of E(Xi ) = 0. According to Remark 2, we add an intercept
term into Xia to adjust for non-central predictors and then redefine Xia := (1, X�

ia)�.

We consider two different sample sizes (n = 100, 200), three dimensions of predic-
tors in the full model (p = 200, 500, 1000), and three dimensions of predictors in the
reduced model (q = 0, 8, and 15). For each fixed parameter setting (i.e., n, p, and q), a
total of 1,000 realizations are conducted with a nominal level of 5 %. Table 1 presents
the size of the bias-corrected test. For the sake of comparison, the test proposed by
Zhong and Chen (2011) is also included, and we name it the ZC-test. A well-behaved
test should have an empirical size around 0.05. Table 1 indicates that both methods
perform quite well.

We next study the power of the bias-corrected test. To this end, we follow the settings
of Zhong and Chen (2011) and consider two different types of alternative hypotheses.
The first type is a non-sparse alternative, where βb = κ(βb1, βb2, . . . , βb(p−q))

� ∈
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Fig. 1 Power of the bias-corrected test (BC-test) and the ZC-test for Example 1 under the normal setting
with n = 100, p = 200 and q = 0

R
p−q , the βbj s are simulated from a standard normal distribution, and κ is selected so

that the signal strength β�
b �b|aβb ranges from 0 to 1.5. The second type is a sparse

alternative, where βbj (1 ≤ j ≤ 5) are generated from a standard normal distribution
with βbj being set to be 0 for every j > 5. In addition, the signal strengths are the same
as those of the first type. For the sake of illustration, we consider only the situation
where the random error is normally distributed with q = 0, n = 100, and p = 200.
Figure 1 depicts the empirical powers of the bias-corrected test and ZC-test, which
indicates they steadily increase towards 100 % as the signal strength gets larger. In
sum, both tests perform satisfactorily and comparably in both sparse alternative and
non-sparse alternative scenarios.

Example 2 We consider a case in which Xia and Xib are heavily correlated. More
specifically, we generate the data according to the factor model (5), where the vari-
ables Xi j with 1 ≤ j ≤ q and εi are randomly generated from the standard normal
distribution. In addition,we have the variables Xib = B Xia + X∗

ib for 1 ≤ i ≤ n,
where each element of the factor loading B ∈ R

(p−q)×q is simulated from a standard
normal distribution. Moreover, X∗

ib ∈ R
p−q is generated from a multivariate normal

distribution with mean 0 and covariance matrix �b|a = (σ ∗
j1 j2

) ∈ R
(p−q)×(p−q) with

σ ∗
j1 j2

= 0.5| j1− j2|. The regression coefficients, sample sizes, full model sizes, and
reduced model sizes, as well as the number of realizations, are the same as those in
Example 1. It can be verified that the technical conditions (C1) and (C2) imposed
on �b|a (instead of �) are satisfied. Hence, the results presented in Table 2 indi-
cate that the bias-corrected test performs reasonably well and is qualitatively simi-
lar to that in the previous example. Because the condition for the ZC-test is invalid
under this simulation setting, it is not surprising that ZC-test does not perform well.
Specifically, one can show that tr(�4) = tr(B B�)4{1 + o(1)} = tr(B�B)4{1 +
o(1)} = p4tr(Iq){1 + op(1)} = qp4{1 + o(1)} and tr(�2) = qp2{1 + o(1)}. As a

123



288 W. Lan et al.

Table 2 Size of the
bias-corrected test and the
ZC-test for Example 2

n p Normal Mixture

q q

0 8 15 0 8 15

Bias-corrected test

100 200 0.062 0.054 0.038 0.071 0.050 0.039

500 0.070 0.045 0.035 0.072 0.047 0.042

1,000 0.062 0.040 0.035 0.057 0.056 0.035

200 200 0.070 0.055 0.057 0.066 0.053 0.051

500 0.057 0.056 0.046 0.054 0.061 0.035

1,000 0.052 0.062 0.044 0.062 0.049 0.046

ZC-test

100 200 0.053 0.144 0.216 0.072 0.146 0.217

500 0.059 0.203 0.458 0.062 0.228 0.484

1,000 0.063 0.356 0.762 0.041 0.321 0.743

200 200 0.070 0.096 0.134 0.063 0.084 0.149

500 0.056 0.116 0.208 0.048 0.129 0.199

1,000 0.047 0.163 0.295 0.049 0.166 0.303

Fig. 2 Power of the
bias-corrected test (BC-test) for
Example 2 under the normal
setting for both sparse
alternative (S) and non-sparse
alternative (N) with
n = 100, p = 200 and q = 0
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result, tr(�4)/tr2(�2) → q−1 �= 0 if q is fixed; this violates condition (2.8) in
Zhong and Chen (2011). Finally, Fig. 2 depicts the empirical power of the bias-
corrected test. It is not surprising that the non-sparse alternative performs better than
the sparse alternative, and their overall performances are qualitatively similar to those
of Fig. 1.

4.2 Real data analysis

To further demonstrate the practical usefulness of our proposed method, we consider
an empirical example using data from an online mobile phone retailer. The data set
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can be obtained from the authors upon request, and will be made available for research
purposes only. The data set contains a total of n = 98 daily records. The response
is the revenue from the retailer’s online sales, and the explanatory variables are the
advertising spending on each of p = 1, 048 different keywords that were bid for on
Baidu (www.baidu.com), the leading domestic search engine in China. In practice,
allocating the advertising spending on profitable keywords is critical for online sales.
We, therefore, start by ranking 1, 048 keywords according to their relative importance
measured by the coefficient of variation (CV) for each keyword. This is because a
keyword with a weaker CV is typically associated with larger spending, but smaller
variability; empirical experience suggests that those keywords are more likely to be
associated with online sales. As a result, a keyword with a weak CV is more important
than one with a strong CV.

We next denote the sorted predictors as V(1), V(2), . . . , V(p). Since sales vary with
the day of the week, we introduce the 6-dimensional indicator variables W ∈ R

6 to
represent Sunday to Friday. For a fixed k, we define Xa = (W, V(1), . . . , V(k)), and then
test whether the advertising spending on the rest of keywords, Xb = (V( j) : j > k),
could provide a significant contribution to online sales by controlling for the effect
of Xa . To this end, the bias-corrected test procedure is applied sequentially with
k = 1, 2, . . ., until the resulting p-value is larger than the 5 % level of significance. The
testing procedure stops with k = 8; this suggests that, after controlling for advertising
spending on the first eight keywords, the others are not statistically significant to the
response.

After carefully examining those eight keywords, we find that they can be classified
into three different categories. The first category contains a single keyword, the brand
name of this particular online retailer. People generally would not search for such a
keyword if they were not already familiar with this retailer. Hence, identifying this
keyword is highly desirable result. The second category contains a keyword that is the
name of a Chinese version of iPad (“one-person-one-book” directly translated from
Chinese). Since it is considered to be the most important competitor for iPad in the
domestic Chinese market, targeting this keyword is also an expected result. The last
category consists of six keywords that are related to mobile phones designed specif-
ically for “senior people” (directly translated from Chinese). Since the percentage of
seniors in China has increased steadily in the past few years as a result of the one
child policy, it is not surprising that they play an important role in the mobile phone
market.

Based on the experience of a field practitioner, the eight keywords identified
by our bias-corrected test are highly interpretable and useful. In addition, offline
data confirm that the product categories represented by those eight search key-
words are economically important; they account for more than 65 % of the entire
online sales. It is worth noting that the simulation studies in Sect. 3.1 indi-
cate that the bias-corrected test performs well when n = 100, p = 1, 000,
and q = 8; our empirical example is similar to this case. In sum, our test is
able to identify eight critical keywords from the 1,048 keywords and 98 observa-
tions; this method efficiently utilizes the high volume of data available to online
retailers.
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5 Concluding remarks

To broaden the usefulness of our proposed test, we conclude this article by extending
the test statistic to generalized linear models (McCullagh and Nelder 1989). Consider

E(Yi |Xi ) = g−1(X�
i β) = g−1(X�

iaβa + X�
ibβb),

where g(·) is the canonical link function. The resulting log-likelihood function, after
omitting the irrelevant constants, is given by

∑

i {(Yi · X�
i β) − nb(X�

i β)} for some
smooth function b(·). By maximizing the log-likelihood function under the null
hypothesis of (3), we obtain the maximum likelihood estimator (MLE) of βa , which
is denoted β̂a . Then, with a slight abuse of the notation for random errors and their
corresponding residuals used in the linear model, we denote εi = Yi − g−1(X�

iaβa)

and ε̂i = Yi − g−1(X�
ia β̂a). As a result, the estimator of σ 2 is σ̂ 2 = Ê�Ê/(n − q),

where Ê = (ε̂1, . . . , ε̂n)�.
Under the null hypothesis of (3), we have E(εi ˜Xi j ) = 0 for any j > q, where

˜Xi j is the i-th element of ˜X j defined in Sect. 3. Similarly, an initial test statistic
can be constructed as T g

1 = n−1 ∑

j>q(Ê�
˜X j )

2 = n−1Ê�
˜Xb˜X

�
b Ê . Under the null

hypothesis, we have E∗(Ê�
˜Xb˜X

�
b Ê) ≈ E∗(E�

˜Xb˜X
�
b E) = ∑n

i=1 σ 2
i ωi , where σ 2

i =
E(ε2

i ) and ωi is the i th diagonal element of ˜Xb˜X
�
b ∈ R

n×n . Accordingly, we can

estimate E∗(E�
˜Xb˜X

�
b E) by Ê��Ê , where � = diag{ω1, . . . , ωn}. This leads us

to propose the following bias-corrected test statistic:T g
2 = n−1Ê�(˜Xb˜X

�
b − �)Ê .

Then, employing similar techniques as in the linear model, we are able to show that
var(T g

2 ) = 2σ̄ 4tr(�2
b|a){1+o(1)}, where σ̄ 2 = n−1 ∑n

i=1 σ 2
i . Accordingly, we obtain

a test statistic, Zg = T g
2 /{2σ̂ 4 ̂tr(�2

b|a)}1/2, for testing the null hypothesis of (3)
in generalized linear models. Our unreported numerical results suggest that the test
statistic Zg works fairly well in terms of both size and power.

To conclude the article, we discuss two interesting topics for future research. The
first is to obtain a test statistic for testing the null hypothesis H0 : βa = 0. This is a
challenging task since the total number of unknown parameters in βb remains large
even under H0. The second is to employ the Pearson residual or deviance residual,
as proposed by an anonymous referee, to derive a test statistic for generalized linear
models. We believe these efforts would strengthen the use of hypothesis testing for
making inferences in high-dimensional data analysis.

Appendix

Appendix A: technical Lemmas

Before proving four theorems, we present the following three lemmas. Lemma 1 can
be found in Bendat and Piersol (1966) and Lemma 2 can be derived directly from Bao
and Ullah (2010). Accordingly, we only provide the details for Lemma 3:
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Lemma 1 Let (U1, U2, U3, U4)
� ∈ R

4 be a 4-dimensional normal random vector
with E(U j ) = 0 and var(U j ) = 1 for 1 ≤ j ≤ 4. We then have E(U1U2U3U4) =
δ12δ34 + δ13δ24 + δ14δ23, where δi j = E(UiU j ).

Lemma 2 Let V = (V1, . . . , Vm)� ∈ R
m be a random vector with E(V ) = 0 and

cov(V ) = Im. We further assume that E(V g1
i1

V g2
i2

. . . V gr
ir

) = E(V g1
i1

) . . . E(V gr
ir

) for
indices i1, i2, . . . , ir ∈ {1, 2, . . . , m} and for any integers gv ≥ 0 with

∑r
v=1 gv ≤ 8.

Then, for any symmetric m × m matrix A1 and any m × m positive definite matrix
A2, we have that (i.) E(V � A1V )2 = tr2(A1) + 2tr(A2

1) + �̄tr(A⊗2
1 ), where A1 =

(a j1 j2), A⊗2
1 = (a2

j1 j2
), and �̄ = E(V 4

i ) − 3; (ii.) there is a finite constant C such

that E{V � A2V − tr(A2)}4 ≤ Ctr2(A2
2).

Lemma 3 Assume that Wi = 	̃ Z̃i ∈ R
l , where 	̃ = (γ̃ jk) ∈ R

l×m, Z̃i ∈
R

m, E(Z̃i ) = 0, cov(Z̃i ) = Im, and E(Z̃8
i j ) < ∞ for j = 1, . . . , m.

In addition, assume that E(Z̃ l1
i j1

Z̃ l2
i j2

. . . Z̃ lr
i jr

) = E(Z̃ l1
i j1

) . . . E(Z̃ lr
i jr

) for indices

j1, j2, . . . , jr ∈ {1, 2, . . . , m} and for any integers lv ≥ 0 with
∑r

v=1 lv ≤ 8.
We then have that E(Wi j1 Wi j2 Wi j3 Wi j4) = σ̃ j1 j2 σ̃ j3 j4 + σ̃ j1 j3 σ̃ j2 j4 + σ̃ j1 j4 σ̃ j2 j3 +
�̃

∑m
k=1 γ̃ j1k γ̃ j2k γ̃ j3k γ̃ j4k , where cov(Wi ) = (σ̃ j1 j2) ∈ R

l×l and �̃ = E(Z̃4
i j ) − 3.

Proof From Wi = 	̃ Z̃i , we have Wi j = ∑m
k=1 γ̃ jk Z̃ik for 1 ≤ j ≤ l. As a result, we

obtain that

E(Wi j1 Wi j2 Wi j3 Wi j4) =
∑

k1,k2,k3,k4

γ̃ j1k1 γ̃ j2k2 γ̃ j3k3 γ̃ j4k4 E(Z̃ik1 Z̃ik2 Z̃ik3 Z̃ik4)

= E(Z̃4
ik)

∑

k

γ̃ j1k γ̃ j2k γ̃ j3k γ̃ j4k +
∑

k1 �=k2

γ̃ j1k1 γ̃ j2k1 γ̃ j3k2 γ̃ j4k2

+
∑

k1 �=k2

γ̃ j1k1 γ̃ j2k2 γ̃ j3k1 γ̃ j4k2 +
∑

k1 �=k2

γ̃ j1k1 γ̃ j2k2 γ̃ j3k2 γ̃ j4k1

=
{

E(Z̃4
ik)−3

}
∑

k

γ̃ j1k γ̃ j2k γ̃ j3k γ̃ j4k +
∑

k1,k2

γ̃ j1k1 γ̃ j2k1 γ̃ j3k2 γ̃ j4k2

+
∑

k1,k2

γ̃ j1k1 γ̃ j2k2 γ̃ j3k1 γ̃ j4k2 +
∑

k1,k2

γ̃ j1k1 γ̃ j2k2 γ̃ j3k2 γ̃ j4k1

= σ̃12σ̃34 + σ̃13σ̃24 + σ̃14σ̃23 + �̃

m
∑

k=1

γ̃ j1k γ̃ j2k γ̃ j3k γ̃ j4k . (11)

The last equality is due to the fact that σ̃ j1 j2 = ∑

k γ̃ j1k γ̃ j2k for any 1 ≤ j1, j2 ≤ l.
This completes the proof. 
�

Appendix B: Proof of Proposition 1–2

The normal distribution assumed in Proposition 1 implies the diverging factor model
in Proposition 2. Hence, we only present proofs for Proposition 2, where (C2.a) and
(C2.b) are satisfied.
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Proof of (C2.a) The moment condition (C2.a) can be obtained directly from Lemma
2(ii); we thus omitted it. 
�
Proof of (C2.b) Using Lemma 3, we have that E{X∗

i j1
X∗

i j2
X∗

i j3
X∗

i j4
} = σ ∗

j1 j2
σ ∗

j3 j4
+

σ ∗
j1 j3

σ ∗
j2 j4

+ σ ∗
j1 j4

σ ∗
j2 j3

+ �z
∑m

k=1 γ j1kγ j2kγ j3kγ j4k . This, together with Cauchy’s

inequality, condition (C1), and �b|a = 		�, implies that

p−2
∑

j1, j2, j3, j4

{

E
(

X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4

)}2

= p−2
∑

j1, j2, j3, j4

(

σ ∗
j1 j2σ

∗
j3 j4 +σ ∗

j1 j3σ
∗
j2 j4 +σ ∗

j1 j4σ
∗
j2 j3 +�z

∑

k

γ j1kγ j2kγ j3kγ j4k

)2

≤ 2p−2
∑

j1, j2, j3, j4

(

σ ∗
j1 j2σ

∗
j3 j4 + σ ∗

j1 j3σ
∗
j2 j4 + σ ∗

j1 j4σ
∗
j2 j3

)2

+2p−2�2
z

∑

j1, j2, j3, j4

(

∑

k

γ j1kγ j2kγ j3kγ j4k

)2

= 2p−2
{

3tr2
(

�2
b|a

)

+6tr
(

�4
b|a

)}

+2p−2�2
z

∑

j1, j2, j3, j4

(

∑

k

γ j1kγ j2kγ j3kγ j4k

)2

= O(1) + 2p−2�2
z

∑

j1, j2, j3, j4

⎧

⎨

⎩

∑

k1,k2

(

γ j1k1γ j2k1γ j3k1γ j4k1

) (

γ j1k2γ j2k2γ j3k2γ j4k2

)

⎫

⎬

⎭

= O(1)+2p−2�2
z

∑

k1,k2

⎧

⎨

⎩

∑

j1, j2, j3, j4

(γ j1k1γ j1k2)(γ j2k1γ j2k2)(γ j3k1γ j3k2)(γ j4k1γ j4k2)

⎫

⎬

⎭

= O(1) + 2p−2�2
z

∑

k1,k2

⎛

⎝

∑

j

γ jk1γ jk2

⎞

⎠

4

≤ O(1)

+2p−2�2
z

⎧

⎪

⎨

⎪

⎩

∑

k1,k2

⎛

⎝

∑

j

γ jk1γ jk2

⎞

⎠

2
⎫

⎪

⎬

⎪

⎭

2

≤ O(1) + 2p−2�2
z tr2(	�	)2 = O(1) + 2p−2�2

z tr2(		�)2

= O(1) + 2p−2�2
z tr2

(

�2
b|a

)

= O(1).

From (7), we complete the proof. 
�

Appendix C: Proof of Theorem 1

To prove the theorem, we consider two steps: Step (1) shows the first part in (8) and
Step (2) demonstrates the second part.
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Step (1): Under the null hypothesis of (3), we have that Ê = (In − Ha)E and

p−1σ−2 E∗(T1) = n−1 p−1tr
{

(In − Ha)XbX
�
b (In − Ha)

}

= n−1 p−1tr
{

(In − Ha)X∗
bX

∗�
b (In − Ha)

}

= n−1 p−1tr
(

X
∗
bX

∗�
b

)

− n−1 p−1tr
(

X
∗�
b HaX

∗
b

)

. (12)

Define T = n−1 p−1tr(X∗
bX

∗�
b ) = n−1 ∑n

i=1(p−1 ∑

j∈S X∗2
i j ). It is obvious that

E(T ) = 1 + o(1). Applying (6) and condition (C2.a), we further show that

var(T ) = n−1var

⎛

⎝p−1
∑

j∈S
X∗2

i j

⎞

⎠ = o(1).

Accordingly, the first term of (12) is n−1 p−1tr{X∗
bX

∗�
b } = 1+op(1). We next demon-

strate that the order of the second term in (A.2) is op(1). Using tr(Ha) = q, then

n−1 p−1tr
{

X
∗
b
�HaX

∗
b

}

≤ n−1 p−1tr(Ha)λmax

(

X
∗
bX

∗
b
�)

= {n−1q}λmax

(

p−1
X

∗
bX

∗
b
�)

. (13)

Define H̄ = X
∗
bX

∗
b
� − (p − q)In = (h̄i1i2) ∈ R

n×n . By Chebyshev’s inequality, for
any arbitrarily large constant t , we obtain that

P(λmax(H̄)>n3/4 p1/2t)≤n−3 p−2t−4 E{λ4
max(H̄)}≤n−3 p−2t−4 E{trH̄4}. (14)

It is noteworthy that tr(H̄4) = ∑

i1,i2,i3,i4
h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1 . Hence,

E{tr(H̄4)} = E

⎧

⎨

⎩

∑

i1,i2,i3,i4

h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1

⎫

⎬

⎭

= E

{

∑

A
h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1

}

+ E

{

∑

Ac

h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1

}

, (15)

where A = {(i1, i2, i3, i4), i1 �= i2 �= i3 �= i4}. After algebraic simplification with
condition (C1), the first term of (15) becomes

E

{

∑

A
h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1

}

= E

⎧

⎨

⎩

∑

i1 �=i2 �=i3 �=i4

∑

j1∈S
X∗

i1 j1 X∗
i2 j1

∑

j2∈S
X∗

i2 j2 X∗
i3 j2

∑

j3∈S
X∗

i3 j3 X∗
i4 j3

∑

j4∈S
X∗

i1 j4 X∗
i4 j4

⎫

⎬

⎭
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=
∑

i1 �=i2 �=i3 �=i4

∑

j1, j2, j3, j4∈S
E

{

X∗
i1 j1 X∗

i1 j4 X∗
i2 j1 X∗

i2 j2 X∗
i3 j2 X∗

i3 j3 X∗
i4 j3 X∗

i4 j4

}

=
∑

i1 �=i2 �=i3 �=i4

∑

j1, j2, j3, j4∈S
σ ∗

j1 j4σ
∗
j1 j2σ

∗
j2 j3σ

∗
j3 j4

= n(n − 1)(n − 2)(n − 3)tr
(

�4
b|a

)

= O(n4 p). (16)

Using the fact that |Ac| ≤ n3 and Cauchy’s inequality, the second term of (15) satisfies

E

{

∑

Ac

h̄i1i2 h̄i2i3 h̄i3i4 h̄i4i1

}

≤ 4−1n3
{

E
(

h̄4
i1i2

)

+ E
(

h̄4
i2i3

)

+ E
(

h̄4
i3i4

)

+E
(

h̄4
i4i1

)}

. (17)

To further simplify (17), we consider two cases, i1 �= i2 and i1 = i2. When i1 �= i2,
we employ condition (C2.b) and equation (7), and then obtain that

E(h̄4
i1i2

) =
∑

j1, j2, j3, j4∈S
E

{

X∗
i1 j1 X∗

i1 j2 X∗
i1 j3 X∗

i1 j4 X∗
i2 j1 X∗

i2 j2 X∗
i2 j3 X∗

i2 j4

}

=
∑

j1, j2, j3, j4∈S

{

E(X∗
i1 j1 X∗

i1 j2 X∗
i1 j3 X∗

i1 j4)
}2 = O(p2).

For the case with i1 = i2, the same conclusion can be established via condition (C2.a).
The above results, together with (16) and (17), imply that E{tr(H̄4)} = O(n4 p) +
O(n3 p2). Hence, as long as n/p tends to 0 and t is sufficiently large, we have that
n−3 p−2t−4 E{trH̄4} → 0. This result and (14) lead to

λmax(H̄) = Op

(

p1/2n3/4
)

. (18)

Using (13), (18), and the assumption of qn−1/4 → 0, we thus obtain that, with prob-
ability tending to 1, the second term of (12) is n−1 p−1tr{X∗

b
�HaX

∗
b} ≤ {n−1q}{1 +

Op(n3/4 p−1/2)} = op(1). Consequently, p−1σ−2 E∗(T1) = 1 + op(1), which com-
pletes the proof of the first part in (8).

Step (2): We next consider the conditional variance var∗(T1). After algebraic sim-
plification and employing Lemma 2(i), we have that

np−2var∗(T1) = n−1 p−2
[

E∗
{

E�(In − Ha)X∗
bX

∗
b
�
(In − Ha)E

}2

−
{

E∗
{

E�(In − Ha)X∗
bX

∗
b
�
(In − Ha)E

}}2
]

= 2n−1 p−2σ 4tr
{

(In − Ha)X∗
bX

∗
b
�
(In − Ha)X∗

bX
∗
b
�
(In − Ha)

}
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+�n−1 p−2σ 4tr
{

(In − Ha)X∗
bX

∗
b
�
(In − Ha)

}⊗2

≤ 2n−1 p−2σ 4tr
{

(In − Ha)X∗
bX

∗
b
�
(In − Ha)X∗

bX
∗
b
�
(In − Ha)

}

+|�|n−1 p−2σ 4tr
{

(In − Ha)X∗
bX

∗
b
�
(In − Ha)

}2
,

= (2+�)n−1 p−2σ 4tr
{

(In −Ha)X∗
bX

∗
b
�
(In −Ha)X∗

bX
∗
b
�

×(In −Ha)
}

≤ (2 + |�|)n−1 p−2σ 4tr
{

X
∗
bX

∗
b
�
(In − Ha)X∗

bX
∗
b
�}

≤ (2 + |�|)n−1 p−2σ 4tr
{

(X∗
bX

∗
b
�
)2

}

= (2 + |�|)n−1σ 4tr
{

p−1(X∗
bX

∗
b
�
)2

}

.

Using similar techniques to those used above, we can verify that n−1 p−2

tr
{

(X∗
bX

∗
b
�)2

}

→p 1. As a result, np−2σ−4var∗(T1) ≤ 2(1 + �) in probability.

This completes the entire proof of Theorem 1. 
�

Appendix D: Proof of Theorem 2

To prove this theorem, we introduce the statistic, T̃2 = n−1T̄1 − (p − q)n−1E�E ,
where T̄1 = E�

X
∗
bX

∗
b
�E . We then consider two steps, namely computing the variance

of T̃2 and showing that the difference between T̃2 and T2 is negligible.

Step (1): By condition (C1), we have var(X∗
j ) = σ ∗

j j = 1. Under the null hypothesis

of (3), one can easily verify that E(T̃2) = 0. With algebraic simplification, we obtain
that n2var(T̃2) = E(T̄ 2

1 )+ (p−q)2 E{E�E}2 −2(p−q)E{T̄1E�E}. We next evaluate
the three terms on the right-hand side of this equation. Since E(ε4

i ) = (3 + �)σ 4,

E(T̄ 2
1 ) = E

(

E�
X

∗
bX

∗
b
�E

)2 = Eg

⎧

⎨

⎩

∑

j∈S
(
∑

i

X∗
i jεi )

2g

⎫

⎬

⎭

2

= E

⎛

⎝

∑

j∈S

∑

i1,i2

X∗
i1 j X∗

i2 jεi1εi2

⎞

⎠

2

=
∑

j1, j2∈S

∑

i1,i2,i3,i4

E
{

εi1εi2εi3εi4 X∗
i1 j1 X∗

i2 j1 X∗
i3 j2 X∗

i4 j2

}

=
∑

j1, j2∈S

n
∑

i=1

E
{

ε4
i X∗2

i j1 X∗2
i j2

}

+
∑

j1, j2∈S

∑

i1 �=i2

E
{

ε2
i1
ε2

i2
X∗2

i1 j1 X∗2
i2 j2

}
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+2
∑

j1, j2∈S

∑

i1 �=i2

E
{

ε2
i1
ε2

i2
X∗

i1 j1 X∗
i1 j2 X∗

i2 j1 X∗
i2 j2

}

= (3 + �)σ 4n
∑

j1, j2∈S
E

{

X∗2
i j1 X∗2

i j2

}

+σ 4n(n − 1)(p − q)2 + 2σ 4n(n − 1)tr(�2
b|a). (19)

By the definition of �, one can demonstrate that σ−4 E(E�E)2 = n(n + 2) + �n
and then show that

σ−4 E
{

T̄1E�E
}

= σ−4 E
{

E�
X

∗
bX

∗
b
�EE�E

}

= σ−4(p − q)E{E�E}2

= (p − q) {n(n + 2) + n�} .

The above results, together with condition (C2.a) and equation (6), imply that

n2σ−4var(T̃2)=n(3+�)
∑

j1, j2∈S

{

E(X∗2
i j1 X∗2

i j2)−1
}

+2n(n−1)tr(�2
b|a)

= O(np)+2n(n−1)tr(�2
b|a)=2n2tr(�2

b|a)(1+o(1)), (20)

which completes the proof of Step (1). 
�
Step (2): After simple calculation, we have that var(T̃2) ≥ 2σ 4(p − q)τ 2

min{1+o(1)}, which is of order O(p) by condition (C1) and the assumption of q/p → 0.
As a result, it suffices to show that p−1/2(T2 − T̃2) = op(1) to complete the proof.
Note that

p−1/2(T2−T̃2)= p−1/2
{

T1−n−1T̄1+n−1(p−q)E� HaE
}

−p−1/2
{

σ̂ 2n−1(p−q)tr(M̃Q)−n−1(p−q)E�QE
}

,

(21)

where M̃ = (p − q)−1
X

∗
bX

∗�
b ∈ R

n×n . We next demonstrate that the two terms on

the right-hand side of the above equation are of order op(1). By Ê = (In − Ha)E , we
have

n
{

T1 − n−1T̄1 + n−1(p − q)E� HaE
}

= E�(In − Ha)X∗
bX

∗
b
�
(In − Ha)E − E�

X
∗
bX

∗
b
�E + (p − q)E� HaE

= E� HaH̄HaE − 2E� HaH̄E . (22)

The first term in (22) satisfies E� HaH̄HaE ≤ λmax(H̄)E�HaE . In addition, (18)
indicates that λmax(H̄) = Op(p1/2n3/4). By tr(H⊗2

a ) ≤ tr(H2
a ) = q, we have

that σ−4var{n−1/4E�HaE} = n−1/2{2q + �tr(H⊗2
a )} ≤ n−1/2q{2 + �} = o(1).

This, in conjunction with the fact that σ−2 E{n−1/4E� HaE} = n−1/4q = o(1), yields
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E� HaE = op(n1/4). Hence, E� HaH̄HaE = op(np1/2). Analogously, we can demon-
strate that the second term in (22), E� HaH̄E , is also of order op(np1/2). Accordingly,
the first term on the right-hand side of (21) is of order op(1). Finally, applying similar
techniques to those used in the above proofs, we are able to show that the second
term on the right-hand side of (21) is also of order op(1), which completes the entire
proof. 
�

Appendix E: Proof of Theorem 3

According to the proof of Theorem 2, we only need to demonstrate that T̃2/var1/2

(T̃2) →d N (0, 1). To this end, denote

T̃2 = n−1
∑

1≤i1 �=i2≤n

∑

j∈S
εi1εi2 X∗

i1 j X∗
i2 j + n−1

∑

i=1

∑

j∈S
ε2

i (X∗2
i j − 1)

.= �1 + �2.

Then, it suffices to show that

�2/var1/2(T̃2) = op(1) and �1/var1/2(T̃2) →d N (0, 1), (23)

and the detailed proofs are given in the following two steps, respectively:

Step (1): After algebraic simplification with condition (C2.a), we obtain

n2σ−4var(�2)

= σ−4
∑

1≤i1,i2≤n

∑

j1, j2∈S
E

{

ε2
i1
ε2

i2
(X∗2

i1 j1 − 1)
(

X∗2
i2 j2 − 1

)}

=
∑

i1 �=i2

∑

j1, j2∈S
E

{

(X∗2
i1 j1 − 1)

(

X∗2
i2 j2 − 1

)}

+(3 + �)

n
∑

i=1

∑

j1, j2∈S
E

{

(X∗2
i j1 − 1)(X∗2

i j2 − 1)
}

= (3 + �)

n
∑

i=1

∑

j1, j2∈S

{

E(X∗2
i j1 X∗2

i j2) − 1
}

= (3 + �)n
∑

j1, j2∈S

{

E(X∗2
i j1 X∗2

i j2) − 1
}

= O(np),

where the last equality is due to (6). Therefore, var(�2) = o(p). Recalling that
E(�2) = 0 and var(T̃2) = 2σ 4tr(�2

b|a){1 + o(1)} ≥ σ 4 pτ 2
min, this completes the

proof of the first term of (23).

Step (2): Applying similar techniques used in the proof of Theorem 2, we have that
var(�1) = 2σ 4tr(�2

b|a){1 + o(1)}. Then, var(�1)
−1var(T̃2) tends to 1 as n goes to

infinity. Hence, we only need to show that
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�1/var1/2(�1) →d N (0, 1). (24)

To this end, define Fr = σ {εi1 , X∗
i2 j , 1 ≤ j ≤ p, 1 ≤ i1, i2 ≤ r, i1 �= i2}, the σ -field

generated by {εi1 , X∗
i2 j }, where 1 ≤ j ≤ p, 1 ≤ i1, i2 ≤ r for r = 1, 2, · · · , n and

i1 �= i2. In addition, define

Tn,r = n−1
∑

1≤i1 �=i2≤r

∑

j∈S
εi1εi2 X∗

i1 j X∗
i2 j .

Obviously, Tn,r ∈ Fr . Then, set �n,r = Tn,r − Tn,r−1 with �0 = 0. One can easily
verify that E(�n,r |Fq) = 0 and E(Tr |Fq) = Tq for any q < r . This implies that,
for an arbitrary fixed n, {�n,r , 0 ≤ r ≤ n} is a martingale difference sequence with
respect to {Fr , 0 ≤ r ≤ n} with F0 = ∅. Accordingly, by the Martingale Central
Limit Theorem (Hall and Heyde 1980), for the proof of (24), it suffices to show that

∑n
r=1 σ ∗2

n,r

var(�1)
→p 1 and

∑n
r=1 E(�4

n,r )

var2(�1)
→p 0 (25)

where σ ∗2
n,r = E(�2

n,r |Fr−1).

We begin by showing the first term of (25). After algebraic simplification, we have
that �n,r = 2n−1 ∑

i<r
∑

j∈S X∗
i j X∗

r jεiεr and

n
∑

r=1

σ ∗2
n,r =

n
∑

r=1

4n−2 E

⎛

⎝

∑

i1<r

∑

i2<r

∑

j1, j2∈S
X∗

i1 j1 X∗
i2 j2 X∗

r j1 X∗
r j2εi1εi2ε

2
r |Fr−1

⎞

⎠

= 4n−2σ 2
n

∑

r=1

∑

i1<r

∑

i2<r

∑

j1, j2∈S
εi1εi2 X∗

i1 j1 X∗
i2 j2σ

∗
j1 j2

= 4n−2σ 2

⎛

⎝

n
∑

r=1

∑

i1 �=i2<r

∑

j1, j2∈S
εi1εi2 X∗

i1 j1 X∗
i2 j2σ

∗
j1 j2

+
n

∑

r=1

∑

i<r

∑

j1, j2∈S
ε2

i X∗
i j1 X∗

i j2σ
∗
j1 j2

⎞

⎠ .

Using tr{�4
b|a} = O(p), we then obtain

var

⎛

⎝

n
∑

r=1

∑

i1 �=i2<r

∑

j1, j2∈S
εi1εi2 X∗

i1 j1 X∗
i2 j2σ

∗
j1 j2

⎞

⎠

= 4E

⎛

⎝

∑

r1,r2

∑

i1<i2<r1

∑

i3<i4<r2

∑

{ j1, j2, j3, j4}∈S
εi1εi2εi3εi4 X∗

i1 j1 X∗
i2 j2 X∗

i3 j3 X∗
i4 j4σ

∗
j1 j2σ

∗
j3 j4

⎞

⎠
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= 4σ 4
∑

r1,r2

∑

i1<i2<min(r1,r2)

∑

{ j1, j2, j3, j4}∈S
σ ∗

j1 j3σ
∗
j2 j4σ

∗
j1 j2σ

∗
j3 j4

= 4σ 4
∑

r1,r2

∑

i1<i2<min(r1,r2)

tr(�4
b|a) = O(n4 p) = o(n4 p2). (26)

Furthermore, by condition (C2.b) and Cauchy’s inequality, we have

σ−4 E

⎧

⎨

⎩

n
∑

r=1

∑

i<r

∑

j1, j2∈S
ε2

i X∗
i j1 X∗

i j2σ
∗
j1 j2

⎫

⎬

⎭

2

= σ−4 E

⎛

⎝

∑

r1,r2

∑

i1<r1

∑

i2<r2

∑

{ j1, j2, j3, j4∈S}
ε2

i1
ε2

i2
X∗

i1 j1 X∗
i1 j2 X∗

i2 j3 X∗
i2 j4σ

∗
j1 j2σ

∗
j3 j4

⎞

⎠

=
∑

r1,r2

∑

i1<r1,i2<r2,i1 �=i2

∑

{ j1, j2, j3, j4∈S}
σ ∗2

j1 j2σ
∗2
j3 j4

+(3 + �)
∑

r1,r2

∑

i<min(r1,r2)

∑

{ j1, j2, j3, j4∈S}
E{X∗

i j1 X∗
i j2 X∗

i j3 Xi j∗4 }σ ∗
j1 j2σ

∗
j3 j4

≤
∑

r1,r2

∑

i1<r1,i2<r2,i1 �=i2

tr2(�2
b|a)

+2−1(3 + �)
∑

r1,r2

∑

i<min(r1,r2)

∑

j1, j2, j3, j4∈S

{

E(X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4)
}2

+2−1(3 + �)
∑

r1,r2

∑

i<min(r1,r2)

∑

j1, j2, j3, j4∈S
σ ∗2

j1 j2σ
∗2
j3 j4

=
∑

r1,r2

∑

i1<r1,i2<r2

tr2(�2
b|a) + O(n3 p2),

where the last equality is due to the fact that

∑

r1,r2

∑

i<min(r1,r2)

∑

j1, j2, j3, j4∈S

{

E(X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4)
}2 = O(n3 p2) (27)

obtained via condition (C2.b) and

∑

r1,r2

∑

i<min(r1,r2)

∑

j1, j2, j3, j4∈S
σ ∗2

j1 j2σ
∗2
j3 j4 =

∑

r1,r2

∑

i<min(r1,r2)

tr2(�2
b|a) = O(n3 p2).

(28)
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This further implies that

var

⎛

⎝

n
∑

r=1

∑

i<r

∑

j1, j2∈S
ε2

i X∗
i j1 X∗

i j2σ
∗
j1 j2

⎞

⎠

= E

⎧

⎨

⎩

n
∑

r=1

∑

i<r

∑

j1, j2∈S
ε2

i X∗
i j1 X∗

i j2σ
∗
j1 j2

⎫

⎬

⎭

2

−
⎧

⎨

⎩

E

⎛

⎝

n
∑

r=1

∑

i<r

∑

j1, j2∈S
ε2

i X∗
i j1 X∗

i j2σ
∗
i j

⎞

⎠

⎫

⎬

⎭

2

≤ σ 4
∑

r1,r2

∑

i1<r1,i2<r2

tr2(�2
b|a) + O(n3 p2) − σ 4

∑

r1,r2

∑

i1<r1,i2<r2

tr2(�2
b|a)

= O(n3 p2) = o(n4 p2). (29)

Moreover, it can easily be shown that E(
∑n

r=1 σ ∗2
n,r ) = var(�1). This, together with

the fact that var(�1) = 2(1 − n−1)σ 4tr(�2
b|a){1 + o(1)} ≥ σ 4 pτ 2

min, as well as (26)

and (29), yields var(
∑n

r=1 σ ∗2
n,r ) = o{var2(�1)}. This completes the proof of the first

part of (25).
We next consider the second term of (25). Since �n,r = 2n−1 ∑

i<r
∑

j∈S X∗
i j X∗

r jεiεr , we have the following:

2−4n4
n

∑

r=1

E(�4
n,r )

= Eg

⎧

⎨

⎩

n
∑

r=1

∑

i1,i2,i3,i4<r

∑

j1, j2, j3, j4∈S
X∗

i1 j1 X∗
i2 j2 X∗

i3 j3 X∗
i4 j4 X∗

r j1 X∗
r j2 X∗

r j3 X∗
r j4ε

4
r εi1εi2εi3εi4g

⎫

⎬

⎭

= Eg

⎧

⎨

⎩

n
∑

r=1

∑

i<r

∑

j1, j2, j3, j4∈S
X∗

i j1 X∗
i j2 X∗

i j3 X∗
i j4 X∗

r j1 X∗
r j2 X∗

r j3 X∗
r j4ε

4
r ε4

i g

⎫

⎬

⎭

+6Eg

⎧

⎨

⎩

n
∑

r=1

∑

i1 �=i2<r

∑

j1, j2, j3, j4∈S
X∗

i1 j1 X∗
i1 j2 X∗

i2 j3 X∗
i2 j4 X∗

r j1 X∗
r j2 X∗

r j3 X∗
r j4ε

4
r ε2

i1
ε2

i2
g

⎫

⎬

⎭

.

(30)

It is noteworthy that E(ε4
i ) = (3 + �)σ 4. Then, by condition (C2.b), the first term on

the right-hand side of (30) is smaller than the following quantity:

{3 + �}2σ 8
n

∑

r=1

∑

i<r

∑

j1, j2, j3, j4∈S

{

E(X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4)
}2 = O(n2 p2). (31)

By Cauchy’s inequality, we know that 2ε2
i1
ε2

i2
≤ ε4

i1
+ ε4

i2
; this enables us to show that

the second term on the right-hand side of (30) is less than the quantity given below.

6{3 + �}2σ 8
n

∑

r=1

∑

i1 �=i2<r

∑

j1, j2, j3, j4∈S
σ ∗

j1 j2σ
∗
j3 j4 E

{

X∗
i j1 X∗

i j2 X∗
i j3 X∗

i j4

}

= O(n3 p2),

(32)
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where the last equality above is due to (27) and (28). Equations (30), (31), and (32)
lead to

∑n
r=1 E(�4

n,r ) = O(n−1 p2). This, in conjunction with the fact that var(�1) ≥
σ 4 pτ 2

min, shows the second part of (25); the entire proof is complete. 
�
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